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Summary. Large scale computing is a well-known research topic since it is heav-
ily desired by many science and engineering disciplines to simulate complex and
sophisticated problems. However, due to the unprecedented amount of data and
computations involved, it also poses challenges for current available numerical algo-
rithms and computer hardware. In this paper, the Dual-Primal Finite Element Tear-
ing and Interconnecting method (FETI-DP) is carefully investigated, and a reduced
back-substitution (RBS) algorithm is proposed to accelerate the time consuming
preconditioned conjugate gradient (PCG) iterations involved in the interface prob-
lems. Linear and nonlinear identification analysis (LNA) is also proposed for large
scale problems with localized nonlinearities. This combined approach is named as the
FETI-DP-RBS-LNA algorithm. Serial CPU time of this approach is measured and
compared with a direct sparse solver and the standard FETI-DP method on a weld-
ing problem. Parallelism of the FETI-DP-RBS-LNA algorithm is also implemented
by using MPI and the performance is reported. The empirical results demonstrate
the effectiveness of the proposed computational approach for welding applications,
which is representative of a large class of three dimensional linear-nonlinear large
scale problems with localized nonlinearities.

1 Introduction

Large scale finite element analysis is an important research area due to its wide
applicability in modeling and simulating complicated scientific and engineer-
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ing applications, such as structural mechanics, heat transfer, and biomechan-
ics. For realistic and sophisticated models, high density meshes are required
to capture the underlying physics in areas that are of particular interest or
with complex geometry or loading. Accordingly, the total degrees of freedom
in systems discritized by finite element method may easily exceed millions,
and it poses many computational challenges for current available numerical
algorithms as well as computer hardware.

Extensive research has been conducted to develop efficient and reliable
numerical methods which have the capabilities to solve large scale systems
arising from various disciplines. Two well-known approaches in this field are
direct and iterative methods. Direct sparse solvers are recognized as robust
and efficient choices for most of the applications, and they are widely employed
in many commercial finite element softwares. However, the high memory de-
mands and the not-so-well parallel scalability of direct sparse solvers restrict
its applications to large scale problems [1]. Traditional iterative solvers are ex-
cellent from the memory point of view. However, they are problem dependent
and the convergence is not guaranteed. For complex ill-conditioned engineer-
ing problems, they are not as reliable as direct sparse solvers.

Several novel approaches, such as Domain Decomposition (DD) methods
and adaptive meshing methods[2, 3], have also been studied extensively for
their possible applications to solve large scale systems. DD methods are based
on the native divide and conquer concept, they partition the physical do-
main into subdomains with either overlapping or non-overlapping interfaces.
Coarse-grain parallel processing can then be applied to the computations of
these subdomains to reduce overall analysis time. Adaptive meshing refines or
coarsens the meshes in different regions of the model during the analysis based
on their corresponding resolution requirements. Therefore, this approach is ca-
pable to reduce the computational costs while still maintain the quality of the
solution.

The objective of this paper is to present the FETI-DP-RBS-LNA algorithm
[4] and to investigate its serial and parallel performance for large scale prob-
lems with localized nonlinearity. The FETI-DP-RBS-LNA algorithm is based
on one type of DD methods, the Dual-Primal Finite Element Tearing and
Interconnecting method (FETI-DP)[5, 6]. Reduced Back-Substitution (RBS)
algorithm is proposed to accelerate costing local back-substitutions, and Lin-
ear and Nonlinear Analysis (LNA) is introduced to reduce unnecessary re-
factorizations of linear subdomains in the analysis. The distributed version of
this algorithm is implemented with Message Passing Interface (MPI) and the
performance is measured on a distributed PC cluster for a welding mechanical
analysis problem with one million degrees of freedom.
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2 Review of The FETI-DP-RBS-LNA Algorithm

2.1 The FETI-DP Algorithm

FETI-DP can be viewed as a combination of direct and iterative methods.
Based on the underlining divide and conquer concept, the physical domain is
divided into subdomains with non-overlapping interfaces. The related nodes
after finite element discretization can be classified into three groups based
on their locations, and they are marked as corner nodes, non-corner interface
nodes and internal nodes in Figure 1, respectively. More details of FETI-DP
can be found in Ref [4, 5, 6].

B Corner Nodes ® Non-Corner Interface Nodes ¢ Internal Nodes

Fig. 1. Subdomains with non-overlapping interfaces, their meshes and nodes clas-
sification

Through the similar concepts of super elements and substructures, the
high level interface problem can be first formulated and solved by an itera-
tive Preconditioned Conjugate Gradient (PCG) method. Once the interface
solution is available, corner information can be further solved. After that, all
the low level subdomains are independent and can be solved by direct sparse
solvers in a parallel fashion. These procedures are shown in Figure 2.

2.2 Reduced Back-Substitution Algorithm

Based on the CPU statistics in Ref [7] and the welding simulation problem
in this paper, the PCG iterations for large interface problems are found to
be the time consuming part in the FETI family algorithms. Within the PCG
costs, a high percentage (around 64.3% for the mechanical analysis of the
welding problem in this paper) of the CPU time is actually consumed by the
local back-substitutions inside the PCG iterations. Therefore, the reduction
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(Non-corner Interface nodes) (Corner nodes) (Internal nodes)

Fig. 2. Solution Scheme of FETI-DP

of computations in local back-substitutions will greatly improve the overall
performance of the FETI-DP algorithm.

During each PCG iteration, the most time consuming steps are calculating
the following two matrix-vector multiplications listed in Equation (1). Each
multiplication has several back-substitutions involved.

(Fp, +Fr K7 F.7)- A and  FP 7oA (1)

Taking one sub-step from the first multiplication F7,. - A as an example,
after substituting the detailed expression of Fj_ [5, 6], it yields the following
equation:

FI’V‘T‘ : )\ = Z B’:K’:’I‘ilB:T)\ (2)
s=1

In the FETI-DP algorithm, BﬁT is first applied on A through scatter op-
erations to get BT\, then K3 ~'(B:T)) is solved as a whole through the
back-substitution at the subdomain level, where K? ~! is the inverse of sub-
domain matrix which has already been factorized with its factorized infor-
mation stored. Finally, B? is applied on the solution vector K2 ~*(B:T\)
through gather operations to form B#(K?2 ~'(B:*))) and summed over all
the subdomains. The reason this process requires much computational time
lies in the relatively large number of equations in each subdomain, as the
back-substitution is actually performed on each subdomain internal and non-
corner interface degrees of freedom (equations). The left part graph of Figure
3 shows the nodes involved in this standard back-substitution.

B:* and B? connect subdomain level information to global domain infor-
mation through scatter and gather operations. If written in matrix format,
their representations are sparse matrices. Based on the analysis in Ref [4],
assuming the number of equations corresponding to non-corner interface de-
grees of freedom is m, and these equations are numbered last. Only the last
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Standard Back-Substitution Involves Non- Reduced Back-Substitution Involves Only
Corner Interface Nodes and Internal Nodes Non-Corner Interface Nodes

m Corner Nodes ® Non-Corner Interface Nodes ¢ Internal Nodes

Fig. 3. Standard Back-Substitution and Reduced Back-Substitution for Subdomain
22 in Figure 1

m components from A are required as the input for the back-substitutions
in Equation (2) since Bf zeros the rest components, and only the last m
components from the back-substitution result K% ~*BsT X are required as the
output due to the same reason. Thus the back-substitution is actually per-
formed on the last m equations. m is a much smaller number compared to
the sum of subdomain internal degrees of freedom and non-corner interface
degrees of freedom. Therefore, much time can be saved based on this reduced
back-substitution (RBS). The nodes involved in this RBS algorithm are shown
in the right part of Figure 3. Compared to standard back-substitution, many
internal nodes are not necessary to be included anymore.

It must be mentioned that the proposed reduced back-substitutions will
affect the ordering scheme since it poses the restriction to re-number the
related equations to the end of the entire equations. This re-numbering in-
troduces additional time costs in the numeric factorization stage compared to
the situation with a good ordering scheme, such as the nest-dissection scheme.
More detailed discussion on this issue is in Ref [4].

2.3 Linear-Nonlinear Analysis

Linear-nonlinear analysis (LNA) is a well-known and efficient strategy to solve
problems with localized nonlinearity. It exploits information about which sub-
domain remains linear during a nonlinear analysis. Therefore, repeated fac-
torizations of linear subdomains can be avoided and computation costs can
be saved. More implementation details on LNA can also be found in Ref [4].
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3 Serial and Distributed Performance Results

3.1 Software and Hardware

The software and hardware implementation for the serial performance mea-
surement is shown in Ref [4]. The standard MPICH libarary has been im-
plemented in the in-house code for distributed computing. The distributed
computing simulations are performed on the Penn State LION-XM cluster,
which consists 168 computing nodes, and each node has 2 Intel Xeon (3.2
GHz) Processors and 4 GB memory.

3.2 16-Subdomain Hollow Beam Model and Simulation
Information

A 16-Subdomain hollow beam model is chosen to be the large scale welding
problem for performance measurements in this paper. The model and welding
information can be found in [4]. The total number of Hex20 element in this
model is 65664, and the total number of equations is 1007634. The number of
interface equations is 8460 and the number of corner equations is 174.

3.3 Serial Performance Results

CPU Time (s) Serial Direct FETI-DP FETI-DP FETI-DP FETI-DP

Sparse Solver RBS LNA RBS & LNA
10 & SF 42.11 81.45 103.58 80.99 103.58
NF 47262.12 26525.69 40601.13 1849.01 2582.91
BS 1273.22 — — — —
PCG (LBS) — 58759.03 8879.37 58335.77 8900.07
— (54880.92) (5083.20) (54497.29) (5110.52)
TOTAL 48577.45 85366.17 49584.08 60265.77  11586.56

Table 1. Mechanical Analysis Serial Performance, First 50 Time Increments

The serial CPU costs of the IBM Watson direct sparse solver, FETI-DP,
FETI-DP-RBS, FETI-DP-LNA and FETI-DP-RBS-LNA in the mechanical
analysis are measured and compared in Table 1, where IO stands for solver
initialization and ordering, SF is symbolic factorization, NF is numeric factor-
ization, BS is back-substitution, PCG is Preconditioned Conjugate Gradient
iterations, LBS is local back-substitution in PCG, LNA is Linear-Nonlinear
Analysis, and RBS is Reduced Back-Substitution. Detailed analysis of serial
CPU time is listed in Ref [4].
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Wallclock Time (s) UNISYS, 1 Processor LION-XM, 16 Nodes SpeedUp
(16 Subdomains) (1 Subdomain Per Node)
NF 288.53 20.07-30.72 9.4
PCG 54.64 6.51 8.4

Table 2. Mechanical Analysis Distributed Performance and SpeedUp, First Itera-
tion

3.4 Distributed Performance Results

Distributed computing performance results are measured for the numeric fac-
torization and PCG iterations during the first iteration, as shown in Table 2.
16 computing nodes of the LION-XM cluster are used in the simulation and
each computing node contains one subdomain.

The subdomain level computations, such as, forming the subdomain stiff-
ness matrices, local numeric factorizations, local back-substitutions and resid-
ual computations are all performed on each individual computing node in a
parallel fashion. MPI is mainly implemented to gather and broadcast the in-
termediate results during the procedure of solving the interface problem by
the PCG method.

The speedup gained during numeric factorization is 9.4. Perfect scalability
is not achieved due to the fact that the number of interface DOFs of each
subdomain is different. Therefore, the computational cost of each subdomain
is also not the same. Some subdomains have large interfaces and require more
time to be factorized. The MPI wallclock time is measured based on the
longest factorization time.

The speedup gained during PCG iterations is 8.4. In the total 6.51s wall-
clock time, around 2.6s is spent on inter-processor communications to gather
and broadcast the intermediate solution results during the interface solves.
Therefore, from the computational point of view, the numerical scalability
is very good and higher speedup can be expected when high-speed network
interconnect is implemented.

4 Conclusion and Future Work

In this paper, a fast implementation of the FETI-DP algorithm: the FETI-
DP-RBS-LNA algorithm is proposed for solving large scale problems with
localized nonlinearity. Serial performance of the FETI-DP-RBS-LNA algo-
rithm is tested to give a correct estimation of floating point performance.
Distributed performance is also evaluated for the first iteration to measure
the speedup gained from distributed computing. The future work will be to
continue the investigation of the distributed performance of the FETI-DP-
RBS-LNA algorithm when linear nonlinear analysis is applied.
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