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1 Introduction

On several real world problems the scale ε is so smaller than Ω that even with
very heavy computer efforts it is impossible to take h < ε, h being the scale
(mesh-size) of the discrete method used to approximate the solution of

Lεuε = − ∂

∂xi
(aij(x/ε)

∂

∂xj
uε = f in Ω, uε = 0 on ∂Ω. (1)

where the matrix a(y) = (aij(y)) is symmetric positive definite, whose en-
tries are periodic functions of y with periodic cell Y . More specifically we
assume aij ∈ C1,β(<2), β > 0. It is also assumed that there exists pos-
itive constants γa and βa such that γa‖ξ‖2 ≤ aij(y)ξiξj ≤ βa‖ξ‖2 for all
ξ ∈ <2 and y ∈ Y . Recently new numerical methods have been proposed
for approximating the solution uε with meshes sizes h > ε (or h >> ε) but
capturing the oscillations presented by the the solution uε; see for example
[HW97,EHW00,SM02,EE03,S03,AB04,]. In [VS05a] we developed a numeri-
cal scheme for this problem for the case the domain Ω is rectangular, and
quasi-optimal error rate estimates were obtained. That method, opposed to
the methods [HW97,EHW00,S03] is strongly based on asymptotic expansions
of uε. We construct a first order asymptotic expansion for uε, and then we
numerically approximate each term separately.

In this paper, we modify the method in [VS05a] for the case where Ω is a
convex polygonal regional with rational normals. In this case, a better treat-
ment for the normal derivative of u0 is required. We propose an approximation
based on hybrid finite element for the flux and we obtain optimal error rate
estimates for the L2 norm and H1 broken semi-norm.



2 Three-Scale FEM

2 Notation

We assume that Y = [0, 1]×[0, 1] and Ω is bounded convex polygonal region in
<2, whose boundary ∂Ω = ∪Γ k, k = 1, ...,m where each Γ k is a line segment
with minimal outward normal denoted by Nk = (pk, qk)t, where pk and qk
are integers and relative primes. This hypothesis is required to guarantee
periodicity of a(x/ε) on Γk [MV97].

Let D ⊂ <2 be an open set. We use the standard notation ‖·‖s,D, ‖·‖s,p,D

for Hs(D) and W s
p (D) norms, | · |s,D, | · |s,p,D their semi-norms. and ‖ · ‖s,h,D

for the broken norms related to a regular partition Th(D) = K1,K2, ....,Km

of D. Throughout this paper, when we do not make reference to the domain
D it is assumed that D = Ω. It is continually used the Einstein summation
convention, i.e. repeated indices indicate summation, except when the indice
k is used . In what follows c denotes a generic constant independent of ε, h,
and functions being evaluated.

3 Theoretical Approximation

3.1 The Asymptotic Expansion

The solution uε can be approximated by an asymptotic expansion. This ap-
proximation can be found using equation (1) and the ansatz

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · ·,

where the functions uj(x, y) are Y periodic in y. These terms are defined
below; for more details see [BLP80,OSY92,MV97] .

Let χj be the Y periodic solution with zero average on Y of

∇y · a(y)∇yχ
j = ∇y · a(y)∇yyj =

∂

∂yi
aij(y). (2)

We have that χj ∈ C2,β(<2) when aij ∈ C1,β(<2). Define the matrix:

Aij =
1
|Y |

∫
Y

alm(y)
∂

∂yl
(yi − χi)

∂

∂ym
(yj − χj)dy. (3)

It is easy to see that the matrix A is symmetric positive definite. Define
u0 ∈ H2(Ω) ∩H1

0 (Ω) as the solution of

−∇.A∇u0 = f in Ω, u0 = 0 on ∂Ω, (4)

and let u1(x, x
ε ) = −χj

(
x
ε

)
∂u0
∂xj

(x). Note that u0+εu1 does not satisfy the zero
Dirichlet boundary condition on ∂Ω. In order to correct this, the boundary
corrector term θε ∈ H1(Ω) is introduced as the solution of

−∇ · a(x/ε)∇θε = 0 in Ω, θε = −u1(x,
x

ε
) on ∂Ω. (5)

Therefore we obtain u0 + εu1 + εθε ∈ H1
0 (Ω).
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3.2 Boundary Corrector Approximation

Note that the coefficients aij(x/ε) and the boundary values −u1(x, x
ε ) of the

Equation (5) are highly oscillatory, hence it is not a trivial problem to obtain
a good discretization for θε. We propose an analytical approximation for θε,
denoted by φε that satisfies the oscillating boundary condition and is more
suitable for numerical approximation.

Note that u0 = 0 along ∂Ω implies ∇uε|Γk
= ηk∂ηk

u0. We then decompose
θε = θ̃ε + θ̄ε where

−∇ · a(x/ε)∇θ̃ε = 0 in Ω, θ̃ε = −u1 − χ∗∂ηu0 on ∂Ω, (6)

and
−∇ · a(x/ε)∇θ̄ε = 0 in Ω, θ̄ε = χ∗∂ηu0 on ∂Ω, (7)

where χ∗|Γk
= χ∗k are properly chosen constants . In Remark 1 we show that

the problems (6) and (7) are well posed. The approximation φε for θε is defined
later as φ̃ε + φ̄ε, where φ̃ε ≈ θ̃ε and φ̄ε ≈ θ̄ε.

Next we define constants χ∗k for which the approximation φ̃ε decays ex-
ponentially to zero away from the boundary and is suitable for numerical
approximation.

Let τk = (ηk)⊥ be the π/2 rotation counterclockwise of ηk. We introduce
the following normal and tangential coordinate system(

y′1
y′2

)
= −

(
ηkT

y
τk

T y

)
(8)

We observe that a function periodic in y with period 1 is periodic in y′ with
period Tk = (p2

k + q2k)1/2. Associated to each side Γk of ∂Ω, let Gk = {y ∈
R2; y′1 ≤ 0; and 0 ≤ y′2 ≤ Tk}; and vk the solution of

−∇y · a(y + δεη
k)∇yvk = 0 in Gk,

vk(y) = χj(y + δεη
k)ηk

j on{y ∈ Gk, y
′
1 = 0}

vk|y′
2=0 = vk|y′

2=Tk
, for −∞ < y′1 < 0,

and ∂vk

∂yi
exp(−γy′1) ∈ L2(Gk), i = 1, 2,

where δε = Tk (sk/ (εTk)− bsk/ (εTk)c), and sk is such that Γk ⊂ {x ∈ <2; x ·
ηk = sk}; (b·c denotes the integer part).

Let

χ∗k =
1

(Aηk, ηk)Tk

(∫ Tk

0

[
χlaij

(
δjm − ∂χm

∂yj

)
ηk

i η
k
mη

k
l

]∣∣∣∣
y′
1=δε

dy′2

+
∫

Gk

(a(y + δεη
k)∇yvk · ∇yvk)dy

)
,

It can be shown [MV97] that vk decays exponentially to zero for y′1 → −∞,
i.e. (vk − χ∗k)exp(−γy′1) ∈ L2(Gk).
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We note by Remark 1 that (u1(x, x
ε ) − χ∗∂ηu0)|Γk

∈ H
1/2
00 (Γk). Thus we

can split θ̃ε =
∑

k∈{1,...,N} θ̃
k
ε , where

Lεθ̃
k
ε = 0 in Ω, θ̃k

ε =
{
−u1(x, x

ε )− χ∗∂ηu0 on Γk,
0 on ∂Ω \ Γk.

We approximate θ̃k
ε by φ̃k

ε given by

φ̃k
ε (x1, x2) = ϕk(x1)

(
vk

(
x− skηk

ε

)
− χ∗k

)
∇u0 · ηk. (9)

In order to simplify the definition of the function ϕk(x) let us assume
Γk = {x ∈ <2; x1 = 0, 0 ≤ x2 ≤ c} and that x+

1 is the inner normal direction.
Let Γk−1,Γk+1 be the edges with vertices at the point (0, c), (0, 0) respectively
and let αk > 0 and αk+1 < 0 be the angles between x1 axis and Γk−1 and
Γk+1 respectively. Then we define

ϕk(x) =


1 if 0 ≤ x1 ≤ δ; 0 ≤ x2 ≤ c
1− (x2 − c)/(x1tanαk) if 0 ≤ x1 ≤ δ; x2 > c
1 + x2/(x1tanαk+1) if 0 ≤ x1 ≤ δ; x2 < 0
smooth if δ ≤ x1 ≤ 2δ
0 if x1 ≥ 2δ

Hence φ̃ε =
∑

k∈{1,...,N} φ̃
k
ε approximate θ̃ε, and φ̃ε = θ̃ε on the boundary of

Ω.
The boundary condition imposed on Equation (7) does not depend on ε.

An effective approximation for θ̄ε is given by φ̄ ∈ H1(Ω) the solution of

−∇ ·A∇φ̄ = 0 in Ω, φ̄ = χ∗∂ηu0 on ∂Ω.

We define our theoretical approximation for uε as u0 + εu1 + εφε, where φε =
φ̃ε + φ̄. Note that φε|∂Ω = θε|∂Ω , therefore u0 + εu1 + εφε = 0 on ∂Ω. In
[VS05b] we prove the following error bounds

Theorem 1. Assume that aij ∈ C1,β(<2) and u0 ∈ H2(Ω), (u0 ∈ H3(Ω)).
Then there exists a constant c, such that

‖uε − u0 − εu1 − εφε‖1 ≤ cε‖u0‖2

(‖uε − u0 − εu1 − εφε‖0 ≤ ε3/2‖u0‖3).

Remark 1. Since u0 satisfies zero Dirichlet boundary condition on ∂Ω and
u0 ∈ H2(Ω), we have ∂u0

∂ηk ∈ H
1/2
00 (Γk) and ‖χ∗∂ηu0‖H1/2(∂Ω) ≤ c(χ∗)‖u0‖2.

Note also that u1(x, x
ε ) = −χj

(
x
ε

)
∂u0
∂xj

(x), since χj ∈ C2,β(<2) we get u1|Γk
∈

H
1/2
00 (Γk).
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4 Finite Element Approximation

We now describe how to numerically approximate the terms u0, u1, φ̃ε and φ̄.

• Solve the cell problem (2) with a second order accurate conforming finite
element in a partition Tĥ(Y ). Call these solutions χj

ĥ
.

• Define Aĥ
ij = 1

|Y |
∫

Y
alm(y) ∂

∂yl
(yi − χi

ĥ
) ∂

∂ym
(yj − χj

ĥ
)dy.

• Let V h(Ω) be a conforming second order accurate finite element in a mesh
Th(Ω), and V h

0 (Ω) = V h(Ω) ∩H1
0 (Ω). Define uh,ĥ

0 ∈ V h
0 the solution of∫

Ω

(Aĥ∇uh,ĥ
0 ,∇vh)dx =

∫
Ω

fvhdx, ∀vh ∈ V h
0 .

• Define uh,ĥ
1 as uh,ĥ

1 (x) = −χj

ĥ

(
x
ε

) ∂uh,ĥ
0

∂xj
(x). Note that this leads to a non-

conforming approximation for u1 in the partition Th(Ω).
• Define Y h

k the trace of V h at Γk. And let λh
k ∈ Γh

k , λh
k = 0 at ∂Γk satisfying∫

Ω

Aĥ
ij∂iu

h
0∂jφdx =

∫
Ω

fφdx+
∫

Γk

λh
kφdσ. (10)

∀ φ ∈ V h;φ|∂Ω\Γk
= 0 so approximate ∂ηu0 by µh,ĥ where

µh,ĥ|Γk
= λh

k/A
ĥ
ll,

{
l = 1 if k = 1, 3.
l = 2 if k = 2, 4.

• Let p be a positive integer and Gp
k = {y ∈ R2; y′1 ≤ 0, |y′1| ≤ p; and 0 ≤

y′2 ≤ Tk} . Define ṽk ∈ H1(Gp
k) the solution of

−∇y · a(y + δεη
k)∇y ṽk = 0 in Gp

k,

ṽk(y) = χ1
ĥ
(y + δεη

k), on{y ∈ Gk, y
′
1 = 0},

∂η ṽk = 0, on {y ∈ Gp
k; |y′1| = p},

and vk|y′
2=0 = vk|y′

2=Tk
, for |y′1| < p.

Let vĥ,p
k be a numerical approximation of ṽk using a second order accurate

conforming finite element on a mesh Tĥ(Gp
e).

• Define

χ∗,ĥ,p
k =

1

(Aĥηk, ηk)Tk

(∫ Tk

0

[
χl

ĥ
aij

(
δjm −

∂χm
ĥ

∂yj

)
ηk

i η
k
mη

k
l

]∣∣∣∣
y′
1=δε

dy′2

+
∫

Gk

(a(y + δεη
k)∇yv

ĥ,p
k · ∇yv

ĥ,p
k )dy

)
,

• Given g : Γk → <, let Ek(g) ∈ V h(Ω) be the extension by zero of g to Ω.
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• Observe that in Equation. (9) the term vk ((x− skηk)/ε) appears. Since the
approximation vĥ,p

k is defined in Gp
k, we can calculate vĥ,p

k ((x− skηk)/ε)
only if |x′1 − sk| ≤ εp. Since the functions vk − χ∗k decays exponentially to
zero in the −ηk direction its is natural to consider the following approxi-
mation

φ̃e,h,ĥ,p
ε (x1, x2) =ϕk

(
vĥ,p

k

(
x−skηk

ε

) ∂uh,ĥ
0

∂x1
− χ∗,ĥ,p

k Ek(µh,ĥ)
)

if |x′1 − sk| < εp,

0 if |x′1 − sk| ≥ εp,

and φ̃h,ĥ,p
ε =

∑
k∈{1,...,N} φ̃

k,h,ĥ,p
ε .

• Let φ̄h,ĥ,p be a second order accurate finite element approximation in a
mesh of size h for the following equation

−∇Aĥ∇ψ = 0, ψ = χ∗,ĥ,pµh,ĥ on ∂Ω. (11)

Remark 2. By construction µh,ĥ = 0 at the corners of Ω, therefore
χ∗µh,ĥ ∈ H1/2(∂Ω). This implies that Eq.(11) is well posed. In addition
χ∗µh,ĥ ∈ V h|∂Ω hence we can look for a numerical solution of Eq.(11) at
V h.

• Approximate θε by θh,ĥ,p
ε := φr,h,ĥ,p + θ∗,h,ĥ,p and finally construct the

numerical solution for Eq. (1), uh,ĥ,p
ε = uh,ĥ

0 + εuh,ĥ
1 + εθh,ĥ,p

ε .

5 Error Analysis

When p→∞ and ĥ→ 0 we prove in [VS05b] the following estimates.

Theorem 2. Assume that aij ∈ C1,β(<2) and u0 ∈ W 2,∞(Ω) (u0 ∈
W 2,∞(Ω) ∩H3(Ω)). Then there exists a constant c, such that

|uε − uh|1,h ≤ c(h+ ε)‖u0‖2,∞
(‖uε − uh‖0 ≤ c(h2 + ε

3
2 + εh)(|u0|2,∞ + ‖u0‖3))

6 Numerical Experiments

In this section, we present some numerical results for solving our model prob-
lem with

a(x) =
(

2 + P sin(2πx1/ε)
2 + P cos(2πx2/ε)

+
2 + sin(2πx2/ε)

2 + P sin(2πx1/ε)

)
I2×2
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f(x) = −1 and u = 0 on ∂Ω.

We compare the solution obtained by our method with the solution obtained
by a second order accurate finite element method in a fine mesh of size hf ,
which we call u∗ε . Tables 1 provide absolute errors estimates for u∗ε − uh,ĥ,p

ε .
We have used p = 2, ĥ = 1/128, hf = 1/2048, and a triangular mesh with

continuous piecewise linear functions to approximate χj

ĥ
and vĥ,p

k . From Table

Table 1. u∗ε − uh,ĥ,p
ε error

‖ · ‖0 error

ε ↓ h → 1/8 1/16 1/32 1/64

1/16 2.3863e-04 1.5793e-04

1/32 2.3241e-04 8.0169e-05 1.7773e-05

1/64 2.3540e-04 5.4314e-05 5.1865e-05 5.9606e-05

| · |1,h error

1/16 0.0097 0.0067

1/32 0.0086 0.0051 0.0036

1/64 0.0086 0.0044 0.0025 0.0018

Table 2.

ε = 1/64, h = 1/32, hf = 1/1024

‖ · ‖0 | · |1,h

u∗ε − uh,ĥ
0 0.0287 0.0215

u∗ε − uh,ĥ
0 − εuh,ĥ

1 0.0213 0.0026

u∗ε − uh,ĥ
0 − εuh,ĥ

1 − εφ̄h,ĥ,p 5.0450e-05 0.0026

u∗ε − uh,ĥ
0 − εuh,ĥ

1 − ε(φ̄h,ĥ,p + φ̃h,ĥ,p
ε ) 5.1865e-05 0.0025

1, we see that for ε << h we have errors of order O(h2) and O(h) for the L2

norm and semi norm H1 respectively. We observe that when we fix h and
decrease ε the errors almost do not change. This is an evidence that in this
case the dominant error term is O(h). Also looking the diagonal values in these
tables we see clearly that the numerical error agrees with the theoretical rates
from Theorem 2.

Table 2 shows the improvement obtained in the final approximation by
considering the numerical approximation for the boundary corrector. We ob-
serve a better improvement on the ‖ · ‖0 norm rather then on | · |1,h semi
norm. The reason for this is that φ̄ is obtained through the homogenized
equation associated to Problem (7), therefore it is a good approximation for
θ̄ε on L2(Ω) norm but not on | · |1 semi norm. The term φ̃ε is defined in a
thin boundary layer that mostly force the approximation to satisfies the zero
Dirichlet boundary condition.
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7 Conclusions

We propose a new method for approximating numerically the solution of Equa-
tion (1). This method is strongly based on periodicity of the coefficients aij ,
and for this reason it has relative low computational cost with optimal error
convergence rate.

References

[AB04] Allaire G., Brizzi R.: A multiscale finite element method for numerical ho-
mogenization. Internal report, CMAP, Ecole Polytechnique, 545 (2004).

[BLP80] Bensoussan A., Lions JL., Papanicolaou G.: Asymptotic Analysis for Pe-
riodic Structures. North Holland, (1980)

[EE03] E W, Engquist B. The heterogeneous multiscale method. Comm. Math.
Sci., 1, 87–132 (2003)

[EHW00] Efendiev Y.R., Hou T., Wu X.H. . Convergence of nonconforming multi-
scale finite element method. SIAM J. Numer Anal, 37: 888–910, (2000)

[HW97] Hou T, Wu XH. A Multi-scale finite element method for elliptic problems
in composite materials and porous media. J. of Comp. Phys, 134, 169–189
(1997).

[HWC99] Hou T, Wu XH, Cai Z. Convergence of multi-scale finite element method
for elliptic problems with rapidly oscillating coefficients. Mathematics of
Computation, 68, 913–943 (1999)

[GR85] Grisvard P. Elliptic Problems in Nonsmooth Domains Pitman, (1985)
[LI87] P.L. Lions On the Schawarz Alternating Method. I Proceedings of the

First DD meeting in Paris, (1987)
[MV97] Moscow S, Vogelius M. First-order corrections to the homogenized eigen-

values of a periodic composite medium. A convergence proof. Proceedings
of the Royal Society of Edinburgh, 127A, 1263–1299 (1997)

[OSY92] Oleinik O, Shamev AS, Yosifian GA. Mathematical Problems in Elasticity
and Homogenization, North-Holland, Amsterdam (1992)

[PE88] P. Peisker, On the Numerical Solution of the First Biharmonic Equation”,
RAIRO Math. Model Num Analysis 22 655–676 (1988)

[S03] Sangalli G. Capturing small scales in elliptic problems using a residual-
free bubbles finite element method. SIAM Multi-scale Model. Simul., 1,
485–503 (2003)

[SM02] Schwab C, Matache AM. Generalized FEM for Homogenization Problems.
Lecture Notes in Computational Science and Engineering, Springer (2002)

[VS05a] Versieux HM, Sarkis M. Numerical boundary correctors for elliptic equa-
tions with Rapidly Oscillating Periodic Coefficients. Submitted to Comu-
nications on Numerical Methods in Engineering

[SV05b] Versieux HM., Sarkis M, Convergence analysis of numerical boundary
correctors for elliptic equations with Rapidly Oscillating Periodic Coeffi-
cients. Paper in preparation


