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Summary. In this paper we study the condition number of the system result-
ing from C0 interior penalty methods for fourth order elliptic boundary value
problems. We show that the condition number can be bounded by Ch−4 and
that this bound is sharp, where h is the mesh size of the triangulation and C
is a positive constant independent of the mesh size.

1 Introduction

C0 interior penalty methods provide a new approach for the solution of fourth
order elliptic problems [10, 4]. These methods combine the ideas of continu-
ous Galerkin methods, discontinuous Galerkin methods and stabilization tech-
niques, which can be illustrated by the following model problem on a bounded
polygonal domain Ω in R

2:
Find u ∈ H2

0 (Ω) such that

2
∑

i,j=1

∫

Ω

∂2u

∂xi∂xj

∂2v

∂xi∂xj

dx =

∫

Ω

fv dx ∀ v ∈ H2
0 (Ω), (1)

where f ∈ L2(Ω).
Let Th be a simplicial or convex quadrilateral triangulation of Ω. In C0

interior penalty methods, we choose the discrete space Vh ⊂ H1
0 (Ω) to be

either a P` (` ≥ 2) triangular Lagrange finite element space or a Q` (` ≥ 2)
tensor product finite element space associated with Th. By an integration by
parts argument [4], it can be shown that the solution u of (1), which belongs
to H2+α(Ω) for some α > 1/2 by elliptic regularity [11, 9, 13, 2], satisfies

Ah(u, v) =

∫

Ω

fv dx ∀ v ∈ Vh, (2)

where
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Ah(w, v) =
∑

D∈Th

2
∑

i,j=1

∫

D

∂2w

∂xi∂xj

∂2v

∂xi∂xj

dx +
∑

e∈Eh

η

|e|

∫

e

[[

∂w

∂n

]] [[

∂v

∂n

]]

ds

+
∑

e∈Eh

∫

e

({{

∂2w

∂n2

}}[[

∂v

∂n

]]

+

{{

∂2v

∂n2

}}[[

∂w

∂n

]])

ds. (3)

In (3), Eh is the set of all the edges of Th, and η is a penalty parameter. The
jumps [[·]] and averages {{·}} are defined as follows.

Let e be an interior edge of Th shared by two elements D− and D+ and
ne be the unit normal vector of e pointing from D− to D+. We define on e,
for any function v that is piecewise Hs with respect to the triangulation Th

for some s > 5
2 ,

[[

∂v

∂n

]]

=
∂v+

∂ne

−
∂v−
∂ne

and

{{

∂2v

∂n2

}}

=
1

2

[∂2v+

∂n2
e

+
∂2v−
∂n2

e

]

, (4)

where v± = v
∣

∣

D±
. For an edge e that is a subset of ∂Ω, we take ne to be the

outward pointing unit normal vector and define
[[

∂v

∂n

]]

= −
∂v

∂ne

and

{{

∂2v

∂n2

}}

=
∂2v

∂n2
e

. (5)

Note that [[∂v/∂n]] and {{∂2v/∂n2}} are independent of the choice of ne.
The discrete problem for (1) is then given by:

Find uh ∈ Vh such that

Ah(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh. (6)

In view of (2), the C0 interior penalty method defined by (6) is consistent and
for a sufficiently large η, it is also stable. Therefore the discretization error
u − uh is quasi-optimal with respect to appropriate norms [10, 4].

In this paper, we show that the condition number of the system of (6) is
of order h−4, where h is the mesh size of the triangulation. This result implies
that the system of the discrete problem resulting from C0 interior penalty
methods is very ill-conditioned for small h, in which case the convergence rates
of classical iterative methods are very slow. Therefore it is necessary to use
modern fast solvers such as multigrid methods [5] and domain decomposition
methods [6] to improve the efficiency.

The rest of the paper is organized as follows. We introduce the finite el-
ement space and some preliminaries in section 2. In section 3, we derive the
upper bound for the condition number of the system. We obtain the lower
bound for the condition number in the last section.

2 Preliminaries

In this section, we define the finite element space and derive some preliminary
estimates that can help us to obtain the estimates for the condition number.
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For simplicity we will focus on the case that Th is a quasi-uniform rectangular
mesh in this paper. The results we will show are still true for general convex
quadrilateral meshes and triangular elements.

To avoid the proliferation of constants, we henceforth use the notation
A . B to represent the statement A ≤ C × B, where C is a constant which
depends only on the aspect ratios of Th. The notation A ≈ B is equivalent to
A . B and B . A.

Let Vh ⊂ H1
0 (Ω) be the Q2 finite element space associated with Th. For η

sufficiently large (which is assumed to be the case), the following relation [4]
holds:

Ah(v, v) ≈ |v|2H2(Ω,Th) ∀ v ∈ Vh, (7)

where

|v|2H2(Ω,Th) =
∑

D∈Th

|v|2H2(D) +
∑

e∈Eh

1

|e|
‖[[∂v/∂n]]‖2

L2(e)
. (8)

Here and throughout this paper we follow the standard notation for L2-based
Sobolev spaces [1, 3, 8].

Let
Ah = (Ah(ϕ1, ϕ2))1≤i,j≤n (9)

be the stiffness matrix, where n is the dimension of Vh and ϕ1, · · · , ϕn are
the nodal basis functions for Vh. We want to estimate the condition number
of Ah given by

κ(Ah) =
λmax(Ah)

λmin(Ah)
. (10)

Note that

λmax(Ah) = max
x∈R

n

x 6=0

xT Ahx

xT x
≈ max

v∈Vh

v 6=0

Ah(v, v)

h−2‖v‖2
L2(Ω)

, (11)

λmin(Ah) = min
x∈R

n

x 6=0

xT Ahx

xT x
≈ min

v∈Vh

v 6=0

Ah(v, v)

h−2‖v‖2
L2(Ω)

. (12)

3 Upper bound for the condition number

In this section, we obtain an upper bound for the condition number of Ah.
From (11) and (12), it is sufficient to find an upper bound for the maximum
eigenvalue of Ah and a lower bound for the minimum eigenvalue of Ah.

Lemma 1. For all v ∈ Vh, it holds that

λmax(Ah) . h−2. (13)
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Proof. Let v ∈ Vh be arbitrary, using (7), (8), inverse estimates [3], (4) and
the trace theorem (with scaling), we obtain that

Ah(v, v) ≈ |v|2H2(Ω,Th)

=
∑

D∈Th

|v|2H2(D) +
∑

e∈Eh

1

|e|
‖ [[∂v/∂n]] ‖2

L2(e)

.
∑

D∈Th

(diam D)−4‖v‖2
L2(D) +

∑

e∈Eh

1

|e|

∑

D∈Te

‖∂v
D
/∂n‖2

L2(e)
(14)

.
∑

D∈Th

(diam D)−4‖v‖2
L2(D)

+
∑

e∈Eh

∑

D∈Te

[

(diam D)−2|v|2H1(D) + |v|2H2(D)

]

.
∑

D∈Th

(diam D)−4‖v‖2
L2(D) +

∑

e∈Eh

∑

D∈Te

(diam D)−4‖v‖2
L2(D)

.
∑

D∈Th

(diam D)−4‖v‖2
L2(D)

. h−4‖v‖2
L2(Ω).

where Te is the set of all rectangles sharing e as a common edge.
Here we have used the fact that

h ≈ diam D ∀ D ∈ Th.

Therefore, the estimate (13) follows from (11) and (14).

Next we derive a lower bound for the minimum eigenvalue of Ah.

Lemma 2. It holds that

λmin(Ah) & h2 ∀ v ∈ Vh. (15)

Proof. For general piecewise H2 functions v, we have the following Poincaré-
Friedrichs inequality [7]:

‖v‖2
L2(Ω) + |v|2H1(Ω,Th) .

[

|v|2H2(Ω,Th) + [Φ(v)]2

+
∑

e∈Eh

( 1

|e|3
‖πe,1[[v]]e‖

2
L2(e)

+
1

|e|
‖πe,0[[∂v/∂n]]e‖

2
L2(e)

)]

, (16)

where Φ : H2(Ω, Th) −→ R is a seminorm that satisfies certain properties (cf.
(I.2), (I.3), (II.15) and (III.3) of [7]) and the operator πe,0 (resp. πe,1) is the
orthogonal projection operator from L2(e) onto P0(e) (resp. P1(e)).

In (16), taking Φ(v) = ‖π∂Ω,1 v‖L2(Ω) and applying it to v ∈ Vh, we have
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‖v‖2
L2(Ω) + |v|2H1(Ω,Th) .

∑

D∈Th

|v|2H2(D) +
∑

e∈Eh

1

|e|
‖ [[∂v/∂n]] ‖2

L2(e)

= |v|2H2(Ω,Th),

which implies for all v ∈ Vh

‖v‖2
L2(Ω) . |v|2H2(Ω,Th). (17)

Therefore, by (12), (7) and (17), we obtain

λmin(Ah) ≈ min
v∈Vh

v 6=0

Ah(v, v)

h−2‖v‖2
L2(Ω)

& h2.

From Lemma 1 and Lemma 2 we have the following condition number
estimate.

Theorem 1. The condition number of Ah satisfies the estimate

κ(Ah) =
λmax(Ah)

λmin(Ah)
. h−4. (18)

4 Lower bound for the condition number

In this section we will show that the bound for the condition number obtained
in the last section is sharp. We begin with an easy lower bound for λmax(Ah).

Lemma 3. It holds that

λmax(Ah) & h−2. (19)

Proof. In view of (12) and (7), it suffices to construct a function v∗ ∈ Vh such
that

|v∗|
2
H2(Ω,Th) & h−4‖v∗‖

2
L2(Ω). (20)

Let D∗ be an arbitrary element in Th. Take v∗ ∈ Vh to be a nodal basis
function which is defined by

v∗(p) =

{

1, if p is the central node of D∗,
0, otherwise.

(21)

Then it is not difficult to obtain that

v∗(x1, x2) = (diam D∗)
−4

(

(diam D∗)
216x1x2 − (diam D∗)16x2

1x2 (22)

−(diam D∗)16x1x
2
2 + 16x2

1x
2
2

)

.

So (21) and (22) imply that

‖v∗‖
2
L2(Ω) = ‖v∗‖

2
L2(D∗) =

64

225
(diam D∗)

2, (23)
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and

|v∗|
2
H2(Ω,Th) = |v∗|

2
H2(D∗) +

∑

e∈Eh

e⊂D̄∗

1

|e|
‖∂v∗/∂n‖2

L2(e)
=

5312

45
(diam D∗)

−2. (24)

Therefore, combining (23) and (24), we obtain

|v∗|
2
H2(Ω,Th) ≥ h−4‖v∗‖

2
L2(Ω).

We now derive an upper bound for the minimum eigenvalue of Ah.

Lemma 4. The following estimate for the minimum eigenvalue of Ah holds:

λmin(Ah) . h2. (25)

Proof. From the theory of partial differential equations [12], there exist 0 <
λ1 ≤ λ2 ≤ · · · and u1, u2, · · · ∈ H2

0 (Ω) such that

42ui = λiui and

∫

Ω

uiuj dx = δij .

We now consider the following system:

{

42u1 = λ1u1 in Ω,

u1|∂Ω = 0 and ∂u1

∂n

∣

∣

∂Ω
= 0.

(26)

Let û1 be the Q2 interpolant of u1. Then standard interpolation error
estimates [3] imply

‖u1 − û1‖
2
L2(Ω) . h4|u1|

2
H2(Ω) . h4‖u1‖

2
L2(Ω), (27)

|u1 − û1|
2
H1(Ω) . h2|u1|

2
H2(Ω), (28)

∑

D∈Th

|u1 − û1|
2
H2(D) . |u1|

2
H2(Ω). (29)

For h small enough, it follows from (27) that

‖û1‖
2
L2(Ω) & ‖u1‖

2
L2(Ω) − ‖u1 − û1‖

2
L2(Ω) (30)

& ‖u1‖
2
L2(Ω) − h4‖u1‖

2
L2(Ω)

& ‖u1‖
2
L2(Ω).

On the other hand, since u1 ∈ H2
0 (Ω), by (8), the triangle inequality, (29),

the trace theorem with scaling and (28), we obtain that
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|û1|
2
H2(Ω,Th)

=
∑

D∈Th

|û1|
2
H2(D) +

∑

e∈Eh

1

|e|
‖ [[∂û1/∂n]] ‖2

L2(e)
(31)

.
∑

D∈Th

|û1 − u1|
2
H2(D) +

∑

D∈Th

|u1|
2
H2(D) +

∑

e∈Eh

1

|e|
‖ [[∂(û1 − u1)/∂n]] ‖2

L2(e)

.
∑

D∈Th

|u1|
2
H2(D) +

∑

D∈Th

[

(diam D)−2|û1 − u1|
2
H1(D) + |û1 − u1|

2
H2(D)

]

.
∑

D∈Th

|u1|
2
H2(D)

= |u1|
2
H2(Ω).

Therefore, the estimate (25) follows from (12), (7), (30) and (31):

λmin(Ah) ≈ min
v∈Vh

v 6=0

Ah(v, v)

h−2‖v‖2
L2(Ω)

.
Ah(û1, û1)

h−2‖û1‖2
L2(Ω)

(32)

≈
|û1|

2
H2(Ω,Th)

h−2‖û1‖2
L2(Ω)

.
|u1|

2
H2(Ω)

h−2‖u1‖2
L2(Ω)

. h2.

Combining Lemmas 3 and 4, we have the following theorem.

Theorem 2. The following estimate holds for our model problem:

κ(Ah) =
λmax(Ah)

λmin(Ah)
& h−4. (33)
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