Nonconforming methods for nonlinear
elasticity problems *

Bernd Flemisch and Barbara I. Wohlmuth

University of Stuttgart, Institute for Applied Analysis and Numerical Simulation
{flemisch,wohlmuth}@ians.uni-stuttgart.de

Summary. Domain decomposition methods are studied for several problems ex-
hibiting nonlinearities in terms of curved interfaces and/or underlying model equa-
tions. In order to retain as much flexibility as possible, we do not require the sub-
domain grids to match along their common interfaces. Dual Lagrange multipliers
are employed to generate efficient and robust transmission operators between the
subdomains. Various numerical examples are presented to illustrate the applicability
of the approach.

1 Introduction

We apply domain decomposition techniques to efficiently discretize nonlinear
elasticity problems. The framework of mortar methods, [1, 2, 3, 8], is employed
to deal with nonmatching grids. Especially for the applications discussed in
Section 3, we recommend the use of dual discrete Lagrange multiplier spaces
as in [5]. They are a basic ingredient for the formulation and the performance
of our numerical solution procedures presented there.

In Section 2, we focus on a type of nonlinearity arising only from the ge-
ometry of the subdomain interfaces, namely, when the interfaces are curved
and therefore require a nonlinear parametrization. The subdomain grids origi-
nating from a nonoverlapping decomposition may now overlap or even exhibit
gaps along the curved interface. Transferring the methodology of the scalar
setting to elasticity problems, we encounter a preasymptotic misbehavior when
using dual Lagrange multipliers on the coarse side and present a remedy.

Section 3 deals with nonlinear elasticity model equations. First, two-body
contact problems are studied, where we use an inexact primal-dual active set
strategy as our solution method. The last part is devoted to the geometrically
nonlinear elasticity setting and to the use of Neo-Hooke materials.

* This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB
404, B8, C12.
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2 Curvilinear boundaries
Scalar case. For simplicity, we first restrict ourselves to the case of two 2D

subdomains sharing a closed interface curve and refer to [4] for a complete
analysis for many subdomains. We consider the model problem

—Au = fin 2 C R? u =0 on 0f2. (1)

for the situation depicted in Figure 1. The domain {2 is partitioned into two

Q m I

Fig. 1. Left: Decomposition into subdomains 2™, 2°. Right: interface I" and its
piecewise linear interpolation I7.

subdomains 2™ and 2° by a sufficiently smooth curve I" of length L, given
in terms of an arc length parametrization = : I— I, I= [0,L). By intro-
ducing the spaces X = H(2™) x H}(2°) and M = H~'/2(I"), with H}(£2")
respecting the Dirichlet conditions on 02, i = m, s, the boundary value prob-
lem (1) can be transformed into the following saddle point problem: find
(u, \) € X x M such that

a(u,v) +b(v,A) = f(v), vEX, (2)
b(u, ) =0, pe M,

with the obvious meanings for a(-,-) and f(-), and with the coupling bilinear
form b(-,-) given by

b(vhu’) = <[U]7 :U‘>F7 (Uhu) € X x M, (3)

where [-] denotes the jump across I'. The discretization of 2 by 2° and 2™
with simplicial triangulations results in piecewise linearizations I'; and I;" of
the curved interface I", given by piecewise linear parametrizations v;, : I—T n
and v, : I—T W', respectively. These parametrizations enable us to uniquely
identify each point on I}" with a point on I}, providing a projection operator

Py: (L2(I7)° — (LX(I3)%, vm = Pom =wvmonio ()™ (4)

In order to obtain an approximate coupling bilinear form by (-, ), we introduce
a mesh dependent jump over the interface grid I} by
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[v]p = vs — Pstm.

The approximation My, of M is given by one of the common discrete Lagrange
multiplier spaces on I}, see e.g. [2, 3, 8, 5]. The space X is approximated by
X, using P1 finite elements. We define by (-, ) in terms of [-], by

b (v, ) = ([ln, )2y, (v, p) € Xp X Mp. (5)

Approximating a(-,-) and f(-) by ax(,-) and f(:), we obtain the discrete
saddle point problem of finding (up, A\n) € Xp, X M)y, as the solution of

ap(up,v) + bp(v,Ap) = fn(v), ve Xy, 6)

bh(uhhu) = 07 ne Mp,.
For an analysis of (6), we refer to [4]. There, in order to obtain a priori bounds
for the discretization error, we proceed in two steps. In the first step, we in-
troduce and analyze a new discrete variational problem based on blending
elements, where the curved interfaces are resolved exactly, see [6]. In the sec-
ond step, we interpret (6) as a perturbed blending approach, and estimate the
perturbation terms obtained from the first Strang lemma. The main result is:

Theorem 1. Let (u, A) and (up, Ap) solve (2) and (6), respectively. Then

[l = unllx, + A = Anllnr < C(u) max h;.

3

In [4], several numerical tests in 2D are provided to verify the theoretical
results. Here, we focus on a 3D example. An exact parametrization of the
interface I' is often not available. Therefore, an alternative definition of the
projection operator Py from (4) is required. This can be achieved for each
slave element side by using the piecewise constant normal projection of the
corresponding master sides, [9]. We remark that the analysis above has to be
extended to this case in order to handle the lack of regularity of P;. For the
following example, we use this alternative projection operator to define the
coupling bilinear form b+, ).

For the domain (2, a ball of radius 0.9 is cut out of a concentric ball of
radius 1.1. The subdomains (2 and (25 are the parts of {2 with radii greater
and less than 1, respectively, their common interface I" being the unit sphere.
The exact solution depends only on the radius r and is set to be u(r) = ar =2+
br with a,b chosen such that u describes the radial displacement when the
domain is subject to a uniform internal pressure of magnitude 1. We exploit
the symmetry of the problem data and reduce the computational domain to
2, = {(z,y,2) € 2 : x,y,z > 0}, adding natural boundary conditions on
the symmetry planes. Two initial triangulations with ratios 4:1 and 8:1 of the
number of fine to coarse interface element sides are shown in Figure 2.

In Figure 3, we compare the error decays using different Lagrange multi-
plier spaces, namely, the standard Lagrange multipliers coinciding with the
trace space W), of the P1 finite element functions on (2}, with the dual
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Fig. 2. Initial triangulations: ratios 4:1 and 8:1.
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Fig. 3. 3D example: error decay using different Lagrange multiplier spaces.

ones spanned by piecewise linear discontinuous basis functions satisfying a
biorthogonality relation with the nodal basis functions of W}, see [5]. The
choice of the basis functions, either standard or dual, does not greatly influ-
ence the numerical results. For very coarse meshes, the use of the coarser grid
for the Lagrange multipliers provides better results than the altenative. How-
ever, this effect gets small already for very moderate numbers of unknowns.
2D elasticity. We keep the same setting as above and intend to solve
(2) with spaces and (bi-)linear forms given by the weak form of the linear
elasticity problem of finding a displacement vector field u such that

—divo(u) = f in £, (7)
supplemented by boundary conditions, by the Saint-Venant Kirchhoff law
o= ANtre)l +2ue, (8)
with the Lamé constants u, A and by the linearized strain tensor
1
e(u) = §(Vu + [Vau]T) . (9)

We consider the domain visualized in the left picture of Figure 4, see [5]. The
ring {2 with inner radius r; = 0.9, outer radius r, = 1.1, and moduli £ = 1,
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Fig. 4. Model problem, grid, stress using standard and dual multipliers.

v = 0.3, is fixed at the outer boundary, whereas at the inner boundary, a
surface traction fr(z,y) = —(x,y)T /7 constant in normal direction is applied.
The region is divided into two rings 2™ and {2° such that their interface I is
the unit circle. We choose the inner ring to be 2™, and the outer ring to be
£25. A part of the computational grid is shown in the second picture of Figure
4. The whole grid consists of 240 elements and is constructed in such a way
that each element edge on the slave side meets four master edges. Thus, the
discrete Lagrange multiplier space M), is defined with respect to the coarse
grid on I';. Again, we compare the standard Lagrange multipliers with the
dual ones. In the third and fourth picture of Figure 4, the isolines of the van
Mises stresses of the numerical solutions on the deformed domains are plotted.
Whereas standard Lagrange multipliers yield a visually satisfying result, the
behavior of the solution using dual Lagrange multipliers suffers from strong
oscillations along the master interface I7".

The misbehavior of the dual Lagrange multipliers, which only occurs
preasymptotically and only if they are chosen with respect to the coarser
grid, can be explained by the fact that quantities constant in normal or tan-
gential direction are not transferred correctly between the two grids. In [5],
we introduce and analyze a modification curing this misbehavior, and at the
same time preserving the advantages of the dual approach. We modify by(-, )
in (5) to

b (vn, pun) = / finvs = g Pavm,  on € X, pun € M, (10)

Iy

where we replace ju, for the coupling to the master side by 4 = i, + Apy,.
The modification Ay, of a discrete Lagrange multiplier p;, € My, is defined
edgewise on the elements of the interface grid Iy, see [5]. There, we show
that the resulting discrete problem (6) with by (-, -) replaced by b°4(-,-) has
the following properties: a diagonal matrix for the coupling on the slave side,
symmetry, preservation of linear momentum, reduction to the unmodified dual
approach in case of straight interfaces, and preservation of quantities constant
in normal and tangential direction.

As a numerical test, we compare the error decays using the standard, dual,
and modified dual approach. For the left picture of Figure 5, the ratio of slave
to master edges is kept constant at 1:4. The modification already improves
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Fig. 5. Left: Decay of the energy error using standard, dual, and modified dual
Lagrange multipliers. Right: Change of the Lagrange multiplier side.

the results significantly for a very moderate number of unknowns. We observe
that the relative difference in the errors of the unmodified and the modified
approach decreases as the number of unknowns increases. This is due to the
fact that the modification only enters as a higher order term in the a priori
estimates, see [5]. The right picture in Figure 5 illustrates the robustness of
the standard and the modified Lagrange multipliers against a change of the
master and slave side. We point out that all the benefits of the dual approach
are preserved by the modification.

In many applications, symmetry of the domain and the data can be ex-
ploited to reduce the problem size. For the example above, we can reduce the
computational domain to one quarter 2, = {(z,y) € 2 : z,y > 0}. On the
artificial boundaries Y = {(z,y) € £2: £ = 0}, { = x,y, we have to set ap-
propriate symmetry boundary conditions. For the elasticity setting, these are
given by homogeneous Dirichlet data in the normal and homogeneous Neu-
mann data in the tangential direction. In the framework of mortar methods,
this would require us to handle the nodes p, = (1,0)T and p, = (0,1)T be-
longing to the triangulation on (27 as crosspoints for the normal and as usual
slave nodes for the tangential components. Since this can be a tedious task
to realize during the matrix assembly in existing codes, we suggest to use a
simple manipulation of the saddle point system matrix S = ( 4 BOT ) for which
the nodes p,, py are handled as usual slave nodes and no Dirichlet conditions
are imposed on them. We symmetrically exchange the lines and columns in
BT and B corresponding to the coupling of the Lagrange multipliers in the
normal direction of p, and p, to the displacements in the normal direction
on the master and slave side by Dirichlet lines and columns. This is exactly
the procedure often employed to enforce Dirichlet conditions by means of
Lagrange multipliers.

In Figure 6, we test four different approaches. For the calculations leading
to the first two pictures, the two Dirichlet lines are inserted in the upper
part of S. For the first (second) picture, the nodes p, p, are handled as slave
(cross) points in both directions and the Lagrange multiplier space is chosen
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Fig. 6. Handling of symmetry boundaries.

with respect to the finer (coarser) grid. As is expected, both approaches give
poor results. For the third picture, we choose the Lagrange multiplier space
with respect to the coarser grid, insert only Dirichlet lines in B, and keep
BT unchanged. However, this is not enough. This is due to the fact that, in
contrast to the full setting, the normal (w.r.t. X'¢) components of the Lagrange
multipliers in p, p, are different from zero in the reduced setting on {2,., since
only contributions from (2, are assembled. Thus, the master nodes next to
Dz, Dy are subjects to a force pushing in the wrong direction. In order to
avoid that these master nodes are affected by the nonzero contribution from
the Lagrange multipliers, one also has to insert the corresponding Dirichlet
columns in BT, resulting in the right picture of Figure 6. An equally satisfying
result is obtained if the Lagrange multipliers are chosen on the finer grid.

3 Nonlinear elasticity

Contact problems. We consider a two-body nonlinear contact problem. The
domain {2 is the union of two initially disjoint bodies {25, 2™, and its boundary
' = 0§2° U 0N2™ is subdivided into three disjoint open sets I'p, I'n, Ic. We
intend to solve (7)-(9) with Dirichlet and Neumann boundary conditions on
I'p and Iy, respectively, and frictionless Signorini contact conditions on the
possible contact boundary I¢, given by

O'T(US) = UT(Um) =0, a'n(um)([un] - .‘]) =0,

[un] —g <0, on(tum)=0n(us) <0, (11)

where or(uy) and o, (uy) are the tangential part and the normal component
of the surface traction o(uy)n, respectively, k = m,s, and [un] stands for the
jump of the normal displacement across .

We arrive at the problem: find (u,\) € X x M ™ such that

a(u,v) +b(v,\) = f(v), veE X,
b(ua/u'_)‘) < <g,(ﬂ_>\)n>[‘c,s, /J'GM+7

with b(v, p) = (un,[vn))re, and M* = {p € M : pr =0, (un,v)r., >
0,v € W,v > 0on Ics}, where W denotes the trace space of H}(£2°) re-
stricted to I'cs and M is its dual. We use standard piecewise linear finite

(12)
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elements for X and discontinuous piecewise linear dual Lagrange multipliers
for M. The discrete convex cone M. ,j is defined with respect to the scalar dual
basis funtions v; as

M,j'z{,uhEMh:,uh:Zoziwi,ai cR? a;n >0, a; x n=0}.

In [7], optimal a priori error bounds are obtained for the correspondig discrete
problem formulation. Concerning the numerical solution process, we employ a
primal-dual active set strategy (PDASS) in order to deal with the nonlinearity
of the contact condition (11). Starting from an initial active set, the PDASS
checks in each step the sign of the normal stress component for an active
node to determine whether the node stays active, and for an inactive node
the non-penetration condition to determine whether the node stays inactive.
Proceeding like this, a new active set is calculated, and the active nodes pro-
vide Dirichlet conditions and the inactive nodes give homogeneous Neumann
conditions for the linear system to be solved. The biorthogonality of the dual
basis functions spanning M, ,j' is of crucial importance for the realization of the
PDASS. In particular, the weak formulation of the non-penetration condition,
i.e., the third equation of (11), naturally reduces to a pointwise relation which
is easy to handle. Moreover, the Lagrange multiplier can be efficiently elim-
inated yielding a positive definite linear system for the remaining unknowns
in each iteration step of the PDASS. Thus, suitable multigrid solvers can be
applied. Limiting the maximum number of multigrid iterations per PDASS
step yields an inexact strategy.

As a numerical example, we consider the situation depicted in Figure 7.
In the left picture, a cross section of the problem definition is shown. The

d

Fig. 7. Problem setting (left), cut through the distorted domains with the effective
von Mises stress on level 3 (middle), and the contact stresses A, on level 3 (right).

lower domain 2! is the master, and it models a halfbowl which is fixed at its
outer boundary. Against this bowl, we press the body modeled by the domain
22 which is the slave. At the top of 22, we apply Dirichlet data equal to
(0,0, —0.2)". We use r; = 0.7, r, = 1.0, r = 0.6, h = 0.5 and d = 0.3, and as
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material parameters, By = 400N/m2, vy = 0.3 and FEy = SOON/mQ7 vy = 0.3.
The second and third picture in Figure 7 show a cut through the domains and
the contact stress A;, on level 3, respectively.

In Table 1, the exact PDASS is compared with the inexact version. For the

exact strategy inexact strategy
H|DOF Kz| | Ak| Mz| | Ag|
0f 312 {310 9 6 310 9 6
111623 || 414 26 21 21| 4|14 26 22 21
2|10062|| 3 |66 88 85 3166 91 85
3| 71082|| 4 |306 347 336 337|| 5 |306 341 336 336 337

Table 1. Comparison between exact and inexact active set strategy.

inexact strategy, we apply only one multigrid step per PDASS iteration. For
both strategies, we use a W-cycle with a symmetric Gaufi—Seidel smoother
with 3 pre- and post-smoothing steps. The second column shows the number
of degrees of freedom on level [. For the exact strategy, we denote by K; the
step in which the correct active set A is found for the first time, and M;
indicates the same quantity for the inexact strategy. By |Ax|, we denote the
number of active nodes in iteration k& and multigrid step k, respectively. They
are almost the same, thus, there is no need for solving the resulting linear
problems in each iteration step exactly, and the cost of our nonlinear problem
is very close to that of a linear problem, given the correct contact zone.
Geometrically nonlinear problems and nonlinear material laws.
The validity of the linearized elasticity equations (7)-(9) is restricted to small
strains and small deformations. If the strains remain small but the deforma-
tions become large, one has at least to consider the geometrically nonlinear
elasticity setting. This amounts to using the full Green—St. Venant tensor

1
2

1

E=_(FTF-1)= 5(C -1, (13)

instead of (9), with F' = I+ Vu the deformation gradient and C = FTF the
right Cauchy—Green strain tensor. We keep the constitutive law (8) as

S=ANtrE)I+2uE =CE, (14)

defining the second Piola—Kirchhoff stress tensor S, with C the Hooke-tensor.
We solve
—div (FS) = f, (15)

complemented by appropriate boundary conditions. In the weak setting, this
gives the linear form a(u,-) given by a(u,v) = 2?21 a;(u,v), where
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ay(u,v) = /QC€(u) ce(v) de, as(u,v)= % /QC [(Vu)TVu] : Vude,

1
az(u,v) = | VuCVu:Vodz, a4(u,v)= 3 VuC [(VU)TVU] : Vudz.
Q Q
Still, the applicability of (13)—(15) is limited to small strains. In order
to extend the model to large strains, we have to introduce another kind of
nonlinearity by means of nonlinear material laws. In particular, to solve (15),
we employ the Neo—Hooke law given by

S=pl-C 1+ %(ﬁ -1nHCct, (16)

with J = det(F') denoting the determinant of the deformation gradient. While
in (13) the nonlinearity enters in terms of polynomials of Vu, it is given in
terms of its inverse in (16).

Despite the complexity of the nonlinear setting, the subdomain coupling
via Lagrange multipliers remains the same as for linear problems. In order to
calculate a numerical solution, we eliminate the discrete Lagrange multipliers
and apply a Newton iteration to the constrained problem. We note that this
elimination is very efficient when we use the dual basis functions for spanning
the Lagrange multiplier space. Moreover, the Jacobian of the constrained sys-
tem is positive definite and admits the use of multigrid solvers for the linear
system in each Newton step.

For a first numerical test, we consider a square 2 = (0,1)2, decomposed
into four quadrilaterals £2,; = ((¢ — 1)/2,4/2) x (7 — 1)/2, j/2), i,j = 1,2.
The material parameter are set to £ = 2000 N/m2, v =0.4 on {211,295 and
to £ = 300 N/m27 v = 0.3 on {291, £215. We use the linear elasticity model
on {211, {295, and the nonlinear Neo—-Hooke model on {251, {215. The domain
is fixed at its upper and lower boundary segment, whereas on the left and
right segment, a force density of magnitude 10 + y(y — 1) pointing inside the
domain is applied. The first two pictures of Figure 8 show the deformed grids
with deformations magnified by a factor 100 for two ways of dealing with the
crosspoint p® = (1/2,1/2). In the first calculation, the crosspoint is left free

1T 17

-
-

Fig. 8. Deformations without (left) and with (middle) continuity requirement.
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leading to unphysical penetrations of the subdomains. In contrast, for the
second calculation, continuity is enforced; cf. [2]. We note that the undesired
effect of the first calculation diminishes when the meshsize is reduced.

As 3D example, we consider an I-beam as illustrated in Figure 9. The beam

o 50
‘); DD

T o 2 Do v v e |
T

Fig. 9. Left: I-beam decomposed into three subdomains and urface forces on
X1, Yo C 0821. Middle and right: deformed beam.

is decomposed into three subdomains 27 := (0,50) x (0, 10) x (11,13), £25 :=
(0,50) x (3,7) x (2,11) and £25 := (0, 50) x (0,10) x (0,2). On all subdomains,
we consider as material parameters ¥ = 100, v = 0.3. The beam is fixed in all
directions on the plane x3 = 0, and in x3-direction on the plane z3 = 13. On
X1, X, C 00 with X3 = (0,50) x {0} x (11,13), £y = (0,50) x {10} x (11, 13),
surface forces f(x) = —2 4 42/50 in y-direction are applied.

In the middle and the right picture of Figure 9, the deformed beam is
plotted using the Neo-Hooke law on all subdomains. We note that we do not
require the subdomain triangulations to match across their common interfaces;
we can employ different meshsizes and uniformly structured grids as well as
different models on each subdomain. The deformed grid suggests that we can
employ the fully linearized one for the lower subdomain {23, where only small
displacements and strains occur, the geometrically nonlinear one for the upper
part {21 because of large displacements but small strains, and the Neo—Hooke
law for the middle beam (25 with both large deformations and strains.

To justify our strategy, we compare the use of different models on the
individual subdomains. We indicate a configuration by ijk, i, j,k € {l,g,n},
where [, g and n stand for linear, geometrically nonlinear and Neo—Hooke, re-
spectively, and the position indicates the corresponding subdomain. In Figure
10, the displaments in z;-direction along the line (0,50) x {3} x {11} on
are plotted for several different settings. In the left picture, the solid, dashed,
and dash-dotted lines correspond to the models nnn, lll, and ggg, respectively.
Whereas the linear model is symmetric with respect to 7 = 25, the nonlin-
ear ones exhibit a rather unsymmetric and more realistic behavior. Moreover,
on each line, the markers indicate the results when the model on the lower
subdomain 23 is switched. There is no visible difference between using the
linear or the nonlinear relationship. In the right picture, we primarly compare
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x—displacement

—nnn

x—displacement

0 10 20 30 40 50 0 10 20 30 40 50
x-coordinate x—coordinate

Fig. 10. Comparison of varying model equations in the subdomains.

configurations nnn and gnl, where no real difference can be observed. The
results for ngl and Inl in combination with the left picture indicate that it is
necessary to use the Neo—Hooke law on the middle subdomain {25, while on
the upper part {21, the geometrically nonlinear model is required.
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