17th International Conference on Domain Decomposition Methods

On a two-level domain decomposition preconditioner for 3D flows in anisotropic highly heterogeneous porous media

(work in progress)

Institute of Mathematics, Belarus Oleg Iliev Fraunhofer ITWM, Germany Richard Ewing, Raytcho Lazarov Texas A&M University, USA

Strobl, July 3-7, 2006

Contents

- Motivation
- Statement of the problem, applications
- Finite volume discretization
- Two-level DD
 - Smoother
 - Restriction
 - Coarse grid operator
 - Prolongation
- Numerical results
- Conclusions
- Future work

Statement of the problem

Continuity equation + **Darcy's law**

$$\nabla \cdot v = f \qquad \qquad \downarrow \qquad v = -K \cdot \nabla p$$

Pressure equation

$$-\nabla \cdot (K \cdot \nabla p) = f$$

Permeability tensor

$$K = \begin{pmatrix} k_{xx} & k_{xy} & k_{xz} \\ k_{xy} & k_{yy} & k_{yz} \\ k_{xz} & k_{yz} & k_{zz} \end{pmatrix} > 0$$

Applications

Saturated flow in anisotropic heterogeneous porous media

 $\nabla \cdot v = f, \quad v = -K \cdot \nabla p$

Two-phase flow in heterogeneous porous media

$$\nabla \cdot v = 0, \quad v = -\lambda(S_w) K \cdot \nabla p,$$

$$\frac{\partial S_w}{\partial t} + v \cdot \nabla f_w(S_w) = 0$$

Fine grid – isotropic permeability tensor

Coarse grid – *full* tensor (effective permeability)

Finite volume discretization

Finite volume discretization

Multipoint Flux Approximation

- **Pressure is given** 8 eqns at 8 points
- **Pressure is continuous** at 12 points 12 eqns
- Velocities are continuous along 12 interfaces 12 eqns

32 equations

32 unknowns

Ware A.F., Parrott A.K., and Rogers C.

FV discretization (validation)

1

 y_i

0

 \mathbf{K}_2

 K_1

 X_i

 K_1

K₂

1

 Z_i

1

Permeability tensor

$$K_{1} = \begin{pmatrix} 1 & 0.5 & 0.25 \\ 0.5 & 1 & 0.25 \\ 0.25 & 0.25 & 1 \end{pmatrix}, \quad K_{2} = \alpha K_{1}$$

 α - jump discontinuity

$$p = (x - x_i)^2 (y - y_i)^2 (z - z_i)^2 \cos(\pi (x + y + z))$$

FV discretization (validation)

Grid	$\alpha = 10^{-2}$		$\alpha = 10^{-5}$	
	$ p - p_h _{L2}$	$ p - p_h _C$	$ p - p_h _{L2}$	$ p - p_h _C$
4 x 4 x 4	0.1709	0.2174	0.1711	0.2174
8 x 8 x 8	0.0395	0.0284	0.0395	0.0284
16 x 16 x 16	0.0087	0.0075	0.0087	0.0075
32 x 32 x 32	0.0020	0.0018	0.0020	0.0018

Convergence rate $O(h)^2$ doesn't depend on jump discontinuity

Two-grid method

Fine grid

Coarse grid

Extended subdomain

One sweep of TGM

- Smooth with DD (2-3 iterations)
- Calculate the residual

Ax = b

- Restrict the residual in each subdomain
- Discretize and solve on coarse grid
- Prolong coarse grid correction by solving local problems in shifted subdomains
- Correct the solution
- Post smooth with DD

Neuss N., Jäger W., Wittum G.

DD smoothing

Additive Schwarz

With overlapping

Without overlapping

Multiplicative Schwarz

Restriction

- r_H residual on a coarse grid
- r_h^i residual on a fine grid
- $m = m_x m_y m_z$ -number of fine grid blocks in a coarse one

•

Coarse grid operator

Coarse scale Darcy's law

 $\langle v \rangle = -K^{eff} \cdot \langle \nabla p \rangle$

 $\left\langle f\right\rangle$ - volume average

Local flow problems

$$\langle v \rangle^i = -K^{eff} \cdot \langle \nabla p \rangle^i, \quad i = \overline{1,3}.$$

Boundary conditions and RHS for local flow problem

1-0 Dirichlet + Neumann (v = 0) b.c.
1-0 Dirichlet + piecewise linear b.c.
RHS = 0

Prolongation

Numerical results

Periodic

Non-periodic

Convergence of TGM depends on overlapping and number of subdomains

One- and two-level DD

	$K_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$	$K_{2} = \begin{pmatrix} 10000 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 10000 & 0 \end{pmatrix}$	64 inclusic acc=1e-4	ons,
K_1 K_2	$ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $		0 10000)	ovrlp=2:	1.5h
Coarse grid	4x4x4				
Fine grid	4x4x4	8x8x8	16x16x16	32x32x32	
DD iter.		95	162	247	
TGM iter.		4	5	7	
Coarse grid 8>	<8x8				
Fine grid DD iter.	4x4x4 158	8x8x8 266	16x16x16		
TGM iter.	3	4	5		

DD smoothing (overlapping)

$$K_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad K_2 = \begin{pmatrix} 10000 & 0 & 0 \\ 0 & 10000 & 0 \\ 0 & 0 & 10000 \end{pmatrix}$$

2 presmooth. 2 postsmooth.

Coarse grid 8x8x8, fine grid 8x8x8 ovrlp = 1 TGM iter = 13 Coarse grid 8x8x8, fine grid 16x16x16 ovrlp = 2 TGM iter = 7

Acc = 1E-5

Coarse grid 8x8x8, fine grid 16x16x16ovrlp = 1 ovrlp = 2 TGM iter = 23 TGM iter = 7

ovrlp = 3TGM iter = 6

DD pre- and post-smoothing

$$K_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad K_2 = \begin{pmatrix} 10000 & 0 & 0 \\ 0 & 10000 & 0 \\ 0 & 0 & 10000 \end{pmatrix}$$

8x8x8 coarse blocks, 8x8x8 fine blocks Accuracy for TGM = 1E-5

DD smoother: 2-pre, 2-post: 13 TGM iter 0-pre, 2-post: 47 TGM iter 0-pre, 4-post: 24 TGM iter

DD smoothing

$$K_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad K_{2} = \begin{pmatrix} 10000 & 0 & 0 \\ 0 & 10000 & 0 \\ 0 & 0 & 10000 \end{pmatrix}$$

Coarse grid 8x8x8,

fine grid 8x8x8

ovrlp = 1

Acc = 1E-5

Additive Schwarz TGM iter = 13 Multiplicative Schwarz TGM iter = 7

TGM for different geometries

Periodic cubic inclusion

 $K_1 = E$ $K_2 = 10000E$

Coarse grid 8x8x8, fine grid 8x8x8 TGM iter = 13

Periodic L-shaped inclusion

Coarse grid 8x8x8, fine grid 12x12x12 TGM iter = 23

TGM for different geometries

Oversampling

	6569.1	-192.6	1.2×10^{-5}
$K^* =$	-192.6	6569.1	8.1×10^{-6}
	(1.2×10^{-5})	8.1×10^{-6}	7126.0

TGM iter = 7

$$K^* = \begin{pmatrix} 6411.6 & -256.0 & 1.5 \times 10^{-4} \\ -256.0 & 6411.6 & 8.1 \times 10^{-6} \\ 1.5 \times 10^{-4} & 8.1 \times 10^{-6} & 6957.5 \end{pmatrix}$$

TGM iter = 7

3D upscaling

Fine grid permeability tensor

 $K_1 = E, \quad K_2 = \alpha E$

Effective permeabilitycontrast 1:3 $K^* = \begin{pmatrix} 1.1232 & 8.66 \cdot 10^{-5} & -2.12 \cdot 10^{-4} \\ 8.66 \cdot 10^{-5} & 1.1218 & 4.16 \cdot 10^{-4} \\ -2.12 \cdot 10^{-4} & 4.16 \cdot 10^{-4} & 1.1219 \end{pmatrix}$

Effective permeability	contrast 1:1000
------------------------	------------------------

$$K^* = \begin{pmatrix} 44.55 & -0.14 & -0.05 \\ -0.14 & 43.30 & -0.31 \\ -0.05 & -0.31 & 43.90 \end{pmatrix} \quad \text{acc} = 10\text{-E5}$$

Conclusions

- •Finite volume discretization for the case of highly varying anisotropic permeability tensor
- •Additive and multiplicative Schwarz as a smoother withing two-level preconditioner
- •Coarse scale operator obtained from numerical upscaling
- Influence of the overlapping, smoother, number of subdomains on the convergence of TGM
- •Applicability for non-periodic media

Future work

- Two-level DD as a preconditioner for Krylov subspace methods
- Study the influence of cell-problem formulation on the convergence of the preconditioned CG
- Develop further approaches for two-phase flows
- Theoretical analysis