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Introduction

Aitken-Schwarz DDM for uniform grids
3D Poisson Pb 762Mdof/60s 5Mbit/s
1256 proc 3 cray T3E
FFT of Schwarz DDM artificial interfaces ⇒ needs regular
discretization of the interfaces
Aitken acceleration of Fourier modes
Barberou, Garbey, Hess, Resch, Rossi, Toivanen and Tromeur-Dervout, J. of Parallel and

Distributed Computing, special issue on Grid computing, 63(5) :564-577, 2003

Aim : extension of this method to non uniform meshes
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Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

1D additive Schwarz algorithm for linear differential operators :

L[un+1
1 ] = f in Ω1, un+1

1|Γ1
= un

2|Γ1
,

L[un+1
2 ] = f in Ω2, un+1

2|Γ2
= un

1|Γ2
.

the interface error operator T is linear, i.e

un+1
1|Γ2

− U|Γ2 = δ1(un
2|Γ1

− U|Γ1),

un+1
2|Γ1

− U|Γ1 = δ2(un
1|Γ2

− U|Γ2).

Consequently

u2
1|Γ2

− u1
1|Γ2

= δ1(u1
2|Γ1

− u0
2|Γ1

),

u2
2|Γ1

− u1
2|Γ1

= δ2(u1
1|Γ2

− u0
1|Γ2

),

Computation of δ1/2 :
L[v1/2] = 0 in Ω1/2, vΓ1/2 = 1. thus δ1/2 = vΓ2/1 .

iff δ1δ2 6= 1 Aitken-Schwarz gives the solution with exactly 3 iterations and
possibly 2 in the analytical case.
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The algorithm in 2D or 3D writes :

step1 : reconstruct P from datas given by two Schwarz
iterates

step2 : apply one additive Schwarz iterate to the Poisson
problem with block solver of choice i.e multigrids, FFT etc...

step3 :

compute the Fourier expansion ûn
j|Γi
,n = 0,1 of the

traces on the artificial interface Γi , i = 1..nd for the
initial boundary condition u0

|Γi
and the Schwarz iterate

solution u1
|Γi

.
apply generalized Aitken acceleration based on

û∞ = (Id − P)−1(û1 − Pû0)

in order to get û∞|Γi
.

recompose the trace u∞|Γi
in physical space.

step4 : compute in parallel the solution in each subdomains
Ωj , with new inner BCs and blocksolver of choice.



NUDFT
AFDTD

AS recall

NUDFT
formulation

NUDFT for
Aitken-
Schwarz
method

Numerical
results

Summary and
Future Work

The algorithm in 2D or 3D writes :

step1 : reconstruct P from datas given by two Schwarz
iterates

step2 : apply one additive Schwarz iterate to the Poisson
problem with block solver of choice i.e multigrids, FFT etc...

step3 :

compute the Fourier expansion ûn
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û∞ = (Id − P)−1(û1 − Pû0)
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Nonuniform methods

Methods for non-uniform interface meshes (up to now) :

Projection technique : spectral interpolation of the
interface traces on a third regular grid + classical FFT
Boursier,Tromeur-Dervout and Vassilevsky, Parallel solution of Mixed Finite Element/ Spectral

Element systems for convection-diffusion equations on non matching grids,Preprint CDCSP-0300,

2004

Analysis of the error operator, solving for eigenvalues
and eigenvectors, chosen as generalized Fourier basis
Baranger, Garbey and Oudin-Dardun Generalized Aitken-like acceleration of the Schwarz method,

Lecture Notes in Computational Science and Engineering, pages 505-512, 2004. Based on
an a priori approximation of the error operator P. No
available tool to know how the eigenvalues of the
approximate P are close to the eigenvalues of true P.
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NUDFT formulation

Define a set of basis functions Φl = (φl(xj))0≤j≤N
strictly related to the nonuniform mesh and orthogonal
with respect to a sesquilinear form [[., .]], i.e
[[φl , φk ]] = 0, if l 6= k .
Compute the associated interface operator P[[.,.]]

Approximate P[[.,.]] with P∗
[[.,.]] through a posteriori

estimates of Fourier coefficients behavior.

Instead of :
Approximate in the physical space P with P∗.
Compute eigenvalues and eigenvectors of matrix P∗.
Take eigenvectors as basis functions for generalized
Fourier decomposition.
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NonUniform Fourier Transform formulation

Definition

Let (xi)0≤i≤N and zi = 2πi
N such that xi = zi + εi , and

φl(x) =


ψl(x) = exp(ilx), 0 ≤ l ≤ N/2
D−N exp(i(N − l)x), N/2 + 1 ≤ l ≤ N,
D = diag(εi)0≤i≤N

(1)

⇒ φN−l(x) = φl(x).

Definition

Define sesquilinear form on SN =span{φl(x),0 ≤ l ≤ N},
using Hermite integration formula :

[[f ,g]] =
N∑

l=0

γl f (xl)g(xl) +
N∑

l=0

βl(f ′(xl)g(xl) + f (xl)g′(xl))

{γl} and {βl} : [[φl , φk ]] = δlk ⇒ solve one L.S. (size 2N)
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NonUniform Fourier Transform formulation

H = ([[φl , φk ]])l,k=0,...N = Id ⇒ [[ :, :]] hermitian

Definition

The discrete Fourier coefficients of f are given by :

f̃k = [[f ,Φk ]], k = −N/2, ...,N/2
f̃ = M1f + M2f ′, M1,M2 ∈MN+1(C)

M1(k , l) = γlφk (xl) + βlφ
′
k (xl), M2(k , l) = βlφk (xl)

Proposition

ΠF
N(f (x)) =

N∑
l=0

f̃kφk (x), is exact ∀f ∈ TN/2([0,2π[)
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NUDFT formulation

Problem : in the applications one is given the vector f
which represents the values of a function f (x) on the
points (xi)0≤i≤N . No information is given on the vector f ′

which is needed in definition 3.
Solution : we determine the vector f ′ implicitly by
imposing

d
dx

(ΠF
N(f (x)))|x=xl

= f ′(xl), l = 0, ...,N − 1
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NUDFT formulation

In an algebraic form, if we note Mφ the matrix whose
elements are :

Mφ(l , k) = φ′k (xl)

then the vector f ′ is obtained by solving the algebraic
system :

(idN+1 −MφM2)f ′ = MφM1f

where idN is the identity matrix in MN+1(C).
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NUDFT algorithm

Given a nonuniform mesh (xi)0≤i≤N , define the basis
functions and solve one L.S. (size 2N) to determine the
two sets {γl} and {βl}.
Solve the algebraic system (size N) :

(idN+1 −MφM2)f ′ = MφM1f

to determine f ′ implicitly.
Compute Fourier coefficients through matrix-vector
products :

f̃ = M1f + M2f ′
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Numerical results

N ε = hu/8 ε = hu/4 ε = hu/2 ε = hu
40 0.13E-14 0.39E-15 0.56E-13 0.62E-7

6.17E+3 1.21E+4 1.26E+5 4.24E+10
100 0.77E-14 0.17E-14 0.69E-12 0.83E-7

8.40E+4 1.82E+5 1.25E+6 2.07E+10
200 0.13E-13 0.16E-13 0.27E-12 0.5E-6

6.02E+5 1.27E+6 5.75E+6 9.35E+11
400 0.26E-13 0.29E-13 0.11E-10 0.53E-8

5.18E+6 1.24E+7 2.96E+8 7.30E+10

TAB.: ‖f − ΠF
N(f )‖∞ and cond2([[., .]]) for

f (x) = exp(−40(x − (2π/3))2), with hu = 2π/N.



NUDFT
AFDTD

AS recall

NUDFT
formulation

NUDFT for
Aitken-
Schwarz
method

Numerical
results

Summary and
Future Work

NUDFT algorithm 2D

Given a nonuniform cartesian 2D mesh
x× y := {(xi , yj)0≤i,j≤N} ⊂ R2 define the basis
functions, the sesquilinear form :

[[f , g]] =
NX

j=0

γj

“ NX
l=0

αl (f g)(xj , yl ) +
NX

l=0

ηl∂y (f g)(xj , yl )
”

+

NX
j=0

βj

“ NX
l=0

αl∂x (f g)(xj , yl ) +
NX

l=0

ηl∂xy (f g)(xj , yl )
”

Fourier coefficients computed algebraically by
previously solving implicitly for ∂x f , ∂y f and ∂xy f .



NUDFT
AFDTD

AS recall

NUDFT
formulation

NUDFT for
Aitken-
Schwarz
method

Numerical
results

Summary and
Future Work

NUDFT algorithm 2D

Given a nonuniform cartesian 2D mesh
x× y := {(xi , yj)0≤i,j≤N} ⊂ R2 define the basis
functions, the sesquilinear form :

[[f , g]] =
NX

j=0

γj

“ NX
l=0

αl (f g)(xj , yl ) +
NX

l=0

ηl∂y (f g)(xj , yl )
”

+

NX
j=0

βj

“ NX
l=0

αl∂x (f g)(xj , yl ) +
NX

l=0

ηl∂xy (f g)(xj , yl )
”

Fourier coefficients computed algebraically by
previously solving implicitly for ∂x f , ∂y f and ∂xy f .



NUDFT
AFDTD

AS recall

NUDFT
formulation

NUDFT for
Aitken-
Schwarz
method

Numerical
results

Summary and
Future Work

Numerical results 2D

N ε = hu/2 ε = hu ε = 2hu ε = 4hu
27 1.1E-13 3.7E-13 9.5E-7 2.09E+3

1.5E+3 8E+3 2.5E+6 2.2E+12
28 2.62E-13 1.48E-10 8E-4 3E+6

6E+3 5E+5 1.7E+10 1E+14

TAB.: ‖f − ΠF
N(f )‖∞ and cond2([[., .]]) for f (x , y) = cos2(x) cos(y),

with hu = 2π/N.



NUDFT
AFDTD

AS recall

NUDFT
formulation

NUDFT for
Aitken-
Schwarz
method

Numerical
results

Summary and
Future Work

Advantages of NUDFT

Advantages :

better performance than FFT on nonuniform meshes
when applied to Aitken-Schwarz DDM
O(N2) operations → cheaper in time in comparison with
the O(N3) operations to solve for the eigenvalues and
eigenvectors of the full interface operator
Adaptive approximation of the trace transfer operator P,
based on a posteriori error estimates of Fourier modes
convergence

Gridding : interpolation and use of the FFT on an
oversampled grid Greengard and Lee, Accelerating the Nonuniform Fast Fourier
Transform, SIAM REVIEW, vol.46, No.3, pp.443-454, 2004
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Adaptive approximation of the trace transfer operator P,
based on a posteriori error estimates of Fourier modes
convergence

Gridding : interpolation and use of the FFT on an
oversampled grid Greengard and Lee, Accelerating the Nonuniform Fast Fourier
Transform, SIAM REVIEW, vol.46, No.3, pp.443-454, 2004
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Validation of the NUDFT for the construction of the interface operator P

At interfaces Γ1 and Γ2, the Fourier coefficients of the error
of additive Schwarz algorithm can be rearranged on the
form :

ê(n+2)
1 (Γ1) = P[[.,.]]ê

(n)
1 (Γ1)

ê(n+2)
2 (Γ2) = P[[.,.]]ê

(n)
2 (Γ2)

Numerically, P[[.,.]] is computed by applying two Schwarz
iterates for each Fourier mode of the interface solution
(computed through the NUDFT), as a relation between all
the modes at the two iterates.
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Numerical computation of the interface operator P

Take one basis function on the interface (blue line) :

Ω Ω1 2

Applying NUDFT to the basis function, obtain a
symmetric decomposition :

0 n[n/2]

mode k
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Numerical computation of the interface operator P

With 2 Schwarz iterates determine how this function is
modified by the additif Schwarz algorithm :

Ω Ω1 2

Applying NUDFT, compute the influence of one Fourier
mode on all modes :

0 n[n/2]

influence du mode k

Fill k−column of matrix P[[.,.]], not symmetric.
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Validation of the NUDFT for the construction of the interface operator P

Uniform grids : NUDFT → FFT
P[[.,.]] diagonal and ‖P[[.,.]] − Pan‖∞ = O(10−12)
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Adaptive construction of matrix P

Nonuniform cartesian grids and/or non separable
differential operator
P is no longer diagonal
we can approximate P[[.,.]] using only the most
important modes, then accelerate only these modes
through the equation :

ṽ∞ = (Id − P∗
[[.,.]])

−1(ṽn+1 − P∗
[[.,.]]ṽ

n)

where ṽ is the subset of ũ used to approximate P[[.,.]]

with P∗
[[.,.]]. Other modes are not accelerated.

P∗
[[.,.]] columns can be built in parallel and the number of

columns computed during the Schwarz iterates can be
set according to the computer architecture
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AS-DDM on a strongly non separable operator and irregular matching grids

Solution of 2D convection-diffusion equation with Aitken-Schwarz
DDM : the trace of the iterate solutions on the irregular mesh are
projected on a Fourier orthogonal basis. The Fourier modes are
accelerated through the Aitken technique.

∇.(a(x , y)∇)u(x , y) = f (x , y), on Ω =]0,1[2

u(x , y) = 0, (x , y) ∈ ∂Ω

a(x , y) = a0 + (1− a0)(1 + tanh((x − (3h ∗ y + 1/2− h))/µ))/2,
and a0 = 101, µ = 10−2.
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Numerical results

FIG.: acceleration using sub-blocks of P[[.,.]] with 90 points on the
interface, overlap= 5 and ε = hu/2. Black line refers to results in
Baranger, Garbey and Oudin-Dardun The Aitken-Like
Acceleration of the Schwarz Method on Non-Uniform Cartesian
Grids, Technical Report Number UH-CS-05-18, 2005.
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Numerical results

FIG.: influence of the approximation of the interface operator
P[[.,.]] on the convergence of the interface error
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Convergence of AS in random porous media

K follows a log-normal random process

∇.(K (x , y)∇u) = f , onΩ

u = 0, on ∂Ω

K (x , y) ∈ [0.0091,242.66] Convergence of AS
Work under progress in collaboration with J-R De Dreuzy and J. Erhel SAGE/IRISA
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Summary and Future Work

Extend ASDDM to nonuniform cartesian meshes by
means of the NUDFT technique
Reduce the numerical complexity by adaptively
approximating the trace transfer operator P
Validate the technique in the 2D case and DD in stripes

Works also for Nonuniform non matching cartesian
grids
Under investigation : NUDFT → NUFFT
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