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Motivation and ldeas

Decoupling of multi physics problems to simpler physics problems

Embedding the physical characteristics to the numerical methods
(conservation of physics)

Parallelization and accelerating the solver-process
Higher order methods for time and space
Methods for non-smooth and degenerate problems

Fast computations for complicate and decoupable problems
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Model-Equation

Systems of parabolic-differential equations with first order time-
derivation and second order spatial-derivations

%:f(CHAHBc,ian(O,T), (1)

c(x,t) = g(x,t), on I x (0,T) (Boundary-Condition) ,
c(x,0) = co(x) , in © (Initial-Condition) ,

where ¢ = (¢1,...,¢,)t and f(c) = (fi(c),..., fu(0)),

—’Ull-v —’Un1°v VDH-V VDnl-V

Convection- and diffusion-operator with A, B : X — X and X = IR"™ a matrix-space.

sufficient smoothness ¢; € C%1(Q,[0,T]) fori =1, ..., n
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Decomposition Methods

Ideas :

Decoupling the time-scales, space-scales.
Decoupling the multi-physics.
Time-adaptivity, Space-adaptivity.
Parallelization in Time and Space.

Methods :

Operator-Splitting and Variational Splitting Methods (Time).
lterative and extended Operator Splitting Methods (Time).
Waveform-Relaxation-Methods (Time).

Schwarz Wave form relaxation method (Space).

Additive and Multiplicative Schwarz method (Space).

Partition of Units combined with Splitting methods (Time and
Space).
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Spatial decomposition method : Overlapping Schwarz wave
form relaxation method

Given the following model problem

us+ Lu = f ,in Q x (0,T), (2)
Qx(0,T):=Q; x (0, T)UQy x (0,T),
u(x,0) = ug , (Initial-Condition) ,
u=g,on 0 x (0,T),
where L denotes for each time ¢t a second-order partial differential

operator Lu = —VDVu + vVu + cu for the given coeffients D €
RY. veIR",ce R", and n is the dimension of the space.
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Schwarz-Waveform Relaxation method

We consider the method for two half steps, associated with the two
subdomains and we solve 2 subproblems
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w1y + Lut = f,in Q1 x (0,7T) (3)
u1(x,0) = uig, (Initial-Condition) ,

ul =g ,on Lg=00Q x (0, T7)NI x (0,T),

u =ul "' on Ly = 00y x (0,T)\00Q x (0,T) ,

ugy + Luy = f,in Qo x (0,7 , (4)
us(x,0) = ugo , (Initial-Condition) ,

uy =g ,on L3 =00 x (0,T7)N 2% x (0,T),

us = uy ,on Ly = 00y x (0, T)\0Q x (0,T);,



Error of an Overlapping Schwarz wave form relaxation for the
scalar convection reaction diffusion equation

We consider the convection diffusion reaction equation, given by
= Dy, — Vg — AU, (5)

defined on the domain 2 = |0, L] for T' = [T}, T, with the following
initial and boundary conditions

U(O,t) — fl(t), U(L,t) — fg(t), ”LL(ZC,TQ) — Ug -

To solve the model problem using overlapping Schwarz wave form
relaxation method, we subdivide the domain €2 in two overlapping
sub-domains 2; = |0, Ls] and Q5 = [L1, L], where L1 < Ly and
Q1 (1Q2 = [L1, Ls] is the overlapping region for €21 and €)s.

The convergence and error-estimates of e**t! = o — w1 and

dF1 =y — ukT given by (3) and (4) respectively, are presented by
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the following theorem

Theorem 1. Let ¢t and d*t! be the error from the solution of

the subproblems (3) and (4) by Schwarz wave form relaxation over €04
and $)s, respectively, then

1€ (L1, t)]oe < Alle" (L1, 8)]]oo »

and
1d* (Lo, t)||oo < Y||d*(L1, )]0

where
Slnh(ﬁLl) Sth(ﬁ(Lz — L)

7 Sinh(BLy)sinh(3(L, — L))

2
with [ = \/V;;w)‘.

Proof see [Geiser & Daoud, in review to NMPDE, 2006]

<1,
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Time-Decomposition methods : Sequential Splitting methods

|ldea: Decoupling of complex equations in simpler

equations, solving simpler equations and re-coupling the results over
the initial-conditions.

Equations: 0;c = Ac+ Bc,
where the initial-conditions are ¢(t") = ¢", (or Variational-formulation:
(Oc,v) = (Ac,v) + (Bce,v) .)

Splitting-method of first order
Oic™ = Ac™  with ¢ (") ="
O™ = B with (") = c*(t" ),

where the results of the methods are c(t" 1) = ¢**(¢t" 1) |

and there are some splitting-errors for these methods,
Literature : [Strang 68], [Karlsen et al 2001].
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Splitting-Errors of the Method
The error of the splitting-method of first order is
oc= (B+ A)c,
¢ =exp(T(B+ A))c(t") .

Local error for the decomposition and the full solution
e(c) = c¢(t"+71)—exp(7B)exp(TA)c(t"),

= exp(7(B + A))c(t") — exp(7B) exp(1A)c(t")

(c)/r = or(BA— AB)e(t") + O(r?)

O(7) for A, B not commuting, otherwise one get exact results, where
T ="t — ¢ [Strang 68].
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Higher order splitting-methods
Strang or Strang-Marchuk-Splitting, cf. [Marchuk 68, Strang68]

*(t

) _ acr(), with t" <t < P and () =l (6
ok (4

66(‘%( ) _ Bem (1), with 7 < ¢ < 71, (7 = (17 1/2),
Hokok (1

dc at( ) _ AC***(t) ’tn—|—1/2 <t< g1 ,C***(tn+1/2) _ C**(tn+1),

where t"t1/2 =" 4+ 0.57,, and the approximation on the next time
level t" T is defined as ¢J;f' = ¢ (¢" ).

The splitting error of the Strang splitting is

1
Pn = ﬂTﬁ([B, B, A]] = 2[A,[A, B]]) ¢(t") + O(7,)) ,  (7)
see, e.g.[Hundsdorfer, Verwer 2003].
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Combined Methods

Introduction lterative splitting-Methods

acaiit) = Aci(t) + Bei—a(t), with ¢(t") = ¢, (8)
86@’5;(75) = Aci(t) + Beipa(t), with ¢ (") = ¢, (9)

where cy(t) is any fixed function for each iteration. (Here, as before,
Ce, denotes the known split approximation at the time level ¢ = t".)
The split approximation at the time-level t = ¢"T! is defined as
it = comq1(t" ). (Clearly, the functions c(t) (k=i —1,i,i4 1)
depend on the interval [t™,t" "], too, but, for the sake of simplicity,

in our notation we omit the dependence on n.)
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Error for the lterative splitting-method

Theorem 2. The error for the splitting methods is given as :

leil] = K||Bl|mallei—1l|] + O(77) (10)
and hence
leam+1]| = Km|leo||[72™ + O(r" ), (11)

where T, is the time-step, eq the initial error eo(t) = c(t) — co(t) and
m the number of iteration-steps, K and K,, are constants, ||B|| is the
maximum norm of operator B and A and B are bounded, monotone

operators.

Proof : Taylor-expansion and estimation of exp-functions. See the
work Geiser,Farago (2005).
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The combined time-space iterative splitting method

Based on the iterative operator-splitting method we extend the split-
ting method be an embedded Schwarz-waveform-relaxation method.

We solve the following sub-problems consecutively for 7 =
0,2,...2m and 5 = 0,2,...2n. In this notation ¢ represents the
iteration index for the time-splitting and j represents the iteration
index for the spatial-splitting.
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Initial idea:

Oci;(t)
ot
with Ci,j(tn> =c" (12)
Ocit1,4(t)
ot
with CH_l’j(tn) =c" (13)
Ocij11(1)
ot
with Ci,j+1(tn) =c" (14)

= Ala,cij(t) + Alayciji—1(t) + Bla,ci—1;(t) + Blayci—1,j-1(1),

= Algycij(t) + Alaycij-1(t) + Blajcit1,i(t) + Blayci—1,j-1(t),

= Alg,cij(t) + Alaycijr1(t) + Blaciv1,i(t) + Blayci—1,;-1(t),

867; ; t
+1éjt+1( ) = Alq,cij(t) + Alaycijt1(t) + Blojcit1,j(t) + Blayciyijr1(t),

with Ci_|_1’j_|_1(tn) =c" (15)

where ¢" is the known split approximation at the time level ¢t = t".
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The nonoverlapping time-space iterative splitting method

We denote for the semi-discretisation in space the variable k£ as the
node for the point x; and we obtain k € (0,...,p), where p is the
number of nodes. We have the decomposition if the space, where (21
is of the points 0,...,p/2 and 5 is of p/2 + 1,...,p, we assume
p is even. So we assume §2; N2y = {} and we have the following
algorithm :
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O(cij)k(t)

= Alay (ci)e(t) + Alay(eij)(®)

ot
+ Bla,(ci—1,;)k(t) + Blay(ci—1,j-1)x(t),
with (¢ ;)e(t) (") = (") (16)
a(cz+£19,z)k(t) _ A|Ql(ci,j)k(t) 4 A|QQ(Cz’,j—1)k(t)
+ B|Ql(cz’—|—1,j>kz + B|92(Ci—1,j—1)k(t)a
with (Ci+1,j)k(tn) = (Cn)k (17)
O(cij+1)k(t") (1)

ot = Aloy (i )k (t) () + Aloy(cijr)r(™) ()

+ Blay (o)) (8) + Blag(eiiy—)r(t") (1),
with (cog)r(")(¢") = (")i(t") (18)

g e _ g1, (0000t 0) + Alaylesmn@)®

+ Bl (cir1 )k(t")(t) + Blay(civrr)u(t") (D),
with (¢i1,541)6(t") (") = (")u(t") (19)

where ¢" is the known split approximation at the time level ¢t = t".
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We have the operators :

A N ) Al for k € {0,...,p/2}
Alg,(cij)r = { 0 fork € {p/2+1.... p)

Al (605 — 0 for k € {0,...,p/2}
Qo\Cij )k — A(Cz’,j)k for k € {p/Q, ..., D}

Similar are the assignments for operator B.
B(Ci,j)k for k € {0,,])/2}

B|Q1(C’i,j>k’:{ 0 forkE{p/2‘|‘1o--'7p}

Blow (i) = 0 fork € {0,...,p/2}
Qo\Ci,j )k — B(Ci,j)k for k € {p/2, S 7p}

Jirgen Geiser
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The overlapping time-space iterative splitting method

We denote for the semi-discretisation in space the variable k£ as the
node for the point x; and we obtain k£ € (0,...,p), where p is the
number of nodes. Now we assume the overlapping case, so we assume
2 N Qs # {}. We have the following sets : Q\Qs = {0,...,p1},
QNQy={p1+1,...,p2} and Q\Qy ={p2+1,...,p}. We assume
p1 < p2 < p and can derive the following overlapping algorithm :
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O(ci,j)k(t)

= Alova,(ci)e(®) + Alanay(ciy, cij—1)e(t) + Alava, (cij—1)r(t)

ot
+ BlQ\QQ(Ci—l,j)k(t) + B|QlﬂQQ(Ci—1,j7Ci—l,j—l)Ic(t) + B|Q\Ql(ci—1,j—1)k(t)7
with (ci;)k(t)(t") = (c")x (24)
O(cit1,)e(t) = - -

+8Z — A|Q\Q2(ci,j)k(t) + Alanay(cij, cij—1)k(t) + AlQ\Ql(Ci,j—l>k(t)
+ BlQ\QQ<Ci—|—1,j)kz(t) + B|§21092(Ci—|—1,j;Ci—l,j—l)k(t) + B’Q\Ql(ci—l,j—l)k(t);
with (cip1 (") = (") (25)
O(cij+1)e(t) - -

Jgt = Alo\a,(cij)e(t) + Alana,(cijt1, cij)i(t) + Alave, (¢ij+1)r(t)
+ BlQ\QQ(Ci—i—l,j)k(t) + B|Qlﬂ92(ci+1,j,Ci—l,j—l)k(t) + é|Q\Ql(Cz'—1,j—1)1<;(15),
with (¢ j4+1)u(t")(t") = (c")x(t") (26)
O(Cit1,j+1)k(t) ~ ~ ~

o = Alaay ()it + Alanay(eigin cie(®) + Alaay (cigi)r(?)
+ Blova,(Cit1)r(t) + Blajnay(Ciri civt,j+1)k(t) + Blovoy (Civtjr1)e(t),
with (cip1j41)e(t") (") = (c")r(t") - (27)
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We have the operators :

AlQ\QQ(Ci,j)k — {
A\leQQ(Ci,j, Cz’,j—I—l)k: = {

A|Q\Ql(ci,j)k = {

A(cij)k
0

0

0
A(cij)k

Similar are the assignments for operator B.

Jirgen Geiser

BlQ\QQ(Ci,j)k = {
B‘QlﬂQQ(Ci,ja Ci,j—l—l)k: = {

Blova, (cij)k = {

B(cij)k
0

0

0
B(cij)k

for k € {0,...,p1}
fork € {p1 4 1.7}

A((Ci’j —+ Cz‘,j+1)/2)k for k € {p1 +1,...
forke {pg—l—l,...

for k € {0,...,p2}
fork € {p2+1,...,p}

for k € {0,...,p1}
fork € {p1 4 1.7}

B((Ci’j + Cz’,j—l—l)/2>k for k € {p1 +1,...
for k € {pg—l—l,...

for k € {0,...,p2}
fork € {p2+1,...,p}
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Dicretisation of the operators

The discretization of the operators is given as :

Alcijle = D/(Ax)*(—(cij)kr1 +2(cij)k — (Cij)k—1)
—v/Ax((ci )k — (Cij)k—1)

B(ci i)k = Mcij)k

Jirgen Geiser
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Consistency and stability analysis of the combined method

Theorem 3. Let us consider the nonlinear operator-equation in a

Banach space X

Owc(t) = A1(c(t)) + Aa(c(t)) + Bi(c(t)) + Ba(c(t)), 0<t<T,
c(0) = ¢,

(36)

where Al,AQ, Bl, BQ, Al -+ AZ -+ B1 -+ B2 : X — X are given linear
operators being generators of the Cy-semigroup and co € X Is a given

element. Then the iteration process (

12

=(

15

rate of the convergence is of second order.

We obtain the iterative result :

we obtain

Is convergent and the

leijll = Kmnllei—1j—1]| + O(17), (37)

Jirgen Geiser
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and hence

leit1 j+1ll = Kitillei—1,j-1] + O(13), (38)

which proves our statement.

Proof see [Geiser & Kravvaritis 2006]

Let us consider the iteration ((12)—(/15)) on the sub-interval [t™, ¢"T1].
For the error function e;(t) = ¢(t) — ¢;(t) we have the relations

Oreij(t) = Ai(ei (1)) + Az(eij-1(t)) (39)
+Bi(ei-1,(t)) + Ba(ei-1,;-1(1)),
te (", t"), e ;(t") =0, (40)
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and

and

and

fori,7=0,2,4,...

Jirgen Geiser

Oreit,;(t) = Ai(eq;(t)) + Az(es;-1(1))
+Bi(€eit1,i(t)) + Ba(ei-1,-1(1)),
te (", "], e (") =0,

Oreij+1(t) = Ai(eij(t)) + Az(eij+1(t))
+Bi(eiy1,j(t)) + Ba(ei—1,;-1(t)),
t € (tn, tn+1], ei,jH(tn) =0 5

Oreij(t) = Ai(ei (1)) + Az(eijri1(t))
+Bi(eit1,j(t)) + Ba(eir1,j+1(t)),
te (", t", ei;(t") =0,

, with 60,0(0) — 0 and €10 = €p,—1 = 6_1,_1(t) = C(t).

(41)

(42)

(43)

(44)

(45)

(46)
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In the following we derive the linear system of equations. We
use the notations X? for the product space X x X enabled with the
norm ||(u,v)|| = max{||ul|,||v||} (u,v € X). The elements &;(t),
F;(t) € X? and the linear operator A : X? — XZ? are defined as

follows

e, (1) A, 0 0 O
eir1.7(t) Ay A 0 0
Eii(t) = T . A= . (47
73( ) 6i,j—|—1(t) Al A2 Bl O ( )
I ei+1,j+1(t) | ] A Ay By Bs |

- (48)
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Then, using the notations (48), the relations (40)—(46) can be
written in the form

KEi (1) = A& ;(t) + F; ;(t), te (", t",
Ei (") =0.

(49)

Due to our assumptions, A is a generator of the one-parameter Cj
semigroup (A(t))¢>o.

Hence using the variations of constants formula, the solution of the
abstract Cauchy problem (49) with homogeneous initial condition can
be written as

£ (1) = /t exp(A(t — ) Fii(s)ds, te [ (50)

n

Hence, using the denotation

|Eijllcc = sUDsepen gy €05 (51)
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We could estimate the right hand side F;(¢) and exp(.A(t))

We could then estimate the F;(t) as

1Fi (O] < Cllei—,j-all -

and
tn—{—l
lexp(A(t — s))||ds < K, (t), tel[th, ",
t’n
and hence
K 2
K,(t) < —(exp(wmn) — 1) = K7, + O(77)
w

We obtain the a priori error-estimates

leijll = Ktnllei—1,j—1]] + O(77) .

Jirgen Geiser
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Parallelization of the Time-Decomposition method :
Windowing

The idea for parallelization in time are the windowing, that the
processors has an amount of time-steps to compute and to share
the end-result of the computation as an initial-condition for the next
processor.

Processor 1 Processor 2 : Processor 3

| Window 2
Window 1 :
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Numerical Experiments

We consider the one-dimensional convection-reaction-diffusion
equation

O + v0zu — 0, DOyu = —Au , in Q x (Tp,Ty) , (56)
u(x,0) = Uez(x,0) , (Initial-Condition) , (57)
u(x,t) = Ueg(x,t) ,on O x (1o, T¥) , (58)

where Q x [Ty, Ty] = [0, 150] x [100,10°].

The exact solution is given as
Ug (x — vt)?
Uer (T, T) = exp(—
(1) 2v/ Dt ( 4Dt
The initial condition and the Dirichlet boundary conditions are defined

using the exact solution (59) at starting time Ty = 100 and with
up = 1.0. We have A = 107>, v = 0.001 and D = 0.0001.

)exp(—At) . (59)
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First example : A-B splitting combined with Schwarz wave
form relaxation method

In order to solve the model problem using overlapping Schwarz wave
form relaxation method, we divide the domain €2 in two overlapping
sub-domains €y = |0, Ls| and Qy = [L1, L], where L; < Lo, and
Q1 (Q2 = [L1, Ls] is the overlapping region for €21 and €2s.

For the sequential operator splitting method (A-B splitting). For
this purpose we di;/ide each of these two equations in terms of the
operators A = D% — Va% and B = —\.

For the discretization of equation ([6)) we apply the finite-difference
method for the spatial discretization and the implicite Euler method
for the time discretization.
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We provide a variety of results for several sizes of space- and
time-partition, and also for various overlap sizes.

Precisely, we treat the cases h = 1, 0.5, 0.25 as spatial step-size,
At =5, 10, 20 as time step.

The considered subdomains are €2; = [0,80] and Q5 = [70, 150],
Q; = [0,60] and Q5 = [30,150] and Q; = [0, 100] and Qs = [30, 150],
with overlap sizes 10, 30 and 70, respectively.

Both the approximated and the exact solution are evaluated at the
end-time ¢t = 10°. The errors given in Table 2 are the maximum errors
that occurred over the whole space domain, i.e. they are calculated
using the co—norm for vectors.
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time-step err err err err err err
At =5 2.85e —3 | 2.24e — 3 | 1.28e — 3 || 2.66e —4 | 2.21le — 4 | 2.20e — 4
At =10 || 3.94e — 3 | 2.6le — 3 | 2.56e —3 || 3.03e —4 | 3.02¢ —4 | 3.0le — 4
At =20 || 5.03e — 3 | 2.8le—3 | 2.73e — 3 || 8.5le—4 | 5.22¢ —4 | 5.14e — 4
overlap 10 30 70 10 30 70
space-step h=1 h =0.5
Table 1:  Error for the scalar convection diffusion reaction-equation using the
Schwarz waveform relaxation method for three different sizes of overlapping 10,30
and 70.
time-step err err err
At =5 2.09e —5 | 1.99¢e — 5 | 1.97e — 5
At =10 || 4.55e — 5 | 4.34e — 5 | 4.29e — 5
At =20 || 8.10e —4 | 5.66e —4 | 4.88¢e — 4
overlap 10 30 70
space-step h = 0.25
Table 2:  Error for the scalar convection diffusion reaction-equation using the

Schwarz waveform relaxation method for three different sizes of overlapping 10,30

and 70.
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Second Example : Combined method : Time-Space iterative
operator splitting method

For the solution of (56]) with the combined time-space iterative
splitting method we divide again the equation in terms of the operators

_po _ 0
A_D8x2 V@az

and
B = —)\.

The index kK =0,1,...pis associated with the subdomains, i.e. for
k=0,...,p/2 we are working on 21 and for k =p/2+1,...,p on
(25. For the first set of values for £ we have actually only the effect
of the restrictions of the operators A and B on 2. Similarly, the
second set of values for k indicates the action of the restrictions of
both operators on ().
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The indices 7 and j are related to the time- and space-discretization,
respectively. For every kK = 0,...,p/2 and for every interval of the
space-discretization we solve the appropriate problems on €24, for every
interval of the time-discretization. Similarly for k =p/2+1,...,p on

(2o,

By a closer examination of the scheme (24)—(27]), taking into
account the definitions (32)—(23|), we observe that the problems to be
solved in the innermost loop are of the form 9;c = Ac+ Be, c(x,t") =
c", where ¢ appears with appropriate indices 7 and j.

Both the approximated and the exact solution are evaluated at the
end-time t = 10°. The errors given in the following tables are the
maximum errors that occurred over the whole space domain, i.e. they
are calculated using the co—norm for vectors.

The results are given in Table 4.
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time-step err err err err err err
At =5 4.38¢ —2 | 1.47e — 2 | 3.49¢e — 3 || 2.59e — 4 | 2.13e — 4 | 1.54e — 4
At =10 || 5.12e — 2 | 2.26e — 2 | 7.46e — 3 || 2.45e — 4 | 2.22¢ — 4 | 2.15e — 4
At =20 || 6.14e — 2 | 4.39e — 2 | 1.20e — 2 7.43e —4 | 5.21le—4 | 4.53e — 4
overlap 10 30 70 10 30 70
space-step h=1 h =0.5
Table 3:  Error for the scalar convection diffusion reaction-equation using the
Schwarz waveform relaxation method for three different sizes of overlapping 10,30
and 70.
time-step err err err
At =5 7.23e — 6 | 6.49e — 6 | 8.29e — 6
At =10 || 3.49¢e — 5 | 3.47e—5 | 3.37e — 5
At = 20 5.23e — 4 | 5.42e —4 | 3.21e — 4
overlap 10 30 70
space-step h = 0.25
Table 4:  Error for the scalar convection diffusion reaction-equation using the

Schwarz waveform relaxation method for three different sizes of overlapping 10,30

and 70.
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Future Work

1. Theory for the Stability of the time-space iterative splitting
methods.
2. Commutative, non-commutative theory : How to decouple

3. Degenerated problems and non-smooth problems

4. Numerical examples
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