A User Friendly Toolbox for Parallel PDE-Solvers

Gundolf Haase Manfred Liebmann
Institut for Mathematics and Scientific Computing Mathematics in Sciences
Karl-Franzens University of Graz Max-Planck-Institute Leipzig

in cooperation with G. Planck [Med-Uni Graz]

Reentry Induction in a Rabbit Ventricular Model VEP Patterns

Gundolf Haase DD17 St.Wolfgang/Strobl, July 3-7 2006 Page

e [Votivation

e The parallel algebra

— for Krylov methods
— for multilevel methods
— for some factorizations

e Realization in the toolbox

Contents

Gundolf Haase

Contents

Page

2

Motivation

Craig C. Douglas
Gundolf Haase
Ulrich Langer

8 (D

6L/
TS » TOI

A Tutorial on Elliptic
PDE Solvers and
Their Parallelization

fodl /

i
1

RONMEN

=

- &
=
3

e We have developed parallel codes for 15 years, incl. Multigrid, Multi-
level, AMG, Krylov methods,

3
VIRO

‘I
ARE = EN

‘-"":(i:
AU

e We have a dozen of applications from potential problems, elasticity
problems, Maxwell’s equations.

iy}
I
Wi

DFT

g
w0
ot

by T AT T
T

T
87
S don e

|

el

e
i
il b

e Approx. 25 licences for the parallel code PEBBLES.

e We have written a book on parallelization [Douglas/Haase/Langer].

Gundolf Haase Motivation Page 3

Motivation

Craig C. Douglas
Gundolf Haase
Ulrich Langer

8 (D

6L/
TS » TOI

A Tutorial on Elliptic
PDE Solvers and
Their Parallelization

fodl /

i
1

RONMEN

=

- &
=
3

e We have developed parallel codes for 15 years, incl. Multigrid, Multi-
level, AMG, Krylov methods,

3
VIRO

‘I
ARE = EN

‘-"":(i:
AU

e We have a dozen of applications from potential problems, elasticity
problems, Maxwell’s equations.

iy}
I
Wi

DFT

g
w0
ot

by T AT T
T

T
87
S don e

|

el

e
i
il b

e Approx. 25 licences for the parallel code PEBBLES.

e We have written a book on parallelization [Douglas/Haase/Langer].

What's wrong with our available codes?

Gundolf Haase Motivation Page 3

Motivation

Craig C. Douglas
Gundolf Haase
Ulrich Langer

(&

os

A Tutorial on Elliptic
PDE Solvers and
Their Parallelization

Wl
00

FTRL
NTS » T

JNMER

T

e We have developed parallel codes for 15 years, incl. Multigrid, Multi-
level, AMG, Krylov methods,

r
o L

W,
I\“

)
NVIRON

o
SOFTWARE =

ri)

e We have a dozen of applications from potential problems, elasticity
problems, Maxwell’s equations.

)

T T T o R N
W _;\""-F-;-I_;E r

2 il

N e, T
i Rl
Nl b

e Approx. 25 licences for the parallel code PEBBLES.

e We have written a book on parallelization [Douglas/Haase/Langer].

What's wrong with our available codes?

— Let’s have a look at an example.

Gundolf Haase Motivation Page 3

Rabbit Heart [G. Planck, M. Liebmann, G. Haase]

Reentry Induction in a Rabbit Ventricular Model VEP Patterns

e time-dependent electrical potential, anisotropic coefficients
e 5.082.272 tetrahedrons with 862.525 FEM-nodes

e Goal: 150 Mill. tetrahedrons using parallel mesh generator Spider by F. Kickinger

Gundolf Haase Rabbit Heart Page 4

e sequentially, 111.589 nodes, Pentium4 3GHz :

e parallel, 862.515 nodes, Opteron nodes, PEBBLES:

e Some obscurities wrt. reconstruction of PEBBLES.
e Our parallel data structures didn't fit into global code.

e Conclusion: It's worth to continue the development of the code.

PEBBLES as AMG—preconditioner in the heart problem (¢ = 10°)

solver solution [sec.] lterations
ILU/CG 12.0 211
Hypre 1.9 3
SuperLU 1.2 (but 70 sec. in setup)
PEBBLES/CG 0.8 10
processors 1 2 4 8
solver iterations | 13 12 12 14
coarse grid 3059 4008 4850 3070
solver in sec. 10.3 9.0 5.0 3.2
[0.3] [0.6] [0.7] [0.4]
setup in sec. 371 224 179 113

[3.7] [7.0] [9.7] [5.4]

But we have to re—write the code.

Gundolf Haase

Rabbit Heart

Page

5

Motivation for a new code

e PETSc [B. Smith] is used by cooperation partners but we need more/other information for an efficient
parallel AMG.

Menu

Gundolf Haase Motivation Page 6

Motivation for a new code

e PETSc [B. Smith] is used by cooperation partners but we need more/other information for an efficient
parallel AMG.

= We have to provide similar functionality as PETSc to convince partners to use our code.

Menu

Gundolf Haase Motivation Page 6

Motivation for a new code

e PETSc [B. Smith] is used by cooperation partners but we need more/other information for an efficient
parallel AMG.

= We have to provide similar functionality as PETSc to convince partners to use our code.
e Handling of old code is too complicated, i.e., one developer has to be always available.
e The professional code cannot be used in education (too much overhead from data setup)

e Code developers left for jobs in industrie [M. Kuhn, S. Reitzinger]

Menu

Gundolf Haase Motivation Page 6

Motivation for a new code

e PETSc [B. Smith] is used by cooperation partners but we need more/other information for an efficient
parallel AMG.

= We have to provide similar functionality as PETSc to convince partners to use our code.
e Handling of old code is too complicated, i.e., one developer has to be always available.
e The professional code cannot be used in education (too much overhead from data setup)
e Code developers left for jobs in industrie [M. Kuhn, S. Reitzinger]

= Redesign of interfaces, data structures and funtionality.

Menu

Gundolf Haase Motivation Page 6

Motivation for a new code

e PETSc [B. Smith] is used by cooperation partners but we need more/other information for an efficient
parallel AMG.

= We have to provide similar functionality as PETSc to convince partners to use our code.
e Handling of old code is too complicated, i.e., one developer has to be always available.
e The professional code cannot be used in education (too much overhead from data setup)
e Code developers left for jobs in industrie [M. Kuhn, S. Reitzinger]

= Redesign of interfaces, data structures and funtionality.

Goal: Toolbox provides all needed basic routines for parallel funtionality.

Menu

Gundolf Haase Motivation

Page

6

Motivation for a new code

e PETSc [B. Smith] is used by cooperation partners but we need more/other information for an efficient
parallel AMG.

= We have to provide similar functionality as PETSc to convince partners to use our code.
e Handling of old code is too complicated, i.e., one developer has to be always available.
e The professional code cannot be used in education (too much overhead from data setup)
e Code developers left for jobs in industrie [M. Kuhn, S. Reitzinger]

= Redesign of interfaces, data structures and funtionality.

Goal: Toolbox provides all needed basic routines for parallel funtionality.

Goal: Write your own parallel code by re-using sequential code.

Menu

Gundolf Haase Motivation

Page

6

Parallel Algebra

e (Concept for Parallelization

e Extended Parallelization Concept

e [Parallel Multigrid

e Parallel factorization

e Parallelization of Algebraic Multigrid

e (Contents

Gundolf Haase Parallel Algebra Page 7

Non-overlapping Data Decomposition

accumulated distributed
P
— A,

u, u r = Z A’f[S
s=1

M, = ASSJIAZ P

K — ATKFEMAS

s=1

Gundolf Haase General Parallelization - Operators Page

Overlapping Domain Decomposition

accumulated distributed

= s s — As AT = =
u, =Au , M MA, r=Y AT, . K=Y AKAT
s=1 s=1

Gundolf Haase General Parallelization - Operators Page 9

Overlapping Domain Decomposition

accumulated distributed

= s s — As AT = =
u, =Au , M MA, r=Y AT, . K=Y AKAT
s=1 s=1

BUT, how to choose K, ?

Gundolf Haase General Parallelization - Operators Page 9

Overlapping Domain Decomposition

accumulated distributed

— As s — AS AT - -
u, u , M WA, r=Y AT, . K=Y AKAT
s=1 s=1

BUT, how to choose K, ?

— FEM,r
Ks 1= Z W () K
5(M) CQ,
w ™ .= #Q, an element §) associated with..

Gundolf Haase General Parallelization - Operators Page 9

Basic Operations

without communication global reduce next neighbor comm.
v «— K.s P P
- B a < (w,r) = Z(ms,rs) m KZZAZKS
s=1 s=1
r «— f+a-v
W «— utoa-s
r — R 1.w

P
with R = diag{R;;}; ., = diag{# subdomains z; is associated with} = » ~ AT . A,

s=1

P
andR™'=> AT -1, A, (partition of unity)
s=1

Gundolf Haase General Parallelization - Operators Page 10

Parallel CG : PCG(K, u, f)

B «—o0/0od , Ood < O
s «— m+ (Gs
until termination

Ment

Gundolf Haase General Parallelization - Operators Page 11

Basic Operations (revisited)

without communication global reduce next neighbor comm.
v «— K.s P P
- B a < (w,r) = Z(ms,rs) m [zZAZ[S
s=1 s=1
r «— f+a-v
W «— utoa-s
r — R 1.w

What can be done with 2t - v ?

Gundolf Haase General Parallelization - Operators Page 12

Some Definitions

Set of subdomains :

46
43!l-|-|-|-|-|-|§|=-|=-|=-|==-!F======|49
n 1 o 1
- I B I | __ . 7 re)
361 3 - 142 0'[] = {S.JJ[]EQS}
u I ’ o I
= W o 1o o l|||l||!I
29 8 V4 " =t
= : o ; e subdOmain 1 Set of indices/nodes :
22 ; I28 T TIIE RO Subdomain 2
— 23 24 25 H26 27
H : § : ————— subdomain 3 .
15". == 1-8- =21 = == == = gybdomain 4 w(o') e {z E W 0'[7’] — 0'}
8 T 14
4IIIIIIIIIIIIIIIIII
1 2 3 4 5 6 7

Gundolf Haase General Parallelization - Operators Page 13

Some Definitions

Set of subdomains :

46
43!|-|-|-|-|-|-|§|=-|=-|=-|==-!F======|49

n 1 o 1

n o 1 1 1 re)
361 : - 142 O'[] = {S:QZ[]EQS}

u I » o I

= W o 1o o l|||l||!l
29 8 V4 " =t

= : o ; e subdOmain 1 Set of indices/nodes :
22 ; I28 T TIIE RO Subdomain 2

— 23 24 25 H26 27

H : § : ————— subdomain 3 .
15". == 1-8- =21 = == == = gybdomain 4 w(o') e {z E W 0'[7’] — 0'}
8 T 14

4IIIIIIIIIIIIIIIIII

1 2 3 4 5 6 7

Bsp: oM ={1,2} w(eM) ={3,4,5,10,11,12}

Gundolf Haase General Parallelization - Operators Page 13

Some Definitions

Set of subdomains :

4
NN

u 1 o 1
u nl i 2 7 e
3 : . 1 ol = {s: 2zl e qQ,}
E ; 39 = 1
2 = W 1 :IIIIIIII l|||l||!:35
— 32 . AT
= : o ; e subdOmain 1 Set of indices/nodes :
22 i 23 24 25 .26 27] 28 LT T Iy Subdomain 2
N : N : ————— subdomain 3
n - . .
15 # = o el o] 21 == == == = subdomain 4 o— . [2] —
£ w(o) {t€Ew:o o}
8 14
11
4IIIIIIIIIIIIIIIIII
1 2 3 4 5 6 7

Bsp: oM ={1,2} w(eM) ={3,4,5,10,11,12}
o2 = {2,4} w(c?) = {20, 21,27, 28, 34,35}

Gundolf Haase General Parallelization - Operators Page 13

Some Definitions

Set of subdomains :

4
NN

u 1 o 1
u nl i 2 7 e
3 : . 1 ol = {s: 2zl e qQ,}
E ; 39 = 1
2 = W 1 :IIIIIIII l|||l||!:35
— 32 . AT
= : o ; e subdOmain 1 Set of indices/nodes :
22 i 23 24 25 .26 27] 28 LT T Iy Subdomain 2
N : N : ————— subdomain 3
n - . .
15 # = o el o] 21 == == == = subdomain 4 o— . [2] —
£ w(o) {t€Ew:o o}
8 14
11
4IIIIIIIIIIIIIIIIII
1 2 3 4 5 6 7

Bsp: oM ={1,2} w(eM) ={3,4,5,10,11,12}
o2 = {2,4} w(c?) = {20, 21,27, 28, 34,35}
o = {2} w({2}) = {6,7,13,14}

Gundolf Haase General Parallelization - Operators Page 13

Matrix Patterns and their Application

The following operations can be performed in parallel without any communication:

f = K.u

Matrix 90t fulfills the pattern condition: Vi,j € w : ol g glil — onlédl = i — J

- |8
|
=
g

Theorems/Proofs [Haase]

46

43!\-|-\-\-|-\-\ ----------- L. 149
= n 1
] 1

36 0 w 142
- 39 — -
u 1 n 1 EX .
|] 1 » 1
e e LT LTI

» B RV "
u I u = e SUbdOmain 1
|]] =1 .

2 g 128 =mmmmums gubdomain 2
st 23 24 25 H26 27 " .
= .] A = == == === subdomain 3
|] u ES .

15 === 2] = == == = subdomain 4

18 [
8 . 14
11
|||||||||||||||||||||||||||||||||||||
1 2 3 4 5 6 7

Gundolf Haase General Parallelization - Operators Page 14

Matrix Patterns and their Application

The following operations can be performed in parallel without any communication:

f = K-.u
Matrix 90t fulfills the pattern condition: Vi,j € w : ol g glil — onlédl = i — J
u = N-w
f = m'.r

Theorems/Proofs [Haase]

43 B Lo 149
u u 1
u ™ 1
o8 - 2 . 11 27 11,27
: e : Ex. oMM gl —omt? =0 124 20
= Wiy o 1 1 ol JUL L0 Yl LA !
28 4 H PR
L 1 n F s subdomain 1
= : :, bdomain 2
2u - 7 s ne g ii:zs subdomain
= :] ., = e e = subdomain 3
s e e e B = == == = subdomain 4
18 [
8 . 14
11
|||||||||||||||||||||||||||||||||||||
1 2 3 4 5 6 7

Gundolf Haase General Parallelization - Operators Page 14

Matrix Patterns and their Application

The following operations can be performed in parallel without any communication:

f = K-.u
Matrix 90t fulfills the pattern condition: Vi,j € w : ol g glil — onlédl = i — J
u = N-w
f = m'.r

Theorems/Proofs [Haase]

43 » 149
e Ex. oM goll—m2T =09 124 20
2 i mlmll32 ||||||| - ;”5
e subdomain 1 27 11 27,11
22; P : ” e mc P §§|28 =mmummie subdomain 2 0-[] Z 0-[] :m[’] - O 20 ?; 12
1 n = = == == === subdomain 3
15.' . == e ; === ..21 == == == = gsubdomain 4
8 1 . 14
|) 3 TR Altl |||||||| 5| |||||||||| 6| ||||||||| ;

Gundolf Haase General Parallelization - Operators Page 14

Matrix Patterns and their Application

The following operations can be performed in parallel without any communication:

f = K-.u
Matrix 90t fulfills the pattern condition: Vi,j € w : ol g glil — onlédl = i — J
u = N-w
f = m'.r

Theorems/Proofs [Haase]

A Ex. oM golPl—m?2 =0 12+« 20
¢ R X T Nt BT g o — B =0 20 £ 12
15;' I-- - !.- == ;;:21 :-—_—-: zzigzzzzi 0,[11] Z 0_[]_4] : m[ll,l‘l] — O 12 / 13

Gundolf Haase General Parallelization - Operators Page 14

Matrix Patterns and their Application

The following operations can be performed in parallel without any communication:

f = K-.u
Matrix 90t fulfills the pattern condition: Vi,j € w : ol g glil — onlédl = i — J
u = N-w
f = m'.r

Theorems/Proofs [Haase]

e e Ex. oM goll—m2T =09 124 20
VATE L == o Z ol — P =0 20 4— 12
Vv v 1 S o 7 o4 —onll1 — g 124 13
8 % £ o2 ¢ g —9nl2714 — g 21 +— 14

Gundolf Haase General Parallelization - Operators Page 14

Admissible Matrix Operations

Vertex, Edge, Inner nodes

Dty 0 0
M = Mgy Vg 0 | =9 +Vp =— u =910
Mrv D D

Pattern condition ¢ld Z gll — M1l%9l = 0 has to be fulfilled in all submatrices!!

Allows operations as (Parallel ADI [DouHaa])

P
w = NDV-u:= Mg+ Dip) -u + ZAZmU,SRs—l.H

s=1

S

or, for Mt = £~1. 1~ ! ([Haase])

P
w = 7=ty AT,

s=1

Menl

Gundolf Haase General Parallelization - Operators Page 15

Parallel lteration Schemes to Solve K - u = f

e Richardson iteration: 5
uptt = b Ty (f—Keub)
qg=1

P
e Jacobi iteration with ® =)~ diag { K }:

s=1

P
uk:-|-1 . — LtI;: + wgs—l Z (f — K. Hk)

qg=1

e Incomplete factorization & = . £ +A:

P
uFtl = k4 et Zuc;l (f— K- Llk)q

q=1

Gundolf Haase General Parallelization - Operators Page 16

Parallel Multigrid : PMG(K, u, f, £)

ife ==1 thlgn
LSSolve Y ATKA;-u = f

s=1 B

else
1 +— SMOOTH(K,u,f, v)
d—f—-—K-:u

B-d

0
GW(KHa mHa dHa E — 1)
w— P f
U«— u-+to

u «— SMOOTH(K, 11, f, v)
end if

dH
mH
PM

1o

Ment

Gundolf Haase General Parallelization - Operators Page 17

Application to LU-decomposition based on DD: Factorization

e Again, we have nodes which correspond to inner nodes (index 1) and coupling nodes (index 2) and a distributed

sparse stiffness matrix K = Kir Kiz
Ka1 Koo
e property for set of subdomains o(w;) C o(wsz) is locally valid on all processors s.

e LU-decomposition:

Get £55s,3s from Kii1s = K11, = £11,541,55 Kiz,s = 82,5 = £11,s4l12,53 Ka1,s = R21,5 = L21,s8M11,s;

Update remaining matrix = Kaas = Koos — Lo1s-loas-Sars With Inp o= R,

Accumulate: Koo

P
Z A3K22,3A,£

s=1
Rags 1= AzﬁzzAs
Get Lo9 ﬂzz from ﬁzz,s = 222,3‘1’[22,8

e Above algorithm can be applied recursively but the lower right matrix block can be accumulated and decomposed
only after the update of the remaining distributed matrix.

Gundolf Haase General Parallelization - Operators Page 18

Application to LU-decomposition based on DD: Elimination

. L (£ O Sy Ao _
e Solving the (preconditioning) system: (221 222> (0 ﬂzz) fw=r.

e LU-elimination:

locally u; , = L1160,
—1
H2,3 - 222,3 (£2,s 221,821 s)
P
accumulate u = Z A.u
s=1
ocally 1, ., = L5, u,,
e —1
ml,s *— i’[11,3 (El,s — u1233m2 s)

e The matrices £45 and $l,2 have to fulfill the pattern condition if the boundary is assembled from pieces with

different sets of subdomains o. In this case, some entries have to be deleted in the accumulation phase of the matrix
block (before the factorization of this block).

e restricted LU-dcomposition, ILU-decomposition, H-LU-decomposition based on DD [Grasedyck]

Gundolf Haase General Parallelization - Operators Page 19

Idea for Parallelizing AMG as realized in PEBBLES

parallel MG < interpolation ‘33 has to fulfill the pattern condition

U

Menu

Gundolf Haase General Parallelization - Operators Page 20

Idea for Parallelizing AMG as realized in PEBBLES

parallel MG < interpolation ‘33 has to fulfill the pattern condition

U

KH = o7 .K. 9 can be used in PMG(KH, uH, 7, ¢ — 1).
J

Idea

Menu

Gundolf Haase General Parallelization - Operators Page 20

Idea for Parallelizing AMG as realized in PEBBLES

parallel MG < interpolation ‘33 has to fulfill the pattern condition

U

KH = o7 .K. 9 can be used in PMG(KH, uH, 7, ¢ — 1).
J

Idea

Control of coarsening and interpolation such that the pattern condition is fulfilled for 3.

That requires identification and access to w(o).

Menu

Gundolf Haase

General Parallelization - Operators

Page

20

Library: basic operations

Provide necessary data structures and functions to hide nasty details of communication from the user.
The user should be assisted to reuse as much as possible of his sequential routines.

Gundolf Haase Library Page 21

Library: basic operations

Provide necessary data structures and functions to hide nasty details of communication from the user.
The user should be assisted to reuse as much as possible of his sequential routines.

Goal: User concentrates on numerical algorithms not on communication/data overhead.

Gundolf Haase Library Page 21

Library: basic operations

Provide necessary data structures and functions to hide nasty details of communication from the user.
The user should be assisted to reuse as much as possible of his sequential routines.

Goal: User concentrates on numerical algorithms not on communication/data overhead.

e Methods with communication:
— setup of communicator(s) from distributed f.e. mesh information
— inner product of vectors,
P
— vector accumulation: w := > Alr,
s=1

P
— matrix accumulation (blockwise, update of matrix pattern): 9t := > ATK A,

s=1

Gundolf Haase Library Page 21

Library: basic operations (cont.)

e Methods without communication

— derive a distributed vector from an accumulated vector: r, := R ' -1

S

— determine subsets of nodes w(o) belonging to the same set of subdomains o

— derive new w(o) from the old one after refinement/coarsening
construct a local ordering of the o-sets (subset property + unique ordering), globally consistent!

local node renumbering according to the ordering of the local o-sets
renumbering of incoming and re-renumbering of outgoing data

S

e Data structures

— array: local to global numbering
— arrays: sequence of nodes belonging to o-sets
— array of communicators

— vector for mult. right hand sides, blocks etc. packed_vector<double> a(nnode, nrhs, nblock)
access as linear array —- cache—aware programming
— special intermediate sparse matrix format [row, col, entry]

Gundolf Haase Library Page 22

Code example for setup in main—function

// = read data from files --——-———"-"—"—""""""""""""""“"“"“"“"“"“""—"—"—"—"—"—"—————
string root ("../Plank/TBunnyC2/"); // directory for data
vector<int> hdr;

read_header (root, hdr); // size of arrays

read_partition (root, hdr, par); // partition mapping
read_connection (root, hdr, par, rcon); // element connectivity
read_element (root, hdr, par, rele); // element matrices

[/ ———————— = setup communicator ——————————————————————
element accumulation (hdr, rcon, row, col, rele); // determine local nodes,elements
communicator<int, double> com(rcon); // derive communicator

[/ ——————— = local matrix accumulation --—-—-———-"-"""""""""""“"“"—"—"—"—————————
idx_matrix<int, double> A(row, col, rele); // intermediate matrix format

// crs_matrix<int, double> D(cnt, col, rele);
GH _crs_matrix D(cnt, col, rele, com); // derive user specific data format

/] ——————————————— call numerical algorithm -----------—-—-""-"-"-""-""""""+""“""-""-"———
packed_vector<double> _X(_nnodes, _num, 1);
packed_vector<double> _B(_nnodes, _num, 1);
n = GS_1iteration_merge(con, D, _X, _B , 1.0e-14, 512, stride);

Gundolf Haase Library Page 23

Code example for applying parallel routines in preconditioned CG

template<class T, class S>

int conjugate_gradient (const matrix<T,

packed_vector<S> &_u,

const S _eps, const int _max,

communicator<T,
{
packed_vector<S> _r(_f);
packed_vector<S> _s(_u);

packed_vector<S> _v (_r.numnod(),

multiply (_K, _s, _Vv);
sub_scale(_r, _v, alpha);
multiply (_C, _r, _v);
com.accumulate (_v) ;
scalar_product (_v, _r, sigma);
_com.collect (sigma) ;
scale_add(_s, _v, beta);

S> &_K,

const matrix<T, S> & _C,

const packed_vector<S> &_f,

S> & _com)

_r.numrhs (),

//
//
//
//
//
//
//

_r.numdof ());

sequ.
sequ.

matrix—-vector
vector—-vector

parall. precond. [user]
parall. vector accu

sequ.

vector—-vector

parall. reduce operation

sequ.

vector—-vector

Gundolf Haase

Library

Page

24

Summary

e Toolbox works already well and efficient for one—level-methods
e Very fast communicator setup: (kepler:Infiniband, pregl/archimedes: Gigabit)

NP kepler pregl archimedes

1 95.9 703 o4.7
2 476 78.1 66.4
4 35.5 87.9 86.9
8 299 986 91.3

16 274 102.8 95.2
32 345 676.6 622.9

Timing for the construction of the communicator object in milliseconds.

Gundolf Haase Library Page 25

Summary

e Toolbox works already well and efficient for one—level-methods

e Very fast communicator setup: (kepler:Infiniband, pregl/archimedes: Gigabit)

Timing for the construction of the communicator object in milliseconds.

NP kepler pregl archimedes
1 559 70.3 54.7
2 476 78.1 66.4
4 35.5 87.9 86.9
8 29.9 98.6 91.3
16 274 102.8 95.2
32 345 676.6 622.9

e construction of o-sets, renumbering/indexing until 1V/2006

e multilevel support until 1I/2007

Gundolf Haase

Library

Page

25

Summary

e Toolbox works already well and efficient for one—level-methods
e Very fast communicator setup: (kepler:Infiniband, pregl/archimedes: Gigabit)

NP kepler pregl archimedes

1 95.9 703 o4.7
2 476 78.1 66.4
4 35.5 87.9 86.9
8 299 986 91.3

16 274 102.8 95.2
32 345 676.6 622.9

Timing for the construction of the communicator object in milliseconds.

e construction of o-sets, renumbering/indexing until \V/2006 AUSTRIAN
e multilevel support until 11/2007 2= = N

o G
e The works is supported by the Austrian Grid project. lman di

e Documentation and code is available via http://paralleltoolbox.sourceforge.net

Gundolf Haase Library Page 25

Summary

e Toolbox works already well and efficient for one—level-methods
e Very fast communicator setup: (kepler:Infiniband, pregl/archimedes: Gigabit)

NP kepler pregl archimedes

1 95.9 703 o4.7
2 476 78.1 66.4
4 35.5 87.9 86.9
8 299 986 91.3

16 274 102.8 95.2
32 345 676.6 622.9

Timing for the construction of the communicator object in milliseconds.

e construction of o-sets, renumbering/indexing until 1V/2006
e multilevel support until 1I/2007

e The works is supported by the Austrian Grid projeci.
e Documentation and code is available via http://paralleltoolbox.sourceforge.net

Thank You for Your attention!!

AUSTRIAN

CRIT)

Gundolf Haase Library

Page

25

