
A User Friendly Toolbox for Parallel PDE-Solvers

Gundolf Haase

Institut for Mathematics and Scientific Computing
Karl-Franzens University of Graz

Manfred Liebmann

Mathematics in Sciences
Max-Planck-Institute Leipzig

in cooperation with G. Planck [Med-Uni Graz]

� �� ��� �� �

Gundolf Haase DD17 St.Wolfgang/Strobl, July 3-7 2006 Page 1



Contents

• Motivation

• The parallel algebra

– for Krylov methods
– for multilevel methods
– for some factorizations

• Realization in the toolbox

Gundolf Haase Contents Page 2



Motivation

• We have developed parallel codes for 15 years, incl. Multigrid, Multi-
level, AMG, Krylov methods, . . ..

• We have a dozen of applications from potential problems, elasticity
problems, Maxwell’s equations.

• Approx. 25 licences for the parallel code PEBBLES.

• We have written a book on parallelization [Douglas/Haase/Langer].
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Motivation

• We have developed parallel codes for 15 years, incl. Multigrid, Multi-
level, AMG, Krylov methods, . . ..

• We have a dozen of applications from potential problems, elasticity
problems, Maxwell’s equations.

• Approx. 25 licences for the parallel code PEBBLES.

• We have written a book on parallelization [Douglas/Haase/Langer].

What’s wrong with our available codes?

=⇒ Let’s have a look at an example.
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Rabbit Heart [G. Planck, M. Liebmann, G. Haase]

• time-dependent electrical potential, anisotropic coefficients

• 5.082.272 tetrahedrons with 862.525 FEM-nodes

• Goal: 150 Mill. tetrahedrons using parallel mesh generator Spider by F. Kickinger
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PEBBLES as AMG–preconditioner in the heart problem (ε = 106)

• sequentially, 111.589 nodes, Pentium4 3GHz :
solver solution [sec.] Iterations

ILU/CG 12.0 211
Hypre 1.9 5

SuperLU 1.2 (but 70 sec. in setup)
PEBBLES/CG 0.8 10

• parallel, 862.515 nodes, Opteron nodes, PEBBLES:
processors 1 2 4 8

solver iterations 13 12 12 14
coarse grid 3059 4008 4850 3070

solver in sec. 10.3 9.0 5.0 3.2
[0.3] [0.6] [0.7] [0.4]

setup in sec. 37.1 22.4 17.9 11.3
[3.7] [7.0] [9.7] [5.4]

• Some obscurities wrt. reconstruction of PEBBLES.

• Our parallel data structures didn’t fit into global code.

• Conclusion: It’s worth to continue the development of the code. But we have to re–write the code.
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Motivation for a new code

• PETSc [B. Smith] is used by cooperation partners but we need more/other information for an efficient
parallel AMG.

Menu
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Motivation for a new code

• PETSc [B. Smith] is used by cooperation partners but we need more/other information for an efficient
parallel AMG.

⇒ We have to provide similar functionality as PETSc to convince partners to use our code.

• Handling of old code is too complicated, i.e., one developer has to be always available.

• The professional code cannot be used in education (too much overhead from data setup)

• Code developers left for jobs in industrie [M. Kuhn, S. Reitzinger]

⇒ Redesign of interfaces, data structures and funtionality.

Goal: Toolbox provides all needed basic routines for parallel funtionality.

Goal: Write your own parallel code by re-using sequential code.

Menu
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Parallel Algebra

• Concept for Parallelization

• Extended Parallelization Concept

• Parallel Multigrid

• Parallel factorization

• Parallelization of Algebraic Multigrid

• Contents
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Non-overlapping Data Decomposition

accumulated

us = Asu

Ms = AsMAT
s

distributed

� �� ��� �� � r =
P∑

s=1

AT
s rs

K =
P∑

s=1

AT
s KFEM

s As
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Overlapping Domain Decomposition

accumulated

us = Asu , Ms = AsMAT
s

distributed

r =
P∑

s=1

AT
s rs , K

!=
P∑

s=1

AsKsA
T
s
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Overlapping Domain Decomposition

accumulated

us = Asu , Ms = AsMAT
s

distributed

r =
P∑

s=1

AT
s rs , K

!=
P∑

s=1

AsKsA
T
s

BUT, how to choose Ks ?

Ks :=
∑

δ(r)⊆Ωs

1

W (r)
·KFEM,r

W (r) := # Ωs an element δ(r) associated with..
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Basic Operations

without communication

v ← K · s

r ← f + α · v
w ← u + α · s

r ← R−1 ·w

global reduce

α ⇐ 〈w, r〉 =
P∑

s=1

〈ws, rs〉

next neighbor comm.

w ← r =
P∑

s=1

AT
s rs

with R = diag{Rii}Ni=1 = diag{# subdomains xi is associated with} =
P∑

s=1

AT
s ·As

and R−1 =
P∑

s=1

AT
s · Is ·As (partition of unity)
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Parallel CG : PCG(K, u, f)

repeat
v ← K · s
α ⇐ σ/ 〈s, v〉
u ← u + αs

r ← r − αv

w⇐ C−1 · r
σ ⇐ 〈w, r〉
β ← σ/σold , σold ← σ

s ← w + βs

until termination

Menü
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Basic Operations (revisited)

without communication

v ← K · s

r ← f + α · v
w ← u + α · s

r ← R−1 ·w

global reduce

α ⇐ 〈w, r〉 =
P∑

s=1

〈ws, rs〉

next neighbor comm.

w ← r =
P∑

s=1

AT
s rs

What can be done with M · v ?
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Some Definitions
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subdomain 1
subdomain 2
subdomain 3
subdomain 4

Set of subdomains :

σ[i] = {s : x[i] ∈ Ωs}

Set of indices/nodes :

ω(σ) := {i ∈ ω : σ[i] = σ}
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Set of subdomains :

σ[i] = {s : x[i] ∈ Ωs}

Set of indices/nodes :

ω(σ) := {i ∈ ω : σ[i] = σ}

Bsp: σ[11] = {1, 2} ω(σ[11]) = {3, 4, 5, 10, 11, 12}

σ[27] = {2, 4} ω(σ[27]) = {20, 21, 27, 28, 34, 35}

σ[14] = {2} ω({2}) = {6, 7, 13, 14}
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Matrix Patterns and their Application

The following operations can be performed in parallel without any communication:

f = K · u

Matrix M fulfills the pattern condition: ∀i, j ∈ ω : σ[i] 6⊆ σ[j] =⇒ M[i,j] = 0 i 6←− j

u = M ·w
f = MT · r

KH = MT · K ·M

Theorems/Proofs [Haase]
49
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Ex.:
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Matrix Patterns and their Application
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f = K · u

Matrix M fulfills the pattern condition: ∀i, j ∈ ω : σ[i] 6⊆ σ[j] =⇒ M[i,j] = 0 i 6←− j
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Gundolf Haase General Parallelization - Operators Page 14



Matrix Patterns and their Application

The following operations can be performed in parallel without any communication:

f = K · u

Matrix M fulfills the pattern condition: ∀i, j ∈ ω : σ[i] 6⊆ σ[j] =⇒ M[i,j] = 0 i 6←− j

u = M ·w
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Ex.: σ[11] 6⊆ σ[27] =⇒M[11,27] = 0 12 6←− 20

σ[27] 6⊆ σ[11] =⇒M[27,11] = 0 20 6←− 12

σ[11] 6⊆ σ[14] =⇒M[11,14] = 0 12 6←− 13
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Matrix Patterns and their Application

The following operations can be performed in parallel without any communication:

f = K · u

Matrix M fulfills the pattern condition: ∀i, j ∈ ω : σ[i] 6⊆ σ[j] =⇒ M[i,j] = 0 i 6←− j

u = M ·w
f = MT · r

KH = MT · K ·M
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Ex.: σ[11] 6⊆ σ[27] =⇒M[11,27] = 0 12 6←− 20

σ[27] 6⊆ σ[11] =⇒M[27,11] = 0 20 6←− 12

σ[11] 6⊆ σ[14] =⇒M[11,14] = 0 12 6←− 13

σ[27] 6⊆ σ[14] =⇒M[27,14] = 0 21 6←− 14
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Admissible Matrix Operations

Vertex, Edge, Inner nodes

M =

 MV 0 0
MEV ME 0
MIV MIE MI

 = ML + MD =⇒ u = M ·w

Pattern condition σ[i] 6⊆ σ[j] =⇒ M[i,j] = 0 has to be fulfilled in all submatrices!!

Allows operations as (Parallel ADI [DouHaa])

w = M · u := (ML + MD) · u +
P∑

s=1

AT
s MU,sR

−1
s · us

or, for M = L−1 · U−1 ([Haase])

w = L−1U−1 · r := L−1
P∑

s=1

AT
s U−1

s · rs

Menü
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Parallel Iteration Schemes to Solve K · u = f

• Richardson iteration:

uk+1
s := uk

s + τ

P∑
q=1

(
f − K · uk

)
q

• Jacobi iteration with D =
P∑

s=1
diag {Ks}:

uk+1
s := uk

s + ωD−1
s

P∑
q=1

(
f − K · uk

)
q

• Incomplete factorization K = U · L +R:

uk+1
s := uk

s + L−1
s

P∑
q=1

U−1
q

(
f − K · uk

)
q
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Parallel Multigrid : PMG(K, u, f, `)

if ` == 1 then

LSSolve
P∑

s=1
AT

s KAs · u = f

else
ũ← SMOOTH(K, u, f, ν)
d← f − K · u
dH ← PT · d

wH ← 0
PMGγ(KH, wH, dH, `− 1)

w← P ·wH

û← ũ + w
u← SMOOTH(K, û, f, ν)

end if

Menü
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Application to LU-decomposition based on DD: Factorization

• Again, we have nodes which correspond to inner nodes (index 1) and coupling nodes (index 2) and a distributed

sparse stiffness matrix K =
(

K11 K12

K21 K22

)
.

• property for set of subdomains σ(ω1) ⊂ σ(ω2) is locally valid on all processors s.

• LU-decomposition:

Get Lij,s , Uij,s from K11,s = K11,s = L11,sU11,s; K12,s = K12,s = L11,sU12,s; K21,s = K21,s = L21,sU11,s;

Update remaining matrix K22,s := K22,s − L21,s · I22,s · U21,s with I22,s = R−1
2,s

Accumulate: K22 :=
P∑

s=1

AsK22,sA
T
s

K22,s := AT
s K22As

Get L22 , U22 from K22,s = L22,sU22,s

• Above algorithm can be applied recursively but the lower right matrix block can be accumulated and decomposed
only after the update of the remaining distributed matrix.
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Application to LU-decomposition based on DD: Elimination

• Solving the (preconditioning) system:
(

L11 0
L21 L22

) (
U11 U12

0 U22

)
w = r .

• LU-elimination:

locally u1,s := L−1
11,sr1,s

u2,s := L−1
22,s

(
r2,s − L21,su1,s

)
accumulate u :=

P∑
s=1

Asu

locally w2,s := U−1
22,s u2,s

w1,s := U−1
11,s

(
u1,s − U12,sw2,s

)
• The matrices L22 and U22 have to fulfill the pattern condition if the boundary is assembled from pieces with
different sets of subdomains σ. In this case, some entries have to be deleted in the accumulation phase of the matrix
block (before the factorization of this block).

• restricted LU-dcomposition, ILU-decomposition,H-LU-decomposition based on DD [Grasedyck]
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Idea for Parallelizing AMG as realized in PEBBLES

parallel MG⇔ interpolation P has to fulfill the pattern condition

⇓

Menu
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KH = PT · K ·P can be used in PMG(KH, uH, fH, `− 1).
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Idea for Parallelizing AMG as realized in PEBBLES

parallel MG⇔ interpolation P has to fulfill the pattern condition

⇓

KH = PT · K ·P can be used in PMG(KH, uH, fH, `− 1).
⇓

Idea

Control of coarsening and interpolation such that the pattern condition is fulfilled for P.

That requires identification and access to ω(σ).

Menu
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Library: basic operations

Provide necessary data structures and functions to hide nasty details of communication from the user.
The user should be assisted to reuse as much as possible of his sequential routines.
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Provide necessary data structures and functions to hide nasty details of communication from the user.
The user should be assisted to reuse as much as possible of his sequential routines.

Goal: User concentrates on numerical algorithms not on communication/data overhead.
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Library: basic operations

Provide necessary data structures and functions to hide nasty details of communication from the user.
The user should be assisted to reuse as much as possible of his sequential routines.

Goal: User concentrates on numerical algorithms not on communication/data overhead.

• Methods with communication:

– setup of communicator(s) from distributed f.e. mesh information
– inner product of vectors,

– vector accumulation: w :=
P∑

s=1
AT

s rs,

– matrix accumulation (blockwise, update of matrix pattern): M :=
P∑

s=1
AT

s KsAs
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Library: basic operations (cont.)

• Methods without communication

– derive a distributed vector from an accumulated vector: rs := R−1
s ·ws

– determine subsets of nodes ω(σ) belonging to the same set of subdomains σ

– derive new ω(σ) from the old one after refinement/coarsening
# construct a local ordering of the σ-sets (subset property + unique ordering), globally consistent!
# local node renumbering according to the ordering of the local σ-sets
# renumbering of incoming and re-renumbering of outgoing data

• Data structures

– array: local to global numbering
– arrays: sequence of nodes belonging to σ-sets
– array of communicators
– vector for mult. right hand sides, blocks etc. packed_vector<double> a(nnode, nrhs, nblock)

access as linear array =⇒ cache–aware programming
– special intermediate sparse matrix format [row, col, entry]
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Code example for setup in main–function

// ---------------- read data from files ---------------------------------------
string root("../Plank/TBunnyC2/"); // directory for data
vector<int> hdr;
...
read_header(root, hdr); // size of arrays
read_partition(root, hdr, par); // partition mapping
read_connection(root, hdr, par, rcon); // element connectivity
read_element(root, hdr, par, rele); // element matrices

// ----------------- setup communicator ------------------------------------------
element_accumulation(hdr, rcon, row, col, rele); // determine local nodes,elements
communicator<int, double> com(rcon); // derive communicator

// ----------------- local matrix accumulation ----------------------------------
idx_matrix<int, double> A(row, col, rele); // intermediate matrix format

// crs_matrix<int, double> D(cnt, col, rele);
GH_crs_matrix D(cnt, col, rele, com); // derive user specific data format

// ------------------ call numerical algorithm ----------------------------------
packed_vector<double> _X(_nnodes, _num, 1);
packed_vector<double> _B(_nnodes, _num, 1);

n = GS_iteration_merge(con, D, _X, _B , 1.0e-14, 512, stride);
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Code example for applying parallel routines in preconditioned CG

template<class T, class S>
int conjugate_gradient(const matrix<T, S> &_K, const matrix<T, S> &_C,

packed_vector<S> &_u, const packed_vector<S> &_f,
const S _eps, const int _max,

communicator<T, S> &_com)
{
packed_vector<S> _r(_f);
packed_vector<S> _s(_u);
packed_vector<S> _v(_r.numnod(), _r.numrhs(), _r.numdof());

multiply(_K, _s, _v); // sequ. matrix-vector
sub_scale(_r, _v, alpha); // sequ. vector-vector
multiply(_C, _r, _v); // parall. precond. [user]
com.accumulate(_v); // parall. vector accu
scalar_product(_v, _r, sigma); // sequ. vector-vector
_com.collect(sigma); // parall. reduce operation
scale_add(_s, _v, beta); // sequ. vector-vector
....

}
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Summary

• Toolbox works already well and efficient for one–level–methods
• Very fast communicator setup: (kepler:Infiniband, pregl/archimedes: Gigabit)

NP kepler pregl archimedes

1 55.9 70.3 54.7
2 47.6 78.1 66.4
4 35.5 87.9 86.9
8 29.9 98.6 91.3
16 27.4 102.8 95.2
32 34.5 676.6 622.9

Timing for the construction of the communicator object in milliseconds.
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• construction of σ-sets, renumbering/indexing until IV/2006
• multilevel support until II/2007
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Summary

• Toolbox works already well and efficient for one–level–methods
• Very fast communicator setup: (kepler:Infiniband, pregl/archimedes: Gigabit)

NP kepler pregl archimedes

1 55.9 70.3 54.7
2 47.6 78.1 66.4
4 35.5 87.9 86.9
8 29.9 98.6 91.3
16 27.4 102.8 95.2
32 34.5 676.6 622.9

Timing for the construction of the communicator object in milliseconds.

• construction of σ-sets, renumbering/indexing until IV/2006
• multilevel support until II/2007

• The works is supported by the Austrian Grid project.
• Documentation and code is available via http://paralleltoolbox.sourceforge.net
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Summary

• Toolbox works already well and efficient for one–level–methods
• Very fast communicator setup: (kepler:Infiniband, pregl/archimedes: Gigabit)

NP kepler pregl archimedes

1 55.9 70.3 54.7
2 47.6 78.1 66.4
4 35.5 87.9 86.9
8 29.9 98.6 91.3
16 27.4 102.8 95.2
32 34.5 676.6 622.9

Timing for the construction of the communicator object in milliseconds.

• construction of σ-sets, renumbering/indexing until IV/2006
• multilevel support until II/2007

• The works is supported by the Austrian Grid project.
• Documentation and code is available via http://paralleltoolbox.sourceforge.net

Thank You for Your attention!!
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