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A skin fragment in 2D

/ Lipid layer Dirichlet, v

Dirichlet,

Fig. 1 — (left) A skin fragment consists of cells and the lipid
layer. The penetration through cells goes very slowly and very
fast through the lipid layer. (right) The simplified model of a
skin fragment in 2D contains 4 cells with the lipid layer between
them. Q = [-1,1]?, a(z) = ¢ inside cells and a(z) = 8 =1 in the
lipid layer.




A skin fragment in 3D

Fig. 2 — (left) A skin fragment consists of cells and the lipid
layer. The penetration through cells goes very slowly and very
fast through the lipid layer. (right) The simplified model of a
skin fragment in 3D contains 8 cells with the lipid layer between
them. Q = [-1,1]°, a(z) = ¢ inside cells and a(z) = 8 =1 in the
lipid layer.




The SKin Problem Setup

divia(z,y)Vu)=f 2€QCRY d=2,3

U = go xr ey
ou

=g rel\y

where a(z,y) = a < 1 in cells
and a(x,y) =4 =1 in between.

[Khoromskij, Wittum 02]




Discretisation (FEM)

T, - triangulation is compatible with the lipid layer. Let
Vi, C H'(Q), Vi := {b;}7_,, b; - piecewise linear.
find u € H%(Q) ;

a(u,v) = /oz(Vu,Vv)dm = c¢(v) := Lfvd:c—l—/m gudl’
gl

Vo e Hy(Q) where H(Q):={ue H'(Q): u=0on ~}

Define the discrete system : Ax = c.

A =a(b;,b;) := /a(m,y)(Vbi,Vbj)daf;; /fbjd:r;Jr / gb;dz = ¢;.
Q Q
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Rank-£ matrices

1. Re R™™, A e R"™k BeR™F

k < min(n,m). The storage R =
AB?' is k(n+m) instead of n-m for
R represented in full matrix format.

H-matrices (Hackbusch '99)

2. Grid — cluster tree (1I7) — blockclus-
ter tree (T7xy) + admissibility condition
— admissible partitioning — H-matrix —
H-matrix arithmetics .




3. Let [ .= I(Q), t,s ey, (t X S) e Trxr.
Admissibility : max{diam(t),diam(s)} <n - dist(t, s).
if(adm=true) then M|;xs is a rank-k matrix block

if(adm=false) then divide M|;xs further or define as a dense
matrix block, if small enough.

I11 I12 I21 I22




Definition 0.1 H(Trxs, k) :=={M € R/ | rank(M |;x,) < k for

all admissible leaves t x s of Tr«;}.

Operation

Sequential Compl.

Parallel Complexity

(R.Kriemann 2005)

building(M )

N
q

storage(M)

Max

M/ @ M//

(n)
k

2nlog?n
)

+ O
+ O(

n = max(|I|,|J|), d =1,2,3 is the spatial dimension.




H-LU Factorisation (M.Lintner, 2004)

A ~ Ly Uy implies A=t =~ U, 'L
Supp_ose that

Ajr Ao Uir Ui

Agr Ao Lo 0  Us2
M.Bebendorf, 05 :

A=

. Compute L;; and U;; as 'H-LU decomposition of Aq;.

. Compute Uys from L1U;5 = A1 (use a recursive block
forward substitution).

. Compute Lo from Lo U1 = Az (use a recursive block
backward substitution).

. Compute Loy and Uss as 'H-LU decomposition of
LooUsg = Aga © Loy © Uya.

All steps are executed in the class of H-matrices.
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Spectral equivalence

A eA A 0
Let A = H 2 ., W H be given,

cAo1 €Aoo 0 eAog

be the lipid layer, Q. := Q\ Q;, u; the solution in ; and usy the
solution in €.

Proposition 0.1 Let the component uy be discretely
harmonic in the subdomain 2. C ) then
dey >0 @ c1(Ar1ur,ur) > (Agsus, us) With ¢ independent of h.

Lemma 0.1 Let Prop. 0.1 holds, then the matrices A and W

are spectrally equivalent cW < A < 2W with ¢ = 11_;5-




H-Cholesky Preconditioner and New Preconditioner in 2D

(left) before resorting and (right) after resorting
I(Q) :=1(Q;)UI(Q.) and after omitting the coupling. The
numbers indicate the local rank.
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H-Cholesky Preconditioner and New Preconditioner in 3D
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(left) before resorting and (right) after resorting
I(Q2) :=I1() U I(Q.) and after omitting the coupling.
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Lemma 0.2 Let A be the standard stiffness matrix, n the
number of all dofs, n;y the number of dofs in the lipid layer, p

the number of processors, ng := ”p__qf, W1 and Wy the

Aqq 0
respectively, where Ai; € R *"1 Aoy € R(r—ni)X(n—n1)  The

Cholesky factorizations of A and

sequential and parallel computational costs of W1 and Wy are
as in the following Table.

Preconditioner Complexity Parallel Complexity
W1 O(nlog? n) O(nlog?n)
Wo O(nrlog? ny) max{O(nlog?ny),
+0O((n — ny)log?(n —nr)) O(nglog? no)}




Penetration of drugs in 2D (computed in MATLAB)

Max: 1.71
Surface: |c*grad(u)| (abscuix)

0 ' '
-0.35-0.3-0.250.20.150.1-0.05 0 0.050.10.150.20.250.30350.40.45050550.60.650.7 Min: 1.56e-007

Blue color means low penetration and red color high
penetration.
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Preconditioned CG-method

gt = 2™ - W (Ax™ — ¢),

where W = LLT and W—Y2AW Y2 = L-TAL-! is symmetric
and positive definite.

u = solve_cg(A, prec, rhs, ...);

k(A) < max(jéﬁj%)h‘d - is the condition number of A, d=1,2,3
and A;, A, are finite elements.

PCG stops as soon as ||[Ax™ —c||s < e.
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Numerical results in 3D

(Laptop, 1.3Ghz, 512 Mb)
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Tab. 1 — Comparison of times for Wy and W5 in 3D. 403 dofs,
| Az — 0|2 = 1078, a(x) =107°.

) D 42 42 t +t.
244106 | 874+ 10 | 2.8+ 0.9
70+11.3 | 21.64 13.3| 4.7 + 2.1
208+12.5 | 68 + 13.5 | 13.5 + 6.9
484482 | 123 4+ 26 | 29.6 + 11.4

9, 4

contain the respective times for computing the
preconditioners W; and W5 and for performing the pcg
iterations.

t; and t. show the computational times in the lipid layer and
in one cell, respectively.

For all ranks k the time for W, (red number) is much
smaller than the time for WW; (blue number) !
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Tab. 2 — Comparison of Wy and W5 in 3D. 403 dofs,

1078, a(x) = 107°.

s §@)

iter(l) ’(2)

2e+2, le+2
3.8e+2, 1.8e+2
7.5e+2, 3.5e+42
1.1e+43, 5.1e42

69, 99
46, 91
17, 60
11, 74

|Ax —b|| =

The new preconditioner W5 requires less memory (S > §(2)) 1
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Tab. 3 — Dependence of the number of iterations and the
computational time on the coefficient a(x). 40% dofs, ||Az—b| =
10~8, rank k=1 for H-matrices.

iter( @) | (1) 42

36, 89 70, 33
77, 100 | 67, 35
79, 113 | 63, 37

113 | 65, 37
32, 116 | 67, 37
385, 120 | 67, 38

For all o the time for Wy (red number) is almost two times
smaller than the time for W; (blue number).
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Conclusion

The rank k=1 in ‘H-arithmetic with a larger number of
iterations leads to faster performance than a large rank k&
with a small number of iterations.

(+) The new preconditioner W5 is well parallelisable |,

(+) W5 has sequential complexity
O(nrlog®ny) + O((n —ny)log*(n —nr))},

(+) W5 has parallel complexity

max{O(ny 10g2 nr),O(np 10g2 np)t, np = =1L

p—1 "
(4+) W5 requires less memory than Wy,
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