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An outline of the lecture

e Introduction: the state of art in developing fast solvers.
e Finite-difference/fem preconditioners for hierarchical and spectral p
elements.
e Factorized preconditioners for spectral elements and their similarity
to the preconditioners-solvers for hierarchical elements.
e Examples of the factorized fast solvers for spectral elements :
v' 2-d multigrid solver,
v 3-d fast solver based on the wavelet
multilevel decompositions,
v~ multilevel solver for faces.
e Almost optimal in the arithmetic cost domain decomposition
preconditioner-solver for hp spectral element methods.
e Conclusions.
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Preconditioners for hierarchical elements

M, =(Li(s), i=0,1,...,p) — set of polynomials on (-1,1):

Lo(s) = %(1 + s), Li(s) = %(1 —5),
5] B Vil Pi(s) — Pia(s)], 122,
P; are Legendre’s polynomials and
5= v/ 8@ — 12+ 1), 7= 05/ @i~ 8@ + 1)/2i — 1)

Therefore, £, are specially normalized integrated Legendre’s
polynomials.
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By hierarchical ref. el. &, is understood ref.el. on the cube
70 = (—1,1)% with the basis in the space Q,,

Mg, = (La(x) =L, (551)5% (xg)...ﬁad(:cd) , o € w) ,

w = <(X = (Oél,OéQ, --,Oéd) 0 S a1, X, .., Qg S p>7

and with the stiffness matrix A, induced by M, and Dirichlet
integral

aTO(u,v):/Vu-VvdX.

A, —internal stiff. matrix, generated by M,,= (Lay, 2 < oy < p).
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If to reorder set M,,, matrices A;, M; in d = 3 become block
diagonal

AI — dlag [Aeeey Aeem sy Aooe: Aooo] )
MI - dlag [Meee7 Meeoa ceey Mooe7 Mooo} .
At p=2N +1 all 8 blocks are N? x N? matrices and, e.qg.,
A(11(1,2(1,3 - (aTo(Laa La/))i\;,a%:1 3

with ay,, o), even/odd respectively to even/odd «.
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These blocks are sums
A=K, QKo @ Koo + Koo @Ky @ Koo + Ko, @ Kop @ Ky,
Mabc - KO,a X KO,b ) KO,C ) a, b: c=2¢60

of Kronecker products of triplets of N x N matrices, which may be
preconditioned by simple matrices

(92 1 \
1 -1 2 -1 0
D=diag[t]l,. A=_| ...
0 -1 2 -1
\ —1 2 y,
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Lemma 1. For 1-d preconditioners D, A and 3-d preconditioners
AN=ARARID+AXDRIA+DIARA, M=ARARA,
there hold the inequalities

A <Ky, <A, D<K,,<D,
A <Ay < Ae, M <M, <M.

Proof. Ivanov/Korneev [1995] and Korneev/Jensen [1997],
Korneev/Langer/Xanthis [2003]. []
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Finite-difference interpretation

In 2-d
AL=ARD+DRA

and is the F-D approximation of the differential operator

0%u 0%u
_ 2 2 ._ 2 _
Lu= -2 (ajla—x%nLa}Qa—ﬁ) , xem =(0,1)°, ulop, =0,
on the square mesh of size A = 1/(N +1). In 3-d, h?A, is the F-D
approximation on the same mesh of the 4-th order operator

Lu=2iu,,,,+v5u, +oiu,,., = f(x), zem:=(0,17°, uls, =0,

where, e.g., u ,,, = 0'u/0x30x3.

71717272
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FEM preconditioner

Suppose, d = 3, V (m) is the space of continuous on 7; and piece
wise trilinear on each cell of the cubic mesh functions, vanishing on O,
and A, fm 1s the corresponding to this space matrix of bilinear form

3

br, (U, v) = u v dx = T}

i\ U, PrU k+1,k+2V k41 k+20T Pk k-
k=1 ™

Lemma 2. The matrix %Aei-em is spectrally equivalent to A, and
A, uniformly in p.

Proof. See, e.g, Korneev [2002]. []
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In 2-d, one can use the FE space V, (m) of continuous and piece
wise linear functions on the triangulation, obtained by subdivision of
each square nest of the mesh in two triangles. Preconditioner A g, is
matrix of the bilinear form

2
bm (U, U) — E / gpku,?)—kv,?)—kdxv
k=1 v

on the space lO/A (m1). We have Agtem < A2 A e, B2 A
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Preconditioners for the spectral elements
GLL (Gauss-Lobatto-Legendre) nodes n; satisfy equation

whereas for GLC (Gauss-Lobatto-Chebyshev) nodes we have

m=cos(Cp—i)),  i=01..p.
p

Orthogonal tensor product grid X = g = (Mays Nags -5 May), X € W,
with GLC or GLC nodes is termed Gaussian, whereas both types of the
Lagrange reference elements are termed (for brevity) spectral. In their
coordinate polynomials La(x) = L, (71)La, (22)... L4 (2a), 1-d polyno-
mials satisfy L£;(n;) = d;;, 0 < j < p, where d;; is the Kronecker’s
delta.
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For steps h; .= n; — ni_1,© < N, of the Gaussian mesh, we have
h; =i/p*. Mesh of a more general class satisfy

-y e N oA -
S 7 () J— - n
ayx < hi < oF, =21, 720,

on |-1,0] and is continued on [0,1] by symmetry.
v At y=0 = N = N — quasiuniform mesh,

vaty=1 = N = N(N +1)/2 — mesh, called pseudospectral, for
which at ¢; = ¢y = 1, we have

ﬁizi/N:mzﬁ(p)i/p27 B e 4,8

Ag,, Apy, — notations for ref. el. stiffness matrices for Gaussian and
pseudospectral nodes, respectively,
As,, Apg, — notations for preconditioners, which are FE matrices, in-

duced by the space H(m) N C(Ty) of continuous functions belonging to
Q. on each square nest of the corresponding mesh.

<« <4 A > »
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Simpler preconditioner
Ar=28;,0D;,0D; + D @ Ay @Dy + D @ Dy @ Ay
where
Dy, = diag [h; = %(hz- +h )]y, hi=0 for i=0,p+1,

and Ay 1s FE matrix:
1 1 1 1

(Aﬁ“)|i: —gul_l—l‘(E‘Fh 1)ui—ﬁ—1ui+1, i:1,2,..,p—1,
i i i+ i+
1 1
(Aﬁ U)‘izo — _ﬁ_1(U1 - UO) g (Ah U—)‘z’:p - ﬁ_<up o up—l) .
p
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Lemma 3. Let Aj; be obtained on Gaussian or pseudospectral
(v = 1) mesh. Stiffness matrix Ag, of the spectral reference element
and matrices Apg,, Ay are spectrally equivalent uniformly in p, i.e.,

APsp7 ASp; Ah = ASp < Aﬁa ASpa APsp .

Let Mg, be mass matrix of spectral element, Mg, Mp g, be its FE
preconditioners,; generated by space H(7y) on Gaussian or pseudospec-
tral mesh ., and M, := D ® Dy, ® Dy. Then uniformly in p

MPspa MSp? Mﬁ < MSp < Mhﬁ: MSp7 MPsp .

Proof. Most important contribution by Bernardi/Maday [1992],who
studied 1-d case. Step to more dimensions in Canuto [1994] Casarin
1997].
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Note :

—in the multi-d preconditioner A, for hierarchical ref. el. &;;, matrices
A and D are preconditioners for the mass and stiffness matrices in
1-d, respectively,

— whereas, in the multi-d preconditioner A for spectral ref. el. &,
matrices A; and D are preconditioners for the stiffness and mass
matrices in 1-d.
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Factored preconditioners for spectral elements

Let us introduce (p — 1) x (p — 1) matrices

Ag, = tridiag[—1,2, —1],
Dy, = tridiag[1,4,.., N2, (N — 1)%, (N — 2)?, .., 4, 1],

(p—1)% x (p — 1)® matrices

AI,Sp - DSp ® 7')Sp ® (ASp + D§p1> + DSp ® (ASp + Ds_pl) ® ’DSIﬂL
(ASp + DS_I;L) %Y DSp ® DSp )

AI,Sp — DSp X DSp X ASp + DSp ) ASp ) DSp + ASp 2 DSp ® DSp )
diagonal transformation (p —1)% x (p — 1)® matrix

C=p'D, "D, oD, (C=p’D, @D, for2-d),

“«<ir» Laboratory of New Computational Technologies 05/34



St.-Petersburg State Polytechnical University

and matrices A = ID)fli/zAﬁ D;i/z and

Ay = CACT =p’D’ 2D @ D’ A D @ DY @ Dy =
P (D%@@D%@5ﬁ+D§®5ﬁ®D§+D§®D§®£h) |

Theoreml. If matrices A;;, A;gp, Asgp are obtained on Gaussian or
pseudospectral mesh h; < i/p? for 1 < ¢ < N, then they are spectrally
equivalent uniformly in p.

Proof. Korneev/Rytov [2005].
Corollary 1. Let Ao = CA;5,C and XLC = CKLSpC. Under

conditions of Theorem 1

Ao, Ao <Arsy < Are, Are .
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Finite — difference interpretation

Matrix A;g, is 7-point F-D approximation of diff. operator

Lspu - = [¢2($2>¢2(5L’3)U71’1 -+ ¢2<$1)¢2(x3)u,2,2 -+ ¢2($1)gb2(3§2)u7373] )

at ulyg,, = 0 and ¢(z) = min(z + 1,z — 1). Indeed, for h = 2/p,
qbi — ¢( 1+ Zh) and u = (ul)zl zi i3=1>

1
AI’Spu|i - _ﬁ Z ¢22k+1¢12k+2 [ui—ek_Qui+ui+ek] , 1< 9,089,123 < (p 1)
k=1,2,3

where i = (iy,149,143), indices k, k + 1,k + 2 are understood modulo 3,
e, = (0r;)7, is the unite vector. For d = 2,

Lspu - [¢2(x2)u,1,1 + ng(ajl)uz,z] ) U‘@TO =0,

Apopuli = =D 015 @5 [Uice, — 2ui + Uise,], 1= (11,92).
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Finite element preconditioners

Let d = 2. We divide square nests of size A in pairs of triangles and,

on such triangulation, introduce the space V, (15) € C(7,) of piece wise
linear functions, vanishing on 0. The FE preconditioner By, is the
matrix of the bilinear form

3
b, (u,v) = Z/ G5 UV dx
k=170

on this space. In 2 and 3-d, B, can be defined by the FE spaces of
bilinear and trilinear functions, respectively. We have

— ¥F4—d
BI,Sp —~ h A.I’Sp .
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Comparison

e At d = 2 in each quarter of 7y, operator Lg, coincides with L up to
the constant multiplier (and rotation and transportation of the axes).
e The same is true for F-D operators A., Ajgp.

e At d = 3, differential and F-D operators are different even in the order:
L is of 4-th order, whereas Lg, is of 2-nd.

e However, multipliers A, D and respectively Dy, Ag, in representa-
tions of A., Ay, by sums of Kroneckers products are similar.

e An additional difficulty for deriving fast solvers for 3-d hierarchical
elements directly on the basis of A, is that it is a F-D analogue of 4-th
order differential operator. More over, this operator contains only mixed
derivatives. The use of the spectral elements and the preconditioner A; ¢
simplifies the problem by reducing it to designing a fast solver for A;g,,
which is the F-D approximation of the 2-nd order differential operator
containing only derivatives 9°/0x3%, k = 1,2, 3.
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Conclusions

wAll fast solvers for systems with the hier-

archical reference element stiffness matrices (

or spectrally equivalent |, e.g. , A.) are easily
adjusted into fast solvers for systems with the

spectral reference element stiffness matrices or
spectrally equivalent to them matrices like Asgp
% The arithmetic costs of the latter and the
former solvers are the same in the order.

At least, these conclusions are true

for the all known fast solvers see, e.g.,
[K1],[K2],[KA],[B],[BSS], for systems with ma-

trices A..
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Fxample 1

Algebraic multilevel solver for 2d spectral elements

We set p = 2N, N = 2%~! and introduce

. sequence of £, embedded meshes of the sizes by = 27!, [ = 1,2, .., 4,
with the nodes « = y(i,7) — (1,1),

. sequence of spaces V(1) with Vy, () zlo/A (70) and
- FE matrices B, with By, = B g,,.

Each space V(7y) and the matrix B; are the space ]O/A (7o) and the
matrix By g, for the mesh of the level [.
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Also the following notations are used:
- X, — the subset of internal nodes,

- V; and W, — vector-spaces, related to subsets of nodes X; and Xy, :=
X; ~ X,_1, so that

Vi=VihoW =WoeW_,e..eW,o V.
- P, : V,_; — V, — usual interpolation matrix from the mesh "l — 1"
on the next finer mesh "{".

- R, : V; — W, — restriction matrix to the set of nodes Xyy;.

- By;, By, — blocks on the diagonal of B, related to the subspaces V,
and .
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One multilevel iteration

It By, is a preconditioner for By,, one multigrid iteration for Bju =

F, producing u*™' := Mgm(l, B;, F, u™!) for a given u™ is:
If 1> 1, then do

Pre-smoothing in the subspace W;:
v = ut
do v times vi=v—o0, 'R/ByRi(Bv—F);
Correction of the solution on the lower level in the space Vj_;:
d, =P, (F-Byv); w=0;
do y;_; iterations w = Mgm(l — 1,B; ;,d; 1, w) ;
v=v+P_w;
Post-smoothing in the subspace W:
do v times vi=v—o0, 'R/ByR(Bv—F);
Wl = v

else, then solve Bju =F by the exact method
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-

L

T 1

'

E

Lines ; along which smoothing is performed in the multigrid solvers

for spectral (left) and hierarchical reference elements (right)
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fridiagonal block
in the preconditioner

diagonal block
in the preconditioner

¢
/ \\,—
 \ ¢ decoupling
- o x O=
nodes of the
(I-1)-th level
KX
additional
- ’ +- nodes of the

|-th level

Line preconditioning.
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Two factors influence efficiency : 1) efficiency of preconditioners
By, i.e., the values of ¢, > 0 in the inequalities

ClBWI S BW[ S CQBVVZ )

and the cost of solving systems with the matrices By,. 2) the value of
co in the strengthened Cauchy inequality

(b, (u,v)) < co by (u, u)by (v,0), o<1, YueV_i, YoeW,,
where Wi(79) := Vi(79) © Vi_1(70).

Lemma 4. ¢; > 1 —2/V11, ¢, <1+2/V11, ¢, <97/176 < 2/3.

Proof. Repeats the proof of Beuchler [2002] for hierarchical reference
element.
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Convergence of the multigrid iterations

Theorem 2 (Korneev/Rytov [2005]). Let Bju = F be solved by
the multigrid method in which ¢ = 2/(¢; 4 ¢3), ¢ > 3 and v be greater
than some v,(cy, ¢1, ¢2). Then the convergence factor

k1

Pramie = SUP wrey; [0 =l g /[[u" — ul| 5,

is bounded by the constant p < 1 independent of p,l and u”.

Proof. Follows from results of Schieweck [1985| and Pflaum [2000] and
Lemma 4.
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Multigrid iteration as a preconditioner

Let M,, be the linear error transmission operator for one multigrid
iteration for system Bjgu = F. Then 2 multigrid iterations implicitly

define the preconditioner Mgg, for A and Ajg,, the inverse to which
is Mg, ! = h >C(I- M7)B;.,C, C=pD,?oD,"
Theorem 3 (Korneev/Rytov [2005]). Let p =3, v > 3 and » > 1.
Then
c Mg <A}

_ -1

I,sp S c Mgsp )

with constants ¢,¢ > 0 independent of p ( and 7). The procedure
. .. . -1 . . .

of the matrix-vector multiplication by Mg, = requires O(p?*) arithmetic

operations.
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FExample 2

Multiresolution wavelet solver for 3d spectral elements

Since, e.g., Arg, 1s a sum of Kronecker products of matrices Ag,, Dsg,
related to 1-d integrals, fast solver for A;g, is constructed by deriving
multilevel preconditioners for these matrices.

For simplicity, we set again p = 2N, N = 2%t andforl=1,2, ...,
introduce
e uniform mesh of size fi; = 2! on the interval (—1, 1)

oh=—1+ihy, i=0,1,2,..,2N;, x9=—1, To95, =1, N =2""

e space V;(—1, 1) of continuous piece wise linear functions, vanishing at
r=-—1,1,
e nodal=hat basis function o} € V;(—1,1), such that o}(z}) = d;; and

—1

Vi(=1,1) = span (0}); p=2

1
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e Gram matrices in the nodal basis
1

1 m—1 1 pi—
A, =k (/ (ol (aj.)') : M, =h"! (/ ¢* o, 0§~> ,
-1 ij=1 -1 ij=1

e single scale wavelet basis (L)Y~} in the space W, := V,; &V, 4, s0
that W, = span [ L |72},

e multiscale wavelet basis (¢} )ii;;’llo, composed of single scale bases ac-
cording to the representation

V=W Wy d.EW,, where V=V,, W, =V,
e Gram matrices in the multiscale wavelet basis
Avie = (Rl [ 068y, @y )™
}Dl;;’lo, a
Mwlet — ((ﬁkﬁl)_1/2 f_ll ¢2 f’ wé dSU)

pi-1;lo

)
ij=1;k,l=1
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e diagonal matrices with the main diagonals from A ; and Myiee

1 1

D, = diag [ / (¥0))* da] 72", Dy = diag [ / & () da] 1"
-1 —1

The transformation matrix from the multiscale wavelet basis to the ba-

sis (af{?)z;i is denoted by Q. If v and Vyawee: are the vectors of the

coefficients of a function from (0, 1) in the one scale nodal and the

multiscale wavelet bases, respectively, then v = Q Vyavelet-

‘ . 1,1 .
Theorem 4. There exist wavelet bases (¢})7;1" such that matrices

A and My are simultaneously spectrally equivalent to their di-
agonals D; and Dy, respectively, (uniformly in p) and multiplications
Q Ve and Q' v require O(p) arithmetic operations.

Proof. Basically it is the same as the proof of a similar result by
Beuchler/Schneider/Schwab [2004] in the case of hierarchical element.
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Theorem 5. Let

-1
,sp—w - <

((QT2Q)[DyeD, +D; @Dy {(Q® Q),

Q'2Q"2QNDyeD, @D, +D; @Dy @ D+

[ DD D] (QeQ®Q),

then A; g < A; and therefore

The computational cost of the operation

-1
OpPS [ [, sp—w

cond [A;L _ Aj]<1.

1, sp—w

-1
1 sp—w

v] = O(p).

v for any v is

<« <4 A > »
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Example 3

Multiresolution wavelet solver for faces

Good master preconditioner-solver for one face subproblem may be
matrix spectrally equivalent to the matrix of the norm

OO‘U|%2F:‘U’%2F+/ oi) dx VUEéxa
/2:Fo /2.F r, dist [z, OF)] P

for a typical face Fy = (—1,1) x (—1,1) of the reference element. By
diagonal entries dy;, d;; of Dy, Dy, respectively, one can define diagonal
(2N — 1) x (2N — 1)* matrix D, with diagonal entries

dz("lj/2) = do;dy \/dl,z'/do,i +dyj/dy ;-
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Theorem 6 (Korneev/Rytov [2005]). Let
S'=(Q'®Q")D/LQ®Q), S =CSC.

o
Then for all v €9Q,, and the corresponding vectors v, the norms
00| v |12, and ||v|[g , respectively, are equivalent uniformly in p, i.e.,

00‘ v ‘1/2-»70 = HVHS() )

Proof. Basis tool is Peetre’s K-interpolation method.

Sy is a multiscale wavelet precoditioner for which ops[S;'v] =
O(p?), ¥v, and, therefore, ops[S,'v] = O(p?) as well. Similar
preconditioner-solver for faces of hierarchical elements was approved in
Korneev /Langer/Xanthis [2003].
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DOMAIN DECOMPOSITION ALGORITHM

The problem to be solved
ag(u,v) = / o(x)Vu-Vudr = (f,v)q, Vv E]jll(Q) :
0

in the domain Q = UZEﬁT , which is an assemblage of compatible and in
general curvilinear finite elements occupying domains 7,. It is assumed
that finite elements satisfy the generalized conditions of shape regularity.
The positive coefficient p(x) is assumed to be pice wise constant, i.e.,
o(z) = o, for x € 7,.
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The finite element stiffness matrix may be represented in the block forms

K, K;r Ky
K; K;p
K= = | K Kr Kpy | =
(KBI KB) H " "

KWI KWF KWW

K; Kir Kig Kpy
Krr K Krg Kpy
Kegr Kgrp Kg Kgy |7 where
Ky Kyr Kyg Ky

I — stands for internal d.o.f., F — faces, E — edges, V — vertices, B —
interface boundary, W — wire basket.
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We consider the DD Dirichlet-Dirichlet preconditioner-solver IC

K=K +Py, vS;Py oy,
B (0.1)
Sgl — Slt + PVW—>VB (85/)_1]?;

w—VB *

i) The block diagonal preconditioner-solver for the internal Dirichlet
problems on finite elements has the form

- ;b o
K?::<6 0)’

where K[ = dlag [hlngI,sp; hQQQBI,Sp7 < ey h BI,SP}

RER
B = A — multiresolution preconditioner-solver of Theorem 5.
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ii) Block diagonal preconditioner-solver for internal problems on faces

- -1
St = (Sg 8) : where  Sp = diag[k1So, k280, - - -, KgSol

— () 1s the number of faces F}, C (),
— Ky, are multipliers

R = (hrl(k)Qm(k:) + hm(k‘)@rg(k)) 3

with r1(k), ro(k) being numbers of two elements 7, ;) and 7, (), sharing
the face Fj,

— h, is the characteristic size of an element,

— &) is the preconditioner-solver for one face, defined in Theorem 4.
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iii) Preconditioner-solver Sy, for wire basket subproblem of relatively
small dimension O(Rp) x O(Rp). We borrow it from Casarin [1997]
and Pavarino/Widlund [1996], assuming that its arithmetical cost does
not disturb optimality of DD solver, i.e., ops[(Si,)"'v] = O(Rp?).

The prolongation operations include :

iv) prolongation Py, . from interelement boundary on the whole com-
putational domain 2, completed by means of inexact solver with the
preconditioner By,

v ) simple prolongation Py,, .y, from wire basket on interelement bound-

ary, not requiring solution of any systems, which is the same as in
Pavarino/Widlund [1996] and Casarin [1997].
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Theorem 7. Suppose, the generalized conditions of shape regularity
are fulfilled and the coefficient p > 0 is piece wise constant. Then the
bound for the relative condition number of DD preconditioner-solver IC

is
cond [IC'K] < ¢(1 +logp)?.

Suppose additionally that the wire basket solver satisfy the above as-
sumption iii). Then the number of arithmetic operations needed for
solving the system /I 'v = f has the majorant

ops [IC'] < O(p*(1 +logp)R), vE.
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CONCLUSIONS

Factored precondtioners, presented in this lecture for the spectral
reference element stiffness and mass matrices, allow to design almost
optimal in computationl work preconditioners-solvers for three most im-
portant subproblems, arising in DD algorithms for elliptic equations in
3d domains. Indeed, two of these preconditioners-solvers are optimal.

In the presented DD preconditioner-solver, only one sparse subsystem
of the relatively small dimension O(R) x O(R), which is a part of the
wire basket subproblem, was not supplied with the solver optimal with
the respect to its dimension O(R).
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