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Model Problem

Model Problem:

−∇ ·
(

A(x)∇u(x)
)

= f(x) in Ω ⊂ R
d (d = 1, 2, 3)

u = g on ΓD ⊂ ∂Ω

A∇u · n = 0 on ΓN = ∂Ω\ΓD

• Modelling flow in heterogeneous porous media (u fluid pressure)

• Emergent properties of materials with microstructures (thermal, electrical, mechanical)

• In today’s talk we will only consider ΓN = ∅, g ≡ 0 and A(x) = α(x)I

• Main difficulty: highly variable (discontinuous) coefficient function α(x)
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Model Problem

Model Problem:

−∇ ·
(

A(x)∇u(x)
)

= f(x) in Ω ⊂ R
d (d = 1, 2, 3)

u = g on ΓD ⊂ ∂Ω

A∇u · n = 0 on ΓN = ∂Ω\ΓD

• Modelling flow in heterogeneous porous media (u fluid pressure)

• Emergent properties of materials with microstructures (thermal, electrical, mechanical)

• In today’s talk we will only consider ΓN = ∅, g ≡ 0 and A(x) = α(x)I

• Main difficulty: highly variable (discontinuous) coefficient function α(x)

Provides important insight for more complicated problems (e.g. oil reservoir simulation)!
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Typical multiscale coefficient functions

Stochastic Model: log α(x) = (homogeneous, isotropic) Gaussian random field with

(i.e. log-normal α(x)) mean 0, variance σ2, correlation length scale λ

Typical Realisation of log-normal α(x) “Clipped” Realisation (“two-phase” media)

(n = 5122, σ2 = 8 and λ = 1

64
) (n = 5122 and λ = 1

64
)
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Typical multiscale coefficient functions

Stochastic Model: log α(x) = (homogeneous, isotropic) Gaussian random field with

(i.e. log-normal α(x)) mean 0, variance σ2, correlation length scale λ

Typical Realisation of log-normal a(x) “Clipped” Realisation (“two-phase” media)

(n = 5122, σ2 = 8 and λ = 1

64
) (n = 5122 and λ = 1

64
)

sup
x,y∈Ω

α(x)

α(y)
= O(1010) ↗ sup

x,y∈Ω

α(x)

α(y)
= O(105) ↗

Variance σ2 determines “contrast” !
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Multiscale stochastic media with λ = 5h, 10h, 20h, 50h

Correlation length scale λ determines “roughness” !
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Typical multiscale coefficient functions

Complicated deterministic media c©NIREX UK Ltd.

QUATERNARY

MERCIA MUDSTONE

VN-S CALDER

FAULTED VN-S CALDER

N-S CALDER

FAULTED N-S CALDER

DEEP CALDER

FAULTED DEEP CALDER

VN-S ST BEES

FAULTED VN-S ST BEES

N-S ST BEES

FAULTED N-S ST BEES

DEEP ST BEES

FAULTED DEEP ST BEES

BOTTOM NHM

FAULTED BNHM

SHALES + EVAP

BROCKRAM

FAULTED BROCKRAM

COLLYHURST

FAULTED COLLYHURST

CARB LST

FAULTED CARB LST

N-S BVG

FAULTED N-S BVG

UNDIFF BVG

FAULTED UNDIFF BVG

F-H BVG

FAULTED F-H BVG

BLEAWATH BVG

FAULTED BLEAWATH BVG

TOP M-F BVG

FAULTED TOP M-F BVG

N-S LATTERBARROW

DEEP LATTERBARROW

N-S SKIDDAW

DEEP SKIDDAW

GRANITE

FAULTED GRANITE

WASTE VAULTS

CROWN SPACE

EDZ
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Finite Element Method

Finite Element Method:

a(u, v) :=

∫

Ω

α∇u · ∇v . . . bilinear form on ( H1
0(Ω) )2 corresponding to model problem

Vh ⊂ H1(Ω) . . . FE space of continuous, piecewise linear functions on τ ∈ T h

{ϕp} ⊂ Vh ∩ H1
0 (Ω) . . . “hat” functions corresponding to the nodes x

h
p of T h

Then the FE approximation uh =
n

∑

p=1

Upϕp ∈ Vh ∩ H1
0 (Ω) where U = (Up)p=1,...,n satisfies

AU = b

with Ap,q =
∑

τ

ατ

∫

τ

∇ϕp · ∇ϕq and ατ := 1
|τ |

∫

τ
α .

κ(A) . max
τ,τ ′∈T h

(

ατ

ατ ′

)

h−2 = O(1016) for h =
1

512
, σ2 = 8 !!

Assume w.l.o.g. that α is piecewise constant and min
τ∈T h

ατ = 1 (otherwise rescale!).

Robust Aggregation–Based Coarsening for Multiscale PDEs R. Scheichl



Finite Element Method

Finite Element Method:

a(u, v) :=

∫

Ω

α∇u · ∇v . . . bilinear form on ( H1
0(Ω) )2 corresponding to model problem

Vh ⊂ H1(Ω) . . . FE space of continuous, piecewise linear functions on τ ∈ T h

{ϕp} ⊂ Vh ∩ H1
0 (Ω) . . . “hat” functions corresponding to the nodes x

h
p of T h

Then the FE approximation uh =
n

∑

p=1

Upϕp ∈ Vh ∩ H1
0 (Ω) where U = (Up)p=1,...,n satisfies

AU = b

with Ap,q =
∑

τ

ατ

∫

τ

∇ϕp · ∇ϕq and ατ := 1
|τ |

∫

τ
α .

Conjugate Gradients:

#Its = O
(

√

κ(A)
)

Meaning of . !κ(A) . max
τ,τ ′∈T h

(

ατ

ατ ′

)

h−2

Assume w.l.o.g. that α is piecewise constant and min
τ∈T h

ατ = 1 (otherwise rescale!).
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Domain Decomposition Preconditioning

Two-Level Additive Schwarz:

P−1
AS = RT

0 A−1
0 R0 +

s
∑

i=1

RT
i A−1

i Ri

↑ ↑

coarse solve with A0 := R0 A RT
0 local solves with Ai := Ri A RT

i

PSfrag replacements

H

PSfrag replacements

Ω1 Ω2

Ω3 Ω4

h

δ

Hsub

{Ωi : i = 1, . . . , s} . . . overlapping covering of Ω (Note. H sub � H for best efficiency)

Ri . . . injection operator from Ω to subdomain Ωi (zero Dirichlet BCs)
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Domain Decomposition Preconditioning

Two-Level Additive Schwarz:

P−1
AS = RT

0 A−1
0 R0 +

s
∑

i=1

RT
i A−1

i Ri

↑ ↑

coarse solve with A0 := R0 A RT
0 local solves with Ai := Ri A RT

i

PSfrag replacements

H

PSfrag replacements

Ω1 Ω2

Ω3 Ω4

h

δ

Hsub

{Ωi : i = 1, . . . , s} . . . overlapping covering of Ω (Note. H sub � H for best efficiency)

Ri . . . injection operator from Ω to subdomain Ωi (zero Dirichlet BCs)

IMPORTANT: choice of covering {Ωi}, coarse space V0 and operator R0 !
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Coarsening via Aggregation

Coarsening via Aggregation
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Existing Theory for Discontinuous Coefficients

Linear Coarse Space (classical):

Dryja, Widlund, Bramble, Pasciak, Schatz, . . . , Sarkis [Toselli & Widlund, 2005]

Assume: coarse mesh T H , for K ∈ T H : ΩK ∼ K, HK = diam(K) and δK = overlap of ΩK .
Then:

κ(P−1
ASA) . max

K∈T H
max

τ,τ ′⊂ωK

(

ατ

ατ ′

) (

1 +
HK

δK

)

κ(P−1
ASA) . C (H/h) max

K∈T H
max

τ,τ ′⊂K

(

ατ

ατ ′

) (

1 +
HK

δK

)

where ωK :=
⋃

{K′:K∩K′ 6=∅} K ′ and C (H/h) = log(H/h) in 2D and H/h in 3D.
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Existing Theory for Discontinuous Coefficients

Linear Coarse Space (classical):

Dryja, Widlund, Bramble, Pasciak, Schatz, . . . , Sarkis [Toselli & Widlund, 2005]

Assume: coarse mesh T H , for K ∈ T H : ΩK ∼ K, HK = diam(K) and δK = overlap of ΩK .
Then:

κ(P−1
ASA) . max

K∈T H
max

τ,τ ′⊂ωK

(

ατ

ατ ′

)(

1 +
HK

δK

)

κ(P−1
ASA) . C (H/h) max

K∈T H
max

τ,τ ′⊂K

(

ατ

ατ ′

)(

1 +
HK

δK

)

where ωK :=
⋃

{K′:K∩K′ 6=∅} K ′ and C (H/h) = log(H/h) in 2D and H/h in 3D.

i.e. “jump-independence” by resolving discontinuities with the coarse mesh!

• Results extend to non-standard (partition of unity) coarse spaces [Sarkis, 1993– ]

• Unresolved layers ⇒ spectral clustering [Graham & Hagger, 1999]

BUT what about case of large variation of α inside coarse elements/subdomains?
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New Coefficient-Explicit Condition Number Analysis

Abstract Coarse Space: V0 = span{Φj : j = 1, . . . , N}

where {Φj : j = 1, . . . , NH} ⊂ Vh are linearly independent coarse space basis functions

such that Φj ∈ H1
0 (Ω) for all j ≤ N and

(C1)

NH
∑

j=1

Φj(x) = 1 for all x ∈ Ω̄

(C2) ‖Φj‖L∞(Ω) . 1 for all j = 1, . . . , NH

(C3) ∀j = 1, . . . , NH ∃ i ∈ {1, . . . , s} such that ωj := supp{Φj} ⊂ Ωi

Important Parameters: Hj := diam{ωj}, H := maxj Hj , δj := overlap for ωj , δ := minj δj.

Definition. (Coarse Space Robustness Indicator)

γ(α) :=
NH

max
j=1

δ2
j

∥

∥α|∇Φj|
2
∥

∥

L∞(Ω)

Note. For the theory we need also shape regularity, uniform overlap, finite covering of the {ωj}.



New Coefficient-Explicit Condition Number Analysis

Theorem (S., 2006).
κ(P−1

AS A) . γ(α)

(

1 +
NH

max
j=1

Hj

δj

)

Remarks:

• Previous results had extra assumption ‖∇Φj‖2
L∞(Ω) . δ−2

j (or a weaker L2–version):

Here, interplay between coarse space basis functions and α is made explicit in γ(α)!

• No dependency on the subdomain sizes (even for H sub � H) !

• The dependency on the “mesh” parameters is sharp, i.e. linear in H/δ.

• Previously best theoretical result for smoothed aggregation coarse spaces (for α ≡ 1):

κ(P−1
AS A) . 1 +

H

δ
+

Hsub

δ
[Sala, Shadid & Tuminaro, SIMAX 2006]
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Numerical Evidence (Dependency on H and H sub)

Example (Laplacian): α ≡ 1 =⇒ γ(α) ∼ 1
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H=6h
H=8h
H=10h
H=12h
H=14h
H=16h

n = 1024 × 1024, minimal overlap (i.e. δ = 3h), 1×smoothed aggregation

Note. All CPU times were obtained on a 3GHz INTEL Pentium 4 processor.
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Numerical Evidence (Dependency on α)

Example (two media) – Linear Coarsening

• T h and T H uniform.

• Square subdomains Ωi (consisting of 8 coarse elements K ∈ T H), i.e. overlap δ = H.

PSfrag replacements

α = 1

α = α̂

For h = 1
256

and H = 8h:

α̂ κ(P−1
ASA) γ(α)

100 5.2 4

101 9.1 40

102 58.1 400

103 471 4000

104 1821 4.0(+4)

105 2561∗ 4.0(+5)

∗ same as 1-level method (i.e. no coarse grid)
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New Coefficient-Explicit Condition Number Analysis

Idea of Proof. (γ(α) crucial ! Then use classical Schwarz theory introducing “weight” α!)

• To bound λmax(P
−1
AS A) use a colouring argument.

• To bound λmin(P
−1
AS A) find stable splitting for each u ∈ Vh: v0 ∈ V0 and vj ∈ Vh(ωj)

s.t.

u =

NH
∑

j=0

vj and

NH
∑

j=0

a(vj, vj) . γ(α)
(

1 + maxj
Hj

δj

)

a(u, u)

i.e. v0 :=
∑N

j=0 ūjΦj with ūj := |ωj |−1
∫

ωj
u and

(quasi-interpolant)
vj :=







Ih(Φj(u − ūj)), j ≤ N,

Ih(Φju), j > N.

Now, a(v0, v0) . γ(α)
(

maxj
Hj

δj

)

a(u, u) and

a(vj, vj) . ‖α|∇Φj |
2‖L∞(ωj)‖u−ūj‖

2
L2(ωj,δj

) + |u−ūj|
2
H1(ωj),α

. γ(α)

(

1 +
Hj

δj

)

a(u, u)

• To find stable splitting in Vh(Ωi) set ui :=
∑

j∈Ii
vj where Ii := {j : ωj ⊂ Ωi} and

use again a colouring argument.
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Coarsening via Aggregation – Algebraic Multigrid (AMG)

Geometric Multigrid Idea: Relaxation schemes (like ω-Jacobi or SOR) smooth the error

=⇒ restrict to a (geometrically) coarser grid. Breaks down for large variation in α(x)!
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Coarsening via Aggregation – Algebraic Multigrid (AMG)

Geometric Multigrid Idea: Relaxation schemes (like ω-Jacobi or SOR) smooth the error

=⇒ restrict to a (geometrically) coarser grid. Breaks down for large variation in α(x)!

Algebraic Multigrid Idea: Relaxation schemes smooth error along strong connections in A:

Use graph G associated with A: node xh
q is strongly connected to xh

p if |Ap,q| is large,

e.g. |Ãp,q| ≥ ε maxk 6=p |Ãp,k| where Ã := D−1/2 A D−1/2 [Bastian, 1996]

=⇒



















(a) Select “well-connected” coarse nodes, and interpolate to strongly connected
neighbours based on heuristic Ae = r ≈ 0 [Ruge & Stueben, 1985].

(b) Aggregate strongly connected neighbours, and use p.w. constant prolongation,
smoothed along the strong connections [Vanek, Mandel & Brezina, 1995].
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Coarsening via Aggregation – Main Idea

Main Idea:

Extend the notion of strong connections to any pair of nodes by considering paths in G !

Define the strongly-connected graph-r neighbourhood of xh
p by the set of all nodes xh

q

s.t. there exists a path γpq := [xh
p = xp0

, xp1
, . . . , xpk

= xh
q ] of length k ≤ r from xh

p to xh
q ,

and xpi
is strongly connected to xpi−1

for all i = 1, . . . , k.

• This is readily available from compressed row storage of so-called “filtered” matrix

Aε
p,q :=























Ap,p +
∑

xh
k

not str. con.

−→ xh
p

Ap,k if xh
q = xh

p

Ap,q if xh
q strongly connected to xh

p

0 otherwise

(i.e. graph G not needed !)

• To find good seed nodes xh
p for the aggregates we use an advancing front [Raw, 1996]

• Related to ”aggressive” coarsening in algebraic multigrid, e.g. [Papadopoulos, 2004]
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Coarsening via Aggregation – Algorithm

(Laplacian, i.e. α ≡ 1)

↙

Algorithm:1

1. Select aggregation radius r and threshold ε.

2. Find strong connections in A.

3. Aggregate strongly-connected graph-r neighbourhoods.

(IMPORTANT: choice of seed nodes & shape regularity where possible.)

4. Set RT
0 = SP where P = p.w. constant prolongation and S = simple smoother (ω-Jacobi)

e.g. for α ≡ 1 in 1D with ω = 2

3
:PSfrag replacements

P
RT

0

Φj

5. Subdomains are aggregated using same algorithm on A0 (Overlap comes from smoothing!)

1see also [Vanek & Brezina, 1999] , [Jenkins et al., 2001], [Lasser & Toselli, 2002]



Coarsening via Aggregation – Algorithm

(Laplacian, i.e. α ≡ 1)

↙

Algorithm:1

1. Select aggregation radius r and threshold ε.

2. Find strong connections in A.

3. Aggregate strongly-connected graph-r neighbourhoods.

(IMPORTANT: choice of seed nodes & shape regularity where possible.)

4. Set RT
0 = SP where P = p.w. constant prolongation and S = simple smoother (ω-Jacobi)

e.g. for α ≡ 1 in 1D with ω = 2

3
:PSfrag replacements

P
RT

0

Φj

5. Subdomains are aggregated using same algorithm on A0 (Overlap comes from smoothing!)

Novel Aspects (apart from new theory)

• Making use of strong connections in a domain decomposition method

• Second aggregation for subdomains −→ H sub � H

1see also [Vanek & Brezina, 1999] , [Jenkins et al., 2001], [Lasser & Toselli, 2002]



Coarsening via Aggregation – Typical Aggregates

Obtained with r = 2 and ε = 0.67 for typical realisation (n = 322, λ = 1
8
, maxτ,τ ′

ατ

ατ ′
≈ 103)

Robust Aggregation–Based Coarsening for Multiscale PDEs R. Scheichl



Numerical Results with Aggregation – Clipped Fields

Example (clipped random fields):

with n = 256 × 256 and λ = 1/64

CG–Iterations (b = 1, tol = 10−6) CPU–Time (in secs)

σ2 maxτ,τ ′
ατ

ατ ′
New AMG DOUG

2 1.5 ∗ 101 24

4 2.2 ∗ 102 27

6 3.3 ∗ 103 29

8 4.9 ∗ 104 26

σ2 New AMG UMFPACK

2 2.12

4 2.14

6 2.34

8 2.41

All numerical results with r = 2 and ε = 0.67 and no smoothing!
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Numerical Results with Aggregation – Clipped Fields

Example (clipped random fields):

AMG . . . Aggregation–type Algebraic Multigrid [Bastian]
(no smoothing – piecewise constant prolongation)

DOUG . . . Classical Additive Schwarz with linear coarsening
(parallel run on slow network – CPU-times pessimistic)

UMFPACK . . . Sparse direct solver [Davies & Duff]

with n = 256 × 256 and λ = 1/64

CG–Iterations (b = 1, tol = 10−6) CPU–Time (in secs)

σ2 maxτ,τ ′
ατ

ατ ′
New AMG DOUG

2 1.5 ∗ 101 24 14 32

4 2.2 ∗ 102 27 27 89

6 3.3 ∗ 103 29 40 296

8 4.9 ∗ 104 26 77 498

σ2 New AMG UMFPACK

2 2.12 1.35 1.85

4 2.14 2.27 1.70

6 2.34 3.31 1.33

8 2.41 6.23 4.88

All numerical results with r = 2 and ε = 0.67 and no smoothing!
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Numerical Results with Aggregation – Clipped Fields

CG–Iterations (b = 1, tol = 10−6) CPU–Time (in secs)

λ New AMG DOUG

1/16 26

1/32 27

1/64 26

1/128 33

1/256 48

λ New AMG UMFPACK

1/16 2.20

1/32 2.24

1/64 2.41

1/128 2.71

1/256 3.84

Clipped random fields with n = 256 × 256 and σ2 = 8.

CG–Iterations (b = 1, tol = 10−6) CPU–Time (in secs)

n New AMG DOUG

1282 25

2562 26

5122 34

10242 74

n New AMG UMFPACK

1282 0.46

2562 2.41

5122 16.8

10242 105.9

Clipped random fields with σ2 = 8 and λ = 4h.
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Numerical Results with Aggregation – Clipped Fields

CG–Iterations (b = 1, tol = 10−6) CPU–Time (in secs)

λ New AMG DOUG

1/16 26 18 355

1/32 27 64 430

1/64 26 77 498

1/128 33 70 655

1/256 48 166 858

λ New AMG UMFPACK

1/16 2.20 1.67 4.52

1/32 2.24 5.14 4.77

1/64 2.41 6.23 4.88

1/128 2.71 5.77 7.48

1/256 3.84 13.5 10.2

Clipped random fields with n = 256 × 256 and σ2 = 8.

CG–Iterations (b = 1, tol = 10−6) CPU–Time (in secs)

n New AMG DOUG

1282 25 35 136

2562 26 77 498

5122 34 100 1111

10242 74 422 ***

n New AMG UMFPACK

1282 0.46 0.68 0.52

2562 2.41 6.23 4.88

5122 16.8 33.8 88.8

10242 105.9 540 ***

Clipped random fields with σ2 = 8 and λ = 4h.
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Bounds on γ(α) – Example

Example (“Islands”):

PSfrag replacements

α(x) = 1

α(x) = α̂

Theorem. For r appropriately chosen, the aggregation
algorithm with RT

0 = P (i.e. no smoothing) produces
coarse space basis functions {Φj : j = 1, . . . , NH}
that satisfy the Assumptions (C1)–(C3) and

γ(α) ≤ 1

Moreover
κ(P−1

AS A) ≤ C

with α̂ � 1 and diam(islands) . h
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Bounds on γ(α) – Example

Example (“Islands”):

PSfrag replacements

α(x) = 1

α(x) = α̂

Theorem. For r appropriately chosen, the aggregation
algorithm with RT

0 = P (i.e. no smoothing) produces
coarse space basis functions {Φj : j = 1, . . . , NH}
that satisfy the Assumptions (C1)–(C3) and

γ(α) ≤ 1

Moreover
κ(P−1

AS A) ≤ C

with α̂ � 1 and diam(islands) . h

Idea of Proof. In the case RT
0 = P assumptions (C1)–(C3) are satisfied by construction, we

have uniform overlap, and finite covering. Also |∇Φj(x)| ≤ δ−1
j ∀ x ∈ Ω.

PSfrag replacements

strongly connected strongly connected

not strongly connected

α(x) = 1 α(x) = 1α(x) � 1 α(x) � 1

=⇒ (for r sufficiently large) α(x) = 1 wherever ∇Φj(x) 6= 0 =⇒ γ(α) ≤ 1

Moreover δj = O(h) and since diam(islands) . h we can choose r s.t. Hj . h =⇒ κ(P−1

AS
A) ≤ C

where C is independent of h, r and α but may depend on the shape of the islands.
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Multiscale Random Media

Example (log-normal α(x)):

New AMG DOUG UMFPACK

Iterations 19 38 62

CPU-time 8.3s 13.1s 29.7s 10.3s

Note. Simpler than clipped fields !!

with n = 512 × 512, σ2 = 8 and λ = 1/64

Current/Future Work:

• Parallelisation

• Multiplicative Schwarz

• Extension of theory for discontinuous coefficients to Algebraic Multigrid

• Combination with multiscale FE interpolation
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Two preprints available at

http://www.bath.ac.uk/math-sci/BICS


