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Introduction

Mechanical Heart Valve

We are developing an efficient parallel code for the unsteady
incompressible Navier-Stokes eqs. based on

C++, RPI’s AOMD and Argonne’s PETSc.
Complexities of the simulation of blood flow include
complex geometry, pulsitility, transition and highly
anisotropic and intermittent turbulence.
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Introduction

The unsteady incompressible Navier-Stokes (NS) eqs:
∂u

∂t
+ u · ∇u =

1

Re
∇2

u −∇p in Ω × [0, T ],

∇ · u = 0 in Ω × [0, T ],

u(t = 0) = u0 in Ω,

u = uD on ∂ΩD,

ν
∂u

∂n
− pn = 0 on ∂ΩN ,

with ∂Ω = ∂ΩD ∪ ∂ΩN .
We are interested in convection-dominated regimes
(Re ≡ UL

ν
� 1).
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Introduction

For the spatial discretization, we use high-order discontinuous
Galerkin (DG) methods since

Advantages in capturing features of convection-dominated
flow
Facilitate hp-adaptivity
Yield block-diagonal mass matrix in the context of
semi-explicit time integration
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Introduction

For the stationary Navier-Stokes problem, DG methods with
equal and mixed polynomial order approximation for the
velocity and pressure have been recently developed (Girault
et al. 2005, Cockburn et al. 2005).
However, corresponding efficient numerical solution
procedures for the unsteady Navier-Stokes equations have
not yet been proposed.
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Introduction

The objective is to:
Devise an efficient numerical scheme for the unsteady NS
problem based on the high-order discontinuous Galerkin
method on triangular and tetrahedral elements.
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Navier-Stokes Solver
Temporal Discretization

A simple and efficient scheme is to use a semi-explicit
scheme in which the nonlinear term is treated explicitly and
the Stokes operator is treated implicitly.
We use a third-order backward differentiation (BD3) scheme
and a third-order extrapolation (EX3) (Karniadakis et al.
1991) to discretize the unsteady and the nonlinear terms,
respectively .
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Navier-Stokes Solver
Preliminaries

The discontinuous approximate space Vk is defined as
Vk := {v ∈ L2(Ω)|v|K ∈ Pk(K),∀K ∈ Th},

and we choose uh ∈ Vd

l
and ph ∈ Vm.

Note that l = m forms the equal-order approximation and
l = m − 1 forms the mixed-order approximation.
For Vk, we choose a nodal high-order basis.
The nodal basis are Lagrange polynomials calculated based
on the nodal set of Hesthaven (1998) or Hesthaven and Tang
(2000) defined on a standard triangle or tetrahedron,
respectively.
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Navier-Stokes Solver
Nonlinear Treatment

We introduce a simple method in which the nonlinear term is
discretized in the divergence form using the local Lax-Friedrichs
fluxes.

Local conservativity is inherent.
Lax-Friedrichs fluxes are suitable for unstructured meshes.
The choice of local Lax-Friedrich fluxes leads to a compact
stencil size.
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Navier-Stokes Solver
Stokes Discretization

Following Hansbo and Larson (2002), we define the
discontinuous approximations uh and ph by requiring that

Ah(uh,vh) + Bh(uh,vh) + Dh(vh, ph) = Fh(vh),

Dh(uh, qh) = Gh(qh),

Bh(u,v) =
∑

K

∫

K

β0

∆t
u · vdx,

Dh(v, q) = −
∑

K

∫

K

q∇ · vdx +
∑

ΓID

∫

e

{q}JvK · neds,
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Navier-Stokes Solver
Stokes Discretization

Ah(u,v) =
∑

K

∫

K

1

Re
∇u : ∇vdx

−
∑

ΓIDP

∫

e

1

Re

[
ne · {∇u} · JvK + ne · {∇v} · JuK

]
ds

+
∑

ΓIDP

∫

e

µ

Re
JuK · JvKds.

Ah corresponds to the discretization of the Laplacian by the
interior penalty (IP) method of Arnold (1982).
We have recently derived an explicit expression for the
penalty parameter µ for simplicial elements (Shahbazi 2005).

µ =
(k + 1)(k + d)

d
max

K

(
(Area)K

(V olume)K

)
.
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Navier-Stokes Solver
Stokes Discretization

Why do we prefer IP over other types of DG methods?
Because the IP method offers:

Simplicity, minimum stencil size, symmetry, stability, local
conservativity, optimal rate of convergence.
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Navier-Stokes Solver
Stokes Discretization

Minimum Stencil Extended Stencil
IP method Local DG method

(Cockburn and Shu, 1998)
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Navier-Stokes Solver
Stokes Discretization

The algebraic form of the Stokes system after the application
of the nodal high-order representation is:

[
H D

T

D 0

][
u

n+1

pn+1

]
=

[
f

n+1

gn+1

]
.

H = (1/Re)A + (β0/∆t)B.
A represents the Laplacian operator, and B denotes the
block diagonal mass matrix.
D represents the divergence operator.
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Navier-Stokes Solver
Stokes Discretization

Since (Re/∆t) � 1, an efficient scheme is to decouple
velocity and pressure via an approximate algebraic splitting
(e.g., Perot 1993).

1. Hu
∗n+1 = fn+1 −D

T p̂n

2. (−DHID
T )

(
p̂n+1 − p̂n

)
= (−Du

∗n+1 + gn+1)
β0

∆t

3. û
n+1 = u

∗n+1 −
∆t

β0

HID
T

(
p̂n+1 − p̂n

)

HI = B
−1.

(−DHID
T ) is called the consistent Poisson operator.

The scheme is second order accurate in time.
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Navier-Stokes Solver
Stokes Discretization

The first and the second steps are solved iteratively using the
Conjugate Gradient method.
Since (Re/∆t) � 1, the Helmholtz solves are easily
preconditioned by the block diagonal mass matrix.
The pressure solve is the dominant computation.
The pressure operator (−DHID

T ) has extended stencil.
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Navier-Stokes Solver
Stokes Discretization

Can we have a minimum stencil size for the pressure
equation?
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Navier-Stokes Solver
Stokes Discretization

Careful inspection of the pressure operator (−DHID
T )

reveals that this operator results from the application of the
Local DG method to a Laplacian with the following BCs:

−∇2v in Ω

∇v · n = 0 on ∂ΩD

v = 0 on ∂ΩN

We propose to replace the pressure operator (−DHID
T )

with the operator arising from the IP discretization of the
Laplacian with the above BCs.
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Navier-Stokes Solver
Stokes Discretization

The justification is that the IP method and the Local DG
method are very similar for stability, boundedness and the
optimal rate of convergence as shown by Arnold et al. (2002)
in a unified analysis of the DG methods for elliptic problems.
Note that since the replacement is applied in the algebraic
level, no unphysical BCs have been introduced.
This not only simplifies the scheme, but also enhances the
overall efficiency of the scheme.
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Verification
2D Orr-Sommerfeld Stability Problem

X

Y

0 1 2 3 4 5 6
-1

0

1

A parabolic base flow are sustained in x direction using a
constant body force.
Re = 7500 based on the maximum velocity and half channel
height.
Periodic and Dirichlet boundary conditions are imposed in the
streamwise and spanwise directions, respectively.
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Verification
2D Orr-Sommerfeld Stability Problem

The base flow is disturbed with small-magnitude
Tollmien-Schlichting waves, i.e, the initial condition is

u(x, y, 0) = U0 + εû.

U0 is the parabolic profile,
û corresponds to the only unstable eigensolution of the
Orr-Sommerfeld equation with wave number unity at
Re = 7500, and ε = 10−4.
According to the linear stability theory, the perturbation
energy

E(t) =

∫
2π

0

∫
1

−1

(u −U0)
2dydx

should grow as e2ωit, where ωi = 0.002234976.
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Verification
2D Orr-Sommerfeld Stability Problem

128 Triangles

X

Y

0 1 2 3 4 5 6-1

0
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Verification
2D Orr-Sommerfeld Stability Problem
Re = 7500, 128 Triangles, ∆t = 10−3

T/T0

Lo
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NS-6/6
NS-8/8
NS-6/5
NS-8/7
Linear Stablity
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Verification
2D Orr-Sommerfeld Stability Problem

The analysis of a similar instability in the Qk − Qk−2 spectral
element discretization of the Navier-Stokes equations was
reported by Wilhelm and Kleiser (2001).
This instability may remain hidden at lower Re number
(Shahbazi et al. 2006).
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Conclusions
We have presented an efficient numerical scheme for the
unsteady incompressible Navier-Stokes equations in
convection-dominated regimes.
Our scheme is based on the high-order discontinuous
Galerkin spatial discretization and approximate algebraic
splitting of the velocity and pressure calculations.
An important feature of our method is to discretize the
nonlinear term, velocity and pressure equations with
minimum stencil size; thus, enhancing simplicity and overall
efficiency of the scheme.
We have verified the accuracy and stability of our method by
solving popular benchmarking tests, including
Orr-Sommerfeld stability problem.
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