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Thin-Plate Splines

• 3D Image Recovery

• Finger Print Analysis

• Image Warping

• Medical Image Analysis

• Data Mining
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Smoothing Splines

Given a set of attributes vectors x = (x1, x2, · · · , xd)T , build a
predictive model

y = f (x).

y ≈ f (x).

To estimate f by a 2nd-order smoothing spline minimise:

Jα(f ) =
1

n

n∑
i=1

(f (x(i))− y (i))2 + α

∫
Ω

∑
|ν|=2

(
2

ν

)
(Dν f (x))2dx,

The first term penalises lack of fit, the second penalises roughness.
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Radial Basis Functions

The standard approach is to represent f as a linear combination of
radial basis functions

f (x) =
M∑

k=1

aφk(x) + α

n∑
i=1

wiU(x, x(i)),

where φk are monomials of order up to 1 and U are suitable radial
basis functions.
Favoured method as it gives an analytical solution.
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Radial Basis Functions

2D Eg:

U(x, x(i)) =
−1

16π
r2ln(r).
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Thin Plate Splines

• Requires a solution of a dense system of matrices.

• System may be ill-conditioned.

• Size increases with the number of data points.

Not practical for large data sets.
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Finite Element Approximation

Represent f as a linear combination of linear finite elements.
In vector notation f will be of the form

f (x) = b(x)Tc.

Minimise Jα over all f of this form

Jα(f ) =
1

n

n∑
i=1

(f (x(i))− y (i))2 + α

∫
Ω

∑
|ν|=2

(
2

ν

)
(Dν f (x))2dx.
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Non-Conforming Finite elements

The smoothing term (derivatives) is not defined for piecewise
multi-linear functions.
Use non-conforming finite elements.
Represent the gradient of f by u = (bTg1, ...,bTgd) where∫

Ω
∇f (x) · ∇v(x) dx =

∫
Ω

u(x) · ∇v(x) dx,

for all piecewise multi-linear function v .

Linda Stals, Steve Roberts Discrete Thin-Plate Splines for Large Data Sets



Outline tps dtps Convergence Results Future Work

Non-Conforming Finite elements

∫
Ω
∇f (x) · ∇v(x) dx =

∫
Ω

u(x) · ∇v(x) dx,

is equivalent to

Lc =
d∑

s=1

Gsgs ,

where L is a discrete approximation to the negative Laplace
operator and (G1, ...,Gd) is a discrete approximation to the
transpose of the gradient operator.
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Finite Element Approximation

2nd-order smoothing spline: minimise

Jα(f ) =
1

n

n∑
i=1

(f (x(i))− y (i))2 + α

∫
Ω

∑
|ν|=2

(
2

ν

)
(Dν f (x))2dx.

Finite element approximation: minimise

Jα(c , g1, g2, · · · , gd) =
1

n

n∑
i=1

(f (x(i))− y (i))2 + α

d∑
s=1

gT
s Lgs ,

subject to

Lc =
d∑

s=1

Gsgs .
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2D Formulation

2nd-order smoothing spline: minimise

Jα(f ) =
1

n

n∑
i=1

(f (x(i))− y (i))2

+ α

∫
Ω

((
∂2

1 f (x)
)2

+ 2 (∂1∂2f (x))2 +
(
∂2

2 f (x)
)2

)
dx,

Jα(c, g1, g2) =
1

n

n∑
i=1

(b(x(i))Tc− y (i))2

+ α

∫
Ω
∇bT (x)g1.∇bT (x)g1 +∇bT (x)g2.∇bT (x)g2 dx
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2D Formulation

Minimise:

Jα(c , g1, g2) = cTAc− 2dTc + ‖y‖2/n + α(gT
1 Lg1 + gT

2 Lg2)

subject to
Lc = G1g1 + G2g2.

Where

A =
1

n

n∑
i=1

b(x(i))b(x(i))T ,

and

d =
1

n

n∑
i=1

b(x(i))y (i).

Linda Stals, Steve Roberts Discrete Thin-Plate Splines for Large Data Sets



Outline tps dtps Convergence Results Future Work

Discrete System


A 0 0 L
0 αL 0 −GT

1

0 0 αL −GT
2

L −G1 −G2 0




c
g1

g2

w

 =


d
0
0
0

−


h1

h2

h3

h4

 ,

w is a Lagrange multiplier.
The vectors h1, · · · ,h4 store the boundary information.
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Conjugate Gradient

Eliminate all the variables except g1 and g2 to give

([
αL 0
0 αL

]
+

[
GT

1

GT
2

]
L−1AL−1

[
G1 G2

]) [
g1

g2

]
=

[
GT

1 L−1d
GT

2 L−1d

]
−

[
ĥ2

ĥ3

]
,

αdiag(L) + KTKg = d̂

c = L−1
(
G1g1 + G2g2 − ĥ4

)
.
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Preconditioned Conjugate Gradient

Current preconditioner

M =

[
L−1 0
0 L−1

]
.

• large α: works well

• small α: help.

Linda Stals, Steve Roberts Discrete Thin-Plate Splines for Large Data Sets



Outline tps dtps Convergence Results Future Work

Preconditioned Conjugate Gradient

Current preconditioner

M =

[
L−1 0
0 L−1

]
.

• large α: works well

• small α: help.

Linda Stals, Steve Roberts Discrete Thin-Plate Splines for Large Data Sets



Outline tps dtps Convergence Results Future Work

Lagrange Multiplier

Recall the discrete system
A 0 0 L
0 αL 0 −GT

1

0 0 αL −GT
2

L −G1 −G2 0




c
g1

g2

w

 =


d
0
0
0

−


h1

h2

h3

h4

 ,

where w is a Lagrange multiplier. We use Dirichlet boundary
conditions as L−1 is unique, although Neumann is also possible.
What is the Dirichlet boundary value for w?
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Dirichlet Boundary Conditions

Use Karush-Kuhn-Tucker (KKT) condition with calculus of
variations to rewrite weak finite element equations into a system of
strong equations.
Then

∆λ̃(x) =
1

n

n∑
i=1

(
f̃ (x)− y (i)

)
δ(x− x(i)) in Ω,

−α∆ũ1(x) = ∂1λ̃(x) in Ω,

−α∆ũ2(x) = ∂2λ̃(x) in Ω,

∆f̃ (x) = ∇.ũ(x) in Ω.

f̃ = minimiser, ũ = gradient, λ̃ = lagrange multiplier.

Linda Stals, Steve Roberts Discrete Thin-Plate Splines for Large Data Sets
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−α∆ũ1(x) = ∂1λ̃(x),
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Dirichlet Boundary Conditions

Use Karush-Kuhn-Tucker (KKT) condition with calculus of
variations to rewrite weak finite element equations into a system of
strong equations.
Then

∆∆f̃ (x) = ∆∇.ũ(x)
...

=
−1

α

1

n

n∑
i=1

(
f̃ (x)− y(x)

)
δ(x− x(i)).

Conclusion: Boundary conditions do not matter, always get
a minimiser.
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Boundary Condition Examples

x(1) = (0.25, 0.25), x(2) = (0.75, 0.25), x(3) = (0.25, 0.75),
x(4) = (0.75, 0.75); y (1) = 1, y (2) = 0, y (3) = 0 and y (4) = 1

hf (x) = tps fit. hf (x) = 0.

hu = ∇hf (x), hλ(x) = −α∆hf

Linda Stals, Steve Roberts Discrete Thin-Plate Splines for Large Data Sets
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Convergence on Smooth Problem

y (i) = f̃y (x(i)) where ∇4f̃y = 0.

f̃ (x) = f̃y (x) =

∥∥∥∥x +

[
0.5
0.5

]∥∥∥∥
2

-30
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-20

-15

-10
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lo
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 o
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2 

E
rr
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log2 of Grid Spacing

L2 Error for Model Problem 3

c
g1
w

interpol
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O(h) convergence
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Convergence on Smooth Problem

y (i) = f̃y (x(i)) where ∇4f̃y = 0.

f̃ (x) = f̃y (x) = cosh(2πx1) sin(2πx2)
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Further Model Problems - Exponential

exp
(
−30‖0.65− x‖2

2

)
+ exp

(
−30‖0.35− x‖2

2

)
Finite element grid of size m = 4225 with different values of α.

 0  0.1  0.2  0.3  0.4  0.5  0.3
 0.4
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 1

Test Problem 5 with alpha = 0.0001
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 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Test Problem 5 with alpha = 0.000001

Boundary conditions: hf = f̃y , hu = ∇f̃y and hλ = −α∆f̃y .
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Further Model Problems - Sin

sin(4πx1) sin(4πx2)

Finite element grid of size m = 4225 with different values of α.

 0  0.1  0.2  0.3  0.4  0.5  0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

-1

-0.5

 0

 0.5

 1

Test Problem 6 with alpha = 0.0001

 0  0.1  0.2  0.3  0.4  0.5  0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

-1

-0.5

 0

 0.5

 1

Test Problem 6 with alpha = 0.000001

Boundary conditions: hf = f̃y , hu = ∇f̃y and hλ = −α∆f̃y .

Linda Stals, Steve Roberts Discrete Thin-Plate Splines for Large Data Sets



Outline tps dtps Convergence Results Future Work

Interpolation Error

Finite element analysis shows that the interpolation error is given
by √

(k4 + α)‖f0‖2
H2 + h2m‖f ‖2

Hm +
Cσ2

nαd/(2m)
,

where

• y i = f0(x
i ) + εi , E(ε) = 0, s.d. σ,

• h is the grid size,

• k is spacing between data points, uniform spacing, no holes,

• d is the dimension,

• C is a constant.
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Example Interpolation Error - No Noise
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Example Interpolation Error - No Noise
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Example Interpolation Error - Noise
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Example Interpolation Error - Noise
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Sine Example with Holes

y(x , y) = sin(2πx) sin(2πy), such that y(x , y) < 0.

n = 179401, m = 4229 with α = 10−6

Boundary: hf (x) = y(x), hu = ∇hf (x), hλ(x) = −α∆hf .
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Sine Example with Holes

y(x , y) = sin(2πx) sin(2πy), such that y(x , y) < 0.

n = 179401, m = 4229 with α = 10−6

Boundary: hf (x) = tps fit, hu = ∇hf (x), hλ(x) = −α∆hf .
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Sphere Example

Grid - 189 Nodes, α = 10−3.
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Sphere Example

Grid - 68705 Nodes, α = 10−3.
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Semi Sphere Example

Grid - 68705 Nodes, α = 10−3.
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Two Sphere Example

Grid - 68705 Nodes, α = 10−7.
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What Now?

• Adaptive Refinement: Reduce number of times data has to be
read.

• Parallel Implementation: Grid v’s data.

• Preconditioners for Small α:

• Higher Dimensions: Hierarchical, sparse grids.

• Finite Element Formulation: Linear operators, different
smoothers, different norms.

• Holes: Include a-prior information.
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