Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms

Marcus Sarkis

Worcester Polytechnic Inst., Mass. and IMPA, Rio de Janeiro

and

Daniel B. Szyld Temple University, Philadelphia

DD17, Strobl, Austria 4 July 2006

- We want to solve certain PDEs (non-selfadjoint or indefinit elliptic) discretized by FEM (or divided differences)
- Use GMRES (or other Krylov subspace method)
- Precondition with Additive Schwarz (with coarse grid correction)
- Schwarz methods optimality (energy norm) and Minimal Residuals (2-norm)
- Left vs. right preconditioning

Examples

- Helmholtz equation $-\Delta u + cu = f$
- Advection diffusion equation $-\Delta u + b \cdot \nabla u + cu = f$
- zero Dirichlet b.c.

General Problem Statement

Solve

Bx = f

B non-Hermitian, discretization of $b(\boldsymbol{u},\boldsymbol{v})=f(\boldsymbol{v})$

$$b(u,v) = a(u,v) + s(u,v) + c(u,v),$$

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx,$$

$$s(u,v) = \int_{\Omega} (b \cdot \nabla u)v + (\nabla \cdot bu)v \, dx, \quad b \in \mathbb{R}^d,$$

$$c(u,v) = \int_{\Omega} c \, uv \, dx, \quad \text{and} \quad f(v) = \int_{\Omega} f \, v \, dx.$$

Let A be SPD, the discretization of $a(\cdot, \cdot)$.

Standard Finite Element Setting

Let $\Omega \subset \mathbb{R}^d$, with triangulation $\mathcal{T}_h(\Omega)$. Let V be the traditional finite element space formed by piecewise linear and continuous functions vanishing on the boundary of Ω . $V \subset \mathcal{H}_0^1(\Omega)$.

One-to-one correspondence between functions in finite element space and nodal values.

We abuse the notation and do not distinguish between them. Let $||v||_a = a(v, v)$, and $||v||_A = (v^T A v)^{1/2}$ be the corresponding norms in V and in \mathbb{R}^n , respectively.

Problem Statement (cont.)

- Use Krylov subspace iterative methods (e.g., GMRES)
- Left preconditioning: $M^{-1}Bx = M^{-1}f$
- Right preconditioning: $BM^{-1}(Mu) = f$

Schwarz Preconditioning

Class of Preconditioners based on Domain Decomposition Decomposition of V into a sum of N + 1 subspaces $R_i^T V_i \subset V$, and

$$V = R_0^T V_0 + R_1^T V_1 + \dots + R_N^T V_N.$$

 $R_i^T: V_i \to V$ extension operator from V_i to V. This decomposition usually NOT a direct sum.

Subspaces $R_i^T V_i$, i = 1, ..., N are related to a decomposition of the domain Ω into overlapping subregions Ω_i^{δ} of size O(H) covering Ω . The subspace $R_0^T V_0$ is the coarse space.

Schwarz Preconditioning (cont.)

For $u_i, v_i \in V_i$ define

$$b_i(u_i, v_i) = b(R_i^T u_i, R_i^T v_i), \qquad a_i(u_i, v_i) = a(R_i^T u_i, R_i^T v_i).$$

Let

$$B_i = R_i B R_i^T, \qquad A_i = R_i A R_i^T$$

be the matrix representations of these local bilinear forms, i.e., the local problems.

Two versions of Additive Schwarz Preconditioning here

 $M^{-1} = R_0^T B_0 R_0 + \sum_{i=1}^p R_i^T B_i^{-1} R_i,$ or $M^{-1} = R_0^T B_0 R_0 + \sum_{i=1}^p R_i^T A_i^{-1} R_i,$ where $B_i = R_i B R_i^T$ and $A_i = R_i A R_i^T$ (local problems) R_i restriction, R_i^T prolongation with overlap δ B_0 coarse problem, size O(H), discretization O(h). Let $P = M^{-1}B$, be the preconditioned problem.

Theorem. [Cai and Widlund, 1993]

There exist constants $H_0 > 0$, $c(H_0) > 0$, and $C(H_0) > 0$, such that if $H \leq H_0$, then for i = 1, 2, and $u \in V$,

$$\frac{a(u, Pu)}{a(u, u)} \ge c_p,$$

and

$$\|Pu\|_a \le C_p \|u\|_a,$$

where $C_p = C(H_0)$ and $c_p = C_0^{-2}c(H_0)$.

Two-level Schwarz preconditioners are optimal in the sense that bounds for $M^{-1}B$ (or BM^{-1}) are independent of the mesh size and the number of subdomains, or slowly varying with them.

In our PDEs, we have optimal bounds:

$$\frac{(x, M^{-1}Bx)_A}{(x, x)_A} \ge c_p \quad \text{and} \quad \|M^{-1}Bx\|_A \le C_p \|x\|_A.$$

Cai and Zou [NLAA, 2002] observed:

Schwarz bounds use energy norms, while GMRES minimizes l_2 norms. Optimality may be lost! (some details in a few slides).

GMRES

Let v_1, v_2, \ldots, v_m be an orthonormal basis of $\mathcal{K}_m(M^{-1}B, r_0) =$ span $\{r_0, M^{-1}Br_0, (M^{-1}B)^2r_0, \ldots, (M^{-1}B)^{m-1}r_0\}.$ $x_m = \arg\min\{\|f - M^{-1}Bx\|_2\}, x \in x_0 + \mathcal{K}_m(M^{-1}B, r_0)$

• With $V_m = [v_1, v_2, \dots, v_m]$, obtain Arnoldi relation:

$$M^{-1}BV_m = V_{m+1}H_{m+1,m}$$

 $H_{m+1,m}$ is $(m+1) \times m$ upper Hessenberg

• Element in $\mathcal{K}_m(M^{-1}B, v_1)$ is a linear combination of v_1, v_2, \ldots, v_m , i.e., of the form $V_m y$, $y \in \mathbb{R}^m$

• Find
$$y = y_m$$
 and we have $x_m = x_0 + V_m y_m$
 $\|M^{-1}f - M^{-1}Bx\|_2 = \|M^{-1}r_0 - M^{-1}BV_m y\|_2 =$
 $= \|V_{m+1}\beta e_1 - V_{m+1}\bar{H}_m y\|_2 = \|\beta e_1 - \bar{H}_m y\|_2$
find y using QR factorization of \bar{H}_m .

One convergence bound for GMRES [Elman 1982] (unpreconditioned version)

$$||r_m|| = ||f - Bx_m|| \le \left(1 - \frac{c^2}{C^2}\right)^{m/2} ||r_0||,$$

where

$$c = \min_{x \neq 0} \frac{(x, Bx)}{(x, x)}$$
 and $C = \max_{x \neq 0} \frac{\|Bx\|}{\|x\|}$.

What Cai and Zou [NLAA, 2002] showed is that for Additive Schwarz $M^{-1}B$ is NOT positive real, i.e., there is no c > 0 for which

$$\frac{(x, M^{-1}Bx)}{(x, x)} \ge c.$$

Thus, this GMRES bound cannot be used in this case.

We may not have the optimality.

Krylov Subspace Methods with Energy Norms

Proposed solution: Use GMRES minimizing the *A*-norm of the residual.

[Note: many authors mention this, e.g., Ashby-Manteuffel-Saylor, Essai, Greenbaum, Gutknecht, Weiss, ...]

In this case, we have that $M^{-1}B$ is positive real with respect to the *A*-inner product since

$$\frac{(x, M^{-1}Bx)_A}{(x, x)_A} \ge c_p \quad \text{and} \quad \|M^{-1}Bx\|_A \le C_p \|x\|_A.$$

Rework convergence bound for GMRES [Elman 1982] (preconditioned version)

$$||r_m||_A = ||M^{-1}f - M^{-1}Bx_m||_A \le \left(1 - \frac{c^2}{C^2}\right)^{m/2} ||M^{-1}r_0||_A ,$$

where

$$c = \min_{x \neq 0} \frac{(x, M^{-1}Bx)_A}{(x, x)_A}$$
 and $C = \max_{x \neq 0} \frac{\|Bx\|_A}{\|x\|_A}$

Implementation:

Replace each inner product (x, y) with $(x, y)_A = x^T A y$. Only one matvec with A needed. Basis vectors are A-orthonormal. Arnoldi relation: $M^{-1}BV_m = V_{m+1}H_{m+1}$.

$$\|M^{-1}b - M^{-1}Bx\|_{A} = \|M^{-1}r_{0} - M^{-1}BV_{m}y\|_{A} = \|V_{m+1}\beta e_{1} - V_{m+1}\bar{H}_{m}y\|_{A} = \|\beta e_{1} - \bar{H}_{m}y\|_{2}$$

Same QR factorization of \bar{H}_m , same code for the minimization.

We use this for analysis, but sometimes also valid for computations.

Left vs. Right preconditioner

For right preconditioner $BM^{-1}u = f$, $M^{-1}u = x$.

 $(x,x)_A = (M^{-1}u, M^{-1}u)_A = (u,u)_G, \qquad G = M^{-T}AM^{-1}.$

• Every left preconditioned system $M^{-1}Bx = M^{-1}f$ with the A norm is completely equivalent to a right preconditioned system with the $M^{-T}AM^{-1}$ -norm.

$$\|r_0 - BM^{-1}Z_m y\|_{M^{-T}AM^{-1}} = \|M^{-1}r_0 - M^{-1}BM^{-1}Z_m y\|_A$$

= $\|\beta z_1 - M^{-1}BV_m y\|_A = \|\beta e_1 - \bar{H}_m y\|_2 .$

 Z_m has the G-orthogonal basis of $\mathcal{K}_m(r_0, BM^{-1})$

Left vs. Right preconditioner

- Converse also holds: for every right preconditioner M with S-norm, this is equivalent to left preconditioning with M using the M^TSM-norm. (True in particular for S = I)
- When using the same inner product (norm), left and right preconditioning produce different upper Hessenberg matrices H_m .
- When using A-inner product for left preconditioning and M^{-T}AM⁻¹-inner product for right preconditioning, we have the same upper Hessenberg matrices H_m.
- Experiments we will show with left preconditioning and A-norm minimization are the same as with right preconditioning with G-norm minimization, $G = M^{-T}AM^{-1}$.

Energy Norms vs. ℓ_2 Norm

Now, we "have" the optimality with energy norms. What can we say about the ℓ_2 norm? Use equivalence of norms:

$$||x||_2 \le \frac{1}{\sqrt{\lambda_{\min}(A)}} ||x||_A, \quad ||x||_A \le \sqrt{\lambda_{\max}(A)} ||x||_2$$

$$\begin{split} \|M^{-1}r_m^L\|_2 &\leq \|M^{-1}r_m^A\|_2 \leq \frac{1}{\sqrt{\lambda_{\min}(A)}} \|M^{-1}r_m^A\|_A \\ &\leq \frac{1}{\sqrt{\lambda_{\min}(A)}} \left(1 - \frac{c^2}{C^2}\right)^{m/2} \|M^{-1}r_0\|_A \\ &\leq \frac{\sqrt{\lambda_{\max}(A)}}{\sqrt{\lambda_{\min}(A)}} \left(1 - \frac{c^2}{C^2}\right)^{m/2} \|M^{-1}r_0\|_2 \\ &= \sqrt{\kappa(A)} \left(1 - \frac{c^2}{C^2}\right)^{m/2} \|M^{-1}r_0\|_2 \end{split}$$

"Asymptotic" Optimality of ℓ_2 Norm

$$\|M^{-1}r_m^L\|_2 \leq \sqrt{\kappa(A)} \left(1 - \frac{c^2}{C^2}\right)^{m/2} \|M^{-1}r_0\|_2$$

For a fixed mesh size h, Additive Schwarz preconditioned GMRES (2-norm) has a bound that goes to zero at the same speed as the optimal bound (energy norm), except for a factor $\sqrt{\kappa(A)}$ (which of course depends on h)

Numerical Experiments

- Helmholtz equation $-\Delta u + cu = f$, c = -5 or c = -120.
- Advection diffusion equation $-\Delta u + b \cdot \nabla u + cu = f$ $b^T = [10, 20], c = 1$, upwind finite differences
- both on unit square, zero Dirichlet b.c., $f \equiv 1$
- Discretization: 64×64 (n = 3969), 128×128 (n = 16129), or 256×256 (n = 65025) nodes $p = 4 \times 4$ or $p = 8 \times 8$ subdomains Overlap: 0, 1, 2 (1,3 or 5 lines of nodes)
- Tolerance $\varepsilon = 10^{-8}$

Figure 1: Helmholtz equation k = -5. GMRES minimizing the ℓ_2 norm (o), and the *G*-norm (*). 64×64 grids, 4×4 subdomains. $\delta = 0$ Left: *G*-norm of both residuals. Right: ℓ_2 norm of both residuals.

Figure 2: Helmholtz equation k = -120. GMRES minimizing the ℓ_2 norm (o), and the *G*-norm (*). 128×128 grids, 8×8 subdomains. $\delta = 1$ Left: *G*-norm of both residuals. Right: ℓ_2 norm of both residuals.

Figure 3: Helmholtz equation k = -120. GMRES minimizing the ℓ_2 norm (o), and the *G*-norm (*). 256×256 grids, 8×8 subdomains. $\delta = 0$ Left: *G*-norm of both residuals. Right: ℓ_2 norm of both residuals.

Figure 4: Advection-diffusion equation. GMRES minimizing the ℓ_2 norm (o), and the *G*-norm (*). 128×128 grids, 4×4 subdomains. $\delta = 2$ Left: *G*-norm of both residuals. Right: ℓ_2 norm of both residuals.

Figure 5: Advection-diffusion equation. GMRES minimizing the ℓ_2 norm (o), and the *G*-norm (*). 256×256 grids, 8×8 subdomains. $\delta = 0$ Left: *G*-norm of both residuals. Right: ℓ_2 norm of both residuals.

Conclusions

- GMRES in energy norm maintains optimality
- GMRES in ℓ_2 norm achieves "asymptotic" optimality
- Observations on left vs. right preconditioning
- Numerical experiments illustrate this

Paper to appear in CMAME, available at http://www.math.temple.edu/szyld