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Summary. We present a class of Schwarz preconditioners for discontinuous Galerkin
approximations of elliptic problems. We provide a unified framework for the con-
struction and analysis of two-level methods which share the features of the classical
Schwarz techniques for conforming finite element discretizations. Numerical experi-
ments confirming the theoretical results are also included.

1 Introduction

Domain decomposition (DD) methods provide powerful preconditioners for
the iterative solution of the large algebraic linear systems of equations that
arise in finite element approximations of partial differential equations. Many
DD algorithms can conveniently be described and analyzed as Schwarz meth-
ods, and, if on the one hand a general theoretical framework has been previ-
ously developed for classical conforming discretizations (see, e.g., [7]), on the
other hand, only few results can be found for discontinuous Galerkin (DG)
approximations (see, e.g., [6, 4, 2, 1]). Based on discontinuous finite element
spaces, DG methods have become increasing popular thanks to their great
flexibility for providing discretizations on matching and non-matching grids
and their high degree of locality. In this paper we present and analyze, in the
unified framework based on the flux formulation proposed in [3], a class of
Schwarz preconditioners for DG approximations of second order elliptic prob-
lems. Schwarz methods for a wider class of DG discretizations are studied
in [2, 1]. The issue of preconditioning non-symmetric DG approximations is
also discussed. Numerical experiments to asses the performance of the pro-
posed preconditioners and validate our convergence results are presented.

2 Discontinuous Galerkin Methods for Elliptic Problems

We consider the following model problem
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− ∆u = f in Ω , u = 0 on ∂Ω , (1)

where Ω ⊂ Rd, d = 2, 3, is a convex polygon or polyhedron and f a given
function in L2(Ω). Let Th be a shape-regular quasi-uniform partition of Ω
into disjoint open elements T (with diameter hT ), where each T is the affine

image of a fixed master element T̂ , i.e., T = FT (T̂ ), and where T̂ is either the
open unit d-simplex or the d-hypercube in Rd, d = 2, 3. We define the mesh
size h by h = maxT∈Th

hT . We denote by E I and E B the sets of all interior
and boundary faces of Th, respectively, and set E = E I ∪ E B . For a given
approximation order ℓh ≥ 1, we define the discontinuous finite element spaces
Vh = {v ∈ L2(Ω) : v|T ◦ FT ∈ Mℓh(T̂ ) ∀T ∈ Th} and Σh = [Vh]d, where

Mℓh(T̂ ) is either the space of polynomials of degree at most ℓh on T̂ , if T̂ is
the reference d-simplex, or the space of polynomials of degree at most ℓh in
each variable on T̂ , if T̂ is the reference d-hypercube.

For any internal face e ∈ E I shared by two adjacent elements T± with
outward normal unit vectors n±, we define the jump and weighted average
operators, with δ ∈ [0, 1], by:

[[τ ]] = τ+ · n+ + τ− · n−, [[v]] = v+n+ + v−n−, e ∈ E
I ,

{{τ}}δ = δτ+ + (1 − δ)τ−, {{v}}δ = δv+ + (1 − δ)v−, e ∈ E
I ,

(2)

where τ± and v± denote the traces on ∂T± taken from the interior of T± of
the (regular enough) functions τ and v. On a boundary face e ∈ E B , we set

[[τ ]] = τ · n, [[v]] = v n, {{τ}}δ = τ , {{v}}δ = v, e ∈ E
B . (3)

For δ = 1/2 we write {{·}} in lieu of {{·}}1/2.

The DG discretization based on the flux formulation proposed in [3] is
defined by introducing an auxiliary variable σ = ∇u and rewriting problem
(1) as a first order system of equations. Further elimination of σ, gives the
primal formulation of DG methods:

find uh ∈ Vh such that Ah(uh, vh) =

∫

Ω

fvh dx ∀ vh ∈ Vh . (4)

Adopting the convention
∫

E
vh ds =

∑
e∈E

∫
e
vh ds, Ah(·, ·) is given by

Ah(uh, vh) =

∫

Ω

∇huh · ∇hvh dx+

∫

E

[[û− uh]] · {{∇hvh}}ds

+

∫

E I

{{û− uh}} [[∇hvh]] ds−
∫

E

{{σ̂}} · [[vh]] ds−
∫

E I

[[σ̂]] {{vh}}ds , (5)

where û and σ̂ are the scalar and vector numerical fluxes and ∇h denotes the
elementwise application of the operator ∇. By defining the numerical fluxes
û and σ̂ as suitable linear combinations of averages and jumps of uh and σh,
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we obtain different DG methods (see Table 1 for the choices considered in this
work). The stability is achieved by penalizing the jumps of uh over each face
e ∈ E . Therefore, Ah(·, ·) contains the stabilization term Sh(·, ·) defined by

Sh(u, v) =
∑

e∈E

∫

e

αh−1
e [[u]] · [[v]] ds ∀ u, v ∈ Vh ,

where he is the diameter of the face e ∈ E . Here α ≥ 1 is a parameter
(independent of the mesh size) that, for all but the LDG and NIPG methods,
has to be chosen large enough to ensure the coercivity of the bilinear form.
From now on, we drop the subindex h from the finite element functions. In
matrix notation, problem (4) is written as the linear system Au = f .

Table 1. Numerical fluxes on interior faces.

Method û(uh) σ̂(σh, uh) Symmetry

SIPG {{uh}} {{∇huh}} − αh−1
e [[uh]] Yes

SIPG(δ) {{uh}}(1−δ) {{∇huh}}δ − αh−1
e [[uh]] Yes

NIPG {{uh}}+ [[uh]] · nT {{∇huh}} − αh−1
e [[uh]] No

IIPG {{uh}}+ 1/2 [[uh]] · nT {{∇huh}} − αh−1
e [[uh]] No

LDG {{uh}} − β · [[uh]] {{σh}}+ β · [[σh]]− αh−1
e [[uh]] Yes

Remark 1. The results we present here apply to more general elliptic equations
with possibly smooth variable coefficients, and remain valid for more general
partitions (non necessarily matching).

3 Non-Overlapping Schwarz Methods

We consider three level of nested partitions of the domain Ω satisfying the
previous assumptions: a subdomain partition TNs

made of Ns non-overlapping
subdomains Ωi, a coarse partition TH (with mesh size H) and a fine partition
Th (with mesh size h). For each subdomain Ωi ∈ TNs

we denote by Ei the
set of all faces of E belonging to Ωi, and set E I

i = {e ∈ Ei : e ⊂ Ωi},
E B

i = {e ∈ Ei : e ⊂ ∂Ωi∩∂Ω}. The set of all (internal) faces belonging to the

skeleton of the subdomain partition will be denoted by Γ, i.e., Γ =
⋃Ns

i=1 Γi

with Γi = {e ∈ E I
i : e ⊂ ∂Ωi}. For i = 1, . . . , Ns, we define the local

spaces by V i
h = {u ∈ L2(Ωi) : v|T ◦ FT ∈ Mℓh(T̂ ) ∀T ∈ Th, T ⊂ Ωi}

and Σi
h = [V i

h ]d, and the prolongation operators RT
i : V i

h −→ Vh as the
classical inclusion operators from V i

h to Vh. For vector-valued functions RT
i

is defined componentwise. We observe that Vh = RT
1 V

1
h ⊕ . . .⊕ RT

Ns
V Ns

h and

Σh = RT
1 Σ1

h ⊕· · ·⊕RT
Ns

ΣNS

h . The restriction operators Ri, are defined as the

transpose of RT
i with respect to the L2–inner product.
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Local solvers: we consider the DG approximation of the problem:

− ∆ui = f |Ωi
in ∂Ωi, ui = 0 on Ωi .

In view of (5), the local bilinear forms Ai : V i
h × V i

h −→ R are defined by

Ai(ui, vi) =

∫

Ωi

∇hui · ∇hvi dx+

∫

Ei

[[ûi − ui]] · {{∇hvi}}ds

+

∫

E I
i

{{ûi − ui}} [[∇hvi]] ds−
∫

Ei

{{σ̂i}} · [[vi]] ds−
∫

E I
i

[[σ̂i]] {{vi}}ds,

where ûi and σ̂i are the local numerical fluxes. On e ∈ E I
i , ûi and σ̂i are

defined as the numerical fluxes û, σ̂ of the global DG method on interior
faces, and on e ∈ E B

i ∪ Γi as û and σ̂ on boundary faces. Note that, each
e ∈ Γi is a boundary face for the local partition but an interior face for the
global partition. From the definition of Ai(·, ·), and taking into account the
different definition (2)-(3) of the average operator on interior and boundary
faces (implying that {{RT

i vi}}δ = δvi but {{vi}}δ = vi on e ∈ Γi), it follows that
we are using approximate local solvers, that is, Ah(RT

i ui, R
T
i ui) ≤ ωAi(ui, ui),

with ω 6= 1.
Coarse solver: for all u0, v0 ∈ V 0

h = {vH ∈ L2(Ω) : vH |T ∈ MℓH (T ) ∀T ∈
TH}, with 0 ≤ ℓH ≤ ℓh, the coarse solver A0 : V 0

h × V 0
h −→ R is defined by

A0(u0, v0) = Ah(RT
0 u0, R

T
0 v0), where RT

0 is the classical injection operator.

Remark 2. We notice that, in all the previously proposed Schwarz methods
(see, e.g., [6, 4]) exact local solvers were employed.

3.1 Schwarz Methods: Variational and Algebraic Formulations

For i = 0, . . . , Ns, and for all vi ∈ V i
h , we define the projection operators

P̃i : Vh −→ V i
h by Ai(P̃iu, vi) = Ah(u,RT

i vi) and set Pi = RT
i P̃i : Vh −→ Vh.

The additive and multiplicative Schwarz operators we consider are defined by

Pad =

Ns∑

i=0

Pi, Pmu = I − (I − PNs
)(I − PNs−1) · · · (I − P0),

respectively, where I : Vh −→ Vh is the identity operator. We also define
the error propagation operator ENs

= (I − PNs
)(I − PNs−1) · · · (I − P0) and

observe that Pmu = I − ENs
. The Schwarz methods can be written as the

product of a suitable preconditioners, namely Bad or Bmu, and A. In fact,
for i = 0, . . . , Ns, it is straightforward to note that the matrix representation
of the projection operators Pi, is given by Pi = RT

i A−1
i RiA. Then,

Pad =

Ns∑

i=0

Pi = BadA, Pmu = I − (I − PNs
) · · · (I − P0) = BmuA.
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The additive Schwarz operator Pad is symmetric for all symmetric DG ap-
proximations, while, the multiplicative operator Pmu is non symmetric (see
[1] for a symmetrized version). Therefore, suitable iterative methods have to
be used for solving the resulting linear systems: for the former case we use
the conjugate gradient method while for the latter case we use the generalized
minimal residual (GMRES) linear solver.

4 Convergence Results

In this section we present the convergence results for the proposed two-level
Schwarz methods. We refer to [2, 1] for their proofs and further discussions on
the convergence analysis. In what follows Nc denotes the maximum number of
adjacent subdomains a given subdomain can have, and C is a positive constant
independent of the mesh size.

Theorem 1. Let Ah(·, ·) be the bilinear form of a symmetric DG method given
in Table 1. Then, the condition number of Pad, κ(Pad), satisfies

κ(Pad) ≤ C α
H

h
(1 + ω(1 +Nc)) . (6)

Remark 3. Note that Theorem 1 shows that κ(Pad) depends linearly on the
penalty parameter α .

The multiplicative operator is non-symmetric and in Theorem 2, we show that
the energy norm of the error propagation operator is strictly less than one.

Theorem 2. Let Ah(·, ·) be the bilinear form of a symmetric DG method given
in Table 1. Then, there exists α̃ > 0 such that if α ≥ α̃

‖ENs
‖2

A = sup
u∈Vh
u6=0

Ah(ENs
u,ENs

u)

Ah(u, u)
≤ 1 − 2 − ω

C α (1 + 2ω2(Nc + 1)2)

h

H
< 1.

Theorem 2 also guarantees that the multiplicative Schwarz method can be
accelerated with the GMRES linear solver (see [5]).

Remark 4. As in the classical Schwarz theory, our convergence result for Pmu

relies upon the hypothesis that ω ∈ (0, 2). Since we are using approximate local
solvers, we need a technical assumption on the size of the penalty parameter
to guarantee ω ∈ (0, 2). Nevertheless, we wish to stress that the assumed size
of α̃ is moderate (see [1] for details).

Remark on Schwarz methods for the non-symmetric NIPG and
IIPG approximations. In Table 2, we numerically demonstrate that the
minimum eigenvalue of the symmetric part of the additive and multiplicative
operators, denoted by λmin(Pad) and λmin(Pmu), respectively, might be nega-
tive. As a consequence, the [5] GMRES convergence theory cannot be applied
to explain the observed optimal performance of the proposed preconditioners
(see Sect. 5).



190 P.F. Antonietti, B. Ayuso

Table 2. NIPG method (α = 1) : ℓh = ℓH = 1, Ns = 16, Cartesian grids.
Minimum eigenvalue of the symmetric part of Pad (left) and Pmu (right).

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 0.06 -0.16 -0.31 -0.40
H0/2 0.64 0.01 -0.26 -0.40
H0/4 - 0.63 -0.02 -0.27
H0/8 - - 0.62 -0.05

(a) λmin(Pad)

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 0.16 -0.09 -0.27 -0.38
H0/2 1.00 0.01 -0.21 -0.38
H0/4 - 1.00 0.09 -0.20
H0/8 - - 1.00 -0.03

(b) λmin(Pmu)

5 Numerical Results

We take Ω = (0, 1) × (0, 1) and we choose f so that the exact solution
of problem (1) (with non-homogeneous boundary conditions) is given by
u(x, y) = exp(xy). The subdomain partitions consist of Ns squares, Ns = 4, 16
(see Fig. 1 for Ns = 4). We consider both matching and non-matching Carte-
sian grids (see Fig. 1 where the initial coarse and fine non-matching grids are
depicted. The corresponding matching grids are obtained by gluing together
all the elements that have at least a hanging-node). We denote by H0 and
h0 the corresponding initial coarse and fine mesh sizes, respectively, and we
consider n successive global uniform refinements of these initial grids so that
the resulting mesh sizes are Hn = H0/2

n and hn = h0/2
n, with n = 0, 1, 2, 3.

The tolerance is set to 10−9.

Fig. 1. Sample of a Ns = 4 subdomain partition of Ω = (0, 1) × (0, 1) with the
initial coarse (left) and fine (right) non-matching meshes.

We first address the scalability of the proposed additive Schwarz method,
i.e., the independence of the convergence rate of the number of subdomains.
In Table 3 we compare the condition number estimates for the SIP method
(α = 10) with ℓh = ℓH = 1 obtained on non-matching Cartesian grids (see
Fig. 1) with Ns = 4, 16. As stated in Theorem 1, our preconditioner seems to
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be insensitive on the number of subdomains, and the expected convergence
rates are clearly achieved.

Table 3. SIPG method (α = 10): ℓh = ℓH = 1, non-matching Cartesian grids.

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 31.4 65.9 137.2 277.8
H0/2 6.3 32.8 67.1 137.0
H0/4 - 6.3 33.0 67.1
H0/8 - - 6.4 33.0

κ(A) 4.3e3 1.7e4 7.0e4 2.8e5

(a) κ(Pad): Ns = 4

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 29.3 63.3 133.9 272.9
H0/2 6.1 31.5 65.5 135.8
H0/4 - 6.4 32.8 66.9
H0/8 - - 6.4 33.0

κ(A) 4.3e3 1.7e4 7.0e4 2.8e5

(b) κ(Pad): Ns = 16

In Table 4 we compare the GMRES iteration counts obtained with
our additive and multiplicative Schwarz methods. More precisely, the re-
sults reported in Table 4 have been obtained on Cartesian grids with the
LDG method (α = 1, β = (0.5, 0.5)T ), by using ℓh = 2, ℓH = 1 and Ns = 16.
The crosses in the last row of Table 4 mean that the GMRES fails to converge
due to its large memory requirements. In both cases we observe optimal con-
vergence rates (we note however, that for the multiplicative preconditioner,
the hypothesis on the size of α required in Theorem 2 is not satisfied).

Table 4. LDG method (α = 1, β = (0.5, 0.5)T ): ℓh = 2, ℓH = 1, Cartesian grids.

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 49 68 95 128
H0/2 33 46 64 88
H0/4 - 33 47 65
H0/8 - - 34 48

#iter(A) 112 210 403 x

(a) BadAu = Badf : Ns = 16

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 22 30 40 53
H0/2 14 17 23 32
H0/4 - 12 16 21
H0/8 - - 10 13

#iter(A) 112 210 403 x

(b) BmuAu = Bmuf : Ns = 16

Finally, we present some numerical computations carried out with the
non-symmetric NIPG method (α = 1). In Table 5 we compared the GM-
RES iteration counts obtained with ℓh = ℓH = 1 on Cartesian grids and
by preconditioning with the proposed additive and multiplicative Schwarz
preconditioners. Clearly, the GMRES applied to the preconditioned systems
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converges in a finite number of steps and, as in the symmetric case, the iter-
ation counts remain unchanged whenever we decrease both the fine and the
coarse mesh keeping their ratio constant. In all the cases addressed, the mul-
tiplicative Schwarz method seems to be approximately twice faster than the
additive preconditioner.

Table 5. NIPG (α = 1): GMRES iteration counts, ℓh = ℓH = 1, Cartesian grids.

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 25 26 29 36
H0/2 14 21 24 28
H0/4 - 14 20 23
H0/8 - - 14 19

#iter(A) 33 61 117 227

(a) BadAu = Badf : Ns = 16

H ↓ h→ h0 h0/2 h0/4 h0/8

H0 12 13 16 20
H0/2 1 9 11 14
H0/4 - 1 8 10
H0/8 - - 1 7

#iter(A) 33 61 117 227

(b) BmuAu = Bmuf : Ns = 16
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