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1 Introduction

In this paper we present a concise common framework for the BDDC algorithm
(cf. [4, 8, 9]) and the FETI-DP algorithm (cf. [6, 5, 10]), using the mathemat-
ical language of function spaces, their dual spaces and quotient spaces, and
operators. This abstract framework will be illustrated in terms of the following
model problem.

Let Ω ⊂ Rd (d = 2 or 3) be a bounded polyhedral domain subdivided into
J nonoverlapping polyhedral subdomains Ω1, . . . , ΩJ , T be a triangulation of
Ω aligned with the boundaries of the subdomains, and V (Ω) ⊂ H1

0 (Ω) be the
P1 finite element space associated with T . For simplicity, we assume that the
subdomains are geometrically conforming, i.e., the intersection of the closures
of two distinct subdomains is either empty, a common vertex, a common edge
or a common face. The interface of the subdomains is Γ =

⋃J
j=1(∂Ωj \ ∂Ω).

The model problem is to find u ∈ V (Ω) such that

a(u, v) =
J∑

j=1

aj(uj , vj) =

∫

Ω

fv dx ∀ v ∈ V (Ω), (1)

where uj = u
∣∣
Ωj

, vj = v
∣∣
Ωj

,

aj(uj , vj) = αj

∫

Ωj

∇uj · ∇vj dx,

αj is a positive constant, and f ∈ L2(Ω).
The rest of the paper is organized as follows. The common framework for

BDDC and FETI-DP will be presented in Section 2, followed by a discussion of
the additive Schwarz formulations of these algorithms in Section 3. Condition
number estimates for BDDC and FETI-DP (applied to the model problem)
are then sketched in Section 4. Throughout the paper we use 〈·, ·〉 to denote
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the canonical bilinear form between a vector space V and its dual space V ′,
and the superscript t to denote the transpose of an operator with respect to
the canonical bilinear forms.

2 A Common Framework for BDDC and FETI-DP

After parallel subdomain solves, the model problem (1) is reduced to the
interface problem of computing uΓ ∈ V (Γ ) such that

a(uΓ , vΓ ) =

∫

Ω

fvΓ dx ∀ vΓ ∈ V (Γ ), (2)

where V (Γ ) ⊂ V (Ω) is the space of discrete harmonic functions whose mem-
bers satisfy

a(vΓ , w) = 0 ∀w ∈ V (Ω) that vanish on Γ .

The interface problem (2) is solved by the BDDC method through a pre-
conditioned conjugate gradient algorithm. In the FETI-DP approach, it is first
transformed to a dual-primal problem and then solved by a preconditioned
conjugate gradient algorithm.

The first ingredient in the common framework for BDDC and FETI-DP
is of course the space V (Γ ). The restriction of V (Γ ) to Ωj gives the space
Hj of discrete harmonic functions on Ωj . The second ingredient is a space
Hc ⊂ H1 × · · · × HJ of constrained piecewise discrete harmonic functions.
The subdomain components of a function in Hc share certain average values
(constraints) along the interface Γ . In particular, we have V (Γ ) ⊂ Hc. The
constraints (shared averages) are chosen so that (i) the bilinear form a(·, ·)
remains positive definite on Hc, (ii) the bilinear form aj(·, ·) is positive definite
on the subspace of Hj whose members have vanishing constraints, and (iii) the
preconditioned systems in BDDC and FETI-DP have good condition numbers.

Example For the two-dimensional model problem, the constraints that de-
fine Hc are the values of the subdomain components at the corners of the
subdomains that are interior to Ω, i.e., Hc is the space of piecewise discrete
harmonic functions that are continuous at these interior corners (cross points).
For the three-dimensional model problem, the constraints are the averages
along the edges of the subdomains that are interior to Ω, i.e., Hc is the space
of piecewise discrete harmonic functions whose average along any interior edge
is continuous across the subdomains sharing the edge.

The third ingredient of the framework is the Schur complement operator
S : Hc −→ H′

c defined by

〈Sv, w〉 = a(v, w) ∀ v, w ∈ Hc.

Let IΓ : V (Γ ) −→ Hc be the natural injection. Then the interface problem
(2) can be written as SuΓ = φΓ , where
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S = It
Γ SIΓ (3)

and 〈φΓ , v〉 =

∫

Ω

fv dx ∀ v ∈ V (Γ ).

In the FETI-DP approach, the interface problem (2) is transformed to the
equivalent dual-primal problem of finding (uc, λ) ∈ Hc× [Hc/V (Γ )]′ such that

J∑

j=1

aj(u
c
j , vj) + 〈λ,QΓ v〉 =

∫

Ω

fv dx ∀ v ∈ Hc

〈µ,QΓu
c〉 = 0 ∀µ ∈ [Hc/V (Γ )]′

(4)

where QΓ : Hc −→ Hc/V (Γ ) is the canonical projection, and [Hc/V (Γ )]′

plays the role of the space of Lagrange multipliers that enforce the continuity
of the constraints along Γ for functions in Hc. Eliminating uc from (4), we
find S†λ = QΓ S−1φc, where the operator S† : [Hc/V (Γ )]′ −→ [Hc/V (Γ )] is
defined by

S† = QΓ S−1Qt
Γ (5)

and 〈φc, v〉 =

∫

Ω

fv dx ∀v ∈ Hc.

The final ingredient of the framework is a operator PΓ that projects Hc

onto V (Γ ). We can then define the preconditioners BBDDC : V (Γ )′ −→ V (Γ )
and BFETI−DP : [Hc/V (Γ )] −→ [Hc/V (Γ )]′ by

BBDDC = PΓ S−1P t
Γ , BFETI−DP = Lt

Γ SLΓ , (6)

where the lifting operator LΓ : Hc/V (Γ ) −→ Hc is given by

LΓ (v + V (Γ )) = v − IΓPΓ v ∀ v ∈ Hc. (7)

Example For our model problems the projection operator PΓ is defined by
weighted averaging:

(PΓ v)(p) =
( 1∑

j∈σp
αγ

j

) ∑

ℓ∈σp

αγ
ℓ vℓ(p) ∀ p ∈ NΓ , (8)

where NΓ = the set of nodes on Γ , σp = the index set for the subdomains
that share p as a common boundary node, and γ is any number ≥ 1/2. The
key property of this weighted averaging is that

αkα
γ
ℓ /(
∑

j∈σp

αγ
j ) ≤ αℓ ∀ k, ℓ ∈ σp. (9)

In summary, the system operators for the BDDC and FETI-DP methods
and their preconditioners are defined in terms of the four ingredients V (Γ ),
Hc, S and PΓ through (3) and (5)–(7).
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It is easy to see that

PΓ IΓ = IdV (Γ ), QΓLΓ = IdHc/V (Γ ) and IΓPΓ + LΓQΓ = IdHc
. (10)

The following result (cf. [9, 7, 3]) on the spectra of BBDDCS and BFETI−DPS
†

follows from the three relations in (10).

Theorem 1. It holds that λmin(BBDDCS) ≥ 1, λmin(BFETI−DPS
†) ≥ 1, and

σ(BBDDCS)\{1} = σ(BFETI−DPS
†)\{1}. Furthermore, the multiplicity of any

common eigenvalue different from 1 is identical for BBDDCS and BFETI−DPS
†.

3 Additive Schwarz Formulations

The additive Schwarz formulations of BBDDC and BFETI−DP involve the spaces
H̊j = {v ∈ Hj : Ejv ∈ Hc}, where Ej is the trivial extension operator defined
by

Ejv =

{
v on Ωj

0 on Ω \Ωj

, (11)

and the Schur complement operators Sj : H̊j −→ H̊′
j defined by

〈Sjv, w〉 = aj(v, w) ∀ v, w ∈ H̊j .

Example H̊j is precisely the space of discrete harmonic functions on Ωj

whose interface constraints are identically zero. For the 2D model problem
these functions vanish at the corners of Ωj . For the 3D model problem, they
have zero averages along the edges of Ωj . Note that aj(·, ·) is positive definite

on H̊j .

We can now introduce the coarse space

H0 = {v ∈ Hc : aj(vj , wj) = 0 ∀wj ∈ H̊j , 1 ≤ j ≤ J},

and define the Schur complement operator S0 : H0 −→ H′
0 by

〈S0v, w〉 = a(v, w) ∀ v, w ∈ H0.

Lemma 1. The inverse of S can be written as

S−1 =

J∑

j=0

EjS
−1
j Et

j , (12)

where Ej for 1 ≤ j ≤ J is defined in (11) and E0 : H0 −→ Hc is the natural
injection.
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Proof. Let v ∈ Hc be arbitrary. Then we have a unique decomposition
v =

∑J
k=0Ekvk, where v0 ∈ H0 and vk ∈ H̊k for 1 ≤ k ≤ J , and

[ J∑

j=0

EjS
−1
j Et

j

]
Sv =

[ J∑

j=0

EjS
−1
j Et

j

]
S

[ J∑

k=0

Ekvk

]

=

J∑

j=0

EjS
−1
j Et

jSEjvj =

J∑

j=0

Ejvj = v,

where we have used the facts that Et
jSEk = 0 if j 6= k and Sj = Et

jSEj .

It follows from (6) and (12) that

BBDDC =

J∑

j=0

(PΓEj)S
−1
j (PΓEj)

t. (13)

Let H̊ =
∑J

j=1EjH̊j be the subspace of Hc whose members have zero
interface constraints. Note that the lifting operator defined by (7) actually
maps Hc/V (Γ ) to H̊, since the interface constraints of a function v ∈ Hc are
preserved by the weighted averaging operator PΓ . Therefore we can factorize
LΓ as

LΓ = I̊ ◦ L̊Γ ,

where L̊Γ : Hc/V (Γ ) −→ H̊ is defined by the same formula in (7) and the
operator I̊ : H̊ −→ Hc is the natural injection. We can then write

BFETI−DP = L̊t
Γ (I̊tSI̊)L̊Γ . (14)

The following lemma can be established by arguments similar to those in
the proof of Lemma 1.

Lemma 2. We have

I̊tSI̊ =

J∑

j=1

Rt
jSjRj , (15)

where Rj : H̊ −→ H̊j is the restriction operator.

It follows from (14) and (15) that

BFETI−DP =

J∑

j=1

(RjL̊Γ )tSj(RjL̊Γ ). (16)

The formulations (13) and (16) allow both algorithms to be analyzed by
the additive Schwarz theory (cf. [2, 11] and the references therein).
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4 Condition Number Estimates

In view of Theorem 1, the preconditioned systems in the BDDC and FETI-DP
methods have similar behaviors. Here we will sketch the condition number
estimates for the BDDC method applied to our model problem. Since we
already know that λmin(BBDDCS) ≥ 1, it only remains to find an upper bound
for λmax(BBDDCS) using the following formula from the theory of additive
Schwarz preconditioners (cf. [2]):

λmax(BBDDCS) = max
v∈V (Γ )\{0}

〈Sv, v〉

min
v=
∑J

j=0 PΓ Ejvj

v0∈H0, vj∈H̊j (1≤j≤J)

J∑

j=0

〈Sjvj , vj〉
(17)

Let w be a discrete harmonic function on a subdomain Ωj and the geo-
metric object G be either a corner c (dim G = 0), an open edge e (dim G = 1) or
an open face f (dim G = 2) of Ωj . We will denote by wG the discrete harmonic
function that agrees with w at the nodes on G and vanishes at all other nodes.
The following estimate (cf. [2, 11] and the references therein) is crucial for the
condition number estimate of the model problem:

|w
G
|2H1(Ωj)

≤ C
(
1 + ln

Hj

hj

)3−d+dimG
|w|2H1(Ωj)

, (18)

where d = 2 or 3, Hj is the diameter of Ωj , and hj is the mesh size of the
quasi-uniform triangulation which is the restriction of T to Ωj . We assume
that w vanishes at one of the corners of Ωj when d = 2 and that w has zero
average along one of the edges of Ωj . (Henceforth we use C to denote a generic
positive constant that can take different values at different occurrences.)

Furthermore, if w ∈ V (Γ ), then it follows from the equivalence of |w|H1(Ωj)

and |w|H1/2(∂Ωj) (cf. [2, 11]) that

|wG |H1(Ωk) ≤ C|wG |H1(Ωℓ) (19)

if Ωk and Ωℓ share the common geometric object G.
Let v ∈ V (Γ ) be arbitrary and v =

∑J
j=0 PΓEjvj be any decomposition

of v, where v0 ∈ Hc and vj ∈ H̊j for 1 ≤ j ≤ J . We want to show

〈Sv, v〉 ≤ C
(
1 + ln

H

h

)2 J∑

j=0

〈Sjvj , vj〉, (20)

where H/h = max1≤j≤J(Hj/hj).
Observe first that

〈Sv, v〉 = 〈S
J∑

j=0

PΓEjv,

J∑

k=0

PΓEkv〉
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≤ 2
[
〈SPΓE0v0, PΓE0v0〉 + 〈S

J∑

j=1

PΓEjvj ,

J∑

j=k

PΓEkv〉
]

(21)

≤ C

J∑

j=0

〈SPΓEjv, PΓEjv〉,

where we have used the fact that each vj (1 ≤ j ≤ J) only interacts
with functions from a few subdomains. Therefore, it remains only to relate
〈SPΓEjvj , PΓEjvj〉 to 〈Sjvj , vj〉.

Let w = v0 − PΓE0v0. Then w vanishes at the corners of the subdomains
when d = 2 and has zero averages along the edges of the subdomains when
d = 3. We can write

w =
∑

1≤j≤J

(∑

c∈Cj

wc +
∑

e∈Ej

we +
∑

f∈Fj

wf

)

where Cj (resp. Ej and Fj) is the set of the corners (resp. edges and faces) of
Ωj (Cj = ∅ = Fj for d = 2), and apply (8), (9), (18) and (19) to obtain the
estimate

〈Sw,w〉 ≤ C

J∑

j=1

(
1 + ln

Hj

hj

)2

αj |v0|2H1(Ωj)
≤ C

(
1 + ln

H

h

)2

〈S0v0, v0〉,

which together with the triangle inequality implies that

〈SPΓE0v0, PΓE0v0〉 ≤ C
(
1 + ln

H

h

)2

〈S0v0, v0〉. (22)

Similarly, we have the estimate

〈SPΓEjvj , PΓEjvj〉 ≤ C
(
1 + ln

Hj

hj

)2

〈Sjvj , vj〉 for 1 ≤ j ≤ J. (23)

The estimate (20) follows from (21)–(23).
We see from (20) that

〈Sv, v〉 ≤ C
(
1 + ln

H

h

)2

min
v=
∑J

j=0 PΓ Ejvj

v0∈H0, vj∈H̊j (1≤j≤J)

J∑

j=0

〈Sjvj , vj〉. (24)

Combining (17) and (24) we have the estimate

λmax(BBDDCS) ≤ C
(
1 + ln

H

h

)2

and hence the following theorem on the condition number of BBDDCS, which
has also been obtained in [8] and [9] by a different approach.
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Theorem 2. For the model problem we have

κ(BBDDCS) =
λmax(BBDDCS)

λmin(BBDDCS)
≤ C

(
1 + ln

H

h

)2

,

where the positive constant C is independent of hj, Hj, αj and J .

Finally we remark that for the model problem the estimate

κ(BFETI−DPS
†) ≤ C

(
1 + ln

H

h

)2

follows from Theorem 1 and Theorem 2. A direct analysis of BFETI−DPS
† by

the additive Schwarz theory can also be found in [1].
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