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Summary. A parallel fully coupled one-level Newton-Krylov-Schwarz method is in-
vestigated for solving the nonlinear system of algebraic equations arising from the
finite difference discretization of inverse elliptic problems. Both L2 and H1 least
squares formulations are considered with the H1 regularization. We show numeri-
cally that the preconditioned iterative method is optimally scalable with respect to
the problem size. The algorithm and our parallel software perform well on machines
with modest number of processors, even when the level of noise is quite high.

1 Introduction

We consider an inverse elliptic problem [1, 6]: Find ρ(x), such that

{
−∇ · (ρ∇u) = f, x ∈ Ω

u(x) = 0, x ∈ ∂Ω. (1)

When the measurement of u(x) is given, denoted as z(x), the inverse problem can
be transformed into a minimization problem:

minimize J(ρ, u) =
1

2

∫

Ω

(u− z)2dx+
β

2

∫

Ω

|∇ρ|2dx, (2)

which is usually referred to as the “L2 least squares formulation”. When the measure-
ment of ∇u(x) is given, denoted as ∇z(x), the inverse problem can be transformed
into another minimization problem:

minimize J(q, v) =
1

2

∫

Ω

ρ |∇u−∇z|2dx+
β

2

∫

Ω

|∇ρ|2dx, (3)

which is usually referred to as the “H1 least squares formulation”. Both minimization
problems (2) and (3) are subject to the constraint (1). We introduce the Lagrangian
functional
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L(ρ, u, λ) =
1

2

∫

Ω

(u− z)2dx+ ((∇λ, ρ∇u)− (λ, f)) +
β

2

∫

Ω

|∇ρ|2dx (4)

for the L2 case, and

L(ρ, u, λ) =
1

2

∫

Ω

ρ|∇u−∇z|2dx+ ((∇λ, ρ∇u)− (λ, f)) +
β

2

∫

Ω

|∇ρ|2dx (5)

for the H1 case. The solution of both minimization problems can be obtained by
solving the corresponding saddle-point problem: Find (ρ, u, λ) such that (∇ρL)p =
0, (∇uL)w = 0, and (∇λL)µ = 0 for any (p, w, µ), which implies that





−β∆ρ+∇u · ∇λ = 0

−∇ · (ρ∇λ) + (u− z) = 0

−∇ · (ρ∇u)− f = 0

(6)

in the L2 case. Similarly, in the H1 case, we have





−β∆ρ+∇u · ∇λ+
1

2
|∇u−∇z|2 = 0

−∇ · (ρ∇λ) +∇ · (ρ∇z) + f = 0

−∇ · (ρ∇u)− f = 0.

(7)

Both systems share the same boundary conditions ∂ρ/∂n = 0, u = 0, λ = 0 on ∂Ω.
A derivation of the boundary conditions is given in [3]. The rest of the paper is
devoted to a Newton-Krylov-Schwarz method for solving the algebraic systems

F (U) = 0

arising from the finite difference discretization of (6) and (7) in a fully coupled
fashion [3, 4].

2 Newton-Krylov-Schwarz Method

The family of Newton-Krylov-Schwarz (NKS) methods [2] is a general-purpose par-
allel algorithm for solving a system of nonlinear algebraic equations. NKS has three
main components: an inexact Newton’s method for the nonlinear system; a Krylov
subspace linear solver for the Jacobian systems (restarted GMRES); and a Schwarz
type preconditioner [7]. Other related techniques can be found in [5]. We carry out
Newton iterations as following:

Uk+1 = Uk − λkJ(Uk)−1F (Uk), k = 0, 1, ... (8)

where U0 is an initial approximation to the solution and J(Uk) = F ′(Uk) is the
Jacobian at Uk, and λk is the steplength determined by a linesearch procedure.
The inexactness of Newton’s method is reflected by the fact that we do not solve
the Jacobian system exactly. The accuracy of the Jacobian solver is determined by
some ηk ∈ [0, 1) and the condition
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‖F (Uk) + J(Uk)sk‖ ≤ ηk‖F (Uk)‖. (9)

The vector sk is obtained by approximately solving the linear Jacobian system

J(Uk)M−1
k (Mksk) = −F (Uk),

where M−1
k is a one-level additive Schwarz right preconditioner. To formally define

M−1
k , we need to introduce a partition of Ω. We first partition the domain into

non-overlapping substructures Ωl, l = 1, · · · , N . In order to obtain an overlapping
decomposition of the domain, we extend each subregion Ωl to a larger region Ω′l, i.e.,
Ωl ⊂ Ω′l. Only simple box decomposition is considered in this paper – all subdomains
Ωl and Ω′l are rectangular and made up of integral numbers of fine mesh cells. The
size of Ωl is Hx ×Hy and the size of Ω′l is H ′x ×H ′y, where the H ′s are chosen so
that the overlap, ovlp, is uniform in the number of fine mesh cells all around the
perimeter, i.e., ovlp = (H ′x − Hx)/2 = (H ′y − Hy)/2 for interior subdomains. For
boundary subdomains, we simply cut off the part that is outside Ω.

On each extended subdomain Ω′l, we construct a subdomain preconditioner Bl,
whose elements are extracted from the matrix J(Uk). Homogeneous Dirichlet bound-
ary conditions are used on the internal subdomain boundary ∂Ω′l ∩Ω, and the origi-
nal boundary conditions are used on the physical boundary, if present. The additive
Schwarz preconditioner can be written as

M−1
k = I1B

−1
1 (I1)T + · · ·+ INB

−1
N (IN )T . (10)

Let n be the total number of mesh points, and n′l the total number of mesh points
in Ω′l, then Il is an 3n×3n′l extension matrix that extends each vector defined on Ω′l
to a vector defined on the entire fine mesh by padding an 3n′l × 3n′l identity matrix
with zero rows. The factor of 3 is included because each mesh point has 3 unknowns.

3 Numerical Experiments

We study the performance of the proposed algorithm using the following test case
with the observation function given as z(x, y) = sin(πx) sin(πy), Ω = (0, 1)× (0, 1),
and the right-hand side f chosen so that the elliptic coefficient to be identified is
ρ = 1 + 100(xy(1 − x)(1 − y))2. To test the robustness of the algorithms, we add
some noise to the observation data as

zδ = z + δ rand(x, y) (11)

or
∇zδ = ∇z + δ (rand(x, y), rand(x, y))T , (12)

depending on if the formulation is L2 or H1. Here rand(x, y) defines a random
scalar function. δ is responsible for the magnitude of the noise. Results with three
different levels of noise (δ = 0%, 1% and 10%) will be presented. Since u needs to
satisfy the elliptic equation, we assume that u and ∇u have some continuity and
differentiability. Therefore, we smooth z in the L2 formulation or ∇z in the H1

formulation before we start the Newton iteration. This is necessary especially when
the noise level is high. In particular, when the noise level is 10%, we replace the
value of z or ∇z by the average value around it using the following weights
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We repeat this operation 3 times in all the experiments when δ = 10%. No smoothing
is applied when δ is smaller than 10%.

To measure the accuracy of the algorithm, we assume the exact solution of the
test problem is known, and erroru and errorρ are the normalized discrete L2 norms
of the errors defined as

erroru =
√∑

(uij − uexactij )2hxhy and errorρ =
√∑

(ρij − ρexactij )2hxhy,

where hx and hy are mesh sizes along x and y directions, respectively.
In our experiments, we choose the stopping conditions as follows: The relative

residual is less than 10−6 or the absolute residual is less than 10−10 for the nonlinear
system. The relative residual is less than 10−6 or the absolute residual is less than
10−10 for each linear solve in the nonlinear iteration. We do not have a systematic
way to pick β. Several values of β are tested in the range of 10−4 to 10−6. In Newton’s
method, we use the initial guess (ρ(0), u(0), λ(0))T = (1, z, 0)T for the L2 formulation.
For the H1 formulation, z is obtained as an integral of ∇xz or ∇yz along the x or
y direction from one of the boundary points. In our experiments, at the mesh point
(xi, yj),

z(xi, yj) = z(x0, yj) +

i∑

l=1

(∇xz)|xlhx

if we take the integral in the x direction, or a similar integral in the y direction.
We first test three meshes 40× 40, 80× 80, and 160× 160. When the Jacobian

systems are solved exactly with a Gaussian elimination, the total number of Newton
iterations ranges from 3 to 6, and the iteration numbers are not sensitive to the level
of noise, as shown in Table 1. The exact solution, and the numerical solutions for
both L2 and H1 formulations with 3 levels of noise are shown in Fig. 1.

We next look at the performance of the algorithm, in particular, we would like
to know how the convergence depends on the mesh size, the number of subdomains,
and the overlapping size. We solve the problem on a 320× 320 mesh using different
number of processors (np), and the results, in terms of the iteration number and
the total compute time, are in Table 2. The numbers of Newton iterations do not
change when we change the number of processors or the overlapping size.

If we fix the number of subdomains, which is the same as the number of proces-
sors, and increase the overlapping size, the number of GMRES iterations decreases.
The compute time decreases to a certain point and then begins to increase. This
suggests that an optimal overlapping size exists if the objective is to minimize the
total compute time when the number of processors is fixed. On a fixed mesh the
number of GMRES iterations increases as we use more processors. This is expected
since this is a single-level algorithm.

To check the h−scalability of the algorithm, we increase the mesh size and the
number of processors at the same ratio in order for each processor to have the
same number of mesh points. Table 3 shows the results with different mesh sizes for
np=4, 16 and 64. Both the number of Newton iterations and the number of GMRES
iterations are almost constants when the number of processors is fixed.
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4 Final Remarks

We developed a fully parallel domain decomposition method for solving the system
of nonlinear equations arising from the fully coupled finite difference discretization
of some inverse elliptic problems. Traditionally this type of problems are solved by
using Uzawa type of algorithms which split the system into two or three subsystems
and each subsystem is solved individually. Subiterations are required between the
subsystems. The subsystems are easier to solve than the global coupled system,
but the iterations between subsystems are sequential in nature. The focus of this
paper was to investigate a fully coupled approach without splitting the system into
subsystems. Such an approach is more parallel than the splitting method. We showed
numerically that with a powerful domain decomposition based preconditioner the
convergence of the iterative methods can be obtained even for some difficult cases
when the observation data has high level of noise. More details of the work will be
included in a forthcoming paper [3].

Table 1. Errors and the number of Newton iterations for three different meshes and
with different levels of noise.

erroru errorρ Newton

L2 formulation β = 10−6, δ = 0 0.000078 0.003163 3
40× 40 β = 10−5, δ = 1% 0.000765 0.010723 3

β = 10−4, δ = 10% 0.008222 0.038667 3

L2 formulation β = 10−6, δ = 0 0.000073 0.003177 3
80× 80 β = 10−5, δ = 1% 0.000532 0.010070 3

β = 10−4, δ = 10% 0.003849 0.029056 3

L2 formulation β = 10−6, δ = 0 0.000072 0.003203 3
160× 160 β = 10−5, δ = 1% 0.000504 0.009908 3

β = 10−5, δ = 10% 0.002064 0.026190 4

H1 formulation β = 10−5, δ = 0 0.000362 0.001744 6
40× 40 β = 10−5, δ = 1% 0.000355 0.006010 6

β = 10−4, δ = 10% 0.006980 0.022837 5

H1 formulation β = 10−5, δ = 0 0.000090 0.000406 4
80× 80 β = 10−5, δ = 1% 0.000109 0.003842 4

β = 10−4, δ = 10% 0.001921 0.011741 4

H1 formulation β = 10−5, δ = 0 0.000023 0.000187 3
160× 160 β = 10−5, δ = 1% 0.000030 0.002580 4

β = 10−4, δ = 10% 0.000473 0.007419 5
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Fig. 1. The top picture is the exact solution ρ. The following six pictures are the
numerical solution with δ = 0%, 1%, 10% on a 40 × 40 mesh. The left three are for
the L2 formulation and the right three are for the H1 formulation.
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Table 2. The total number of Newton and the average number of GMRES iterations
are shown below for a 320× 320 mesh. The total compute time in seconds is in (·).

np Newton ovlp = 1 ovlp = 2 ovlp = 4 ovlp = 8 ovlp = 16

L2 formulation 1 3 1(374.33) 1(373.37) 1(375.98) 1(375.57) 1(374.62)

β = 10−6 4 3 46(108.93) 33(97.62) 18(80.87) 13(79.21) 8(80.46)
δ = 0% 16 3 66(32.43) 46(26.39) 34(23.92) 22(22.66) 14(26.75)

64 3 127(23.08) 92(19.22) 63(15.49) 42(14.83) 25(16.35)

L2 formulation 1 3 1(374.98) 1(374.23) 1(372.92) 1(372.35) 1(374.21)
β = 10−5 4 3 43(105.49) 26(86.60) 19(80.11) 14(79.02) 9(81.57)
δ = 1% 16 3 57(30.02) 45(25.89) 31(22.55) 22(23.44) 15(30.14)

64 3 134(24.71) 94(19.50) 62(15.28) 45(15.09) 25(15.79)

L2 formulation 1 5 1(623.39) 1(621.60) 1(627.58) 1(622.50) 1(629.40)

β = 10−5 4 6 61(260.45) 47(225.89) 27(182.45) 18(168.59) 12(172.45)
δ = 10% 16 6 110(97.01) 81(77.46) 59(67.06) 39(59.56) 24(70.57)

64 6 234(83.13) 162(62.44) 122(53.56) 78(45.28) 43(50.87)

H1 formulation 1 3 1(382.09) 1(381.11) 1(384.03) 1(382.27) 1(380.59)

β = 10−5 4 3 66(136.58) 41(106.42) 24(87.81) 17(84.60) 12(88.99)
δ = 0% 16 3 148(60.33) 96(43.64) 60(33.56) 37(30.11) 23(34.60)

64 3 290(47.59) 212(38.34) 121(27.61) 92(25.11) 55(27.08)

H1 formulation 1 4 1(505.06) 1(503.49) 1(501.99) 1(502.54) 1(504.08)

β = 10−5 4 4 53(158.88) 34(129.94) 20(110.25) 15(107.46) 10(111.08)
δ = 1% 16 4 110(63.29) 72(47.44) 47(38.10) 29(34.19) 20(40.42)

64 4 219(48.50) 142(35.01) 100(28.07) 58(22.82) 44(28.61)

H1 formulation 1 5 1(624.17) 1(629.97) 1(627.58) 1(629.90) 1(628.54)

β = 10−4 4 5 62(212.91) 47(178.81) 27(151.06) 18(139.06) 12(143.07)
δ = 10% 16 5 104(75.61) 82(65.45) 56(53.17) 36(47.70) 22(52.91)

64 5 221(60.96) 161(49.38) 122(41.46) 71(33.36) 52(38.88)

Table 3. Newton and GMRES iteration numbers are shown below for three different
meshes. The compute time in seconds is in (·). ovlp is 1/5 of the diameter of the
subdomain.

np Newton GMRES Newton GMRES Newton GMRES
80 × 80 mesh 160 × 160 mesh 320 × 320 mesh

L2 formulation 4 3 6(2.62) 3 6(14.72) 3 6(100.44)

β = 10−6 16 3 14(2.48) 3 14(6.33) 3 14(26.75)
δ = 0% 64 3 38(5.73) 3 40(7.28) 3 42(14.83)

L2 formulation 4 3 7(2.41) 3 7(14.22) 3 6(100.23)

β = 10−5 16 3 17(2.82) 3 16(6.60) 3 15(30.14)
δ = 1% 64 3 47(6.74) 3 45(7.68) 3 45(15.09)

L2 formulation 4 3 9(3.03) 3 8(15.79) 3 8(100.47)

β = 10−4 16 3 24(3.65) 3 23(8.02) 3 22(34.35)
δ = 10% 64 3 75(10.41) 3 72(11.47) 3 66(20.66)

H1 formulation 4 4 8(3.43) 3 8(1.54) 3 8(106.40)

β = 10−5 16 4 22(4.04) 3 24(7.47) 3 23(34.60)
δ = 0% 64 4 77(12.68) 3 81(12.14) 3 92(25.11)

H1 formulation 4 4 8(3.43) 4 8(20.69) 4 7(131.44)

β = 10−5 16 4 22(4.17) 4 19(9.25) 4 20(40.42)
δ = 1% 64 4 73(11.90) 4 75(11.89) 4 58(22.82)

H1 formulation 4 4 8(3.85) 5 8(26.33) 5 8(163.20)

β = 10−4 16 4 22(4.23) 5 21(12.14) 5 22(52.91)
δ = 10% 64 4 71(11.71) 5 69(16.88) 5 71(33.36)
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