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Summary. A simple and effective approach is presented to construct coarse spaces
for overlapping Schwarz preconditioners. The approach is based on energy mini-
mizing extensions of coarse trace spaces, and can be viewed as a generalization
of earlier work by Dryja, Smith, and Widlund. The use of these coarse spaces
in overlapping Schwarz preconditioners leads to condition numbers bounded by
C(1 + H/δ)(1 + log(H/h)) for certain problems when coefficient jumps are aligned
with subdomain boundaries. For problems without coefficient jumps, it is possible
to remove the log(H/h) factor in this bound by a suitable enrichment of the coarse
space. Comparisons are made with the coarse spaces of two other substructuring
preconditioners. Numerical examples are also presented for a variety of problems.

1 Introduction

In order to introduce the subject of this paper, consider the linear system

Ax = b, (1)

where A is a coefficient matrix, x is a vector of unknowns, and b is a known vector.
The coarse space for x can be defined as the range of an interpolation matrix Φ.
The vector of unknowns for overlapping subdomain i can be expressed as Rix, where
each row of the restriction matrix Ri has a single nonzero entry of unity. We can now
express a two-level, additive, overlapping Schwarz preconditioner for A concisely as

M−1 = ΦA−1
0 ΦT +

N∑

i=1

RTi A
−1
i Ri, (2)

where N is the number of subdomains, and

A0 = ΦTAΦ, Ai = RiAR
T
i . (3)

Detailed introductions to overlapping Schwarz preconditioners can be found in [15]
and [16]. If restriction matrices Ri are available, we see from (2) and (3) that the
only missing ingredient for M−1 is the interpolation matrix Φ. The subject of this
paper is an approach to constructing Φ.
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If A in (1) originates from a finite element discretization of an elliptic partial
differential equation, then Φ can be constructed using the shape functions of a coarser
discretization. One obvious shortcoming of such an approach is that it requires an
auxiliary finite element mesh. To address this shortcoming, algebraic approaches
have been developed that do not require a second mesh. Examples of these include
smoothed aggregation [1, 8] and partition of unity methods [12]. The approach
presented here is also an algebraic approach and can be viewed as a generalization
of earlier work in [6]; see also Section 5.4.3 of [16] for a description.

A common perception is that condition number bounds for iterative substructur-
ing approaches are superior to those of their overlapping Schwarz counterparts for
problems with large jumps in material properties. Although proofs are not provided
here, it can be shown, under the usual assumptions for substructuring, that use of
the subject coarse spaces in overlapping Schwarz preconditioners leads to condition
number bounds that are competitive with iterative substructuring for certain prob-
lems. In addition, for problems with constant material properties, the coarse spaces
can be enriched to give the classic bounds for two-level overlapping Schwarz pre-
conditioners whose coarse spaces are based on coarse triangulations. We note that
some other coarse spaces well suited for overlapping Schwarz preconditioners and
problems with jumps in material properties can be found in [5, 13, 7, 14].

The paper is organized as follows. The subject approach for constructing coarse
spaces is described in Section 2. Comparisons with two different substructuring
preconditioners are given in Section 3. Some of the theoretical results available to
date are summarized in Section 4. Section 5 provides numerical examples for the
Poisson equation, elasticity, plate bending, and problems in H(curl;Ω).

2 Our Approach

Consider a finite element mesh, and let Ω1, . . . , ΩN denote a partitioning of its
elements into nonoverlapping subdomains. Thus, each element is contained in exactly
one subdomain. Decomposing a mesh into subdomains can be readily done using
graph partitioning software.

Given a decomposition into nonoverlapping subdomains, the only other required
input is a coarse matrix G. This matrix has the same number of rows as x in (1)
and its number of columns is flexible. The most important feature of G is that its
columns span the rigid body modes of each subdomain. We note that the coarse
space in Algorithm 6.10 of [6] and Algorithm 5.16 of [16] is identical to the present
one for the special case of scalar partial differential equations and G chosen as a
vector with all entries equal to unity. Accordingly, we use the acronym GDSW for
generalized Dryja, Smith, Widlund coarse space.

As in (1), let x denote the vector of degrees of freedom (dofs) for the original
problem. Similarly, let xΓ denote the vector of dofs in x shared by two or more
subdomains. We then have xΓ = RΓx, where each row of the restriction matrix RΓ
has exactly one nonzero entry of unity. The vector xΓ can be expressed in partitioned
form as

xΓ =
M∑

j=1

RTΓj
xΓj , (4)
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where xΓj = RΓjxΓ . As with the other subscripted R matrices, each row of RΓj

contains exactly one nonzero entry equal to unity. The partitioning in (4) is chosen
such that all dofs in xΓj are connected and common to the same set of subdomains.
Thus, the dofs in xΓj form an equivalence class.

The coarse approximation of xΓj is expressed as

xΓjc = GΓj qj (5)

for some qj , where the columns of GΓj form a basis for the columns of RΓjRΓG.
Accordingly, from (4) and (5) the coarse approximation of xΓ is given by

xΓc =
M∑

j=1

RTΓj
GΓj qj = ΦΓ q (6)

for some q. The coarse space for the remaining dofs, not on subdomain boundaries,
is obtained from energy minimizing extensions of xΓc into subdomain interiors. We
note that these extensions require either exact or approximate (with some care) solu-
tions of subdomain problems with nonhomogeneous essential boundary conditions.
All of these problems are local to each subdomain and can be solved in parallel.
Notice that the support of coarse basis functions associated with GΓj only includes
those subdomains having Γj a part of their boundaries. Thus, the coarse basis func-
tions have local support.

To obtain an explicit expression for the interpolation matrix Φ, define

xc = RTΓxΓc +RTI xI , (7)

where RI is a restriction matrix to subdomain interiors and xI is the corresponding
vector of interior dofs. Substituting (6) into (7) and minimizing the potential xTc Axc
with respect to xI then leads to

xc = (RTΓΦΓ +RTI ΦI)q = Φq,

where
ΦI = −(RIAR

T
I )−1RIAR

T
ΓΦΓ .

3 Comparisons

In this section we make some broad comparisons with the coarse spaces for the
BDD, [10] and BDDC, [2, 11] approaches. The results are summarized in Table 1.
Regarding Point 3, the sparsity of the coarse stiffness matrix for BDD is not as nice
as the other two because coupling can occur between nonadjacent subdomains. Of
the three approaches compared, notice that the present one (GDSW) is the only
one not requiring individual subdomain matrices. Concerning Point 8, the problem
considered is a unit cube decomposed into N cubic subdomains. Notice that the
coarse problem dimension is significantly larger for GDSW than for the other two
approaches. We note, however, that the 9N figure for BDDC would be somewhat
larger to effectively handle certain problems with large material property jumps.
Regarding Point 9, we comment that special considerations must be made in order
for BDD and BDDC to effectively handle nearly incompressible elasticity problems.
In contrast, no special considerations are needed for GDSW. The primary reason
for this can be linked to the large coarse space dimension of GDSW.
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Table 1. Comparisons of coarse spaces for three different approaches. Results under
the heading GDSW are for the present approach.

Point BDD BDDC GDSW

1 well suited for elasticity problems yes yes yes
2 well suited for plate bending problems yes yes yes
3 nice coarse problem sparsity no yes yes
4 individual subdomain matrices required yes yes no
5 null space information required yes no yes
6 simple multilevel extensions no yes yes
7 theory for coefficient jumps yes yes yes
8 3D elasticity coarse problem dimension 6N 9N 36N
9 well suited for nearly incompressible elasticity yes yes yes

4 Theory

Theoretical results for two-level overlapping Schwarz preconditioners which use the
subject coarse spaces have been obtained for the Poisson equation and for isotropic
elasticity provided the Poisson ratio ν is bounded away from 1/2. Because of space
limitations, additional details and proofs are given elsewhere [3]. Under the usual
assumptions for substructuring given in Section 4.2 of [16], we have the condition
number bound

κ(M−1A) ≤ C(1 +H/δ)(1 + log(H/h)), (8)

provided the columns of the coarse matrix G of Section 2 span the rigid body modes
of the problem operator. The constant C is independent of both the number of
subdomains and possible jumps in material properties across subdomain boundaries.
The term H/h is the ratio of the subdomain diameter to that of the elements and
H/δ is the typical ratio of H and overlap widths. For problems without coefficient
jumps, the log(H/h) term in (7) can be removed anytime the columns of G span all
linear functions of the spatial coordinates.

For stable, mixed finite element formulations of elasticity that are based on
continuous interpolation of displacement and discontinuous interpolation of pressure,
the pressure dofs can be eliminated at the element level provided ν < 1/2. Such an
elimination process results in a finite element with only displacement dofs. Numerical
results and initial theoretical work for problems that use such elements suggest
that condition number bounds exist which are insensitive to ν being arbitrarily
close to the incompressible limit of 1/2. The bound in (8), however, has an (H/δ)3

dependence [4].
The coarse spaces considered here have also proven useful in the analysis of

overlapping Schwarz [3] and iterative substructuring [9] methods on irregular sub-
domains in two dimensions. Efforts are underway to extend these results to irregular
subdomains in three dimensions.

Numerical results in the next section suggest that the coarse spaces also work
well for plate bending and H(curl;Ω) problems in 2D, but we presently have no
supporting theory. In addition, a suitable coarse space for H(curl;Ω) problems in
3D has not yet been identified.



Family of Energy Minimizing Coarse Spaces 251

5 Numerical Examples

Results are presented for unit square domains with homogeneous essential boundary
conditions on all four sides. The stable Q2−P1 element is used in the nearly incom-
pressible elasticity examples. This element uses continuous biquadratic interpolation
of displacement and discontinuous linear interpolation of pressure. Moreover, its
pressure dofs are eliminated at the element level. The standard bilinear element Q1

is used for all the other elasticity and Poisson equation examples. The plate bending
examples use the discrete Kirchoff triangular element and the lowest-order quadri-
lateral edge element is used for the H(curl;Ω) examples. Except for the H(curl;Ω)
examples, the columns of the coarse matrix G described in Section 2 span the rigid
body modes of the problem operator.

Equation (1) is solved to a relative residual tolerance of 10−8 for a random vector
b using preconditioned conjugate gradients. In addition to numbers of iterations,
condition number estimates obtained from the conjugate gradient iterations are
also reported. The overlap width δ is defined as the minimum distance between a
subdomain boundary and the boundary of its overlapping extension. Unless stated
otherwise, the values of the elastic modulus and Poisson ratio ν are 1 and 0.3,
respectively. The elasticity results are for plane strain conditions.

5.1 Poisson Equation, Compressible Elasticity, Plate Bending

Results for fixed values of H/h, H/δ, and increasing numbers of square subdomains
are shown in Table 2. Good scalability with respect to the number of subdomains
N is evident for all three problem types. We now fix N = 16 and H/δ = 4 while
increasing the ratio H/h. The slow growth in iterations and condition numbers
shown in Table 3 is consistent with the estimate in (8). Results for a problem with
the elastic modulus equal to σ in a square centered region of length 1/2 and equal to 1
elsewhere are shown in Table 4. Material property jumps are aligned with subdomain
boundaries and there is no great sensitivity to σ in the numerical results.

Table 2. Iterations (iter) and condition number estimates (cond) for increasing
numbers of subdomains N . Fixed values of H/h = 8 and H/δ = 4 are used.

N Poisson Equation Linear Elasticity Plate Bending

iter cond iter cond iter cond

16 24 8.97 24 6.93 41 17.7
64 27 10.0 26 7.52 48 19.8
256 28 10.3 28 8.01 51 21.1
1024 30 10.4 29 8.28 55 21.7

5.2 Nearly Incompressible Elasticity

Results for a fixed value of H/δ are shown in Table 5 for three different values of
the Poisson ratio ν. As noted earlier, the stable Q2 − P1 element is used. Good
scalability with respect to the number of subdomains is evident for all three values
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Table 3. Results for N = 16 and H/δ = 4.

H/h Poisson Equation Linear Elasticity Plate Bending

iter cond iter cond iter cond

8 24 8.97 24 6.93 41 17.7
16 25 10.5 25 7.87 46 23.4
24 25 11.3 26 8.38 48 26.2
32 26 11.9 27 8.73 50 28.0
40 26 12.3 27 8.99 48 29.4

Table 4. Results for elastic modulus equal to σ in a square centered region and 1
elsewhere. Fixed values of N = 16, H/h = 8, and H/δ = 4 are used.

σ Poisson Equation Linear Elasticity Plate Bending

iter cond iter cond iter cond

10−4 23 6.93 24 6.02 38 13.7
10−2 23 7.05 23 6.05 40 15.4

1 24 8.97 24 6.93 41 17.7
102 24 10.5 26 7.72 39 17.3
104 24 10.5 27 7.74 38 15.3

of ν. Table 5 also shows results for 16 subdomain and different values of H/h. As
in the previous examples, the number of iterations and condition number estimates
grow slowly as H/h increases. Notice in all the examples that the ratio H/δ has
been fixed. Although the relevant numerical results are not presented here, we have
observed a stronger dependence on H/δ than in (8) for problems with ν very close
to 1/2.

Table 5. Plane strain results for H/δ = 4.

H/h = 8 N = 16

N ν = 0.3 ν = 0.4999 ν = 0.49999 H/h ν = 0.3 ν = 0.4999 ν = 0.49999

iter cond iter cond iter cond iter cond iter cond iter cond

16 25 8.05 31 10.6 33 10.6 8 25 8.05 31 10.6 33 10.6
64 29 8.93 32 11.2 34 11.2 16 27 8.89 33 12.3 34 12.3

256 32 9.67 34 11.6 35 11.7 24 28 9.35 34 13.4 36 13.4
1024 33 10.1 34 11.7 35 11.7 32 28 9.67 35 14.1 36 14.1
4096 34 10.3 34 11.7 35 11.8 40 28 9.90 34 14.6 36 14.7

5.3 H(curl; Ω) Examples

We now consider examples for the bilinear form

a(u,v) =

∫

Ω

(α(∇× u) · (∇× v) + βu · v) dx,
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where α ≥ 0, β > 0, and ∇×u denotes the curl of u. We assume that edge element
shape functions are scaled so that the integral of the tangential component along
each edge of an element is unity. Assuming a consistent sign convention for each
element edge of a subdomain edge, the matrix G is chosen as a vector with all
entries equal to unity.

To simplify the computer implementation, an overlapping subdomain is chosen
to include all edges a graph distance m or less from the edges of the nonoverlapping
subdomain. Results for fixed values of β, H/h, and m are shown in Table 6 for
different values of α and N . Similar results for increasing values of H/h are shown
in Table 7. In contrast to the previous examples, monotonic growth of condition
number estimates with H/h is not evident. This may be caused by our choice of
overlapping subdomains, but the results are quite acceptable.

Table 6. H(curl;Ω) results for H/h = 8, m = 1, and β = 1.

N α = 0.0 α = 10−2 α = 1 α = 102 α = 104

iter cond iter cond iter cond iter cond iter cond

16 6 3.01 20 5.28 25 7.38 28 7.48 30 7.49
32 6 3.01 22 5.96 26 7.47 28 7.53 31 7.54
64 6 3.01 23 6.43 26 7.52 29 7.56 31 7.57
100 6 3.01 24 6.77 27 7.58 30 7.61 32 7.62

Table 7. H(curl;Ω) results for N = 16, H/(mh) = 8, and β = 1.

H/h α = 0.0 α = 10−2 α = 1 α = 102 α = 104

iter cond iter cond iter cond iter cond iter cond

8 6 3.01 20 5.28 25 7.38 28 7.48 30 7.49
16 4 3.00 21 5.61 25 7.46 28 7.52 30 7.53
24 4 3.00 21 5.76 25 7.39 27 7.41 29 7.45
32 4 3.00 21 5.85 25 7.47 26 7.52 29 7.53
40 3 3.00 21 5.88 25 7.30 27 7.45 29 7.49

6 Conclusions

A simple and effective approach to constructing coarse spaces for overlapping
Schwarz preconditioners has been presented. Initial numerical and theoretical re-
sults suggest that it could be a viable approach for a variety of problem types.
There remain several opportunities for future discovery and development from both
a theoretical and practical point of view.
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