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Summary. In this work we design a new domain decomposition method for the Eu-
ler equations in 2 dimensions. The starting point is the equivalence with a third order
scalar equation to whom we can apply an algorithm inspired from the Robin-Robin
preconditioner for the convection-diffusion equation [1]. Afterwards we translate it
into an algorithm for the initial system and prove that at the continuous level and
for a decomposition into 2 sub-domains, it converges in 2 iterations. This property
cannot be conserved strictly at discrete level and for arbitrary domain decomposi-
tions but we still have numerical results which confirm a very good stability with
respect to the various parameters of the problem (mesh size, Mach number, . . .).

1 Introduction

The need of using domain decomposition methods when solving partial differential
equations is nowadays more and more obvious. The challenge is now the acceleration
of these methods. Different possibilities were studied such as the use of optimized
interface conditions on the artificial boundaries between subdomains or the precon-
ditioning of a substructured system defined at the interface. The former were widely
studied and analyzed for scalar problems. The preconditioning methods have also
known a wide development in the last decade. The Neumann-Neumann algorithms
for symmetric second order problems have been the subject of numerous works. An
extension of these algorithms to non-symmetric scalar problems (the so called Robin-
Robin algorithms) has been done in [1] for advection-diffusion problems. As far as
optimized interface conditions are concerned, when dealing with supersonic flows,
whatever the space dimension is, imposing the appropriate characteristic variables as
interface conditions leads to a convergence of the algorithm which is optimal with re-
gards to the number of subdomains. This property is generally lost for subsonic flows
except for the case of one-dimensional problems, when the optimality is expressed
by the fact that the number of iterations is equal to the number of subdomains (see
[2] and [7] for more details). In the subsonic case and in two or three dimensions, we
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can find a formulation with classical (natural) transmission conditions in [7, 8] or
with more general interface conditions in [3] and optimized transmission conditions
in [5]. The analysis of such algorithms applied to systems proved to be very different
from the scalar case, see [4]. The generalization of the above domain decomposition
methods to the system of the Euler equations is difficult in the subsonic case in
dimensions equal or higher to two.

In this work, we consider a preconditioning technique for the system of the
compressible Euler equations in the subsonic case. The paper is organized as follows:
in Section 2 we will first show the equivalence between the 2D Euler equations
and a third order scalar problem, which is quite natural by considering a Smith
factorization of this system, see [9]. In Section 3 we define an optimal algorithm
for the third order scalar equation. It is inspired from the idea of the Robin-Robin
algorithm [1] applied to a convection-diffusion problem. Afterwards in Section 4
we back-transform it and define the corresponding algorithm applied to the Euler
system. All the previous results have been obtained at the continuous level and
for a decomposition into 2 unbounded subdomains. In the Section 5, numerical
results confirm the very good stability of the algorithm with respect to the various
parameters of the problem (mesh size, Mach number, . . .).

2 A Third Order Scalar Problem

In this section we will show the equivalence between the linearized and time dis-
cretized Euler system and a third order scalar equation. The motivation for this
transformation is that a new algorithm is easier to design for a scalar equation than
for a system of partial differential equations. The starting point of our analysis is
given by the linearized form of the Euler equations written in primitive variables
(p, u, v, S). In the following we suppose that the flow is isentropic, which allows us
to drop the equation of the entropy (which is totally decoupled from the others).
We denote by W = (P,U, V )T the vector of unknowns and by A and B the jacobian
matrices of the fluxes Fi(w) to whom we already applied the variable change from
conservative to primitive variables. In the following, we shall denote by c̄ the speed
of the sound and we consider the linearized form (we will mark by the bar symbol,
the state around which we linearize) of the Euler equations:

PW ≡ (βI +A∂x +B∂y)W = f (1)

where β = 1
∆t

> 0, characterized by the following jacobian matrices:

A =




ū ρ̄c̄2 0
1/ρ̄ ū 0
0 0 ū


 B =




v̄ 0 ρ̄c̄2

0 v̄ 0
1/ρ̄ 0 v̄


 . (2)

In Computational Fluid Dynamics, problems of the form (1) have to be solved
repeatedly. We shall design a new domain decomposition method for this purpose.
We build and analyze our method for the constant coefficient case (c̄, ū, v̄ and ρ̄ are
constants) and for only two subdomains. But the resulting algorithm can be applied
to the general case.

We first recall the Smith factorization of a matrix with polynomial entries ([9],
Theorem 1.4):
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Theorem 1. Let n be an positive integer and A a n × n matrix with polynomial
entries with respect to the variable λ: A = (aij(λ))1≤i,j≤n. Then, there exist matrices
E, D and F with polynomial entries satisfying the following properties:

• det(E), det(F ) are constants,
• D is a diagonal matrix uniquely determined up to a multiplicative constant,
• A = EDF .

We first take formally the Fourier transform of the system (1) with respect to y
(the dual variable is ξ). We keep the partial derivatives in x since in the sequel we
shall consider a domain decomposition with an interface whose normal is in the x
direction. We note

P̂ =



β + ū∂x + iξb ρ̄c̄2∂x iρ̄c̄2ξ

1
ρ̄
∂x β + ū∂x + iξb 0
iξ
ρ̄

0 β + ū∂x + ibξ


 (3)

We can perform a Smith factorization of P̂ by considering it as a matrix with
polynomials in ∂x entries. We have P̂ = EDF where

D =




1 0 0
0 1 0

0 0 L̂Ĝ


 , E =




iρ̄c̄2ξ 0 0
0 ū 0

β + ū∂x + ibξ E2
c̄2 − ū2

iξρ̄c̄2


 (4)

and

F =




β + ū∂x + iξb

iξρ̄c̄2
∂x
iξ

1

∂x
ρ̄ū

β + ū∂x + iξb

ū
0

1

(β + iξb)(ū2 − c̄2)

ρ̄ū

(β + iξb)(ū2 − c̄2)
0




(5)

where

E2 = ū
(−ūc̄2 + ū3)∂xx + (2ū2 − c̄2)(β + iξb)∂x + ū((β + iξb)2 + ξ2c̄2)

c̄2(iβ + iξb)
,

and
L̂ = β2 + 2iξūb∂x + 2β(ū∂x + iξb) + (c̄2 − b2)ξ2 − (c̄2 − ū2)∂xx
Ĝ = β + ū∂x + iξb

(6)

Equation (4) suggests that the derivation of a domain decomposition method
(DDM) for the third order operator LG is a key ingredient for a DDM for the
compressible Euler equations.

3 A New Algorithm Applied to a Scalar Third Order
Problem

In this section we will describe a new algorithm applied to the third order operator
found in the section 2. We want to solve LG(Q) = g where Q is scalar unknown
function and g is a given right hand side. The algorithm will be based on the Robin-
Robin algorithm [1] for the convection-diffusion problem. Then we will prove its
convergence in 2 iterations. Without loss of generality we assume in the sequel that
the flow is subsonic and that ū > 0 and thus we have 0 < ū < c̄.
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3.1 The Algorithm for a Two-domain Decomposition

We consider now a decomposition of the plane R2 into two non-overlapping sub-
domains Ω1 = (−∞, 0)×R and Ω2 = (0,∞)×R. The interface is Γ = {x = 0}. The
outward normal to domain Ωi is denoted ni, i = 1, 2. Let Qi,k, i = 1, 2 represent the
approximation to the solution in subdomain i at the iteration k of the algorithm.
We define the following algorithm:

ALGORITHM 1 We choose the initial values Q1,0 and Q2,0 such that GQ1,0 =
GQ2,0. We compute (Qi,k+1)i=1,2 from (Qi,k)i=1,2 by the following iterative proce-
dure:
Correction step We compute the corrections Q̃1,k and Q̃2,k as solution of the
homogeneous local problems:

{
LGQ̃1,k = 0 in Ω1,

(A∇− 1
2
a)GQ̃1,k · n1 = γk, on Γ,




LGQ̃2,k = 0 in Ω2,

(A∇− 1
2
a)GQ̃2,k · n2 = γk, on Γ,

Q̃2,k = 0, on Γ,

(7)

where γk = − 1
2

[
A∇GQ1,k · n1 +A∇GQ2,k · n2

]
.

Update step.We update Q1,k+1 and Q2,k+1 by solving the local problems:

{
LGQ1,k+1 = g, in Ω1,

GQ1,k+1 = GQ1,k + δk, on Γ,




LGQ̃2,k+1 = g, in Ω2,

GQ2,k+1 = GQ2,k + δk, on Γ,

Q2,k+1 = Q1,k + Q̃1,k, on Γ,

(8)

where δk = 1
2

[
GQ̃1,k + GQ̃2,k

]
.

Proposition 1. Algorithm 1 converges in 2 iterations.

See [6] for the details of the proof.

4 A New Algorithm Applied to the Euler System

After having found an optimal algorithm which converges in two iterations for the
third order model problem, we focus on the Euler system by translating this algo-
rithm into an algorithm for the Euler system. It suffices to replace the operator LG
by the Euler system and Q by the last component F (W )3 of F (W ) in the boundary
conditions. The algorithm reads:

ALGORITHM 2 We choose the initial values W 1,0 and W 2,0 such that
GF (W 1,0)3 = GF (W 2,0)3 and we compute (W i,k+1)i=1,2 from (W i,k)i=1,2 by the
following iterative procedure:
Correction step We compute the corrections W̃ 1,k and W̃ 2,k as solution of the
homogeneous local problems:

{
PW̃ 1,k = 0 in Ω1,

(A∇− 1
2
a)GF (W̃ 1,k)3 · n1 = γk on Γ,




PW̃ 2,k = 0 in Ω2,

(A∇− 1
2
a)GF (W̃ 2,k)3 · n2 = γk on Γ,

F̃ (W 2,k)3 = 0, Γ,
(9)
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where γk = − 1
2

[
A∇GF (W 1,k)3 · n1 +A∇GF (W 2,k)3 · n2

]
.

Update step.We update W 1,k+1 and W 2,k+1 by solving the local problems:

{
PW 1,k+1 = f, in Ω1,

GF (W 1,k+1)3 = GF (W 1,k)3 + δk on Γ,





PW̃ 2,k+1 = f, in Ω2,

GF (W 2,k+1)3 = GF (W 2,k)3 + δk on Γ,

F (W 2,k+1)3 = F (W 1,k)3
+ F (W̃ 1,k)3 on Γ,

(10)

where δk = 1
2

[
GF (W̃ 1,k)3 + GF (W̃ 2,k)3

]
.

This algorithm is quite complex since it involves second order derivatives of the
unknowns in the boundary conditions on GF (W )3. It is possible to simplify it.
We write it for a decomposition in two subdomains with an outflow velocity at the
interface of domain Ω1 but with an interface not necessarily rectilinear. In this way, it
is possible to figure out how to use for a general domain decomposition. In the sequel,
n = (nx, ny) denotes the outward normal to domain Ω1, ∂n = ∇ · n = (∂x, ∂y) · n
the normal derivative at the interface, ∂τ = (−∂y, ∂x) · n the tangential derivative,
Un = Unx+V ny and Uτ = −Uny +V nx are respectively the normal and tangential
velocity at the interface between the subdomains. Similarly, we denote ūn (resp.
ūτ ) the normal (resp. tangential) component of the velocity around which we have
linearized the equations.

ALGORITHM 3 We choose the initial values W i,0 = (P i,0, U i,0, V i,0), i = 1, 2
such that P 1,0 = P 2,0 and we compute W i,k+1 from W i,k by the iterative procedure
with two steps:
Correction step We compute the corrections W̃ 1,k and W̃ 2,k as solution of the
homogeneous local problems:

{
PW̃ 1,k = 0, in Ω1,

−(β + ūτ∂τ )Ũ1,n
n + ūn∂τ Ũ

1,k
τ = γk on Γ,




PW̃ 2,k = 0, in Ω2,

(β + ūτ∂τ )Ũ2,k
n − ūn∂τ Ũ2,k

τ = γk, Γ

P̃ 2,k + ρ̄ūnŨ
2,k
n = 0 on Γ,

(11)

where γk = − 1
2

[
(β + ūτ∂τ )(U2,k

n − U1,k
n ) + ūn∂τ (Ũ1,k

τ − Ũ2,k
τ )

]
.

Update step.We compute the update of the solution W 1,k+1 and W 2,k+1 as solution
of the local problems:

{
PW 1,k+1 = f1, in Ω1,

P 1,k+1 = P 1,k + δk on Γ,





PW 2,k+1 = f2, in Ω2,

P 2,k+1 = P 2,k + δk on Γ,

(P + ρ̄ūnUn)2,k+1 = (P + ρ̄ūnUn)1,k

+ (P̃ + ρ̄ūnŨn)1,k on Γ,
(12)

where δk = 1
2

[
P̃ 1,k + P̃ 2,k

]
.

Proposition 2. For a domain Ω = R2 divided into two non overlapping half planes,
algorithms 2 and 3 are equivalent and both converge in two iterations.

See [6] for the details of the proof.
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5 Numerical Results

We present here a set of results of numerical experiments on a model problem. We
compare the method proposed and the classical method defined in [4]. We consid-
ered a decomposition into different number of subdomains and for a linearization
around a constant or non-constant flow. The computational domain is given by the
rectangle [0, 4] × [0, 1] with a uniform discretization using 80 × 20 points. The nu-
merical investigation is limited to the resolution of the linear system resulting from
the first implicit time step using a Courant number CFL=100. In the following, for
the new algorithm, each iteration counts for 2 as we need to solve twice as much
local problems than the classical one. For an easier comparison of the algorithms,
the figures shown in the tables are the number of subdomains solves. We also used
substructuring (solving a system with interface variables only) and the iteration
number necessary to achieve convergence by means of a GMRES method is also
presented. We are solving the homogeneous equations verified by the error vector at
the first time step.

The first set of tests concerns a stripwise decomposition into 3 subdomains. The
same kind of tests are carried out as in the 2 subdomain case. Table 1 summa-
rizes the number of Schwarz iterations required to reduce the initial linear resid-
ual by a factor 10−6 for different values of the reference Mach number for the
new and the classical algorithm (the tangential velocity is given by the expres-
sion Mt(y) = 0.1(1 + cos(πy))). For a linearization around a variable state for

Table 1. Iteration count for different values of Mn

Mn Classical (iterative) Classical (GMRES) New DDM (iter) New DDM (GMRES)

0.001 32 26 20 16
0.01 31 26 20 16
0.1 29 21 18 16
0.2 25 19 18 16
0.3 23 16 18 16
0.4 21 15 16 16
0.5 19 13 16 14
0.6 16 12 16 14
0.7 14 11 16 14
0.8 13 11 16 14

a general flow at the interface where the tangential Mach number is given by
Mt = 0.1(1 + cos(πy)), and the initial normal velocity is given by the expression
Mn(y) = 0.5(0.2+0.04 tanh(y/0.2))), the same conclusion yield as in the two-domain
case. As of intermediate conclusion we can state that the iteration number is only
slightly increasing when going from 2 to 3 subdomains.

The next set of tests concerns a decomposition into 4 subdomains using a 2× 2
decomposition of a 40 × 40 = 1600 point mesh. No special treatment of the cross
points is done or coarse space added. This could be a reason why the iterative
version of the algorithm does not converge. Nevertheless, the accelerated algorithm
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by a GMRES method converges as showed in Table 2 which summarizes the number
if iterations for different values of the reference Mach number for both algorithms
(the tangential velocity is given by the expression Mt(y) = 0.1(1 + cos(πy)) and the
normal Mach number is constant at the interface). We can see the the new algorithm
behaves similarly as the classical one for low Mach numbers.

Table 2. Iteration count for different values of Mn

Mn Classical(iter) Classical (GMRES) New DDM (GMRES)

0.001 101 28 28
0.01 86 28 28
0.1 54 26 26
0.2 38 23 30
0.3 35 23 32

The latest results show clearly the need of a coarse space as this is done for the
FETI-DP methods, in order to improve the performance of the method which has
already shown promising results in the case of the stripwise decompositions.

6 Conclusion

In this paper we designed a new domain decomposition for the Euler equations
inspired by the idea of the Robin-Robin preconditioner applied to the advection-
diffusion equation. We used the same principle after reducing the system to scalar
equations via a Smith factorization. The resulting algorithm behaves very well for
the low Mach numbers, where usually the classical algorithm does not give very
good results. We can reduce the number of iteration by almost a factor 4 both for
linearization around a constant and variable state.
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