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Summary. A discontinuous Galerkin (DG) discretization of a Dirichlet problem
for second order elliptic equations with discontinuous coefficients in two dimensions
is considered. The problem is considered in a polygonal region Ω which is a union
of disjoint polygonal substructures Ωi of size O(Hi). Inside each substructure Ωi, a
triangulation Thi(Ωi) with a parameter hi and a conforming finite element method
are introduced. To handle nonmatching meshes across ∂Ωi, a DG method that uses
symmetrized interior penalty terms on the boundaries ∂Ωi is considered. In this pa-
per we design and analyze Balancing Domain Decomposition (BDD) algorithms for
solving the resulting discrete systems. Under certain assumptions on the coefficients
and the mesh sizes across ∂Ωi, a condition number estimate C(1 + maxi log2 Hi

hi
)

is established with C independent of hi, Hi and the jumps of the coefficients. The
algorithm is well suited for parallel computations and can be straightforwardly ex-
tended to three-dimensional problems. Results of numerical tests are included which
confirm the theoretical results and the imposed assumption.

1 Introduction

DG methods are becoming more and more popular for approximation of PDEs since
they are well suited for dealing with complex geometries, discontinuous coefficients
and local or patch refinements; see [2, 4] and the references therein. There are also
several papers devoted to algorithms for solving DG discrete problems. In particular
in connection with domain decomposition methods, we can mention [9, 10, 1] where
overlapping Schwarz methods were proposed and analyzed for DG discretization of
elliptic problems with continuous coefficients. In [4] a non optimal multilevel additive
Schwarz method is designed and analyzed for the discontinuous coefficient case. In
[3] a two-level ASM is proposed and analyzed for DG discretization of fourth order
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problems. In those works, the coarse problems are based on polynomial coarse basis
functions on a coarse triangulation. In addition, ideas of iterative substructuring
methods and notions of discrete harmonic extensions are not explored, therefore,
for the cases where the distribution of the coefficients ρi is not quasimonotonic, see
[7], these methods when extended straightforwardly to 3-D problems have condition
number estimates which might deteriorate as the jumps of the coefficients get more
severe. To the best of our knowledge [5] is the only work in the literature that deals
with iterative substructuring methods for DG discretizations with discontinuous
coefficients, where we have successfully introduced and analyzed BDDC methods
with different possible constraints on the edges. A goal of this paper is to design
and analyze BDD algorithms, see [11, 8] and also [12], for DG discrete systems with
discontinuous coefficients.

The paper is organized as follows. In Section 2, the differential problem and its
DG discretization are formulated. In Section 3, the problem is reduced to a Schur
complement problem with respect to the unknowns on ∂Ωi, and discrete harmonic
functions defined in a special way are introduced. In Section 4, the BDD algorithm
is designed and analyzed. The local problems are defined on ∂Ωi and on faces of ∂Ωj
common to Ωi, while the coarse space, restriction and prolongation operators are
defined via a special partitioning of unity on the ∂Ωi. Sections 5 and 6 are devoted
to numerical experiments and final remarks, respectively.

2 Differential and Discrete Problems

Consider the following problem: Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v) for all v ∈ H1
0 (Ω) (1)

where a(u, v) =

N∑

i=1

∫

Ωi

ρi∇u∇vdx and f(v) =
∫
Ω
fvdx.

We assume that Ω̄ = ∪Ni=1Ω̄i and the substructures Ωi are disjoint shape regular
polygonal subregions of diameter O(Hi) that form a geometrically conforming parti-
tion of Ω, i.e., for all i 6= j the intersection ∂Ωi ∩∂Ωj is empty, or a common vertex
or face of ∂Ωi and ∂Ωj . We assume f ∈ L2(Ω) and for simplicity of presentation let
ρi be a positive constant, i = 1, . . . , N .

Let us introduce a shape regular triangulation in each Ωi with triangular ele-
ments and the mesh parameter hi . The resulting triangulation on Ω is in general
nonmatching across ∂Ωi. Let Xi(Ωi) be a finite element (FE) space of piecewise
linear continuous functions in Ωi. Note that we do not assume that the functions in
Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω. Define

Xh(Ω) = X1(Ω1)× · · · ×XN (ΩN ).

The discrete problem obtained by the DG method, see [2, 4], is of the form: Find
u∗h ∈ Xh(Ω) such that

ah(u∗h, v) = f(v) for all v ∈ Xh(Ω) (2)

where
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ah(u, v) ≡
N∑

i=1

bi(u, v) and f(v) ≡
N∑

i=1

∫

Ωi

fvidx, (3)

bi(u, v) ≡ ai(u, v) + si(u, v) + pi(u, v), (4)

ai(u, v) ≡
∫

Ωi

ρi∇ui∇vidx, (5)

si(u, v) ≡
∑

Fij⊂∂Ωi

∫

Fij

ρij
lij

(
∂ui
∂n

(vj − vi) +
∂vi
∂n

(uj − ui)
)
ds, (6)

pi(u, v) ≡
∑

Fij⊂∂Ωi

∫

Fij

ρij
lij

δ

hij
(uj − ui)(vj − vi)ds, (7)

di(u, v) ≡ ai(u, v) + pi(u, v), (8)

with u = {ui}Ni=1 ∈ Xh(Ω) and v = {vi}Ni=1 ∈ Xh(Ω). We set lij = 2 when
Fij ≡ ∂Ωi ∩∂Ωj is a common face of ∂Ωi and ∂Ωj , and define ρij = 2ρiρj/(ρi +ρj)
as the harmonic average of ρi and ρj , and hij = 2hihj/(hi+hj). In order to simplify
the notation we include the index j = 0 and set li0 = 1 when Fi0 ≡ ∂Ωi ∩ ∂Ω has a
positive measure, and set u0 = 0 and v0 = 0, and define ρi0 = ρi and hi0 = hi. The
outward normal derivative on ∂Ωi is denoted by ∂

∂n
and δ is the positive penalty

parameter.
It is known that there exists a δ0 = O(1) > 0 such that for δ > δ0, we obtain

2|si(u, u)| < di(u, u) and therefore, the problem (2) is elliptic and has a unique
solution. An error bound of this method is given in [2] for continuous and in [4, 5]
for discontinuous coefficients.

3 Schur Complement Problem

In this section we derive a Schur complement problem for the problem (2).

Define
o

Xi (Ωi) as the subspace of Xi(Ωi) of functions that vanish on ∂Ωi.
Let u = {ui}Ni=1 ∈ Xh(Ω). For each i = 1, . . . , N , the function ui ∈ Xi(Ω) can be
represented as

ui = P̂iu+ Ĥiu, (9)

where P̂iu is the projection of u into
o

Xi (Ωi) in the sense of bi(., .). Note that since

P̂iu and vi belong to
o

Xi (Ωi), we have

ai(P̂iu, vi) = bi(P̂iu, vi) = ah(u, vi). (10)

The Ĥiu is the discrete harmonic part of u in the sense of bi(., .), where Ĥiu ∈
Xi(Ωi) is the solution of

bi(Ĥiu, vi) = 0 vi ∈
o

Xi(Ωi), (11)

with boundary data given by

ui on ∂Ωi and uj on Fji = ∂Ωi ∩ ∂Ωj . (12)

We point out that for vi ∈
o

Xi (Ωi) we have
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bi(Ĥiu, vi) = (ρi∇Ĥiu,∇vi)L2(Ωi)
+

∑

Fij⊂∂Ωi

ρij
lij

(
∂vi
∂n

, uj − ui)L2(Fij). (13)

Note that Ĥiu is the classical discrete harmonic except at nodal points close to ∂Ωi.
We will sometimes call Ĥiu by discrete harmonic in a special sense, i.e., in the sense
of bi(., .) or Ĥi. Hence, Ĥu = {Ĥiu}Ni=1 and P̂u = {P̂iu}Ni=1 are orthogonal in the
sense of ah(., .). The discrete solution of (2) can be decomposed as u∗h = P̂u∗h + Ĥu∗h
where for all v ∈ Xh(Ω), ah(P̂u∗h, P̂v) = f(P̂v) and

ah(Ĥu∗h, Ĥv) = f(Ĥv). (14)

Define Γ ≡ (∪i∂Ωihi) where ∂Ωihi is the set of nodal points of ∂Ωi. We note
that the nodes on both side of ∪i∂Ωi belong to Γ . We denote the space V = Vh(Γ )
as the set of all functions vh in Xh(Ω) such that P̂vh = 0, i.e., the space of discrete
harmonic functions in the sense of Ĥi. The equation (14) is the Schur complement
problem associated to (2).

4 Balancing Domain Decomposition

We design and analyze a BDD method [11, 12] for solving (14) and use the general
framework of balancing domain decomposition methods; see [12]. For i = 1, . . . , N ,
let Vi be auxiliary spaces and Ii prolongation operators from Vi to V , and define
the operators T̃i : V → Vi as

bi(T̃iu, v) = ah(u, Iiv) for all v ∈ Vi.

and set Ti = IiT̃i. The coarse problem is defined as

ah(P0u, v) = ah(u, v) for all v ∈ V0.

Then the BDD method is defined as

T = P0 + (I − P0)

(
N∑

i=1

Ti

)
(I − P0). (15)

We next define the prolongation operators Ii and the local spaces Vi for i =
1, ..., N , and the coarse space V0. The bilinear forms bi and ah are given by (4) and
(3), respectively.

4.1 Local Problems

Let us denote by Γi the set of all nodes on ∂Ωi and on neighboring faces F̄ji ⊂ ∂Ωj .
We note that the nodes of ∂Fji (which are vertices of Ωj) are included in Γi. Define
Vi as the vector space associated to the nodal values on Γi and extended via Ĥi
inside Ωi. We say that u ∈ Vi if it can be represented as u := {u(i)

l }l∈#(i), where

#(i) = {i and ∪ j : Fij ⊂ ∂Ωi}. Here u
(i)
i and u

(i)
j stand for the nodal value of

u on ∂Ωi and F̄ji. We write u = {u(i)
l } ∈ Vi to refer to a function defined on Γi,

and u = {ui} ∈ V to refer to a function defined on all Γ . Let us define the regular
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zero extension operator Ĩi : Vi → V as follows: Given u ∈ Vi, let Ĩiu be equal to
u on the nodes of Γi and zero on the nodes of Γ\Γi. Then we associate with each
Ωk, k = 1, · · · , N , the discrete harmonic function uk inside each Ωk in the sense of
Ĥk.

A face across Ωi and Ωj has two sides, the side inside Ω̄i, denoted by Fij , and
the side inside Ω̄j , denoted by Fji. In addition, we assign to each face one master
side m(i, j) ∈ {i, j} and one slave side s(i, j) ∈ {i, j}. Then, using the interface
condition, see below, we show that Theorem 1 holds, see below, with a constant C
independent of the ρi, hi and Hi.

The Interface Condition. We say that the coefficients {ρi} and the local mesh
sizes {hi} satisfy the interface condition if there exist constants C0 and C1, of order
O(1), such that for any face Fij = Fji the following condition holds

hs(i,j) ≤ C0hm(i,j) and ρs(i,j) ≤ C1ρm(i,j). (16)

We associate with each Ωi, i = 1, · · · , N , the weighting diagonal matrices D(i) =
{D(i)

l }l∈#(i) on Γi defined as follows:

• On ∂Ωi (l = i)

D
(i)
i (x) =





1 if x is a vertex of ∂Ωi,
1 if x is an interior node of a master face Fij
0 if x is an interior node of a slave face Fij

(17)

• On ∂Ωj (l = j)

D
(i)
j (x) =





0 if x is an end point of Fji,
1 if x is an interior node of a slave face Fji
0 if x is an interior node of a master face Fji

(18)

• For x ∈ Fi0 we set D
(i)
i (x) = 1.

The prolongation operators Ii : Vi → V , i = 1, . . . , N , are defined as Ii = ĨiD
(i)

and they form a partition of unity on Γ described as

N∑

i=1

IiĨ
T
i = IΓ . (19)

4.2 Coarse Problem

We define the coarse space V0 ⊂ V as

V0 ≡ Span{IiΦ(i), i = 1, ..., N} (20)

where Φ(i) ∈ Vi denotes the function equal to one at every node of Γi.

Theorem 1. If the interface condition (16) holds then there exists a positive con-
stant C independent of hi, Hi and the jumps of ρi such that

ah(u, u) ≤ ah(Tu, u) ≤ C(1 + log2 H

h
)ah(u, u) ∀u ∈ V, (21)

where T is defined in (15). Here log H
h

= maxi log Hi
hi

. (See [6].)
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5 Numerical Experiments

In this section, we present numerical results for the preconditioner introduced in
(15) and show that the bounds of Theorem 1 are reflected in the numerical tests. In
particular we show that the interface condition (16) is necessary and sufficient.

We consider the domain Ω = (0, 1)2 divided into N = M ×M squares subdo-
mains Ωi and let H = 1/M . Inside each subdomain Ωi we generate a structured
triangulation with ni subintervals in each coordinate direction and apply the dis-
cretization presented in Section 2 with δ = 4. In the numerical experiments we
use a red and black checkerboard type of subdomain partition. On the black sub-
domains we let ni = 2 ∗ 2Lb and on the red subdomains ni = 3 ∗ 2Lr , where Lb
and Lr are integers denoting the number of refinements inside each subdomain Ωi.

Hence, the mesh sizes are hb = 2−Lb

2N
and hr = 2−Lr

3N
, respectively. We consider

−div(ρ(x)∇u∗(x)) = 1 in Ω with homogeneous Dirichlet boundary conditions. In
the numerical experiments we run PCG until the l2 initial residual is reduced by a
factor of 106.

In the first test we consider the constant coefficient case ρ = 1. We consider
different values of M ×M coarse partitions and different values of local refinements
Lb = Lr, therefore, keeping constant the mesh ratio hb/hr = 3/2. We place the
master on the black subdomains. Table 1 lists the number of PCG iterations and
in parenthesis the condition number estimate of the preconditioned system. We
note that the interface condition (16) is satisfied. As expected from Theorem 1, the
condition numbers appear to be independent of the number of subdomains and grow
by a logarithmical factor when the size of the local problems increases. Note that in
the case of continuous coefficients the Theorem 1 is valid without any assumption
on hb and hr if the master sides are chosen on the larger meshes.

Table 1. PCG/BDD iterations count and condition numbers for different sizes of
coarse and local problems and constant coefficients ρi.

M↓ Lr → 0 1 2 3 4 5

2 13 (6.86) 17 (8.97) 18 (12.12) 19 (16.82) 21 (22.23) 22 (28.25)
4 18 (8.39) 22 (11.30) 26 (14.74) 30 (19.98) 33 (26.64) 36 (34.19)
8 20 (8.89) 24 (11.57) 28 (14.82) 32 (20.03) 37 (26.64) 42 (34.04)
16 19 (9.02) 24 (11.63) 27 (14.83) 32 (20.05) 37 (26.67) 42 (34.06)

We now consider the discontinuous coefficient case where we set ρi = 1 on the
black subdomains and ρi = µ on the red subdomains. The subdomains are kept fixed
to 4 × 4. Table 2 lists the results on runs for different values of µ and for different
levels of refinements on the red subdomains. On the black subdomains ni = 2 is kept
fixed. The masters are placed on the black subdomains. It is easy to see that the
interface condition (16) holds if and only if µ is not large, which it is in agreement
with the results in Table 2.
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Table 2. PCG/BDD iterations count and condition numbers for different values of
the coefficients and the local mesh sizes on the red subdomains only. The coefficients
and the local mesh sizes on the black subdomains are kept fixed. The subdomains
are also kept fixed to 4× 4.

µ ↓ Lr → 0 1 2 3 4

1000 90 (2556) 133 (3744) 184 (5362) 237 (7178) 303 (9102)
10 33 (29.16) 40 (42.31) 47 (58.20) 52 (75.55) 57 (94.59)
0.1 17 (8.28) 19 (8.70) 19 (9.21) 19 (9.50) 19 (9.65)

0.001 18 (8.83) 18 (8.95) 18 (9.46) 18 (9.83) 18 (10.08)

6 Final Remarks

We end this paper by mentioning extensions and alternative Neumann-Neumann
methods for DG discretizations where the Theorem 1 holds: 1) The BDD algo-
rithms can be straightforwardly extended to three-dimensional problems; 2) Addi-
tive Schwarz versions and inexact local Neumann solvers can be considered; see [6];
3) On faces Fij where hi and hj are of the same order, the values of (17) and (18)

at interior nodes x of the faces Fij and Fji can be replaced by
√
ρi√

ρi+
√
ρj

. 4) Simi-

larly, on faces Fij where ρi and ρj are of the same order, we can replace (17) and
(18) at interior nodes x of the faces Fij and Fji by hi

hi+hj
. Finally, we remark the

conditioning of the preconditioned systems deteriorates as we increase the penalty
parameter δ to large values.
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