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Summary. In this paper we discuss upscaling of immiscible multiphase and mis-
cible multicomponent flow and transport in heterogeneous porous media. The dis-
cussion presented in the paper summarizes the results of in Upscaled Modeling in
Multiphase Flow Applications by Ginting et al. (2004) and in Upscaling of Multi-
phase and Multicomponent Flow by Ginting et al. (2006). Perturbation approaches
are used to upscale the transport equation that has hyperbolic nature. Our numerical
results show that these upscaling techniques give an improvement over the existing
upscaled models which ignore the subgrid terms.

1 Introduction

The high degree of variability and multiscale nature of formation properties
such as permeability pose significant challenges for subsurface flow modeling.
Upscaling procedures are commonly applied to solve flow and transport equa-
tions in practice. On the fine (fully resolved) scale, the subsurface flow and
transport of N components can be described in terms of an elliptic (for incom-
pressible systems) pressure equation coupled to a sequence of N−1 hyperbolic
(in the absence of dispersive and capillary pressure effects) conservation laws.
Although there are various technical issues associated with subgrid models for
the pressure equation, the lack of robustness of existing coarse scale models
is largely due to the treatment of the hyperbolic transport equations. In this
paper, we discuss the use of perturbation approaches for correcting the ex-
isting upscaled models for transport equations. Two-phase immiscible flow as
well as miscible two-component flow are considered.

Previous approaches for the coarse scale modeling of transport in hetero-
geneous oil reservoirs include the use of pseudo relative permeabilities [2],
the application of nonuniform or flow-based coarse grids [5], and the use of
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volume averaging and higher moments [7, 6]. Our methodology for subgrid
upscaling of the hyperbolic (or convection dominated) equations uses volume
averaging techniques. In particular, a perturbation analysis is employed to de-
rive the macrodispersion that represents the effects of subgrid heterogeneities.
The macrodispersion, in particular, can be written as time integration of a
covariance between the velocity fluctuations and fine scale quantity that rep-
resents the length of fine scale trajectories. For the computation of fine scale
quantities, we use detailed information that is contained in multiscale basis
functions. We note that the resulting macrodispersion depends on the satu-
ration due to the functional dependence of the velocities on it. Thus, a mere
use of this macro-dispersion model would require saving the velocities for each
time. We discuss a procedure to overcome the aforementioned impracticality
by proposing a recursive relation relating the length of fine scale trajectories
to the velocities.

2 Fine and Coarse Models

In this section, we briefly present mathematical models for two-phase immisci-
ble and two-component miscible flow and transport. Because of the similarities
of the governing equations, we present both models using the same equations
(with some abuse of notations):

∇ · v = q

St + v · ∇f(S) = (S̃ − f(S))q, v = −d(S)k(x)∇p,
(1)

where p is the pressure, S is the saturation (or concentration), k(x) is a
heterogeneous permeability field, v is the velocity field and q is the source
term, and S̃ is the given saturation at the source term locations. The system
is subject to some initial and boundary conditions. We will discuss upscaling
techniques for (1). In further discussions, we refer to the first equation as
the pressure equation (p is the pressure) and to the second equation as the
saturation equation (S is the saturation or concentration).

For miscible two-component flow, d(S) = 1
µ(S) , where µ(S) is the viscosity

function and has the form µ(S) = µ(0)(
1−S+M

1
4 S

)4 , and f(S) = S, where S

is the concentration (will be referred as saturation in later discussions). For
immiscible displacement of two-phase flow,

d(S) =
kr1(S)

µ1
+
kr2(S)

µ2
, f(S) =

kr1(S)/µ1

kr1(S)/µ1 + kr2(S)/µ2
. (2)

Here kri(S) (i = 1, 2) are relative permeabilities of phase i (e.g., water and
oil), µi are viscosities of phase i.

Previous approaches for upscaling such systems are discussed by many au-
thors; e.g., [1]. In most upscaling procedures, the coarse scale pressure equation
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is of the same form as the fine scale equation, but with an equivalent grid block
permeability tensor k∗ replacing k. For a given coarse scale grid block, the
tensor k∗ is generally computed through the solution of the pressure equation
over the local fine scale region corresponding to the particular coarse block [4].
Coarse grid k∗ computed in this manner has been shown to provide accurate
solutions to the coarse grid pressure equation. We note that some upscaling
procedures additionally introduce a different coarse grid functionality for d,
though this does not appear to be essential in our formulation.

In this work, the proposed coarse model is the upscaling of the pressure
equation to obtain the velocity field on the coarse grid and use it in saturation
equation to resolve the concentration on the coarse grid. We will use multiscale
finite element method. The key idea of the method is the construction of
basis functions on the coarse grids such that these basis functions capture the
small scale information on each of these coarse grids. The method that we
use follows its finite element counterpart presented in [9]. The basis functions
are constructed from the solution of the leading order homogeneous elliptic
equation on each coarse element with some specified boundary conditions.
Thus, if we consider a coarse element K that has d vertices, the local basis
functions φi, i = 1, . . . , d, are set to satisfy the following elliptic problem:

−∇ · (k · ∇φi) = 0 inK, φi = gi on ∂K, (3)

for some functions gi defined on the boundary of the coarse element K. Hou et
al. [9] have demonstrated that a careful choice of boundary condition would
guarantee the performance of the basis functions to incorporate the local
information and, hence improve the accuracy of the method. In this paper,
the function gi for each i varies linearly along ∂K. Thus, for example, in
case of a constant diagonal tensor, the solution of (3) would be a standard
linear/bilinear basis function. We note that as usual we require φi(ξj) = δij .
Finally, a nodal basis function associated with the vertex ξ in the domainΩ are
constructed from the combination of the local basis functions that share this
ξ and zero elsewhere. These nodal basis functions are denoted by {ψξ}ξ∈Z0

h
.

We denote by V h the space of our approximate pressure solution which is
spanned by the basis functions {ψξ}ξ∈Z0

h
. A statement of mass conservation

on a control volume Vξ is formed from pressure equation, where now the
approximate solution is written as a linear combination of the basis functions.
To be specific, the problem now is to seek ph ∈ V h with ph =

∑
ξ∈Z0

h
pξψξ

such that ∫

∂Vξ

d(S)k∇ph · ndl =

∫

Vξ

q dA, (4)

for every control volume Vξ ⊂ Ω. Here n defines the normal vector on the
boundary of the control volume, ∂Vξ and S is the fine scale saturation field.

For the saturation equation, we will consider two different coarse models.
We will present these models based on a perturbation technique, where the
saturation, S, and the velocity v, on the fine scale are assumed to be the sum
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of their volume-averaged and fluctuating components,

v = v + v′, S = S + S′, f = f + f ′. (5)

Here the overbar quantities designate the volume average of fine scale quan-
tities over coarse blocks. For simplicity we will assume that the coarse blocks
are rectangular which allows us to state that (cf [11]) ∇f = ∇f . Substituting
(5) into the saturation equation and averaging over coarse blocks we obtain

∂S

∂t
+ v · ∇f + v′ · ∇f ′ = (S̃ − f)q. (6)

The term v′ · ∇f ′ represents subgrid effects due to the heterogeneities of con-
vection.

The first model is a simple/primitive model where subgrid term v′ · ∇f ′
is ignored:

∂S

∂t
+ v · ∇f(S) = (S̃ − f(S))q. (7)

This kind of upscaling technique in conjunction with the upscaling of absolute
permeability is commonly used in applications (see e.g. [5]). The difference of
our approach is that the coupling of the small scales is performed through the
finite volume element formulation of the global problem and the small scale
information of the velocity field can be easily recovered. Within this upscaling
framework we use S instead of S in (4). If the saturation profile is smooth this
approximation is of first order. In the coarse blocks where the discontinuities
of S are present we need to modify the stiffness matrix corresponding to
these blocks. The latter requires the values of the fine scale saturation. In our
computation we will not do this and simply use d(S) in (4).

To improve the primitive upscaled model, one can model the subgrid terms
v′ · ∇f ′ . First, we briefly review the results for f(S) = S and assume that the
perturbations are small. Equation (6) becomes:

∂S

∂t
+ v · ∇S + v′ · ∇S′ = (S̃ − S)q. (8)

The term v′ · ∇S′ represents subgrid effects due to the heterogeneities of con-
vection. This term can be modeled using the equation for S′ that is derived
by subtracting (8) from the fine scale equation

∂S
′

∂t
+ v · ∇S′ + v′ · ∇S + v′ · ∇S′ = v′ · ∇S′ − qS′.

This equation can be solved along the characteristics dx/dt = v by neglecting
higher order terms. Carrying out the calculations in an analogous manner
to the ones performed in [7] we can easily obtain the following coarse scale
saturation equation:
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∂S

∂t
+ v · ∇S = ∇ · (D(x, t)∇S(x, t)) + (S̃ − S)q, (9)

where D(x, t) is the dispersive matrix coefficient, whose entries are written as

Dij(x, t) =
[∫ t

0
v′i(x)v

′
j(x(τ))dτ

]
. Next it can be easily shown that the diffusion

coefficient can be approximated up to the first order by Dij(x, t) = v′i(x)Lj ,
where Lj is the displacement of the particle in j direction that starts at the
point x and travels with velocity −v. The diffusion term in the coarse model
for the saturation field (9) represents the effects of the small scales on the
large ones. Note that the diffusion coefficient is a correlation between the
velocity perturbation and the displacement. This is different from [7] where
the diffusion is taken to be proportional to the length of the coarse scale
trajectory. Using our upscaling methodology for the pressure equation we can
recover the small scale features of the velocity field that allows us to compute
the fine scale displacement.

For the nonlinear flux f(S) we can use similar argument by expanding
f(S) = f(S)+fS(S)S

′

+ · · · . In this expansion we will take into account only
linear terms and assume that the flux is nearly linear. This is similar to the
linear case and the analysis can be carried out in an analogous manner. The
resulting coarse scale equation has the form

∂S

∂t
+ v · ∇S = ∇ · fS(S)2D(x, t)∇S(x, t) + (S̃ − f(S))q, (10)

where D(x, t) is the macrodiffusion corresponding to the linear flow. This
formulation has been derived within stochastic framework in [10]. We note
that the higher order terms in the expansion of f(S) may result in other
effects which, to our best knowledge, have not been studied extensively. In [6]
the authors use similar formulation though their implementation is different
from ours.

We now turn our attention to the procedure of computing Dij . Let
Lj(x, t), j = 1, 2, be the trajectory length of the particle in xj-direction that

starts at point x computed as Lj(x, t) =
∫ t

0
v′j(x(τ), τ) dτ . Then Dij(x, t) ≈

v′i(x, t)Lj(x, t). To show this relation we note

Dij(x, t) = v′i(x, t)

∫ t

0

v′j(x(τ), τ) dτ . (11)

We remark that since the velocity depends on (x, t), so is the trajectory in (11),
i.e., we have x(τ) = r(τ |x, t) with x(t) = r(t|x, t) = x. Now let τ = tp < t. We
assume that tp is close to t. Then we may decompose the time integration in
(11) as the sum of two integrations, namely,

∫ t

0

v′j(r(τ |x, t), τ) dτ =

∫ tp

0

v′j(r(τ |x, t), τ) dτ+

∫ t

tp

v′j(r(τ |x, t), τ) dτ = I1+I2.
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Suppose we denote by yp the particle location at time tp. Then r(τ |x, t) =

r(τ |yp, tp), 0 ≤ τ ≤ tp. Thus, I1 =
∫ tp

0
v′j(r(τ |yp, tp), τ) dτ = Lj(yp, tp). Fur-

thermore, since we have assumed that tp is close to t, the particle trajectory
is still close to x, which gives I2 ≈ (t− tp) v

′
j(x, t). By substituting these rep-

resentations back to (11) we obtain our macrodispersion, where now we have
Lj(x, t) = Lj(yp, tp) + (t − tp) v

′
j(x, t). Thus the macrodispersion coefficient

may be computed as

Dij(x, t) ≈ v′i(x, t)Lj(yp, tp) + (t− tp) v′i(x, t) v
′
j(x, t).

This relation also shows us how to numerically compute Dij . We note that the
fluctuation components v′i are obtained by subtracting the average vi from vi,
where vi is constructed from the informations embedded in the multiscale ba-
sis functions. Moreover, since tp < t, Lj(yp, tp) has been known. Thus we can
compute the macrodispersion coefficients incrementally for each time level.
This way, saving velocities information for all time levels may be avoided.
The calculation of two-point correlations in spatial framework can produce
oscillations. For this reason, the authors in [7] avoid computing two-point cor-
relations and introduce some simplifications. In our simulations, we compute
two-point correlation and smooth it to avoid the oscillation. In particular, the
obtained macro-dispersion is monotone in time and reaches an asymptote.

3 Numerical Results

In this section we present numerical results that give comparison between the
fine and the primitive coarse model, and the coarse model with macrodis-
persion that accounts for the subgrid effects on the coarse grid. It is ex-
pected to see possible improvement on the coarse model performance using
this extension. We consider a typical cross section in the subsurface, where
the system length in the horizontal direction x (Lx) is greater than the for-
mation thickness (Lz); in the results presented below, Lx/Lz = 5. The fine
model uses 120 × 120 rectangular elements. The absolute permeability is set
to be diag(k, k). All of the fine grid permeability fields used in this study are
120×120 realizations of prescribed overall variance (σ2) and correlation struc-
ture. The fields were generated using GSLIB algorithms [3] with a spherical
covariance model [3], for which we specify the correlation lengths lx and lz,
which are normalized by the system length in the corresponding direction.
The coarse models use 12 × 12 elements which is a uniform coarsening of the
fine grid description. In the examples presented below, we consider side to
side flow flow. More precisely, we fix pressure and saturation (S = 1) at the
inlet edge of the model (x = 0) and zero pressure at the outlet (x = Lx). The
top and bottom boundaries are closed to flow.

We follow the standard practice for solving the two-phase immiscible flow
as well as miscible two-component flow which is known as the implicit pressure
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explicit saturation method. For each time step, the pressure equation is solved
first where the dependence of the elliptic equation on the saturation uses the
values from the previous time level. The Darcy Law is used to compute the
flux. Then the saturation equation is solved explicitly using these computed
flux as input. We note that in our upscaled model, the pressure equation
is solved by the multiscale finite volume element presented above, while the
saturation equation is solved on the coarse grid by standard finite volume
difference.

Results are presented in terms of fractional flow of displaced fluid (F ,
defined as fraction of the displaced fluid in the total produced fluid) versus
pore volumes injected (PVI). PVI is analogous to dimensionless time and is
defined as qt/Vp where q is the total volumetric flow rate, t is dimensional time
and Vp is the total pore volume of the system. Figure 1 shows typical results
from multicomponent miscible displacement. It uses an anisotropic field of
lx = 0.20, lz = 0.02. In all plots, the solid line represents the fine model run
on 120 × 120 elements which serves as a reference solution. The dashed line
represents the primitive coarse model (D = 0), while the dotted line represents
the coarse model with macrodispersion (with D). All coarse models are run
on the 12 × 12 elements. In this figure we show how the performance of our
coarse model varies with respect to the mobility ratio, M , and the overall
variance of the permeability, σ. The left plot corresponds to the coarse model
using M = 2 and σ = 1.5, the right plot corresponds to M = 5 and σ = 1.5.
In all these cases we see that the addition of the macrodispersion to our coarse
model improves the prediction of the breakthrough. Similar improvement has
been observed in two-phase immiscible flow as well as in saturation contours.
Due to page limitation, we do not include these results in the paper.
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Fig. 1. Comparison of fractional flow of displaced fluid at the production edge for
side to side flow. All coarse models are run on 12 × 12 elements. The permeability
has correlation lengths lx = 0.20, lz = 0.02. Left: M = 2, σ = 1.5, Right: M = 5,
σ = 1.5.



200 R. Ewing et al.

Summarizing the results, we see that the correction to primitive upscaled
saturation equation using perturbation techniques gives an improvement.
When the flux, f(S), is a linear function, we do not need to perform lin-
earization of the fluxes and the errors are only due to perturbations of the
velocity field. The latter can be controlled by choosing adaptive grid or using
adaptive coordinate system. In particular, our results presented in [8] show
that in pressure-streamline coordinate system, perturbation techniques work
better because the grid is adapted to the flow. In the presence of sharp fronts,
one can use subgrid models away from these fronts and follow the front dynam-
ics separately. This approach is also implemented in [8] in pressure-streamline
coordinate system and we have observed further improvement in the perfor-
mance of the method.
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