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1 Introduction

Time domain decomposition methods have a long history: already [10] made
the following visionary statement:

“For the last 20 years, one has tried to speed up numerical computa-
tion mainly by providing ever faster computers. Today, as it appears
that one is getting closer to the maximal speed of electronic com-
ponents, emphasis is put on allowing operations to be performed in
parallel. In the near future, much of numerical analysis will have to
be recast in a more “parallel” form.”

Nievergelt proposed a parallel algorithm based on a decomposition of the
time direction for the solution of ordinary differential equations. While his
idea targeted large scale parallelism, [9] proposed a little later a family of
naturally parallel Runge Kutta methods for small scale parallelism:

“It appears at first sight that the sequential nature of the numerical
methods do not permit a parallel computation on all of the processors
to be performed. We say that the front of computation is too narrow
to take advantage of more than one processor... Let us consider how
we might widen the computation front.”

Waveform relaxation methods, introduced in [6] for the large scale simulation
of VLSI design, are another fundamental way to introduce time parallelism
into the solution of evolution problems. For an up to date historical review
and further references, see [4].

The present research was motivated by the introduction of the parareal
algorithm in [7]. We show in this paper a general superlinear convergence
result for the parareal algorithm applied to a nonlinear system of ordinary
differential equations.
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2 Derivation of the Parareal Algorithm

The parareal algorithm is a time parallel algorithm for the solution of the
general nonlinear system of ordinary differential equations

u′(t) = f(u(t)), t ∈ (0, T ), u(0) = u0, (1)

where f : RM −→ RM and u : R −→ RM .
To obtain a time parallel algorithm for (1), we decompose the time domain

Ω = (0, T ) into N time subdomains Ωn = (Tn, Tn+1), n = 0, 1, . . . N −1, with
0 = T0 < T1 < . . . < TN−1 < TN = T , and ∆Tn := Tn+1 − Tn, and consider
on each time subdomain the evolution problem

u′
n(t) = f(un(t)), t ∈ (Tn, Tn+1), un(Tn) = Un, n = 0, 1, . . . , N − 1, (2)

where the initial values Un need to be determined such that the solutions on
the time subdomains Ωn coincide with the restriction of the solution of (1) to
Ωn, i.e. the Un need to satisfy the system of equations

U0 = u0, Un = ϕ∆Tn−1
(Un−1), n = 1, . . . , N − 1, (3)

where ϕ∆Tn
(U) denotes the solution of (1) with initial condition U after

time ∆Tn. This time decomposition method is nothing else than a multiple
shooting method for (1), see [3]. Letting U = (UT

0 , . . .U
T
N−1)

T , the system
(3) can be written in the form

F(U) =




U0 − u0

U1 − ϕ∆T0
(U0)

...
UN−1 − ϕ∆TN−2

(UN−2)


 = 0, (4)

where F : RM ·N −→ RM ·N . System (4) defines the unknown initial values Un

for each time subdomain, and needs to be solved, in general, by an iterative
method. For a direct method in the case where (1) is linear and the system
(4) can be formed explicitly, see [1].

Applying Newtons method to (4) leads after a short calculation to

Uk+1
0 = u0,

Uk+1
n = ϕ∆Tn−1

(Uk
n−1) + ϕ′

∆Tn−1
(Uk

n−1)(U
k+1
n−1 − Uk

n−1),
(5)

where n = 1, . . . , N−1. Chartier and Philippe [3] showed that the method (5)
converges quadratically, once the approximations are close enough to the so-
lution. However in general, it is too expensive to compute the Jacobian terms
in (5) exactly. An interesting recent approximation is the parareal algorithm,
which uses two approximations with different accuracy: let F(Tn, Tn−1,Un−1)
be an accurate approximation to the solution ϕ∆Tn−1

(Un−1) on time subdo-
main Ωn−1, and let G(Tn, Tn−1,Un−1) be a less accurate approximation, for
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example on a coarser grid, or a lower order method, or even an approximation
using a simpler model than (1). Then, approximating the time subdomain
solves in (5) by ϕ∆Tn−1

(Uk
n−1) ≈ F(Tn, Tn−1,U

k
n−1), and the Jacobian term

by

ϕ′
∆Tn−1

(Uk
n−1)(U

k+1
n−1 − Uk

n−1) ≈ G(Tn, Tn−1,U
k+1
n−1) − G(Tn, Tn−1,U

k
n−1),

we obtain as approximation to (5)

Uk+1
0 = u0,

Uk+1
n = F(Tn, Tn−1,U

k
n−1) + G(Tn, Tn−1,U

k+1
n−1) − G(Tn, Tn−1,U

k
n−1),

(6)

which is the parareal algorithm, see [7] for a linear model problem, and [2]
for the formulation (6). A natural initial guess is the coarse solution, i.e.
U0

n = G(Tn, Tn−1,U
0
n−1).

3 Convergence Analysis

To simplify the exposition, we assume in this section that all the time subdo-
mains are of the same size, ∆Tn = ∆T := T

N , n = 0, 1, . . . , N − 1, and that
F is the exact solution, i.e. F(Tn, Tn−1,U

k
n−1) = ϕ∆Tn−1

(Uk
n−1). We also as-

sume that the difference between the approximate solution given by G and
the exact solution can be expanded for ∆T small,

F(Tn, Tn−1, x)−G(Tn, Tn−1, x) = cp+1(x)∆T
p+1 + cp+2(x)∆T

p+2 + . . . , (7)

which is possible if the right hand side function f in (1) is smooth enough, and
G is a Runge Kutta method for example. We finally assume that G satisfies
the Lipschitz condition

‖G(t+∆T, t,x) − G(t+∆T, t,y)‖ ≤ (1 + C2∆T )‖x − y‖. (8)

Theorem 1. Let F(Tn, Tn−1,U
k
n−1) = ϕ∆Tn−1

(Uk
n−1) be the exact solution

on time subdomain Ωn−1, and let G(Tn, Tn−1,U
k
n−1) be an approximate so-

lution with local truncation error bounded by C3∆T
p+1, and satisfying (7),

where the cj, j = p+ 1, p+ 2, . . . are continuously differentiable, and assume
that G satisfies the Lipschitz condition (8). Then, at iteration k of the parareal
algorithm (6), we have the bound

‖u(Tn) − Uk
n‖ ≤ C3

C1

(C1∆T
p+1)k+1

(k + 1)!
(1 + C2∆T )n−k−1

k∏

j=0

(n− j)

≤ C3

C1

(C1Tn)k+1

(k + 1)!
eC2(Tn−Tk+1)∆T p(k+1).
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Proof. From the definition of the parareal algorithm (6), we obtain, using that
F is the exact solution and adding and subtracting G(Tn, Tn−1,u(Tn−1))

u(Tn) − Uk+1
n = F(Tn, Tn−1,u(Tn−1)) − G(Tn, Tn−1,u(Tn−1))

−
(
F(Tn, Tn−1,U

k
n−1) − G(Tn, Tn−1,U

k
n−1)

)

+ G(Tn, Tn−1,u(Tn−1)) − G(Tn, Tn−1,U
k+1
n−1).

Now using expansion (7) for the first two terms on the right hand side, and
(8) on the last one, we obtain on taking norms

‖u(Tn)−Uk+1
n ‖ ≤ C1∆T

p+1‖u(Tn−1)−Uk
n−1‖+(1+C2∆T )‖u(Tn−1)−Uk+1

n−1‖.

This motivates to study the recurrence relation

ek+1
n = αek

n−1 + βek+1
n−1, e0n = γ + βe0n−1, (9)

where α = C1∆T
p+1, β = 1 + C2∆T and γ = C3∆T

p+1, since ek
n is then an

upper bound on ‖u(Tn)−Uk
n‖. Multiplying (9) by ζn and summing over n, we

find that the generating function ρk(ζ) :=
∑

n≥1 e
k
nζ

n satisfies the recurrence
relation

ρk+1(ζ) = αζρk(ζ) + βζρk+1(ζ), ρ0(ζ) = γ
ζ

1 − ζ
+ βζρ0(ζ).

Solving for ρk(ζ), we obtain after induction

ρk(ζ) = γαk ζk+1

(1 − ζ)

1

(1 − βζ)k+1
.

Replacing the factor 1 − ζ in the denominator by 1 − βζ only increases the
coefficients in the power series of ρk(ζ). Using now the binomial series expan-
sion

1

(1 − βζ)k+2
=
∑

j≥0

(
k + 1 + j

j

)
βjζj ,

we obtain for the n-th coefficient ek
n the bound

ek
n ≤ γαkβn−k−1

(
n

k + 1

)
,

which concludes the proof.

4 Numerical Experiments

We show now several numerical experiments, first for small systems of ordinary
differential equations, where the only potential for parallelization lies in the
time direction, and then also for a partial differential equation, namely the
viscous Burgers equation.
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4.1 Brusselator

The brusselator system of ordinary differential equations models a chain of
chemical reactions and is given by

ẋ = A+ x2y − (B + 1)x, ẏ = Bx− x2y.

We chose for the parameters A = 1 and B = 3, and since B > A2 + 1,
the system will form a limit cycle, see [5]. We start the simulation with the
initial conditions x(0) = 0, y(0) = 1, and compute an approximate solution
over the time interval t ∈ [0, T = 12] using the classical fourth order Runge
Kutta method with coarse time step ∆T = T

32 , and fine time step ∆t = T
640 ,

which gives a solution with an accuracy of 5.62e−6. In Figure 1, we show the
initial guess from the coarse solver, and the first five iterates of the parareal
algorithm in the phase plane, and also the difference between the parareal
approximation and the complete fine approximation as a function of time.
The red dot in the phase plane, and the vertical red line in the error plots
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Fig. 1. Parareal approximation of the solution of the Brusselator problem.

indicate how far one could have computed the fine solution sequentially in
the same computation time, neglecting the cost of the coarse solve. The fine
dashed line indicates the accuracy of the fine grid solution. Clearly there is
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a parallel speedup with this type of time parallelization: with 32 processors,
one could have computed the numerical approximation to the same accuracy
of 5.62e− 6 about eight times faster than with one processor.

4.2 Arenstorf Orbit

Arenstorf orbits are closed orbits of a light object (e.g. a satellite) moving
under the influence of gravity of two heavy objects (e.g. planets, moons). The
equations of motion for the example of two heavy objects are

ẍ = x+ 2ẏ − b
x+ a

D1
− a

x− b

D2
, ÿ = y − 2ẋ− b

y

D1
− a

y

D2
,

where Dj , j = 1, 2 are function of x and y,

D1 = ((x+ a)2 + y2)
3
2 , D2 = ((x− b)2 + y2)

3
2 .

If the parameters are a = 0.012277471 and b = 1−a, and the initial conditions
are chosen to be x(0) = 0.994, ẋ = 0, y(0) = 0, ẏ(0) = −2.00158510637908,
then the solution is a nice closed orbit with period T = 17.06521656015796,
see [5]. There have been earlier attempts to compute planetary orbits in par-
allel, see [11], where a multiple shooting method was developed. We use again
the parareal algorithm to compute the Arenstorf orbit in parallel, with the
classical fourth order Runge Kutta method and coarse time step ∆T = T

250 ,

and fine time step ∆t = T
80000 , such that the fine trajectory has an accuracy

of 9.98e− 6. We show in Figure 2 the initial guess and the first five iterations
of the parareal algorithm, as in the case of the brusselator problem. While
the initial guess is completely off, and simply spirals outward, the first itera-
tion already reveals the shape of the Arenstorf orbit, and the algorithm has
converged to the precision of the fine time step approximation after four iter-
ations. Neglecting the cost of the coarse grid solve, one could have computed
this trajectory with 250 processors about 62 times faster in parallel, than with
one processor sequentially. The fact that the initial guess is so off is due to
the tremendous sensitivity of the solution to the initial conditions, so it would
be better to use an adaptive method here. We are currently studying the use
of adaptivity in the context of the parareal algorithm.

4.3 Lorenz Equations

Weather prediction could be an important application of the parareal algo-
rithm, since predictions have to be made in real time. If a large scale parallel
computer is available, and the parallelization in space of the partial differ-
ential equation modeling the evolution of the weather is already saturated,
the only way to speed up the computation is to try to parallelize the time
direction. A very simple model for weather prediction is the model given by
the Lorenz equations,
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Fig. 2. Parareal approximation of the Arenstorf orbit.

ẋ = −σx+ σy, ẏ = −xz + rx− y, ż = xy − bz.

These equations were first studied by Lorenz [8], who discovered that in certain
cases approximations to their solution are very sensitive to small changes in
the initial data (he noticed this when he interrupted a computation and wrote
the current position of the solution down by hand to continue the next day,
but his notes included only the first four digits, and not the full precision). A
legend then says that looking at the solution of his equations, which looks on
the attractor like a butterfly, Lorenz concluded that the wings of a butterfly
in Europe could create a thunderstorm in the US.

We chose for the parameters in the Lorenz equations σ = 10, r = 28 and
b = 8

3 , such that the system is in the chaotic regime, and trajectories converge
to the butterfly attractor. We start with the initial conditions (x, y, z)(0) =
(20, 5,−5), and compute with the parareal algorithm an approximate solution
on the time interval [0, T = 10], using again the classical fourth order Runge
Kutta method with coarse time step ∆T = T

180 , and fine time step ∆t = T
14400 ,

which leads to an accuracy in the fine trajectory of 2.4e − 6. We show in
Figure 3 the initial guess and the first five iterations of the parareal algorithm,
together with error curves for the coordinates, as a function of time. One can
see that for the first two iterations, the approximate parareal trajectory is not
in the same wing of the butterfly attractor as the converged trajectory. At
iteration three, the situation changes and the parareal approximation follows
now the converged trajectory. From this iteration on, the algorithm converges
on the entire time interval, as one can see in Figure 4, where we show iteration
six to eleven. At iteration ten, an overall accuracy of 1e−6, which corresponds
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Fig. 3. Initial guess and first five parareal approximations of the solution of the
Lorenz equations.

to the fine grid solution accuracy, is achieved. Neglecting the cost of the coarse
solver, one could therefore have computed a fine grid accurate solution with
180 processors about 18 times faster than sequentially, as indicated by the
colored dots and the red vertical line on the graphs.

In Figure 5 on the left, we show how the difference of the parareal ap-
proximation and the converged solution, measured in the L2-norm in space,
and in the L∞-norm in time, diminishes as a function of the iterations of the
parareal algorithm. One can clearly see that the convergence is superlinear.
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Fig. 4. Sixth to eleventh parareal approximation of the solution of the Lorenz
equations.

In the context of the Lorenz equations, it is interesting to investigate the
behavior of the parareal algorithm with respect to the chaotic nature of the
system. In Figure 5, we show on the right the convergence behavior of the
parareal algorithm for an implementation with variable precision arithmetic,
using 16, 32 and 48 digits of accuracy. One can see that the theoretical re-
sult of superlinear convergence stops at a certain level before the numerical
precision has been reached, and the algorithm stagnates, or in other words,
the trajectory has converged to a different solution from the one computed
sequentially, due to roundoff errors.
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Fig. 5. Convergence behavior of the parareal algorithm applied to the Lorenz equa-
tions.

4.4 Viscous Burgers Equation

We finally show numerical experiments for a non-linear partial differential
equation, the viscous Burgers equation,

ut + uux = νuxx in Ω = [0, 1], u(x, 0) = sin(2πx),

with homogeneous boundary data, such that the solution forms Friedrich’s
N-wave. We chose for the viscosity parameter ν = 1

50 , used a centered finite
difference discretization with spatial step ∆x = 1

50 , and a backward Euler
discretization in time. We only parallelized the solution in time using the
parareal algorithm, with coarse time step ∆T = 1

10 , and fine time step ∆t =
1

100 , which gives a numerical accuracy of 4e−2. We show in Figure 6 on the left
the converged solution over a short time interval, [0, T = 0.1], where one can
see how the N-wave is forming, and on the right the same solution over a longer
time interval, [0, T = 1]. In Figure 7, we show on the left the convergence
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Fig. 6. Converged approximate solution for the Burgers equation over a short and
long time interval.
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behavior of the parareal algorithm applied to the Burgers equation, when the
problem is posed over time intervals of various length. Again we measure the
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Fig. 7. Convergence behavior of the parareal algorithm applied to Burgers equation,
on the left for various lengths of the time interval, and on the right when the accuracy
of the discretization is increased.

error in the L2-norm in space, and the L∞-norm in time. Over short time
intervals, the convergence of the parareal algorithm is faster than over long
time intervals. In the case of T = 0.1, the algorithm converges at step two to
the accuracy of the discretization error, and one could therefore, neglecting
the coarse solve, compute this approximation with ten processors five times
faster in parallel than with one processor. Note also that as one continues to
iterate, the algorithm converges further toward the fine grid solution, until
the roundoff error accuracy is reached at step 10, as indicated by Theorem
1. Over longer time intervals, for example T = 1, with the same parareal
configuration, the accuracy of the discretization error is reached at iteration
four. Computing with one hundred processors in parallel, this solution could
have been obtained 25 times faster than sequentially on one processor.

In Figure 7 on the right, we show how the discretization error affects
the parareal algorithm. For T = 0.1, we computed more and more refined
solutions, both in space and time, with truncation error 4e−2, 1e−2, 2.5e−3
and 6.2e− 4, using the parareal algorithm with 10 coarse time intervals. The
convergence plot shows that the convergence rate becomes independent of the
mesh parameters, as it was proved for the linear case in [4].

5 Conclusions

We showed that the parareal algorithm applied to a nonlinear system of or-
dinary differential equations converges superlinearly on any bounded time
interval. We illustrated this result with four non-linear examples coming from
chemical reactions, planetary orbits, weather forecast and fluid flow problems.



56 M.J. Gander, E. Hairer

These examples show that parallel speedup in time is possible, although not
at the same level as in space, where one often asks for perfect speedup, i.e. the
computation with one hundred processors should be one hundred times faster.
For time parallelization with the parareal algorithm, one has to be satisfied
with less, but if this is the only option left to speedup the solution time, it
might be worthwhile considering it.
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