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Summary. In this paper we generalize the Aitken-like acceleration method of the
additive Schwarz algorithm for elliptic problems to the additive Schwarz waveform
relaxation for the heat equation. The domain decomposition is in space and time.
The standard Schwarz waveform relaxation algorithm has a linear rate of conver-
gence and low numerical efficiency. This algorithm is, however, friendly to cache use
and scales with the memory in parallel environments. We show that our new ac-
celeration procedure of the waveform acceleration algorithm results in a fast direct
solver.

1 Introduction

Currently, standard processors are becoming multi-cores and there is a strong in-
centive to make use of all these parallel resources while avoiding conflict in memory
access. We also have an overwhelming abundance of parallel computers available
when using grids. The Additive Schwarz (AS) method for elliptic problems or the
Additive Schwarz Waveform Relaxation (ASWR) method for parabolic problems can
be implemented easily in distributed computing environments and have very sim-
ple and systematic communication schemes. This algorithm is friendly to memory
cache use and scales with the memory in parallel environments. ASWR in partic-
ular minimizes the number of messages sent in a parallel implementation and is
very insensitive to delays due to a high latency network. The main drawback of the
method is that it is one or several orders of magnitude slower than modern solvers
such as multigrids. In the meantime, multigrids have poor parallel efficiency with
high latency networks.

There have been two main classes of methods to speed up AS and ASWR. One
is to introduce a coarse grid preconditioner. But a coarse grid operator reduces
drastically the parallel efficiency on a slow network. A second option is to optimize
the transmission conditions. This general avenue of work has been followed with
success by numerous workers - see for example [3, 8, 9, 10] and their references.
We have introduced in [7] a different and somehow complementary approach that
consists of accelerating the sequence of trace on the interface generated by the AS
method. The advantage of our postprocessing algorithm, besides its simplicity, is
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that it has quasi-optimum arithmetic complexity for the Poisson equation discretized
on Cartesian grid while offering unique parallel efficiency on the grid. This is the only
example, to our knowledge, of a numerically efficient Poisson solver that performs
well on a grid of computers [2]. Our method offers also a general framework to speed
up elliptic and non-linear elliptic solvers in a broad variety of conditions [1, 2, 6, 7].

Our main objective in this paper is to present an extension of this technique to
the heat equation with Domain Decomposition (DD) in space and time. A general-
ization to Parabolic operators and its application to grid computing will be reported
elsewhere [5].

2 Aitken-Schwarz Method for Linear Operators in One
Space Dimension

The basic Aitken-Additive-Schwarz (AAS) method for linear elliptic problems can
be found for example in [7]. Let us describe our AASWR algorithm for a domain
decomposition in space and time with the following Initial Boundary Value Problem
(IBVP):

∂u

∂t
= L[u] + f(x, t), (x, t) ∈ Ω = (0, 1)× (0, T ), (1)

u(x, 0) = uo(x), x ∈ (0, 1), (2)

u(0, t) = a(t), u(1, t) = b(t), t ∈ (0, T ), (3)

L is a second order linear elliptic operator. We assume that L coefficients are time
independent and that the problem is well posed and has a unique solution.

We introduce the following discretization in space and time

0=x0 < x1 < ... < xN−1 < xN=1, hj=xj − xj−1, tk=k dt, k=0 . . .M, dt=
T

M
.

Let us denote by X the column vector X = (x1, . . . , xN−1)t. A first order Euler
implicit scheme in time writes

Uk+1 − Uk
dt

= D Uk+1 + f(X, tk+1), k = 0, ..,M − 1, (4)

U0 = uo(X), Uk+1
0 = a(tk+1), Uk+1

N = b(tk+1), k = 0, ..,M − 1, (5)

where Uk is the column vector Uk = (Uk1 , . . . , U
k
N−1)t. We also introduce the nota-

tion Uj for the row vector Uj = (U1
j , . . . , U

M
j ).

D is a square matrix that comes from a finite difference or a finite element
approximation for example. We do not need to specify this approximation. Our
purpose is to compute efficiently the numerical solution of the discrete problem
(4)-(5). At each time step one solves the linear system

(Id − dt D)Uk+1 = F (Uk), (6)

where Id is the matrix of the identity operator.
We assume that the matrix A = Id − dt D of the linear system (6) is regular.
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Introducing the matrices U = (U1, ..., UM ) and F = (F (U1), ..., F (UM )), we
have

A U = F, U0 = (a(t1), . . . , a(tM )), UN = (b(t1), ..., b(tM )). (7)

Let Ωi = (yli, y
r
i ), i = 1..q, be a partition of Ω with

x0 = yl1 < yl2 < yr1 < yl3 < yr2 , . . . , y
l
q < yrq−1 < yrq = xN .

One iteration of the ASWR algorithm writes
for i = 1..q, do

Ai V
n+1
i = Fi, in Ωi × (0, T ),

V n+1
i (yli) = V ni−1(yli), V

n+1
i (yri ) = V ni+1(yri ),

enddo
where Ai is the appropriate sub-block of A corresponding to the discretization of
the IBVP problem in Ωi × (0, T ). This algorithm generates a sequence of vectors
W ks = (V l,ks

2 , V r,ks
1 , V l,ks

3 , V r,ks
2 , . . . , V l,ks

q ) corresponding to the boundary values
on the set

S = (yl2, y
r
1 , y

l
3, y

r
2 , . . . , y

l
q, y

r
q−1)× (t1, ..., tM )

of the Vi for each iterate k.
The proof of convergence of the additive Schwarz waveform relaxation on the

continuous problem (1) with the heat equation given in [4] is based on the maximum
principle. The convergence of the ASWR algorithm at the discrete level follows from
a discrete maximum principle as well and apply for example to the classical three
points finite difference scheme with the heat equation problem. Because the parabolic
problem (1) is linear, the trace transfer operator

W ks+1 −W∞ →W ks −W∞

is linear. Its matrix P has the following pentadiagonal structure:

0 P r1 0 0 ....

P l,l2 0 0 P l,r2 ...

P r,l2 0 0 P r,r2 ...

... P l,lq−1 0 0 P l,rq−1

... P r,lq−1 0 0 P r,rq−1

... 0 0 P lq 0

.

The block P l,li , P l,ri , P r,li , P r,ri are square matrices of size (M − 1)2. If the matrix P
is known and the matrix Id− P is regular, one step of the ASWR provides enough
information to reconstruct the exact interface values by solving the linear system

(Id− P )W∞ = W 1 − P W 0. (8)

We can then define Algorithm (I):
Step 1: compute the first iterate of ASWR.
Step 2: solve the linear problem (8).
Step 3: compute the second iterate using the exact boundary value W∞.
We observe that this algorithm is a direct solver provided that Id−P is regular,

no matter the overlap, or the fact that ASWR converges or not. This method is
a generalization of the Aitken-Schwarz algorithm described in [7] for the case of
linear elliptic operators. We call algorithm (I) the Aitken-Additive Schwarz waveform
relaxation algorithm. We have the following result [5].
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Theorem 1. If the ASWR algorithm converges, then AASWR is a direct solver.

The construction of P is done using the following basis of functions

δkj = 1, if j = k, 0 otherwise, j, k ∈ {1, ..,M}

to represent the trace of the solution on the interfaces

y
l/r
i × {t1, ..., tM}, i = 1..q.

Let us consider the family of subproblems in Ωi × (0, T ),

V k+1
i,j − V ki,j

dt
= Di[V

k+1
i,j ], k = 0, . . . ,M − 1, (9)

V 0
i,j = 0, V k+1

i,j (yli) = 0, V k+1
i,j (yri ) = δk+1

j , k = 0, . . . ,M − 1. (10)

Let Vi,j denote the matrix that is the solution of the discrete problem (9)-(10). The
j column vector of P r,r, respectively P r,l, is the trace of Vi,j on yli+1, respectively
yri−1. P

r,r
i and P r,li are consequently lower triangular matrices.

We notice that all Vi,j are obtained from Vi,1 by a translation in time, i.e.,

Vi,j(Xi, t) = Vi,1(Xi, t− tj−1), t ∈ {tj , . . . , tM}, (11)

and
Vi,j(Xi, t) = 0, t ∈ {t0, tj−1}. (12)

The first column vector of P r,r, respectively P r,l, is the trace of Vi,1 on yli+1,
respectively yri−1. From (11) we see that all columns of P r,ri , respectively P r,li , are
obtained from the first column of matrix P r,ri , respectively P r,li , with no additional
computation. To conclude, the construction of the matrix P of the trace transfer
operator is achieved if one computes once and for all the solution of the two following
sub-problems in Ωi × (0, T ),

V k+1
i,j − V ki,j

dt
= Di[V

k+1
i,j ], k = 0, . . . ,M − 1, (13)

V 0
i,j = 0, V k+1

i,j (yli) = δk+1
1 , V k+1

i,j (yri ) = 0, k = 0, . . . ,M − 1, (14)

and

V k+1
i,j − V ki,j

dt
= Di[V

k+1
i,j ], k = 0, . . . ,M − 1, (15)

V 0
i,j = 0, V k+1

i,j (yli) = 0, V k+1
i,j (yri ) = δk+1

1 , k = 0, . . . ,M − 1. (16)

Remark 1. All sub-problems listed above needed for the construction of the trace
transfer operator matrix can be solved with embarrassing parallelism.

We are going now to illustrate the method with the classical finite difference
approximation for the one dimensional heat equation. The domain of computation
is (0, 1)× (0, T ). The grid has constant space step h and time step dt = h. We keep
the number of grid points per sub-domain fixed with Nb = 20. Further the overlap
is kept minimum, that is a one mesh interval. The Standard Method (SM) applies
a direct tridiagonal solver to integrate each time step. The LU decomposition of the
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tridiagonal system can be computed once, since the same linear system is solved at
every time step. The arithmetic complexity of the SM is then n1 = C1 N M , where
C1 is an integer. C1 = 5 for Gaussian elimination. The arithmetic complexity of one
iterate of the ASWR algorithm is nq = C1 M (N + q − 1) which is asymptotically
equivalent to n1.

All subdomains correspond to the same finite difference operator. Consequently,
the construction of the matrix P requires to solve one sub-domain problem (13)-(14)
or (15)-(16). The arithmetic complexity of the construction of P is then C1 M

N+q−1
q

and can be neglected against nq. The acceleration step requires to solve the sparse
linear system (8) uses asymptotically ninterface = C2M [(q − 1)2 + O(q)] floating
point operations (flops). ninterface is small compare to nq as long as q <<

√
N.

Overall the number of flops for the AASWR procedure is about twice the number
of flops for the standard SM with no DD. However modern computer architectures
do not perform linearly with the number of flops. To illustrate this concept, we
have performed the computation with both algorithm SM and AASWR on a PC
running Matlab with a Pentium 4 2.66GHz. This PC has 1GB of main memory.
With moderate number of time steps and large problem size, the advantage of the
AASWR algorithms over the SM is clear. Figure 1 provides some comparison be-
tween both algorithm with ten time steps, i.e M = 10, Nb = 20 and a number
of subdomains that varies from 2 to 20. The elapsed time is given in seconds and
averages the measurement provided by one hundred runs. We remind here that
the size of the problems grows linearly with the number of domains according to
N = Nb + (q − 1) (Nb − 1). Overall the construction of P and the acceleration
step has negligible elapse time. In AASWR the elapse time grows linearly with the
number of subdomains. AASWR performs better than SM for q > 6. We believe that
the cache size is responsible for the two peaks in the curve giving the performance
of the SM. On the contrary the AASWR seems to be insensitive to the cache size
for the dimension of the sub-domain that has been chosen here.

Figure 2 shows that the condition number of the matrix (Id−P ) used in the ac-
celeration step grows linearly with the number of subdomains, which is proportional
to the problem size in space N . However from our numerical experiments we have
concluded that the acceleration procedure does not seems to impact significantly
the accuracy of our exact solver.
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Most of the results obtained in this section can be extended to multi-dimensional
parabolic problems provided L is separable or a weak perturbation of a separable
operator [5].

3 Aitken-Schwarz Method for Linear Operators in the
Multidimensional Case

To simplify the notations we will restrict ourselves to two space dimensions. We
further assume that the domain Ω is a square discretized by a rectangular Cartesian
grid with arbitrary space steps in each direction. Let us consider the IBVP:

∂u

∂t
= L[u] + f(x, y, t), (x, y, t) ∈ Ω = (0, 1)2 × (0, T ), (17)

u(x, y, 0) = uo(x, y), (x, y) ∈ (0, 1)2, (18)

u(0, y, t) = a(y, t), u(1, y, t) = b(y, t), y ∈ (0, 1), t ∈ (0, T ), (19)

u(x, 0, t) = c(x, t), u(x, 1, t) = d(x, t), x ∈ (0, 1), t ∈ (0, T ), (20)

where L is a second order linear elliptic operator. We assume that the problem is
well posed and has a unique solution. Using an appropriate shift in space we can
restrict ourselves to homogeneous Dirichlet boundary conditions.

The domain Ω = (0, 1)2 is decomposed into q overlapping strips Ωi = (yli, y
r
i )×

(0, 1).
We first present the general algorithm when L is a separable linear operator and

refer to the theoretical framework established in [1] for elliptic operator:

L = L1 + L2, L1 = e1∂xx + f1∂x + g1, L2 = e2∂yy + f2∂y + g2.

e1, f1, g1 are functions of x only, and e2, f2, g2 are functions of y only. We write the
discretized problem as follows

Uk+1 − Uk
dt

= Dxx[Uk+1] + Dyy[Uk+1] + f(X,Y, tk+1), k = 0, . . . ,M − 1, (21)

with appropriate boundary conditions corresponding to (18)-(20).
Our main objective is to rewrite the discretized problem in such a way that we

can reuse the results of Section 2 that is for the one space dimension case. Let us
assume that Dyy has a family of (Ny − 1) independent eigenvectors Φj , j = 1, .., Ny
in RNy−1 with corresponding eigenvalues µj .

The Φj are implicitly the numerical approximation in (0, 1) of the solutions of
the following continuous eigenvector problems:

L2[v(y)] = µ v(y), v(0) = v(1) = 0. (22)

Let us introduce the decompositions
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Uk(x, y, t) =

Ny−1∑

j=1

Λkj (x, t)Φj(Y ), uo(x, y) =

Ny−1∑

j=1

λkj (x)Φj(y),

f(x, y, tk) =

Ny−1∑

j=1

fkj (x, tk)Φj(y), a(y, tk) =

Ny−1∑

j=1

aj(t
k)Φj(y),

b(y, tk) =

Ny−1∑

j=1

bj(t
k)Φj(y).

The discrete solution of (21) satisfies the following set of (Ny − 1) uncoupled
problems

Λk+1
j − Λkj
dt

= Dxx[Λk+1
j ] + µj Λ

k+1 + fj(X, t
k+1), k = 0, . . . ,M − 1, (23)

Λ0
j = λj(X), Λk+1(x0) = aj(t

k+1), Λk+1(xNx) = bj(t
k+1), k = 0, . . . ,M − 1.(24)

The trace transfer operator can be decomposed into (Ny − 1) independent trace
transfer operators

W ks
j −W∞j → W ks+1

j −W∞j ,

that apply to each component of the trace of the solution expanded in the eigenvector
basis E = {Φj , j = 1, . . . , (Ny − 1)}. Let Qj be the matrix of this linear operator.
The matrix P has now a (Ny − 1) diagonal block structure, where each block is the
matrix Qj . The acceleration procedure of Algorithm (I) Step 2 writes now
• Expand the trace of the solution in the eigenvector basis E and solve component
wise

(Id−Qj)W∞j = W 1
j −Qj W 0

j , ∀j ∈ {1, . . . , (Ny − 1)}. (25)

Assemble the boundary condition W∞ =
∑
j=1,...,Ny−1W

∞
j Φj .

Let us emphasize that the sub-domain problems in Ωj× (0, T ) can be integrated
by any existing efficient numerical solver. It is only the acceleration step 2 that
requires the decomposition of the trace of the solution into the eigenvector basis E.
Because all eigenvector components of the solution are independents, we have then
as in the one dimension space case:

Theorem 2. If the ASWR algorithm converges, then AASWR is a direct solver.

The construction of the Qj can be done exactly as in the one space dimension
case and can be computed with embarrassing parallelism.

This algorithm applies to the standard heat equation problem discretized in
space on a five point stencil with central finite differences on a regular Cartesian
mesh. Following the same steps as in Section 2.4, one can show that AASWR re-
quires roughly two times as many floating point operations. But as stated before the
AASWR algorithm is a parallel algorithm fairly tolerant to high latency networks.
We have verified also that AASWR performs better than SM on a scalar processor
with small number of time steps and large problem size.

We have verified also that the accuracy of our AASWR solver is satisfactory for
three dimensional problem with singular source terms.

Remark 2. Our result can be easily generalized to tensorial products of a one dimen-
sional grid with adaptive space stepping. The key hypothesis is the separability of



508 M. Garbey

the discrete operator Dxx +Dyy on the tensorial product of grid. Because hy is not
a constant, the eigenvectors Φj are not known analytically and should be computed
numerically as in [1].

Details of the parallel implementation of our method that are specific to space
and time decomposition are reported in [5].

4 Conclusion

In this paper we have shown how to generalize the Aitken-like acceleration method
of the additive Schwarz algorithm for elliptic problems to the additive Schwarz
waveform relaxation for the heat equation. This new DD algorithm is in space and
time. Since the concept of our acceleration technique is general and might be applied
in principle to any block-wise relaxation scheme, we expect that it can be combined
with some optimized transmission conditions for the same PDE problem. A further
step in the development of our methodology would be to consider unstructured
meshes, and approximate the trace transfer operator with for example, the coarse
grid interface approximation presented in [6].
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