
Mixed-Precision Preconditioners in Parallel
Domain Decomposition Solvers

Luc Giraud1, Azzam Haidar2, and Layne T. Watson3

1 ENSEEIHT-IRIT, 2 Rue Camichel 31071 Toulouse Cedex, France. giraud@n7.fr
2 CERFACS, 42 Av. Coriolis, 31057 Toulouse Cedex, France. haidar@cerfacs.fr
3 Departments of Computer Science and Mathematics, Virginia Polytechnic

Institute & State University, Blacksburg, Virginia, USA. ltw@cs.vt.edu

1 Introduction

Motivated by accuracy reasons, many large-scale scientific applications and indus-
trial numerical simulation codes are fully implemented in 64-bit floating-point arith-
metic. On the other hand, many recent processor architectures exhibit 32-bit com-
putational power that is significantly higher than for 64-bit. One recent and signif-
icant example is the IBM CELL multiprocessor that is projected to have a peak
performance near 256 Gflops in 32-bit and “only” 26 GFlops in 64-bit computa-
tion. We might legitimately ask whether all the calculation should be performed
in 64-bit or if some pieces could be carried out in 32-bit. This leads to the de-
sign of mixed-precision algorithms. However, the switch from 64-bit operations into
32-bit operations increases rounding error. Thus we have to be careful when choos-
ing 32-bit arithmetic so that the introduced rounding error or the accumulation of
these rounding errors does not produce a meaningless solution. For the solution of
linear systems, mixed-precision algorithms (single/double, double/quadruple) have
been studied in dense and sparse linear algebra mainly in the framework of direct
methods (see [5, 4, 8, 9]). For such approaches, the factorization is performed in
low precision, and, for not too ill-conditioned matrices, a few steps of iterative re-
finement in high precision arithmetic is enough to recover a solution to full 64-bit
accuracy (see [4]). For nonlinear systems, though, mixed-precision arithmetic is the
essence of algorithms such as inexact Newton.

For linear iterative methods, we might wonder if such mixed-precision algorithms
can be designed. The most natural way, in Krylov subspace methods, is to implement
all but the preconditioning steps in high precision. The preconditioner is expected to
“approximatively” solve the original problem, so introducing a slight perturbation by
performing this step in low precision might not affect dramatically the convergence
rate of the iterative scheme. In this paper, we investigate the use of mixed-precision
preconditioners in parallel domain decomposition, where the 32-bit calculations are
expected to significantly reduce not only the elapsed time of a simulation but also
the memory required to implement the preconditioner.

The paper is organized as follows. In Section 2 we motivate using 32-bit rather
than 64-bit from a speed perspective. Section 3 is devoted to a brief exposition of

358 L. Giraud, A. Haidar, L.T. Watson

the non-overlapping domain decomposition technique we consider for the parallel
numerical experiments discussed in Section 4.

2 Mixed-Precision Algorithms

Counter to the 64-bit RISC trend, for some recent architectures, a 64-bit operation is
more expensive than a 32-bit one. In particular, those that possess a SSE (streaming
SIMD extension) execution unit can perform either two 64-bit instruction or four
32-bit instructions in the same time. This class of chip includes for instance the IBM
PowerPC, the Power MAC G5, the AMD Opteron, the CELL, and the Intel Pentium.
Table 1 reports the performance of basic dense kernels involved in numerical linear
algebra: the GEMV BLAS-2 matrix-vector product and the POTRF/ POTRS
Lapack Cholesky factorization and backward/forward substitution. It can be seen
that 32-bit calculation generally outperforms 64-bit. For a more exhaustive set of
experiments on various computing platforms, refer to [8, 9]. The source of time
reduction is not only the processing units that perform more operations per clock-
cycle, but also a better usage of the complex memory hierarchy that provides ultra-
fast memory transactions by reducing the stream of data block traffic across the
internal bus and bringing larger blocks of computing data into the cache. This
provides a speed up of two in 32-bit compared to 64-bit computation for BLAS-3
operations in most Lapack routines.

Table 1. Elapsed time (sec) to perform BLAS-2 and Lapack routines on various
platforms when the size m of the matrices is varied.

CRAY XD1 AMD Opteron processor

n DGEMV SGEMV Ratio DPOTRF SPOTRF Ratio DPOTRS SPOTRS Ratio

2000 0.012 0.005 2.18 0.823 0.462 1.78 0.010 0.004 2.22
7000 0.121 0.056 2.16 29.41 16.04 1.83 0.116 0.056 2.07

MAC Power PC G5 processor VMX/AltiV ec extensions

n DGEMV SGEMV Ratio DPOTRF SPOTRF Ratio DPOTRS SPOTRS Ratio

2000 0.028 0.008 3.51 0.828 0.453 1.82 0.032 0.022 1.45
7000 0.354 0.122 2.90 23.71 13.27 1.78 0.372 0.355 1.05

Another advantage of 32-bit floating point arithmetic is that data storage is
reduced by half, providing an increase in data throughput. Similarly, in a distributed
memory environment, the message sizes are halved.

3 Exploiting 32-bit Calculation in Domain
Decomposition

Consider the following second order self-adjoint elliptic problem in the unit cube
Ω = (0, 1)3 ⊂ R3 :

Mixed-Precision Preconditioners in Parallel DD Solvers 359

{
−∇(a(x, y, z)∇u) = f(x, y) in Ω,

u = 0 on ∂Ω,
(1)

where a(x, y, z) ∈ R3 is a positive definite symmetric matrix function. We assume
that the domain Ω is partitioned into N non-overlapping subdomains Ω1,..., ΩN
and boundary Γ = ∪ Γi, where Γi = ∂Ωi\∂Ω. We discretize (1) by using a finite
element method resulting in a symmetric positive definite linear system, Ahuh =
fh. Let I denote the union of the interior points in the subdomains, and let B
denote the interface points separating the subdomains. Then grouping the unknowns
corresponding to I in the vector uI and the unknowns corresponding to B in the
vector uB , we obtain the following reordering of the fine grid problem:

(
AII AIB
ATIB ABB

)(
uI
uB

)
=

(
fI
fB

)
. (2)

Eliminating uI in the second block row leads to the following reduced equation for
uB :

SuB = fB −ATIBA−1
II fI with S = ABB −ATIBA−1

II AIB , (3)

where S is referred to as the Schur complement matrix that is symmetric positive
definite if Ah is symmetric positive definite. Let RΓi : Γ → Γi be the canonical
point-wise restriction that maps full vectors defined on Γ into vectors defined on
Γi. The Schur complement matrix (3) can be written as the sum of elementary

matrices, S =

N∑

i=1

RTΓi
S(i)RΓi , where S(i) = AΓiΓi−AΓiIiA

−1
IiIi

AIiΓi is a local Schur

complement. We define the assembled local Schur complement, S̄(i) = RΓiSRTΓi
,

that corresponds to the restriction of the Schur complement to the interface Γi.
The assembled local Schur complement can be computed in a parallel environment
from the local Schur complement via a few neighbor to neighbor communications.

We define the additive Schwarz preconditioner by MAS =
∑N
i=1RTΓi

(
S̄(i)

)−1

RΓi ,

(see [3]).
We propose to take advantage of the 32-bit speed and memory benefit and build

some part of the code in 32-bit. Our goal is to use costly 64-bit arithmetic only where
necessary to preserve accuracy. We consider here the simple approach of performing
all the steps of a Krylov subspace method except the preconditioning in 64-bit [10].
In this respect, it is important to note that the preconditioner only attempts to
approximate the inverse of the matrix S. Since our matrices are symmetric positive
definite, the Krylov subspace method of choice is conjugate gradient (CG). In our
mixed-precision implementation only the preconditioned residual is computed in 32-
bit. The import of this strategy is that the Gaussian elimination (factorization) of
the local assembled Schur complement (used as preconditioner), and the forward
and the back substitutions to compute the preconditioned residual, are performed
in 32-bit while the rest of the algorithm is implemented in 64-bit.

Since the local assembled Schur complement is dense, cutting the size of this ma-
trix in half has a considerable effect in terms of memory space. Another benefit is in
the total amount of communication that is required to assemble the preconditioner.
As for the memory required to store the preconditioner, the size of the exchanged
messages is also half that for 64-bit. Consequently, if the network latency is ne-
glected, the overall time to build the preconditioner for the 32-bit implementation

360 L. Giraud, A. Haidar, L.T. Watson

should be half that for the 64-bit implementation. These improvements are illus-
trated by detailed numerical experiments with the mixed-precision implementation
reported in Section 4.

4 Numerical Results

The target computer is the Terascale computer system X located at Virginia Tech’s.
The system Xserve is a 1,100 dual G5 processor nodes ran at 2.3GHz; each node
has 4GB of main memory. The G5 cluster operates at 20.24 64-bit Teraflops peak,
and the networking consists both of standard Ethernet for “non-computational”
tasks, and special Mellanox Cougar InfiniBand 4x HCA networks for high-bandwidth
and low-latency communications. In a parallel distributed memory environment,
the domain decomposition strategy is followed to assign each local PDE problem
(subdomain) to one processor that works independently of other processors and
exchange data using MVAPICH (MPI for InfiniBand on VAPI Layer). The code is
written in Fortran 90 and compiled with the IBM compiler.

In what follows we start by taking a brief look at our parallel implementation
that relies on a unique feature of the multifrontal sparse direct solver Mumps (see [1,
2]); that offers the possibility to compute the Schur complement matrices S(i) at
an affordable memory and computational cost thanks to its multifrontal approach.
Those local Schur complement matrices computed explicitly on each processor are
then assembled using neighbor to neighbor communication, which is independent of
the number of processors. Then they are factorized using the dense linear Lapack

kernel, to construct the additive Schwarz preconditioners. Finally, we note that
the solution of this reduced linear system associated with the Schur complement is
typically performed by a distributed preconditioned conjugate gradient solver.

In this section we compare the performance of a fully 64-bit with a mixed-
precision implementation. For all the parallel experiments, we solve either the two-
dimensional or the three-dimensional elliptic PDE defined respectively in the unit
square or cube, using a uniform domain decomposition into equal sized squares or
cubes. Since the goal is to study the numerical efficiency of the preconditioner, we
only perform scaled experiments where the matrix size for the subdomains is kept
constant (i.e., constant H

h
where H is the diameter of the subdomains, and h is the

mesh size) when the number of subdomains is increased. In the table, we refer to
the fully 64-bit and mixed-precision experiments as Md and Mm, respectively.

In order to illustrate the effect on the convergence rate, we report in Table 2
the number of conjugate gradient iterations to reduce the scaled residual ‖rk‖

‖b‖ below

10−8, where b is the right-hand side of the Schur complement system. We consider
the smooth and not too ill-conditioned problems associated with the Poisson equa-
tion and a heterogeneous diffusion problem with coefficient jumps from 1 to 103 in
various places of the unit square or cube. This latter example gives rise to more
ill-conditioned linear systems to solve. Finally, while keeping constant the size of
the subdomains, we vary their numbers and consider two different subdomain sizes.

In Table 2, we report result observed on the two dimensional model. Because
only local preconditioner are considered, it can be seen that the number of iterations
grows with the number of subdomains. In terms of iterations, it can be seen that
for the two different problems Mm behaves closely to Md. With this choice of the

Mixed-Precision Preconditioners in Parallel DD Solvers 361

mixed-precision, it can be expected a reduction of the global elapsed time as de-
scribed below. For the three dimensional case, the behavior of the preconditioners is
depicted in Table 2. The first observation, that we do not further develop, is that the
preconditioner, which does not implement any coarse space component to account
for the global coupling of the PDEs, does not scale too badly when the number of
subdomains is increased. Its scalability with respect to the size of the subdomains
is also acceptable as only a slight increase is observed when we go from subdomains
with about 15,000 degrees of freedom (dof) to subdomains with about 43,000 dof.
On the accuracy effect of the mixed-precision usage, it can be observed once again
that it only moderately increases the number of iterations, and the increase does not
depend much either on the number of subdomains or on the size of the subdomains.
As expected, the growth is also slightly larger on the ill-conditioned heterogeneous
problem as for the Poisson problem.

Table 2. Number of conjugate gradient iterations when the number of subdomains
and the subdomain grid is varied: 2D and 3D case.

2D experiments Poisson Problem Discontinuous Problem

subdomain grid 25 64 144 256 25 64 144 256

Md 15 24 33 40 23 33 55 61
35 × 35

Mm 15 26 33 41 23 34 55 62

Md 20 34 45 55 37 47 76 91
1000 × 1000

Mm 21 35 47 57 39 48 78 93

3D experiments Poisson Problem Discontinuous Problem

subdomain grid 27 64 125 216 27 64 125 216

Md 17 24 26 31 23 33 36 44
25 × 25 × 25

Mm 19 26 28 33 24 34 39 45

Md 19 26 30 33 25 35 40 47
35 × 35 × 35

Mm 21 29 30 35 25 37 42 49

In Table 3 we report on three-dimensional numerical experiments related to the
construction of the preconditioner for different problem sizes, varying the number
of processors from 27 up to 216 (i.e., varying the decomposition of the cube from
3×3×3 up to 6×6×6). We depict the preconditioner setup time for bothMd andMm.
The row entitled “init” corresponds to the calculation of the local Schur complement
using the Mumps package. The construction of the local Schur complements that
are involved in the matrix-vector product in the conjugate gradient algorithm is
performed in both cases in 64-bit arithmetic, so the cost is the same for the two
variants. The “setup precond” row is the time required to assemble and factorize,
using Lapack, the assembled local Schur complement. As might be expected, these
results show that the 32-bit preconditioner setup time is significantly smaller than
that for 64-bit. Note that the 32-bit arithmetic cut in half the time for assembling
the local Schur matrix, due to halving the amount of communication. Also the O(n3)
floating-point operations of the LLT factorization [S/D]POTRF are about a factor
of 1.8 faster in 32-bit.

362 L. Giraud, A. Haidar, L.T. Watson

Table 3. Parallel performance for various steps of the preconditioned conjugate
gradient implementations (35× 35× 35 subdomain grid).

proc 27 64 125 216
Md Mm Md Mm Md Mm Md Mm

init 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8
setup precond 21.2 12.3 21.2 12.3 21.3 12.3 21.4 12.4
time per iter 0.73 0.68 0.73 0.69 0.76 0.71 0.76 0.72

total 66.3 56.1 73.5 64.6 78.5 68.9 83.9 74.5

iter 25 25 35 37 40 42 47 49

From a memory viewpoint, using Mm saves 150 MB of memory per processor for
the example with about 43,000 dof per subdomain. From a computational perspec-
tive, memory and CPU time, the saving is clear. It can be seen that the time per
iteration is almost constant and does not depend much on the number of processors
for both preconditioners. In terms of the overall computing time, the row entitled
“total” in Table 3 displays the overall elapsed time to solve the heterogeneous diffu-
sion problem with 43,000 dof per subdomain when the number of domains is varied.
These results show that on the most difficult problem the time saved by the use of
mixed-precision arithmetic still compensates for a slight increase in the number of
iterations, and that Mm outperforms Md.

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

 64−bit calculation
mixed calculation
32−bit calculation

Fig. 1. Convergence history of ‖rk‖/‖b‖ (right) on a 15 000 dof problem in mixed
finite element device modeling simulation on a mosfet (left).

In Figure 1, we report the convergence history of PCG using entire 64/32-bits
and mixed arithmetic calculation on an unstructured 2D problem arising from mixed
finite element discretization in device modeling simulations (150 000 dof and 16 sub-
domains) [7]. This real life example exhibits similar numerical behavior as the ones
observed on the academic examples of Table 2. Namely, the pure 32-bit calculation
has a limiting accuracy much larger than the mixed and the full 64-bit computation.

Mixed-Precision Preconditioners in Parallel DD Solvers 363

5 Concluding Remarks

In a linear iterative parallel domain decomposition solver, the use of 32-bit arith-
metic was limited to the preconditioning step. The main advantage of using mixed-
precision is that it reduces the data storage, the computational time, and the com-
munication overhead while only marginally degrading the convergence rate without
preventing to reach similar accuracy as full 64-bit calculation. This work is just a first
study of mixed arithmetic implementation, and other variants will be considered in
future work. While the current work is purely experimental, some theoretical studies
deserve to be undertaken following possibly some techniques presented in [11]. Fi-
nally, we mention that the one-level preconditioner presented here can be considered
in a two-level scheme, we refer to [6] for more details on that aspect.

References

[1] P.R. Amestoy, I.S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal.
Appl., 23(1):15–41, 2001.

[2] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid
scheduling for the parallel solution of linear systems. Parallel Comput.,
32(2):136–156, 2006.

[3] L.M. Carvalho, L. Giraud, and G. Meurant. Local preconditioners for two-level
non-overlapping domain decomposition methods. Numer. Linear Algebra Appl.,
8(4):207–227, 2001.

[4] J. Demmel, Y. Hida, W. Kahan, S.X. Li, S. Mukherjee, and E.J. Riedy. Error
bounds from extra precise iterative refinement. Technical Report UCB/CSD-
04-1344, LBNL-56965, University of California in Berkeley, 2006. Short version
appeared in ACM Trans. Math. Software, vol. 32, no. 2, pp 325-351, June 2006.

[5] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, S. X. Li, and J. W. H. Liu. A
supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl.,
20(3):720–755, 1999.

[6] L. Giraud, A. Haidar, and L.T. Watson. Parallel scalability study of three
dimensional additive Schwarz preconditioners in non-overlapping domain de-
composition. Technical Report TR/PA/07/05, CERFACS, Toulouse, France,
2007.

[7] L. Giraud, A. Marrocco, and J.-C. Rioual. Iterative versus direct parallel sub-
structuring methods in semiconductor device modelling. Numer. Linear Algebra
Appl., 12(1):33–53, 2005.

[8] J. Kurzak and J. Dongarra. Implementation of the mixed-precision high per-
formance LINPACK benchmark on the CELL processor. Technical Report LA-
PACK Working Note #177 UT-CS-06-580, University of Tennessee Computer
Science, September 2006.

[9] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra.
Exploiting the performance of 32 bit floating point arithmetic in obtaining 64
bit accuracy. Technical Report LAPACK Working Note #175 UT-CS-06-574,
University of Tennessee Computer Science, April 2006.

[10] S. Lanteri. Private communication, 2006.

364 L. Giraud, A. Haidar, L.T. Watson

[11] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to
Finite Precision Computations. Software, Environments, and Tools 19. SIAM,
2006.

