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Summary. We present a method to combine fluid dynamics and image analysis
into a single fast simulation environment. Our target applications are hemody-
namic studies. Our method combines an NS solver that relies on the L2 penalty
approach pioneered by Caltagirone and co-workers, and a level set method based
on the Mumford-Shah energy model. Working in Cartesian coordinates regardless
of grid no matter the complexity of the geometry, one can use fast parallel domain
decomposition solvers in a fairly robust and consistent way. The input of the simula-
tion tool is a set of JPEG images, and the output can be various flow components as
well as shear stress indicators on the vessel or domain wall. In two space dimensions
the code runs close to real time.

1 Introduction and Motivation

The objective of this work is to use angiogram medical images to produce flow
simulations by a very robust and fast method. The emphasis is not on high accuracy,
since there are many sources of errors or variability in medical data. From medical
imaging, we extract the geometry of large vessels. Our algorithm provides a first
order approximation of some main quantities of interest in cardiovascular disease:
the shear stress and the pressure on the wall, as well as the flow components in the
artery.

We present a fast, versatile and robust NS solver that relies heavily on the L2

penalty approach pioneered by Caltagirone and co-workers [2] and combines nicely
with a level set method based on the Mumford-Shah energy model [4].

The wall boundary condition is immersed in the Cartesian mesh thanks to the
penalty term added to the momentum equation. We use the domain decomposi-
tion (DD) algorithm of [3] that has high numerical efficiency and scales well with
parallel computers in order to take full advantage of the regular data structure of
the problem. This DD is coupled with a sub-domain solver that is tuned to provide
the fastest result on the computer available for the run. In this paper we present
simulations in two space dimensions while results in three space dimensions will be
reported elsewhere.
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2 Navier-Stokes Flow Solver

Since we concentrate our study on large vessels, we use an incompressible NS fluid
flow model [8, 11].

In this paper we will use the penalty method introduced by Caltagirone and
co-workers [2] since it is simpler to implement than our previous boundary fitted
methods [7] and applies naturally to flow in complex domains with moving walls
[10].

The flow of incompressible fluid in a rectangular domain Ω = (0, Lx) × (0, Ly)
with prescribed values of the velocity on ∂Ω obeys the NS equations:

∂tU + (U.∇)U +∇p− ν∇.(∇U) = f, in Ω

div(U) = 0, in Ω,U = g on ∂Ω,

We denote by U(x, y, t) the velocity with components (u1, u2) and by p(x, y, t) the
normalized pressure of the fluid. ν is a kinematic viscosity.

With an immersed boundary approach the domain Ω is decomposed into a fluid
subdomain Ωf and a wall subdomain Ωw. In the L2 penalty method the right hand
side f is a forcing term that contains a mask function ΛΩw

ΛΩw (x, y) = 1, if (x, y) ∈ Ωw, 0 elsewhere,

and is defined as follows

f = −1

η
ΛΩw {U − Uw(t)}.

Uw is the velocity of the moving wall and η is a small positive parameter that goes
to zero.

A formal asymptotic analysis helps us to understand how the penalty method
matches the no slip boundary condition on the interface Sfw = Ω̄f

⋂
Ω̄w as η → 0.

Let us define the following expansion:

U = U0 + η U1, p = p0 + η p1.

Formally, in first order, we obtain,

1

η
ΛΩw {U0 − Uw(t)} = 0,

that is
U0 = Uw, for (x, y) ∈ Ωw.

The leading order terms U0 and p0 in the fluid domain Ωf satisfy the standard set
of NS equations:

∂tU0 + (U0.∇)U0 +∇p0 − ν∇.(∇U0) = 0, in Ωf

div(U0) = 0, in Ω.

At the next order we have in Ωw,

∇p0 + U1 +Qw = 0, (1)
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where
Qw = ∂tUw + (Uw.∇)Uw − ν∇.(∇Uw).

Further the wall motion Uw must be divergence free. Continuing to the next
order we have in Ωf ,

∂tU1 + (U0.∇)U1 + (U1.∇)U0 +∇p1 − ν∇.(∇U1) = 0,

with
div(U1) = 0.

In the simplest situation where Uw ≡ 0, we observe that the motion of the
flow is driven by the pressure following a classical Darcy law. η stands for a small
permeability. To summarize as η → 0, the flow evolution is dominated by the NS
equations in the artery, and by the Darcy law with very small permeability in the
wall. This actually corresponds to a standard multiscale model of blood flow in the
main arteries. From the analytical point of view it was shown in [1] for a fixed wall,

i.e. Uw ≡ 0, that the convergence order of the penalty method is of order η
3
4 , in the

fluid domain, and η
1
4 in the wall.

The mask function ΛΩw is obtained with an image segmentation technique that
is a level set method. Since the contours of the image are not necessarily sharp, it is
interesting to use the level set method presented in [4] and based on the Mumford-
Shah Model.

Regarding the resolution of the equation, we use a projection method for the
time step as follows :

• Step 1: prediction of the velocity ûk+1 by solving either :

ûk+1 − uk,∗
∆t

− ν∆uk = fk+1 −∇pk or; û
k+1 − uk,∗

∆t
− ν∆uk+1 = fk+1 −∇pk

in (0, Lx) × (0, Ly) with the boundary condition ûk+1 = g on ∂Ω. We denote
that uk,∗ is obtained thanks to the method of characteristics.

• Step 2: projection of the predicted velocity to the space of divergence free func-
tions.

−div∇δp = − 1

∆t
divûk+1;uk+1 = ûk+1 −∆tδp

pk+1 = pk + δp .

The NS calculation decomposes into three steps: the prediction of the flow speed
components, the solution of a Poisson problem for the pressure, and eventually the
computation of the shear stress along the wall. The momentum equations can be
solved quickly, while the performance of the code is dominated by the Poisson solver
for the pressure. We detail this part of the algorithm in the next section.

3 Multi-Algorithm for the Pressure Solver

The pressure equation can be integrated with a number of existing fast Poisson
solvers since the discretization grid is regular. It is convenient for example to use
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a (full) multigrid solver here. The arithmetic complexity of this solver is optimum.
Further the iterative solver converges extremely fast for those grid points that are in
the solid wall. However the pressure equation has to be solved at every time step and
what turns out to be the faster solver may depend on the computer architecture.
In the following we use the framework of the Aitken- Additive Schwarz method to
fine tune the subdomain solver [5, 6]. The main reason being that on a standard Be-
owulf system with fast ethernet switch, the high latency of the network significantly
lowers the performance of the multigrid solver. On the contrary the Aitken-Schwarz
algorithm may double the number of flops compared to an optimal solver but is
highly insensitive to the latency of the network.

Interface software [6] has been written to reuse a broad variety of existing linear
algebra software for each subdomain such as LU factorization, a large number of
Krylov methods with incomplete LU preconditioner, and geometric or algebraic
multigrid solvers.

Only experiments can provide the fastest method for the resolution of a linear
system.

Let us restrict ourselves to three software systems: Linpack for LU, Sparskit for
iterative solver, Hypre for algebraic multigrid. We build a surface response model
[9] based upon the least square quadratic polynomial approximation of the elapsed
time as a function of the grid size (nx, ny):

T (nx, ny) = β0 + β1nx + β2ny + β3nxny + β4n
2
x + β5n

2
y .

The performance modeling can be done in principle with any linear algebra
software. This model to predict the elapsed time for the resolution of a linear solver
with LU or a Krylov solver with a relative prediction error of the prediction less
than a few percent. To build the model we need on the order of 10 test runs with
various grid configurations that cover the region of prediction. For Hypre, this model
does not give good predictions in general. One observes that the elapsed time is very
sensitive to the size.

Based on the surface response model, one can then decide what is the opti-
mum solver for a given subdomain dimension. For illustration purpose let us restrict
ourselves to the 2D Poisson problem that corresponds to the pressure solver. One
can notice that LU performs well for small sizes, while, iterative solvers such as
BiCGStab (Krylov method) and AMG-GMRES (multigrid method) give the fastest
results for large grid sizes. More details on this study can be found in [6].

Figures 1 and 2 give the performances on different processor architectures, a dual
processor AMD 1800+ with 2GB of RAM and a dual processor 900 MHz Itanium2
with 3 GB of RAM, respectively. We clearly see the difference of the region of the
area where LU is faster than the iterative method. The automatic tuning through the
model of the solver helps us to choose wisely the fastest solver for each subdomain
solver.

It should be observed from Figures 3 and 4 that the optimum choice of the
subdomain solver depends weakly on the number of processors. In the framework of
the AS algorithm, we have observed that message passing favors an iterative solver
versus a direct solver when the difference on performance between the two solvers
is moderate.

Let us now illustrate our parallel algorithm on the incompressible Navier-Stokes
flow that uses the pressure solver of this section.
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Fig. 1. Comparison between
BiCGStab and LU decomposition on
a 32bit AMD processor

Fig. 2. Comparison between
BiCGStab and LU decomposition on
a 64 bit Itanium

Fig. 3. Surface response with 4 pro-
cessors

Fig. 4. Surface response with 8 pro-
cessors

4 Parallel Performances of the NS Code

Let us first present a two dimensional simulation obtained from an x-ray. Figure 5
shows the frontal projection of a carotid in the brain area during an angiogram
procedure. Figure 6 shows an example for a steady flow calculation in the region of
interest with a Reynolds number of order 330. The flow comes from the left side.
The size of the grid in this simulation is about 210× 170.

The simulation of one cardiac cycle with an 8-way Opteron machine, for the grid
sizes, 300× 100 and 450× 150, takes around 3 and 9 seconds, respectively. The time
for the image segmentation is less. These simulation are then close to real time.

Figure 7 shows the speedup of this code with different grid sizes. Until four
processors, the code has a linear speedup, and then the speed up deteriorates.

Actually this is mainly due to the design of the crossbar architecture of the low
cost Opteron system which does not scale from 4 to 8 processors.

The results on scalability of our code are better.
In figure 8 we keep the aspect ratio of the grid hx

hy
the same: three tests have been

performed respectively with a problem of size 141×567 for two processors, 200×801
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Fig. 5. Benchmark problem
Fig. 6. Contour u
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Fig. 7. Speedup of the Navier-Stokes code.
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Fig. 8. Scalability of the Navier-
Stokes code
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Fig. 9. Scalability of the Navier-
Stokes code with LU solver

on 4 processors, and 283× 1129 on 8 processors. GMRES gives a better scalability
result compared to LU because the growth of the bandwidth of the matrix as the
number of subdomain increases penalize the LU solver. On the contrary if we keep
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the size of the subdomain fixed, here 201 × 201 in figure 9, we obtain a very good
scalability of the code no matter the subdomain solver.

5 Conclusion

We have presented an image based CFD algorithm designed for hemodynamic sim-
ulation. In two space dimension we obtain a code that can be easily optimized for a
specific parallel computer architecture. Robustness and simplicity of the solver are
key elements to make the simulation applicable to clinical conditions. We have de-
veloped recently a three dimension version of the method that will be reported else-
where. Our technique may not be appropriate for turbulent flow for high Reynolds
numbers, but there are a number of cardiovascular problems that corresponds to
unsteady situations with relatively modest Reynolds numbers [8, 11].
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