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1 Introduction

It is well accepted that the efficient solution of complex PDEs frequently
requires methods which are adaptive in both space and time. Adaptive mesh
methods for PDEs may be classified into one or more of the following broad
categories:

• r–refinement: moving a fixed number of mesh points to difficult regions of
the physical domain,

• p–refinement: varying the order of the numerical method to adapt to local
solution smoothness,

• h–refinement: mesh refinement and derefinement, depending upon the local
level of resolution.

These methods are applied in either a static fashion, where refining/coar-
sening or redistributing grids is done at fixed times during a simulation or in a
dynamic fashion, where the solution and mesh are computed simultaneously.

In this paper we are interested in a class of spatially adaptive moving
mesh PDE methods introduced in [17, 11] and [12]. Traditionally, moving
mesh methods have been implemented in a (moving) method of lines frame-
work — discretizing spatially and then integrating in time using a stiff initial
value problem (IVP) solver. This approach propagates all unknowns (mesh
and physical solution) forward in time using identical time steps. It is quite
common, however, for problems with moving interfaces or singular behavior
to have solution components which evolve on disparate scales in both space
and time.

Our purpose is to introduce and explore a natural coupling of domain
decomposition, in the Schwarz waveform context, and the spatially adaptive
moving mesh PDE methods. This will allow the mesh and physical solution
to be evolved according to local space and time scales.
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2 Moving Mesh Methods

We consider the solution of a PDE of the form

ut = L(u) 0 < x < 1, t > 0,

subject to appropriate initial and boundary conditions, where L denotes a
spatial differential operator. The assumption is that the solution of this PDE
has features which are difficult to resolve using a uniform mesh in the physical
coordinate x. We seek, for fixed t, a one–to–one coordinate transformation

x = x(ξ, t) : [0, 1] → [0, 1], with x(0, t) = 0, x(1, t) = 1

such that u(x(ξ, t), t) is sufficiently smooth that a simple (typically uniform)
mesh ξi, i = 0, 1, . . . , N can be used to resolve solution features in the compu-
tational domain ξ ∈ [0, 1]. The mesh in the physical coordinate x is then spec-
ified from the coordinate transformation by xi(t) = x(ξi, t), i = 0, 1, . . . , N .

One standard way to perform adaptivity in space is to use the equidistri-
bution principle (EP), introduced by [3]. We assume for the moment that a
monitor function, M = M(t, x), measuring the difficulty or error in the nu-
merical solution, is given. Typically, its dependence on t and x is through the
physical solution u = u(t, x). Then, equidistribution requires that the mesh
points satisfy

∫ xi

xi−1

M(t, x̃) dx̃ =
1

N

∫ 1

0

M(t, x̃)dx̃ for i = 1, ..., N,

or equivalently,

∫ x(ξi,t)

0

M(t, x̃) dx̃ = ξi

∫ 1

0

M(t, x̃)dx̃ for i = 1, . . . , N.

The continuous generalization of this is that

∫ x(ξ,t)

0

M(t, x̃) dx̃ = ξθ(t), (1)

where θ(t) ≡
∫ 1

0
M(t, x̃) dx̃ (e.g., see [11]). It follows immediately from (1)

that
∂

∂ξ

{
M(t, x(ξ, t))

∂

∂ξ
x(ξ, t)

}
= 0. (2)

Note that (2) does not explicitly involve the node speed ẋ. This is generally
introduced by relaxing the equation to require equidistribution at time t+ τ .
A number of parabolic moving mesh PDEs (MMPDEs) are developed using
somewhat subtle simplifying assumptions and their correspondence to various
heuristically derived moving mesh methods is shown in [17] and [11, 12]. A
particularly useful one is MMPDE5,
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ẋ =
1

τM(t, x(ξ, t))

∂

∂ξ

(
M(t, x(ξ, t))

∂x

∂ξ

)
. (MMPDE5)

The relaxation parameter τ is chosen in practice (cf. [10]) so that the mesh
evolves at a rate commensurate with that of the solution u(t, x).

A simple popular choice for M(t, x) is the arclength-like monitor function

M(t, x) =

√
1 +

1

α
|ux|2, (3)

based on the premise that the error in the numerical solution is large in regions
where the solution has large gradients. It is recommended in [10] (also see [1]
and [18]) that the intensity parameter α be chosen as

α =

[∫ 1

0

|ux|dx
]2
,

expecting that about one–half of mesh points are concentrated in regions of
large gradients. We note that there are other choices for the monitor function
for certain classes of problems, cf. [2] and [15].

Using the coordinate transformation x = x(ξ, t) to rewrite the physical
PDE in quasi-Lagrangian form, a moving mesh method is obtained by solving
the coupled system

u̇− uxẋ = L(u),

ẋ =
1

τM
(Mxξ)ξ ,

(4)

where u̇ is the total time derivative of u.
Initial and boundary conditions for the physical PDE come from the prob-

lem description. On a fixed interval the boundary conditions for the mesh can
be specified as ẋ0 = ẋN = 0. If the initial solution u(x, 0) is smooth then
it suffices to use a uniform mesh as the initial mesh. Otherwise, an adap-
tive initial mesh can be obtained by solving MMPDE5 for a monitor function
computed based on the initial solution u(x, 0) (cf. [13]).

A typical implementation (cf. [13]) to solve (4) involves spatial discretiza-
tion and solution of a nonlinear system of ODEs with a stiff ODE solver like
DASSL, see [16]. This becomes quite expensive in higher dimensions. Instead
we use an alternating solution procedure where the mesh PDE is integrated
over a time step for the new mesh and then the physical PDE(s) is integrated
with available old and new meshes. The reader is referred to [14] for a detailed
description of the alternating solution procedure.

3 The Schwarz Waveform Implementation

Schwarz waveform relaxation methods have garnered tremendous attention
as a means of applying domain decomposition strategies to problems in both
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space and time. Convergence results for linear problems may be found in [7]
and [4] and for nonlinear problems in [6]. There are several ways to implement
Schwarz waveform relaxation and moving meshes together to design an effec-
tive solver. In [8] and [9] the classical Schwarz waveform algorithm is applied
to the coupled system of mesh and physical PDEs. Specifically, if xj and ξj de-
note the physical and computational meshes on each overlapping subdomain
Ωj and the physical solution on each subdomain is denoted by uj then

u̇k
j −

∂uk
j

∂x
ẋk

j = L(uk
j )

ẋk
j =

1

τM(t, xk
j )

∂

∂ξ

(
M(t, xk

j )
∂xk

j

∂ξ

) (5)

is solved for j = 1, . . . ,D and k = 1, 2, . . .. The boundary values for uk
j and

xk
j are obtained from the values uk−1

j−1 , x
k−1
j−1 and uk−1

j+1 , x
k−1
j+1 from the previous

iteration on the respective boundaries of Ωj−1 and Ωj+1. If this Schwarz
iteration converges it will converge to the mono–domain solution for both the
mesh and physical solution.

In this paper we propose an alternate strategy. We apply a Schwarz iter-
ation solver to the physical PDE and obtain the solution by using a moving
mesh method on each subdomain, which allows one to use standard moving
mesh software. Instead of solving the coupled mesh and physical PDEs on
each subdomain, we use the approach mentioned in the previous section and
alternately solve for the physical solution and the mesh.

As in the fixed mesh case, the rate of convergence of the classical Schwarz
iteration is improved as the size of the overlap is increased, with the faster
convergence being offset by the increased computational cost per iteration.
Things are further complicated, however, by the desire to isolate difficult
regions of the solution from regions where there is little activity. As the overlap
is increased more subdomains become “active” requiring smaller time steps
in a larger proportion of the physical domain.

4 Numerical Results

In this section we highlight some particular aspects of the moving Schwarz
method described in the previous section with the viscous Burgers’ equation,
a standard test problem for moving mesh methods. Specifically we solve ut =
ǫuxx − 1

2 (u2)x, u(0, t) = 1, u(1, t) = 0 and u(x, 0) = c − 1
2 tanh((x − x0)/4ǫ).

For our experiments we choose c = 1/2, x0 = 1/10, and ǫ≪ 1. The solution is
a traveling front of thickness O(ǫ) which moves to the right from x0 at speed
c.

In Figure 1 we illustrate the mesh trajectories generated by a moving
mesh method on one domain. The plot shows the time evolution of all mesh
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Fig. 1. Mesh trajectories generated on one domain.

points. Initially the mesh points are concentrated at the initial front location
(x0 = 1/4). As the solution evolves we see mesh points move in and out of
the front location ensuring a sufficient resolution.

Figures 2 and 3 illustrate the meshes obtained using a two domain solu-
tion during the first two Schwarz iterations with 10% overlap. We see that
the mesh points in subdomain one concentrate and follow the front until it
passes into subdomain two. At that point the mesh in subdomain two, which
was initially uniform, reacts and resolves the front until it reaches the right
boundary. During the first Schwarz iteration the mesh points stay at the right
boundary of subdomain one. The right boundary condition for subdomain one
is incorrect during the first iteration and the solution presents itself as a layer.
During the second iteration, however, the boundary condition issue has basi-
cally been resolved and the mesh in subdomain one returns to an essentially
uniform state as the front moves into subdomain two.
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Fig. 2. Mesh trajectories generated on
two domains during the first Schwarz it-
eration.
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Fig. 3. Mesh trajectories generated on
two domains during the second Schwarz
iteration.
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In Figures 4, 5, and 6 we show solutions of Burgers’ equation using the
moving Schwarz method on two subdomains with a 10% overlap. Each Figure
shows the solution of the physical PDE on the left and the pointwise error
on the right. The left plot of each figure shows the computed solution on
subdomain one marked with circles and the solution on subdomain two marked
with diamonds. The error plots are annotated in the same way. At t = 0.8
during the first Schwarz iteration (Figure 4) the solutions on each subdomain
agree, at least qualitatively, with the one domain solution. By t = 1.4 (Figure
5), the front has moved across the subdomain boundary and the solution on
subdomain one is not correct. This is to be expected since boundary data
for subdomain one is incorrect during the first iteration. During the third
Schwarz iteration (Figure 6), however, the solutions on both subdomains now
agree with the one domain solution to within discretization error.
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Fig. 4. Solution (left) and pointwise error
(right) after Schwarz iteration 1 at t = 0.8.
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Fig. 5. Solution (left) and pointwise error
(right) after Schwarz iteration 1 at t = 1.4.
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Fig. 6. Solution (left) and pointwise error (right) after Schwarz iteration 3 at t = 1.4.
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In our experiments, total cpu time is increased as the overlap is increased.
Convergence of the Schwarz iteration is rapid for small ǫ (the regime of in-
terest for moving mesh methods), requiring only two or three iterations to
reach discretization error. This is consistent with the theoretical results of
[6]. Increasing the overlap for this model problem only serves to make each
subdomain active for a larger portion of the time interval. Any improvement
in the convergence rate is more than offset by the increased cpu time on each
subdomain as the overlap is increased.

5 Conclusions

In this paper we propose a moving mesh Schwarz waveform relaxation method.
In this approach, classical Schwarz waveform relaxation is applied to the phys-
ical PDE and a moving mesh method is used to facilitate the solution on each
subdomain. In this way a solution is obtained which benefits both from the
domain decomposition approach and the ability to dynamically refine meshes
within each subdomain. A careful comparison with previous approaches [9] is
ongoing. The benefits of such an approach are likely to be fully realized in
two or more space dimensions. This is certainly the subject of current work
and interest. The effects of higher order transmission conditions (cf. [5]) are
also being studied in this context.
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