
PDE-based Parameter Reconstruction through
Schur and Schwarz Decompositions

Yuan He and David E. Keyes∗

Department of Applied Physics & Applied Mathematics, Columbia University,
New York NY, 10027 {yh2030,kd2112}@columbia.edu

1 Introduction

We consider in this work a distributed parameter identification problem for the
FitzHugh-Nagumo system of equations of electrocardiology [8]. Specifically, we con-
sider the two-component reaction-diffusion system

∂tu = µ∆u+ u(u− α)(1− u)− v, in Q,
∂tv = κ∆v + ǫ(ϑu− γv), in Q,
u(x, 0) = 0, v(x, 0) = 0 in Ω,
n · ∇u(x, t) = I(x, t), n · ∇v(x, t) = 0, on ∂Q,

(1)

where Ω ⊂ Rn, with n = 2 for the results in section 4. Q and ∂Q are defined as
Q ≡ Ω× (0, T ) and ∂Q ≡ ∂Ω× (0, T ), respectively. See [8] for details on system pa-
rameters. The objective of the parameter identification is to reconstruct the reactive
coefficient α(x) in the first equation from boundary measurements of the electrical
potential u.

Our aim here is to present a numerical algorithm that can solve the reconstruc-
tion problem in large-scale (parallel) environments. The algorithm is of Newton-
Krylov-Schur-Schwarz type; it combines Newton’s method for numerical optimiza-
tion with Krylov subspace solvers for the resulting reduced Karush-Kuhn-Tucker
(KKT) systems. Schwarz preconditioning is used to solve the partial differential
equations that are involved in the inversion procedure.

2 PDE-constrained Optimization

The parameter identification problem for the FitzHugh-Nagumo system is to re-
construct the physical coefficient α(x) from the knowledge of h = u(x, t) on the
boundary of the domain. Since one can measure the boundary potential for var-
ious applied current stimuli I, one thus has access to the time-dependent partial

∗ This work is supported in part by the U. S. National Science Foundation under
CCF-03-52334



544 Y. He, D.E. Keyes

Neumann-to-Dirichlet map: Λ : I(x, t) → h. The parameter identification problem
employs knowledge of this map Λ to recover function α(x).

We solve the inverse problem by formulating it as a PDE-constrained optimiza-
tion problem [1, 4, 5, 6]:

min
α,u
F(α, u)

subject to Cs(Is, α, us, vs) = 0, s = 1, 2, ..., Ns. (2)

where Cs(Is, α, us, vs) = 0 is abstract notation for (1) with source Is. Ns is the
number of source scenarios producing detectable measurements. The functional to
be minimized is defined as

F(α, u) :=
1

2

Ns∑

s=1

Nd∑

j=1

∫ T

0

∫

∂Ω

(us − hs)2δ(x − xj) dσ(x)dt+ ρR(α), (3)

with hs the measurement corresponding to source Is. xj , j = 1, ..., Nd, are detector
positions. To simplify notation, we write u = (u1, ..., us, ..., uNs). dσ denotes the
surface measure on ∂Ω. R(α) is a regularization functional, and the regularization
parameter ρ controls the strength of regularization.

The Lagrangian functional for the above minimization problem is

L(u, v, α, λ, η) = F(α, u) +

Ns∑

s=1

〈(λs, ηs), Cs〉 , (4)

where again sets of variables corresponding to the full set of different sources, such
as v = (v1, ..., vs, ..., vNs), are implied. λs and ηs denote the Lagrangian multipliers
(adjoint variables) corresponding to us and vs, respectively. The solution to the
constrained minimization problem satisfies the first-order optimality conditions of
the Lagrangian functional, which are

Lλ(u, v, α, λ, η) = 0, Lη(u, v, α, λ, η) = 0,
Lu(u, v, α, λ, η) = 0, Lv(u, v, α, λ, η) = 0,
Lα(u, v, α, λ, η) = 0.

(5)

Denoting (u, v, α, λ, η) by u, we can recast (5) as the root-finding problem:

Lu(u) = 0. (6)

3 The Newton-Krylov-Schur-Schwarz Algorithm

In order to solve the optimality equations, a hybrid set of algebraic equations and
quasilinear partial differential equations of reaction-diffusion type, we need a dis-
cretization of the PDEs and an algebraic solver for the resulting large nonlinear
algebraic system. The Newton-Krylov family of methods provides an efficient way
to solve such PDE systems [9].



Parameter Reconstruction through NKSS 545

3.1 The Newton-Krylov Method

Newton methods for solving (6) follow the iteration

uk+1 = uk + lkδuk, (7)

with some initial guess u0, until convergence criteria are satisfied. The update di-
rection δuk at Newton iteration k is given by solving the saddle point problem

Luu(uk)δuk = −Lu(uk). (8)

Here the step length lk is given by a line search or other globalization technique.
The nested iteration is called Newton-Krylov when Krylov subspace methods are
used to solve the inner KKT system. The method has received wide attention from
practitioners in recent years; see the references cited in [9].

For the FitzHugh-Nagumo model we consider here, the KKT system has the
form 



Luu 0 Luα Luλ Luη
0 0 0 Lvλ Lvη
Lαu 0 Lαα Lαλ 0
Lλu Lλv Lλα 0 0
Lηu Lηv 0 0 0







δu
δv
δα
δλ
δη




= −




Lu
Lv
Lα
Lλ
Lη



, (9)

where δu = [δu1, δu2, . . . , δuNs ]T , and δv, δλ, δη and Lu, Lv, Lλ, Lη are simi-
larly defined. Because the forward problems for different sources are decoupled, the
operator Luu has diagonal structure:

Luu = diag{Lu1u1 ,Lu2u2 , . . . ,LuNsuNs
} (10)

and similarly for operators Luλ, Luη, Lvλ, and Lvη and their adjoint operators,
Lλu, Lηu, Lλv, and Lηv. Operators Luα and Lλα have the structure that Luα =
[Lu1α,Lu2α, . . . ,LuNsα

]T and Lλα = [Lλ1α,Lλ2α, . . . ,LλNsα
]T . Lαu and Lαλ are

their adjoint operators, respectively.

3.2 The Schur Complement Reduced Space Method

To avoid a huge storage requirement, we do not solve the KKT system (9) directly.
Instead, in each Newton iteration, for a given α, we first solve the FitzHugh-Nagumo
system (2), which turns out to be the first two equations in (5). We then solve the
adjoint problem, (the fourth and fifth equations in (5)), thereupon, the terms Lu,
Lv, Lλ and Lη vanish in the KKT system (9). The KKT system thus becomes




Luu 0 Luα Luλ Luη
0 0 0 Lvλ Lvη
Lαu 0 Lαα Lαλ 0
Lλu Lλv Lλα 0 0
Lηu Lηv 0 0 0







δu
δv
δα
δλ
δη




= −




0
0
Lα
0
0



. (11)

We can now build the Schur complement of (11) by eliminating δu, δv, δλ and
δη. We then obtain

Hredδα = −Lα, (12)



546 Y. He, D.E. Keyes

where the reduced gradient Lα is given by

Lα =

Ns∑

s=1

∫ T

0

λsus(1− us)dt+ ρR′(α) (13)

and the reduced Hessian Hred (Schur complement of the KKT) is given by

Hred = Lαα − LαuW −W ∗Luα +W ∗LuuW, (14)

with W defined as W = [L−1
λu+L−1

λu (Lηv−LηuL−1
λu )−1LηuL−1

λu ]Lλα. Here W ∗ denotes
the adjoint of W . The reduced Hessian Hred has a much smaller size (and is much
denser) than the original Hessian Luu. It can be verified that Hred = H∗red, that is,
Hred is self-adjoint.

One can obtain the Gauss-Newton approximation by dropping second derivative
information in the Lαu and Luα terms [7, 10], resulting in the reduced Hessian:

HGNred = Lαα +W ∗LuuW. (15)

Table 1. The reduced-space Newton algorithm

Algorithm 1: Reduced-space Newton algorithm

set kmax, ε1, ε2
guess α0(x); set k = 0
evaluate F(α0)

while (k < kmax &
‖Lαk

‖
‖1+F(αk)‖ > ε1, F(αk)

F(α0)
> ε2)

evaluate Lαk by (13)
compute δαk by (12)
compute lk by a line search
αk+1 = αk + lkδαk
evaluate F(αk+1)
k = k + 1

end while

We thus obtain the following Newton-Krylov-Schur (reduced-space) method as
described in Table 1. For full space methods of similar type, see [5, 6].

3.3 The Schwarz Decomposition PDE Solver

In the aforementioned Newton-Krylov-Schur inversion procedure, at each Newton
step, many time-dependent PDEs need to be solved. Some of those PDEs are quasi-
linear (the FitzHugh-Nagumo system), others are linear (the adjoint equations).
The efficiency of the inversion algorithm depends strongly on the efficiency of the
algebraic solvers that are used. Our strategy for building an efficient parallel solver
is based on the parallel solver toolkit PETSc from Argonne National Laboratory
[2]. All the PDEs are passed to the SNES solver in PETSc after being discretized
in time by implicit Euler.



Parameter Reconstruction through NKSS 547

4 Numerical Simulations

We present in this section some performance analysis for the algorithm presented
above. For detailed analysis on the quality of reconstructions and its relationship
with various algorithmic parameters, we refer interested readers to [8]. All the results
shown in this section are obtained on the Mac cluster System X at the Virginia
Polytechnic Institute and State University.

4.1 Performance of Different Solver-preconditioner Combinations

In the first study, we compare the performance of different algebraic solvers and
preconditioning methods on our forward model problem.

The algebraic solvers considered here are all Krylov subspace methods (KSP),
including the generalized minimal residual (GMRES), modified GMRES, flexible
GMRES, conjugate gradient (CG), bi-conjugate gradient (BiCG), and the stabi-
lized version of bi-conjugate gradient squared (BCGS). We refer to [3] for details
of those methods. The preconditioning methods we considered include the Jacobi,
block Jacobi and the additive Schwarz method. We present in Table 2 the execu-
tion time of different combinations. Since many linear systems we encounter in the
solution of the forward and inverse problems are indefinite, we use the classical
GMRES method with additive Schwarz as the preconditioner in the following sec-
tions although there are other combinations that can achieve similar performance
as indicated in Table 2.

Table 2. Execution time for the forward model using different KSP accelerators
with different preconditioners

none Jacobi bJacobi ASM (basic)

GMRES (classical GS) 89.5 90.0 81.3 67.9
GMRES (modified GS) 94.7 74.2 84.5 87.2

f GMRES 91.0 77.0 68.0 87.7
CG 96.1 66.3 63.8 66.9

BiCG 88.8 67.3 80.5 88.8
BCGS 83.6 66.3 66.4 63.0

4.2 Scalability Results on the Forward Solver

We now consider parallel performance of the algorithm we have developed on the
forward problem. We show in Fig. 1 some fixed-size scaling results obtained by
increasing the number of processors with a fixed grid size. The strong speedup
and efficiency results based on execution time for two different spatial grid size,
128×128 and 256×256 are presented. As expected, speedup and efficiency improve
with problem size.

In Table 3 we show the results on execution time and implementation efficiency ε
[5] which is based on the average Mflop/s. We find that the implementation efficiency



548 Y. He, D.E. Keyes

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

number of processors

sp
ee

d
u

p

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

number of processors

effi
ci

en
cy

Fig. 1. Strong speedup (left) and efficiency (right) for the forward solver on 128×128
(⋆) and 256× 256 (◦) spatial grids, respectively.

Table 3. Performance analysis of the forward solver. NP denotes the number of
processors; ε is the implementation efficiency.

128× 128 256×256

NP execution time ε execution time ε

1 312.1 1.00 1881.3 1.00
2 219.8 0.89 1241.0 0.79
4 121.8 0.84 679.4 0.73
8 72.9 0.75 393.6 0.62
16 48.4 0.58 245.2 0.50
32 36.9 0.54 166.0 0.36

of small size problem is slightly better than the implementation efficiency of the
problem of large size.

4.3 Scalability Results on the Inversion Algorithm

We present in Figure 2 the strong speedup and efficiency results for the inversion
algorithm for up to 32 processors. We observe by comparing Fig. 2 and Fig. 1 that the
scalability of the inversion algorithm is slightly better than that of the forward solver.
One explanation of this phenomenon is the forward solver deals with only nonlinear
problems (the FitzHugh-Nagumo model), while the inverse solver deals with both
nonlinear (forward problem) and linear (adjoint problem). The performance from
the linear problem part is better than that from the nonlinear problem part.

In Table 4 we show some results on execution time and the implementation effi-
ciency ε for the inversion algorithm. The implementation efficiency of small problem
size is fairly independent of problem size. Again, by comparing with Table 3, the
implementation efficiency of the inversion algorithm is slightly better than the im-
plementation efficiency of forward model.



Parameter Reconstruction through NKSS 549

0 5 10 15 20 25 30 35
0

5

10

15

20

25

number of processors

sp
ee

d
u

p

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

number of processors

effi
ci

en
cy

Fig. 2. Strong speedup (left) and efficiency (right) for the inversion algorithm on
128× 128 (⋆) and 256× 256 (◦) spatial grids, respectively.

Table 4. Performance analysis of the inverse solver. NP denotes the number of
processors; ε is the implementation efficiency.

128× 128 256×256

NP execution time ε execution time ε

1 9914.0 1.00 72728.9 1.00
2 7015.5 0.79 50101.0 0.70
4 3701.6 0.85 27743.1 0.73
8 1897.7 0.89 13937.0 0.75
16 1021.2 0.85 6916.2 0.79
32 608.2 0.75 3558.1 0.76

5 Conclusion

We have presented in limited space a parallel numerical algorithm for a PDE-based
distributed parameter reconstruction problem. This Newton-Krylov algorithm com-
bines Newton’s method for numerical optimization with Krylov subspace solvers
for the resulting KKT system. We have also discussed the performance of both the
forward solver and the inversion algorithm. Physical results of the inversion are
available in [8].

Future research will focus on accelerating the current code, extending it to three
dimensions on much larger numbers of processors, and comparing simulations on
more realistic geometries with experimental measurements.

References

[1] V. Akcelik, G. Biros, O. Ghattas, J. Hill, D. Keyes, and B. van Bloemen Waan-
ders. Parallel algorithms for PDE-constrained optimization. In M. Heroux,
P. Raghaven, and H. Simon, editors, Frontiers of Parallel Computing. SIAM,
2006.

[2] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Homepage, 2007.
http://www.mcs.anl.gov/petsc.



550 Y. He, D.E. Keyes

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia,
2nd edition, 1994.

[4] L. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders,
editors. Large-Scale PDE-Constrained Optimization. Lecture Notes in Compu-
tational Science and Engineering. Springer-Verlag, Berlin, 2003.

[5] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for
PDE-constrained optimization. Part I: The Krylov-Schur solver. SIAM J. Sci.
Comput., 27:687–713, 2005.

[6] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for
PDE-constrained optimization. Part II: The Lagrange-Newton solver and its
application to optimal control of steady viscous flows. SIAM J. Sci. Comput.,
27:714–739, 2005.

[7] E. Haber, U. Ascher, and D. Oldenburg. On optimization techniques for solving
nonlinear inverse problems. Inverse Problems, 16:1263–1280, 2000.

[8] Y. He and D. E. Keyes. Reconstructing parameters of the FitzHugh-Nagumo
system from boundary potential measurements. J. Comput. Neurosci., 23(2),
2007.

[9] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: A survey
of approaches and applications. J. Comput. Phys., 193:357–397, 2004.

[10] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New
York, 1999.


