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Summary. We discuss the integration of a sequential quadratic programming
(SQP) method with an optimization-level domain decomposition (DD) precondi-
tioner for the solution of the quadratic optimization subproblems. The DD method
is an extension of the well-known Neumann-Neumann method to the optimization
context and is based on a decomposition of the first order system of optimality con-
ditions. The SQP method uses a trust-region globalization and requires the solution
of quadratic subproblems that are known to be convex, hence solving the first order
system of optimality conditions associated with these subproblems is equivalent to
solving these subproblems. In addition, our SQP method allows the inexact solution
of these subproblems and adjusts the level of exactness with which these subprob-
lems are solved based on the progress of the SQP method. The overall method is
applied to a boundary control problem governed by a semilinear elliptic equation.

1 Introduction

Optimization algorithms for PDE constrained optimization problems which
use second order derivative information require the solution of large-scale lin-
ear systems that involve linearizations of the governing PDE and its adjoint.
Domain decomposition methods can be used to effectively solve these sub-
problems. In this paper we discuss the integration of a sequential quadratic
programming (SQP) method with an optimization-level domain decomposi-
tion (DD) preconditioner for the quadratic optimization subproblems arising
inside the SQP method.

t Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under Contract DE-AC04-94-AL85000.
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As an example problem we consider the following boundary control prob-
lem with states y and controls u.

Minimize 1/ l(y(x), x)dz + g/ u?(z)dx (1a)
2 Je 2 Jon,
subject to
—eAy(x) +g(y(z), =) =0, x €, (1b)
y(z) =0, x € 002\ 052, (1c)
13}
ea—ny(x) = u(x), x € 02,. (1d)

Here « > 0 is a given parameter. Because of page restrictions, we limit our
presentation to semilinear elliptic optimal control problems in which the func-
tions g, [ and the problem data are such that the optimal control problem (1)
has a solution y € H(2), u € L*(9£2.). Furthermore, we assume that the
state equation and the objective functional are twice Fréchet differentiable in
HY(£2) x L*(092..), that the linearized state equation has a unique solution in
H'(£2) that depends continuously on the right hand side and boundary data,
and that a second order sufficient optimality condition is satisfied at the solu-
tion. These assumptions are satisfied for the example problem considered in
Section 4 as well as those discussed, e.g., in [8, 11, 10, 16]. To establish Fréchet
differentiability and second order optimality conditions for other semilinear
elliptic optimal control problems, however, a more involved setting and anal-
ysis is required. See, e.g., [17, 24]. Our approach can be adapted to many of
those problems. We note that our approach can also be applied to the opti-
mal control of incompressible Navier-Stokes equations. However, since these
are systems of PDEs and because the compatibility conditions that are implied
by the incompressibility condition require a careful treatment, the presenta-
tion of our approach for the optimal control of incompressible Navier-Stokes
equations is too lengthy and will be given elsewhere.

In this work we use the optimization-level DDM introduced in [3, 13] for
the solution of convex quadratic subproblems arising in the solution of (1).
These optimization-level DDMs are extensions of the well known Neumann-
Neumann methods (see, e.g., [20, 22, 23]) or the Robin-Robin methods for
problems with advection (see, e.g., [1, 2]) from the PDE to the optimization
context. In particular, all subproblem solves that arise in our DDM corre-
spond to the solution of subdomain optimal control problems, which are es-
sentially smaller copies of the original one. We note that our DDM is not
the only optimization-level DDM. By ‘optimization-level’ we mean that the
DDM is applied directly to the optimization problem, not individually to
the state and adjoint PDEs. For example the DDM used in [18, 19] may be
viewed as the optimization-level version of the restrictive additive Schwarz
method discussed, e.g., in [6]. Heinkenschloss and Nguyen [12] analyze an
optimization-level additive Schwarz method. Overall, however, the theoretical
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properties of optimization-level DDMs are still relatively poorly understood.
We also point out that many optimization-level DDMs; including ours and
the ones in [18, 19] are obtained by applying DDM to the system of optimal-
ity conditions, the so-called KKT system. This is only possible if the system
of optimality conditions is necessary and sufficient, i.e., if the optimization
problem is convex. This restriction is not always made explicit enough and is
typically important for nonlinear PDE constrained optimization problems.

SQP algorithms coupled with DDMs have been discussed in [4, 5, 18, 19].

Our SQP method builds on the works [15, 21]. There are important fea-
tures that distinguish our SQP from those in [4, 5, 18, 19]. First, all quadratic
subproblems that arise in our SQP method are known a-priori to be con-
vex. This allows us to apply optimization-level DDMs to these subproblems,
which are based on a decomposition of the first order optimality conditions,
the so-called KKT conditions. Since our subproblems are convex, solving these
optimality systems is equivalent to solving the quadratic optimization prob-
lems. Secondly, we allow the inexact solution of the large scale linear KKT
systems that arise as subproblems inside the SQP algorithms, and provide a
rigorous way to control the level of inexactness with which these systems have
to be solved. The level of inexactness is coupled to the progress of the SQP al-
gorithm, which enables us to apply coarse, more inexpensive solves away from
the solution. Our DDM is used as a preconditioner for the large scale linear
KKT systems that arise in the SQP algorithm. Other preconditioners could be
used as well. In particular, it is possible to incorporate the DD Krylov-Schur
preconditioner used by [4, 5] or (restricted) additive Schwarz preconditioners
as used by [18, 19].

2 Optimal Control of Advection Diffusion Equations
We begin with a discussion of our DD approach for convex linear-quadratic

optimal control problems governed by an advection diffusion equation. The
example problem is given as follows.

. 1 ~ 2 o 2
Minimize 3 /Q(y(x) —y(x))*dx + 5 /{mc u”(x)dx (2a)
subject to
—edy(x) +a(r) - Vy(z) +r(@)y(z) = f(z), ze (2b)
y(z) =0, x € 92\ 092, (2¢)
eginy(z) = u(x), x € 082, (2d)

where 92, is the control boundary, a, f, g, r, ¥ are given functions, €, & > 0 are
given scalars, and n denotes the outward unit normal. Our main interest is not
in this particular optimal control problem. As we will see in more detail later,
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our SQP method applied to (1) requires the repeated solution of convex linear-
quadratic optimal control subproblems governed by linear elliptic PDEs. The
governing PDEs in these linear-quadratic subproblems are of the form (2b-d),
with a, r, and f determined by the SQP algorithm. The objective function in
these subproblems is slightly different from (2a) and is given by a quadratic
model of the Lagrangian associated with (1). However, the problem structure
of the SQP subproblems and that of (2) are close enough so that a study of
(2) reveals how to deal with the subproblems arising in our SQP method for
(1).

The system of necessary and sufficient optimality conditions for (2) is given
by the adjoint equations

—eAp(x) — a(x) - Vp(a)
+(r(z) = V-a(2))pz) = —(y(z) — §(z)), zef, (3a)
p(z) =0, x €00\ 012, (3b)
ea%p(x) +a(x) -n(x) p(r) =0, x € 0f2, (3c)
by the equation
p(z) = au(z) x € (2., (4)

and by the state equation (2b-d).

We apply DD to the system of optimality conditions (2b-d), (3), (4). For
simplicity, we consider the two-subdomain case only. Everything can be ex-
tended to more than two subdomains following the discussions in [3, 13]. We
decompose (2 into two subdomains §2;, {2, with interface I' = 21 N 25. The
outer unit normal for subdomain ¢ is denoted by n;. By vr we denote the
trace operator and we define Vi = {yrv : v € HY(£2), v =0o0n 902\ 912.}
We now split (2b-d), (3), (4) as follows. Given yr,pr € Vp and ¢ € {1,2} we
consider the system

—eAy;(z) + a(z) - Vy;(x) + r(x)y;(x) = f(x) in 2;, (ba)
yi(z) =0 on 92, NON\ 902, (5b)

eainyl(x) = u;(x), on 92; N 9N2., (5c)

yi(z) = yr(z) on I, (5d)

a (2)
+(r(z) = V- a@))pi(z) = —(yi(z) — §(z)) in £2;, (
pi(z) =0, on 02, NN\ 092, (5f
(z)
(z)

=0, on 982; N9, (5g)
pi(x) =pr(x) on I', (5h)
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aui(z) —pi(x) =0 on 982, N L. (51)

The system (5) together with the interface conditions

ea‘zi — ta(@)n; ) yi(z) = — Eﬁgj — 3a(z)n; ) y;(z) z € 002, N 012, ©)
ea?” + %a(z)ni pi(z) = — eé%j + %a(z)nj pj(z) © € 002, N 012y,

on I are equivalent to the original optimality system (2b-d), (3), (4).

It can be shown that for given yp,pr € Vp the system (5) has a unique
solution (y;, p;, u;). If we view (y;, i, u;), ¢ = 1,2, as a function of yr, pr € Vr
defined through (5), then (6) becomes an equation in yr,pr. Since yr,pr €
Vr,1=1,2, depends on yr,pr in an affine linear way, (5), (6) can be written
as

(Sy + S2) (é’i) =71 + 7o, (7)

where S;, ¢ = 1,2, is applied to ypr,ppr by first solving (5) with f = 0 and
then evaluating (eaim - %a(x)ni) yi(x), (6% + %a(z)nZ) pi(x). The right
hand side is computed by solving (5) with yr = pr = 0 and then evaluating
(eaini — %a(m)ni) yi(z), (68?11- + %a(w)ni) pi(x).

One can show that (5) is the system of optimality conditions for a subdo-
main optimal control problem that is essentially a restriction of (2) to subdo-
main (2;, but with the additional interface boundary condition (5d) and with
an additional interface normal derivative term in the objective that leads to
(5h). See [3, 13].

One can also show that the subdomain operators S;, i = 1,2, are invertible

and that
S_l (T%> _ (’YF%)
7 ,r,)\ - R
I Yrpi

where v denotes the trace operator and where y;, p; are obtained by solving

—eAy;(z) +a(z) - Vy;(z) + r(2)yi(x) =0 in £2;, (8a)
yi(x) =0 on 0£2; N9N\ 0£2., (8b)

G%yl(x) = u;(x), on 0£2; N 02, (8¢)

eainzyl(x) — ta(z) nyi(z) = r!(z) on I, (8d)
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—eApi(z) — a(z) - Vpi(z

)
+(r(z) = V-a(@))pi(z) = —(yi(z) — §(x)) in £2;, (8e)
pi(x) =0, on 802, 19N\ 02,, (8f)
oL pi(x) +alx) () pila) = O on 92: N 00, (8g)
€afmpi($) + za(z) - npi(z) =} (x) on I, (8h)
oui(z) —pi(x) =0 on 02NN, (8i)

See [3, 13]. One can show that (8) is the system of optimality conditions for
a subdomain optimal control problem that is essentially a restriction of (2)
to subdomain §2;, but with the additional interface boundary condition (8d)
and with an additional interface boundary term in the objective that involves
yiry which leads to (8h).

We solve (7) using a preconditioned Krylov subspace method such as GM-
RES or sQMR with preconditioner S} 1y S5 1 As we have mentioned earlier,
everything can be extended to the case of many subdomains. See [3, 13]. One
can show that the discrete versions of S; are Schur complements. They are
symmetric and highly indefinite. The number of positive and negative eigen-
values is proportional to the number of discretized states y; on the interface.
While the observed performance of these methods is comparable to that of
Neumann-Neumann (Robin-Robin) methods for elliptic PDEs, there is no
theoretical explanation for this observed behavior in the optimization case
yet.

3 Inexact Trust-Region-SQP Method

Many nonlinear optimal control problems can abstractly be written as a non-
linear programming problem (NLP) in Hilbert space,

min f(x) (9a)
s.t. c(z) =0, (9b)

where f : X — R and ¢ : X — Y for some Hilbert spaces X and ). In
our example problem (1) we have x = (y,u), X = H(£2) x (L*(942.))?
and Y = (H(£)), where ' is used to denote the dual, and c(x) = 0
represents the weak formulation of the semilinear elliptic equations (1b-d).
The corresponding Lagrangian functional L : X x Y — R is given by
L(z,\) = f(z) + (A, c(z))y. We use subscript = to denote Fréchet deriva-
tives with respect to x. Given estimates xzy, Ay for the solution of (9) and
corresponding Lagrange multiplier, SQP methods approximately solve

1
min §<Hk5k75k>X + (Vo L(xk, M), sk)x (10a)
8.t cx(zp)sg +c(zg) =0 (10b)
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and use the solution s; to obtain a better approximation of the solution of
(9). In (9) Hy, is the Hessian V, L(xy, Ai) of the Lagrangian or a replacement
thereof, obtained, e.g., using a quasi-Newton method. If zj, is sufficiently close
to the solution and if a second order sufficiency condition is satisfied at the
solution, then xy11 = z; + si can be used at the new iterate. To ensure
global convergence and to deal with possible negative curvature of Hy when
xy is away from the solution, we add a trust-region constraint ||s||x < Ag
to (10), where A > 0 is the trust-region radius, which is adapted by the
optimization algorithm. To deal with the possible incompatibility of the trust-
region constraint and (10b), we use a composite step algorithm (see [7, Ch. 15]
for an overview). The trial step s is decomposed as s, = ny + tx, where
for a given parameter £ € (0,1), the so-called quasi-normal step ny is an
approximate solution of

min [lea()n + ez ly (11a)
st |Inllx < EAg, (11b)

and the so-called tangential step tj is an approximate solution of

1
min §<Hkt,t>x + (Vo L(zg, A\e) + Hing, t) 2 (12a)
s.t. cp(zk)t =0 (12b)
[tllx < Ak — [l 2 (12c)

Once the trial step s = ny + ¢ is computed, an augmented Lagrangian
merit function and a quadratic approximation of it are used to decide whether
to accept the trial step, i.e, set zpy1 = zp + sg, or to reject it, i.e., set
Tk4+1 = Tk, and how to update the trust-region radius. The rules are fairly
easy to implement, but their precise description is lengthy. Because of page
limitations, we refer to [15, 21] for the details and instead focus on the issue
of linear system solves that relates to the use of DD methods.

One way to compute an approximate solution of the quasi-normal step sub-
problem (11) that is suitable for use within our SQP method is the so-called
dog-leg approach, which requires the computation of the minimum norm solu-
tion of min ||, (zx)n—+c(zk)||y. The minimum norm solution can be computed

by solving *
L) ()=o)

for y € Y, n € X. The quasi-normal step is then computed as a linear combi-
nation of the minimum norm solution n and of —c¢, (x)*c(x) or by a simple
scaling of the minimum norm solution. For a detailed description of the quasi-
normal step computation see, e.g., [7, Sec. 15.4.1.2], [21]. In our context it is
important to note that the quasi-normal step computation requires the solu-
tion of (13), which in our example application (1) leads to a subproblem of the
type (2). Note that (13) is the system of necessary and sufficient optimality
conditions for the quadratic problem
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1
min §Hn||%( (14a)
s.t. cp(zi)n + c(zg) = 0. (14b)

With a bounded linear operator W, whose range is the null space of ¢, (xy),
we can eliminate (12b). Various such operators exist. We use the orthogonal
projection onto the null space. In this case Wi, = W} = W,f € L(X,X) and
s = Wiw can be computed by solving the system

(@) 0 * i - l(;) ' (15)
(e ™57) (1) = (0)

Using this operator, (12) can be written equivalently as

1
min §<WkaWkt, t>;( + <VIL($1€, )\k) + Higng, W}J)X (168.)
s.t. ||t||)( § Ak - ||nk||)( (16b)

An approximate solution of (16) that is suitable for use within our SQP
method can be computed using the Steihaug-Toint modification of the con-
jugate gradient method (see, e.g., [7]). With W}, given by (15), the Steihaug-
Toint CG method can be implemented in an elegant way that in each CG
iteration requires the application of Wy. See, e.g., [9]. Note that each applica-
tion of Wy, requires the solution of (15), which is the system of necessary and
sufficient optimality conditions for

o1
min §||3H3( —(w, 8)x (17a)

s.t. cp(zi)s =0. (17b)

We remark that it is easy to apply a preconditioned Steihaug-Toint CG
method by replacing I in (15) by Hj, where Hy, is a selfadjoint operator that
is strictly positive on the null-space of ¢, (z) and approximates Hy. (One can
even set Hy = Hy, if it is strictly positive on the null-space of ¢, (zk).) In this
case ||s||% in (17) has to be replaced by (Hys, s)x. The requirements on Hy,
guarantee that the modified quadratic program (17) remains convex.

We conclude by noting that each iteration of our trust-region SQP method
requires the solution of systems of the type (13) and (15) or, equivalently,
the solution of convex quadratic programs of the type (14) and (17). The
solves are done iteratively. Consequently, the SQP algorithm needs to provide
stopping tolerances to the linear system solvers. These stopping tolerances
need to be chosen to guarantee convergence of the overall algorithm, but at
the same time it is desirable to choose them as large as possible to make the
solution of these subproblems as inexpensive as possible. A rigorous approach
that accomplishes this is detailed in [14, 15, 21]. It is used to generate the
numerical results shown in the following section.
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4 Optimal Control of a Semilinear Elliptic Equation

Our example problem (1) is a special case of (9) and is solved using the trust-
region SQP method with inexact linear system solves outlined in the previous
section. Each iteration of our trust-region SQP method requires the iterative
solution of convex quadratic programs of the type (14) and (17). For the ex-
ample problem (1) these quadratic programs are essentially of the form (2),
with a, r, f given by the current state and control determined by the SQP
algorithm. The objective function in these subproblems is slightly different
from (2a), but the domain decomposition approach outlined in Section 2 can
easily be applied to these subproblems. We remark that all quadratic pro-
grams arising in our trust-region SQP method are known to be convex. Hence
our optimization-level domain decomposition approach which decomposes the
system of first order optimality conditions can be safely applied.
For our numerical example, we solve

1
minimize f/ (y — 9)? da + g/ u? ds (18a)
2 Ja 2 Jon
subject to
3 . dy
—Ay+y° —y=f in 2, 8—:uon8(2. (18b)
n

See, e.g., [11, 24]. We use 2 = (0,1)%, a = 1, y(x) = cos(mz1) cos(mxz), and
f(x) = cos(mzy) cos(mas) (272 + cos?(wxy) cos?(rae) — 1).

The problem (18) is discretized using piecewise linear finite elements for
states and controls. The domain {2 is subdivided into triangles by first subdi-
viding it into squares of size h x h and then subdividing each square into two
triangles. The domain {2 is subdivided into square subdomains of size H x H.

Tables 1 and 2 show the behavior of our SQP method with a one-level
and two-level optimization-level Neumann-Neumann DD preconditioner for
varying mesh and subdomain sizes. The number of outer SQP iterations is
constant over varying mesh sizes and subdomain sizes. This is not too sur-
prising (although not yet proven for our class of SQP methods), since we use
an SQP method with exact second order derivative information and there are
known mesh independence results for many Newton-like methods.

Within each iteration of the SQP method, a KKT-type system has to be
solved for the computation of a Lagrange multiplier estimate, to compute the
quasi-normal step (cf., (14)), and within each iteration of the Steihaug-Toint
CG algorithm used to compute the tangential step (cf., (16)). Tables 1 and 2
show only a mild increase in the number of calls to GMRES as the number
of subdomains is increased or the mesh size is decreased.

A significant difference is seen in the average number of GMRES iterations
used to solve a KKT-type system depending on whether a one-level Neumann-
Neumann DD preconditioner is used or a two-level preconditioner. This is
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Table 1. One-level preconditioner: Number of SQP iterations, number of calls to
GMRES, the total number of GMRES iterations, and the average number of GMRES
iterations per call.

1/h 64 x 64 128 x 128

1/H 2x2 4 x4 8§ x 8 2x2 4x4 8 x 8
SQP iter’s 5 5 5 5 5 5
GMRES calls 36 41 45 40 50 53
GMRES total 195 1313 4733 197 1719 5895
GMRES avg 5.4 32.0 105.2 4.9 34.4 111.2

Table 2. Two-level preconditioner: Number of SQP iterations, number of calls to
GMRES, the total number of GMRES iterations, and the average number of GMRES
iterations per call.

1/h 64 x 64 128 x 128

1/H 2x2 4x4 8x8 2x2 4x4 8x8
SQP iter’s 5 5 5 5 5 5
GMRES calls 36 41 44 40 49 50
GMRES total 96 348 393 132 515 574
GMRES avg 2.7 8.5 8.9 3.3 10.5 11.5

expected since the performance of the one-level Neumann-Neumann DD pre-
conditioner deteriorates as the number of subdomains increases, whereas the
performance of the two-level preconditioner is insensitive to the number of
subdomains. For single PDEs, this is shown theoretically as well as numer-
ically, see, e.g., [22, 23]. For the optimization case this has been observed
numerically ([13]), but not yet proven theoretically.

Figure 1 shows the relative residual stopping tolerances required for GM-
RES during its calls within the Steihaug-Toint CG algorithm used to compute
the tangential step (cf., (16)). Each box/star indicates one call to GMRES,
each box indicates a new SQP iteration. This figure shows that our SQP al-
gorithm adjusts the stopping tolerance and has the capability to coarsen the
relative residual stopping tolerance. We note that the dynamic adjustment is
particularly beneficial over using a fixed stopping tolerance when the precon-
ditioner is less effective and many GMRES iterations have to be executed to
achieve a lower tolerance.

Acknowledgement. This work was supported in part by NSF grants ACI-0121360
and DMS-0511624.
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Fig. 1. Relative stopping tolerances for every call to GMRES within the Steihaug-
Toint CG algorithm. One CG iteration corresponds to one GMRES call. The red
square indicates the beginning of a new SQP iteration
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