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Summary. In this paper we are concerned with the construction of a preconditioner
for the Steklov-Poincaré operator arising from a non-overlapping domain decompo-
sition method for second-order elliptic problems in three-dimensional domains. We
first propose a new kind of multilevel decomposition of the finite element space on
the interface associated with a general quasi-uniform triangulation. Then, we con-
struct a multilevel preconditioner for the underlying Steklov-Poincaré operator. The
new multilevel preconditioner enjoys optimal computational complexity, and almost
optimal convergence rate.

1 Introduction

The construction of domain decomposition preconditioners has been investigated
in various ways in the literature, see, for example, [7]. This kind of preconditioner
involves a set of local solvers (Steklov-Poincaré or Poincaré-Steklov operators), which
result in dense stiffness matrices. It seems difficult to design cheap inexact solvers
(preconditioners) for Steklov-Poincaré operators, unless the underlying triangulation
has some particular structures (refer to [8]).

In the present paper, we propose a new kind of multilevel technique for precon-
ditioning Steklov-Poincaré operators. The two main ingredients of this technique are
the introduction of a multilevel domain decomposition for each local interface, and
the construction of a series of coarse solvers associated with such decomposition.
One of the main differences between the new method and the traditional multilevel
one is that a series of refined grids is unnecessary for the new method (compare
[5, 6] and [9]). It will be shown that the new multilevel method has almost optimal
convergence and optimal computational complexity.

The new idea advanced in this paper can be extended to some other non-
overlapping domain decomposition methods. For example, we can use the new tech-
nique to develop a class of substructuring methods with inexact solvers (refer to
[4]).



392 Q. Hu

2 Preliminaries

Let Ω be a bounded polyhedron in R3. Consider the model problem

{
−div(a∇u) = f, in Ω,

u = 0, on ∂Ω,
(1)

where the coefficient a ∈ L∞(Ω) is a positive function.
Let Th = {τi} be a regular and quasi-uniform triangulation of Ω with τ ′is being

non-overlapping simplexes of size h. The set of nodes of Th is denoted by Nh. Then,
let Vh(Ω) be the piecewise linear finite element subspace of H1

0 (Ω) associated with
Th:

Vh(Ω) = {v ∈ H1
0 (Ω) : v|τ ∈ P1 ∀τ ∈ Th},

where P1 is the space of linear polynomials. The finite element approximation of (1)
is: find uh ∈ Vh(Ω) such that

(a∇uh, ∇vh) = (f, vh), ∀vh ∈ Vh(Ω). (2)

We will apply a non-overlapping domain decomposition method to solve (2). For
the ease of notation, we consider only the case with two subdomains (see [4] for the
general case).

Let Ω be decomposed into the union of two polyhedrons Ω1 and Ω2, which can
be written as the union of some elements in Th, and satisfy Ω1∩Ω2 = ∅. Without loss
of generality, we assume that the coefficient a(p) is a piecewise constant function,
and that each subdomain Ωk is chosen such that a(p) is equal to a constant ak in
Ωk (k = 1, 2). Set

Vh(Ωk) = {v|Ωk : ∀v ∈ Vh(Ω)} (k = 1, 2).

We denote by Γ the common face of Ω1 and Ω2 (i.e., Γ = ∂Ω1 ∩ ∂Ω2), and we
define

Vh(Γ ) = {v|Γ : ∀v ∈ Vh(Ω)}.
Let ϕh = uh|Γ denote the Dirichlet interface unknown. After eliminating the

interior variables from (2), one gets the interface equation (see [7] for the details)

Shϕh = gh. (3)

In the case of two subdomains, the operator Sh is the discrete Steklov-Poincaré
operator. It is easy to see that Sh results in a dense stiffness matrix.

In the following, we propose a new technique for preconditioning Sh based on a
multilevel domain decomposition for Γ .

3 Multilevel Decompositions for Vh(Γ )

This section is devoted to establishing a stable multilevel decomposition of Vh(Γ )
based on a multilevel domain decomposition of Γ .
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3.1 Multilevel Decomposition for Γ

The sketch of the multilevel decomposition can be described as follows. We first
decompose Γ into the union of several non-overlapping polygons, and then further
decompose each resulting polygon into the union of several smaller non-overlapping
polygons. We can repeat this process such that each polygon generated by the final
decomposition contains only a few nodes.

For convenience, a set of closed polygons on the same plane is called non-
overlapping if the intersection of two neighboring polygons of this set is a common
edge or vertex of the two polygons. Let J and mk (k = 1, · · · , J) be given positive
integers, and set Mk = m1 · · ·mk, for k = 1, · · · , J .

The first-level decomposition. Decompose Γ into the union of non-overlapping
closed polygons Γ

(1)
1 , . . . , Γ

(1)
m1 in the standard way. We assume that all the polygons

Γ
(1)
r have almost the same “size” d1.

Successively continuing this procedure, we get a hierarchical decompositions of
Γ .

The second-level decomposition. Let each Γ
(1)
r be further decomposed into the

union of m2 non-overlapping closed sub-polygons of Γ
(1)
r .

The k-level decomposition for 2 ≤ k ≤ J. After generating Γ k−1
r at the (k− 1)-

level decomposition, we decompose each Γ
(k−1)
r into the union ofmk non-overlapping

sub-polygons.
Finally, we get the multilevel decomposition for Γ

Γ =

m1⋃

r=1

Γ (1)
r =

M2⋃

r=1

Γ (2)
r = · · · =

MJ⋃

r=1

Γ (J)
r .

For a fixed k, the closed sub-polygons Γ
(k)
r (r = 1, · · · ,Mk) satisfy the following

conditions:
(a) each Γ

(k)
r has size dk for some dk ∈ (h, 1);

(b) the union of all Γ
(k)
r (r = 1, · · · ,Mk) constitutes a non-overlapping decom-

position for Γ .

Remark 1. Each Γ
(k)
r may not be the union of some elements of Γ , so the multilevel

decomposition described above can be constructed in a simple manner. Note that
there is no extra restriction on the triangulation on Γ (in fact the subdivision of the
interface Γ does not relate to the triangulation).

3.2 Multilevel Decomposition for Vh(Γ )

The desired multilevel decomposition involves a set of small local subspaces and a
series of coarse subspaces.
Small local subspaces. Let ϕpΓ denote the nodal basis function of Vh(Γ ) associated
with the node p on Γ . Set

Vh(Γ (J)
r ) = span{ϕpΓ : p ∈ Γ (J)

r } (r = 1, · · · ,MJ).

Coarse subspaces. For convenience, define M0 = 1 and Γ
(0)
1 = Γ . For k < J , let

F
Γ

(k)
r

, E
Γ

(k)
r

and V
Γ

(k)
r

denote respectively the set of the mk+1 sub-polygons, the set

of the edges and the set of vertices generated by the (k + 1)-th level decomposition
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Γ (k)
r =

mk+1⋃

l=1

Γ
(k+1)

mk+1(r−1)+l (r = 1, · · · ,Mk).

For a sub-polygon f ∈ F
Γ

(k)
r

, set f
in = f\∂f and define the sub-polygon basis

ϕf ∈ Vh(Γ ) by 1

ϕf(p) =

{
1, if p ∈ f

in ∩Nh,
0, if p ∈ (Γ\fin) ∩Nh.

When an edge e ∈ E
Γ

(k)
r

contains some nodes, we define the edge basis ϕe ∈
Vh(Γ ) by

ϕe(p) =

{
1, if p ∈ e ∩Nh,
0, if p ∈ (Γ\e) ∩Nh.

Similarly, when a vertex v ∈ V
Γ

(k)
r

is just a node, we define the vertex basis ϕv ∈
Vh(Γ ) by

ϕv(p) =

{
1, if node p = v,

0, if node p 6= v.

Now, we define the coarse subspace

V 0
h (Γ (k)

r ) = span{ϕf, ϕe, ϕv : f ∈ F
Γ

(k)
r
, e ∈ E

Γ
(k)
r
, v ∈ V

Γ
(k)
r
}

(k = 0, · · · , J − 1; r = 1, · · · ,Mk).

Remark 2. In most situations, there is no node on an edge e, and a vertex v is not
a node. Then, the coarse subspace reduces to

V 0
h (Γ (k)

r ) = span{ϕf : f ∈ F
Γ

(k)
r
}.

In such case, we have that dim(V 0
h (Γ

(k)
r )) = mk+1.

With the local subspaces and the coarse subspaces defined above, we get the
multilevel space decomposition of Vh(Γ )

Vh(Γ ) =

J−1∑

k=0

Mk∑

r=1

V 0
h (Γ (k)

r ) +

MJ∑

r=1

Vh(Γ (J)
r ).

Remark 3. In applications, the above multilevel decomposition would be generated
in a suitable manner such that both each local subspace Vh(Γ

(J)
r ) and each coarse

subspace V 0
h (Γ

(k)
r ) have a low dimension.

1 Thanks to Prof. R. Hiptmair, who told the author that the basis ϕf can be also
defined using an aggregation framework. Our method seems to be cheaper than
the aggregation method (refer to Remark 1).
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3.3 Main Result

Let 〈·, ·〉 denote the inner product on Γ . For ease of notation, we define

‖ϕh‖2∗,Γ = 〈Shϕh, ϕh〉 ∼= (a1 + a2)|ϕh|2
H

1
2
00(Γ )

ϕh ∈ Vh(Γ ).

The following result follows from [4].

Theorem 1. For any φh ∈ Vh(Γ ), there exist functions

φ
(k)
r, 0 ∈W 0

h (Γ (k)
r ) (0 ≤ k ≤ J − 1) and φ(J)

r ∈ Vh(Γ (J)
r )

such that

φh =

J−1∑

k=0

Mk∑

r=1

φ
(k)
r ,0 +

MJ∑

r=1

φ(J)
r (4)

and

J−1∑

k=0

Mk∑

r=1

‖φ(k)
r ,0‖2∗,Γ +

MJ∑

r=1

‖φ(J)
r ‖2∗,Γ <∼ J [1 + log(1/h)]2‖φh‖2∗,Γ (J ≥ 1). (5)

4 Multilevel Preconditioner for Sh

In this section, we construct a multilevel preconditioner for Sh based on the multi-
level decomposition introduced in the previous section.

4.1 Coarse Solvers

We want to consider a coarse solver M
(k)
r, 0 : V 0

h (Γ
(k)
r )→ V 0

h (Γ
(k)
r ) satisfying

〈(M (k)
r, 0)−1Shφh, Shφh〉 ∼= 〈φh, Shφh〉, ∀φh ∈ V 0

h (Γ (k)
r ).

The desired coarse solver can be defined by

(M
(k)
r, 0)−1φh =

1

λ′k

∑

f∈F
Γ

(k)
r

〈φh, ϕf〉ϕf +
∑

e∈e
Γ

(k)
r

1

λke
〈φh, ϕe〉ϕe

+
1

λ′′k

∑

v∈V
Γ

(k)
r

〈φh, ϕv〉ϕv, φh ∈ V 0
h (Γ (k)

r ).

Here,
λ′k = (a1 + a2)dk log(dk/h) ∼= 〈Shϕf, ϕf〉,
λke = (a1 + a2)‖ϕe‖20, e ∼= 〈Shϕe, ϕe〉

and
λ′′k = h(a1 + a2) ∼= 〈Shϕv, ϕv〉.
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4.2 Local Solvers

Inspired by the ideas in [3], we define the inverse of a local solver instead of the local
solver itself.

Precisely, let us define the operator

Kϕ(q) =
1

4π

∫

Γ

1

|p− q|ϕ(p)dp, q ∈ Γ.

Since
〈Kϕ,ϕ〉 ∼= ‖ϕ‖2− 1

2
,Γ ∀ϕ ∈ H− 1

2 (Γ ),

we choose a local solver M
(J)
r : Vh(Γ

(J)
r )→ Vh(Γ

(J)
r ) such that

(M (J)
r )−1 ∼= (a1 + a2)−1K|

Vh(Γ
(J)
r )

.

Thus, we can define (M
(J)
r )−1 by

〈(M (J)
r )−1ϕh, ψh〉 =

1

4π(a1 + a2)

∫

Γ
(J)
r

∫

Γ
(J)
r

ϕh(p)ψh(q)

|p− q| ds(p)ds(q),

ϕh ∈ Vh(Γ (J)
r ), ∀ψh ∈ Vh(Γ (J)

r ).

The above integrals can be calculated by the formulas introduced in [2]. Since

each Γ
(J)
r contains only a few nodes, it is cheap to calculate the stiffness matrix

of (M
(J)
r )−1.

4.3 The Final Preconditioner

As usual, we define the L2-projectors

Q
(k)
r, 0 : Vh(Γ )→ V 0

h (Γ (k)
r ), Q(J)

r : Vh(Γ )→ Vh(Γ (J)
r ).

Then, the desired preconditioner can be defined as follows

M−1
J =

J−1∑

k=0

Mk∑

r=1

(M
(k)
r, 0)−1Q

(k)
r, 0 +

MJ∑

r=1

(M (J)
r )−1Q(J)

r . (6)

The following result can be proved as in [1] (by using Theorem 1).

Theorem 2. Assume that the sequence {mk} is uniformly bounded. Then, we have

cond(M−1
J Sh) ≤ CJ2[1 + log(1/h)]2. (7)

Hereafter, C is a constant independent of h, of dk and of the jumps of the coefficient
a(p) across the interface.

Remark 4. Our method can be extended to the case of multiple subdomains and
interfaces with “crossedges”. The two main changes in this extension are that we
need to construct a suitable coarse subspace involving the “crossedges”, and a mul-
tilevel decomposition for each interface (see [4] for the details). For this general case,
the term log(1/h) in (7) would be replaced by log(H/h), H being the “size” of the
subdomains.

Remark 5. We conjecture that the factor J in (7) (and (5)) can be dropped (see the
numerical results in Section 6). Unfortunately, we fail to prove this conjecture.
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5 Computational Complexity

Let nΓ = O((1/h)2) be the number of the nodes on Γ , and let NΓ (J) denote the
computational complexity for implementing the action of M−1(J).

Proposition 1. Let m ≥ 2 be a given positive integer. Set J = [logm nΓ ], and
choose mk by

m1 = m2 = · · · = mJ = m. (8)

Then,
NΓ (J) = O(nΓ ), (9)

which is optimal.

6 Numerical Experiments

Consider the elliptic problem (1) with Ω = [0, 2]× [0, 1]2, and

a(x, y, z) =

{
10−5, if (x, y, z) ∈ [0, 1]3,

1, otherwise.

The source function f is chosen in a suitable manner.
Decompose Ω into two cubes with edge length equal to 1, and use the standard

P1 elements on each cube. Finally, decompose each Γ
(k)
r (k ≤ J − 1) into four

squares with the same size (i.e., mk = 4). We solve the interface equation (3) by
PCG iteration with preconditioner M−1

J , considering a tolerance tol = 10−5. Some
numerical results are reported in table 1.

Table 1. Number of iterations

1/h J = 1 J = 2 J = 3 J = 4

8 11 11 / /

16 15 16 15 /

32 19 20 21 20

Table 1 shows that the number of iterations for the new methods depend slightly
on the ratio 1/h and is independent of the level J .

7 Conclusions

We have introduced a new multilevel preconditioner for Steklov-Poincaré operators.
Here, the traditional nested grids are unnecessary. The preconditioner not only fea-
tures almost optimal convergence, but also optimal computational complexity.

The future works will focus on developing a substructuring method with in-
exact solvers (almost finished, see [4] for an initial version), and on studying the
preconditioning similar operators.
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