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1 Introduction

Discrete Duality Finite Volume (DDFV) schemes have recently been developed to
approximate monotone nonlinear diffusion problems

−div(ϕ(z,∇u(z))) = f(z), in Ω, u = 0, on ∂Ω, (1)

on general 2D grids. The principle of such schemes is to introduce discrete unknowns
both at centers and vertices of any given primal mesh. A discrete gradient operator
is then built over the diamond cells associated to the mesh and finally, the discrete
flux balance equations are written on the primal and dual control volumes (see
Section 2). The main advantages of this approach is that few geometric assumptions
are needed for the grid (non conformal grids are allowed for instance), and that the
discrete problem inherits the main properties (monotonicity, symmetry, ...) of the
continuous one. In [1], it is proved that the scheme is well-posed and convergent.
Under suitable regularity assumptions on ϕ and u, some error estimates are also
obtained.

Application of these schemes to nonlinear transmission problems, that is when
ϕ presents some discontinuities with respect to the space variable z, were first in-
vestigated in [2] in the case where uniform growth and coercivity conditions for
ξ 7→ ϕ(z, ξ) are assumed to hold over the domain.

We propose here to generalize this analysis to the case where these growth and
coercivity conditions are no more uniform on the domain. We can imagine for in-
stance that ϕ is linear with respect to ξ on a subdomain and fully nonlinear on its
complementary. Such situations arise for instance in bimaterial problems in elastic-
plastic mechanics (see [5, 8, 9]).

Let us precise the situation under study. Let Ω be a bounded polygonal open
set in R2, split into N open polygonal subdomains Ωi :

Ω = ∪Ni=1Ωi, Ωi ∩Ωj = ∅ if i 6= j,

and that ϕ : Ω×R2 → R2 in equation (1) is a Caratheodory function, constant with
respect to z on each Ωi: ϕ(z, ξ) = ϕi(ξ), for all z ∈ Ωi and ξ ∈ R2. There exists a
family p = (pi){i=1,··· ,N}, pi ∈]1,∞[ and a constant Cϕ > 0 such that
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• Monotonicity on each subdomain Ωi: for all (ξ, η) ∈ R2 × R2

(ϕi(ξ)− ϕi(η), ξ − η) ≥ Cϕ|ξ − η|2(1 + |ξ|pi + |η|pi)
pi−2

pi , if pi ≤ 2.

(ϕi(ξ)− ϕi(η), ξ − η) ≥ Cϕ|ξ − η|pi , if pi > 2.
(H1)

• Coercivity on each subdomain Ωi: for all ξ ∈ R2

(ϕi(ξ), ξ) ≥ Cϕ(|ξ|pi − 1). (H2)

• Growth conditions : for all (ξ, η) ∈ R2 × R2,

|ϕi(ξ)− ϕi(η)| ≤ Cϕ|ξ − η|pi−1, if pi ≤ 2,

|ϕi(ξ)− ϕi(η)| ≤ Cϕ
(
1 + |ξ|pi−2 + |η|pi−2) |ξ − η|, if pi > 2.

(H3)

Remark that assumption (H3) implies that

|ϕi(ξ)| ≤ Cϕ(|ξ|pi−1 + 1), ∀ξ ∈ R
2. (H4)

We introduce Lp(Ω) = {u/u|Ωi
∈ Lpi(Ωi)}, W 1,p

0 (Ω) = {u ∈ W 1,1
0 (Ω)/∇u ∈

(Lp(Ω))2}, and for q = (qi)i=1,··· ,N , we denote ‖u‖qLp =
N∑

i=1

‖u|Ωi
‖qi
Lpi (Ωi)

. We

finally note pmin = min(pi) and pmax = max(pi).

Theorem 1. Under assumptions (H1), (H2), (H4), the problem (1) admits for all

f ∈ Lp′min(Ω) a unique solution u ∈W 1,p
0 (Ω). (See [8].)

These problems can be approximated either by finite element method, whose
study is undertaken in particular in [9], or by the m-DDFV (“modified” Discrete
Duality Finite Volume) method developed for non-linear elliptic equations with dis-
continuities in [2].

2 The m-DDFV Scheme

Let Mi be a finite volume mesh on Ωi for i = 1, · · · , N and M = ∪Ni=1Mi. Note
that the mesh M can present non standard edges in particular on the bound-
aries ∂Ωi ∩ ∂Ωj . We associate to each control volume K ∈ M a point xK ∈ K,
called the center. Let M

∗ be the dual mesh of M, that is the mesh whose con-
trol volumes K∗ ∈ M

∗ are obtained by joining the centers of control volumes
around a vertex xK∗ (see Fig. 1). Note T = (M,M∗). The DDFV methods in-
volve both unknowns (uK) ∈ RM on M and (uK∗) ∈ RM

∗

on M
∗, we note

uT = (uK, uK∗) ∈ RM × RM
∗

. Integrating equation (1) on both K ∈ M and
K∗ ∈M

∗, the classical DDFV scheme consists in approaching the nonlinear fluxes∫
∂K

(ϕ(z,∇u(z)), νK) dz and
∫
∂K∗

(ϕ(z,∇u(z)),νK∗) dz by using a discrete gradient

∇T uT , piecewise constant on a partition D = (D)D∈D called the diamond cells, and
ϕD(∇TDuT ) = 1

|D|
∫
D ϕ(z,∇TDuT ) dz. Each diamond cell is a quadrangle whose diag-

onals are some edge σ = K|L and the edge σ∗ = (xK, xL). The set DΓij specifies the
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Ω1
Ω2

M
∗ DM

Fig. 1. The three meshes M, M
∗, D

diamond cells lying across two distinct subdomains Ωi and Ωj and DΓ = ∪ i,j
i6=j

DΓij .

The discrete gradient introduced in [3, 7, 4] reads

∇T uT =
∑

D∈D

∇TDuT 1D, ∇TDuT =
1

sinαD

(
uL − uK
|σ∗| ν +

uL∗ − uK∗
|σ| ν

∗
)

(2)

with the notations of Fig. 2. The DDFV scheme is then defined by

|σL∗ |

|σK∗ |

xK

|σK|

αD
xL

xL∗

|σL|

xK∗ xK∗

xK

xL

xD

xL∗

QK,L∗

QL,K∗

QL,L∗

QK,K∗

ν∗ = νK∗,L∗

ν = νK,L

Fig. 2. Notations in a diamond cell D = ∪Q∈QDQ

{
−∑Dσ,σ∗∩K 6=∅ |σ|

(
ϕD(∇TDuT ),νK

)
=
∫
K
f(z) dz, ∀K ∈M,

−∑Dσ,σ∗∩K∗ 6=∅ |σ
∗|
(
ϕD(∇TDuT ),νK∗

)
=
∫
K∗
f(z) dz, ∀K∗ ∈M

∗,
(3)

and admits a unique solution. Convergence and error estimates in that case are given
in [1]. These error estimates are no more valid as soon as ϕi 6= ϕj , since we loose
the consistency of the nonlinear fluxes across the edges on ∂Ωi ∩∂Ωj . To tackle this
problem, we proposed in [2] in the case pi = pj , ∀i, ∀j to change the approximation
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of the nonlinearity on the diamond cells ϕD(∇TDuT ) into ϕND (∇TDuT ) in such a way
that enforce the consistency of the fluxes across all the edges. The new scheme reads

{
−∑Dσ,σ∗∩K 6=∅ |σ|

(
ϕND (∇TDuT ),νK

)
=
∫
K
f(z) dz, ∀K ∈M,

−∑Dσ,σ∗∩K∗ 6=∅ |σ
∗|
(
ϕND (∇TDuT ),νK∗

)
=
∫
K∗
f(z) dz, ∀K∗ ∈M

∗.
(4)

To define ϕND (∇T uT ), we introduce a new discrete gradient constant on the quarters
(Q)Q of the diamond cells (see Fig. 2)

∇NuT =
∑

Q∈Q

∇NQ uT , ∇ND uT =
∑

Q∈QD

1Q∇NQ uT ,

with ∇NQ uT = ∇TDuT +BQδD, where δD ∈ RnD are artificial unknowns (nD = 4 for
interior diamond cells and nD = 1 for boundary diamond cells) and (BQ)Q∈Q a set
of 2× nD matrices defined for interior diamond cells by

BQK,K∗
=

1

|QK,K∗ |
(|σK|ν∗, 0, |σK∗ |ν, 0) , BQL,L∗

=
1

|QL,L∗ |
(0,−|σL|ν∗, 0,−|σL∗ |ν) ,

BQK,L∗
=

1

|QK,L∗ |
(−|σK|ν∗, 0, 0, |σL∗ |ν) , BQL,K∗

=
1

|QL,K∗ |
(0, |σL|ν∗,−|σK∗ |ν, 0) .

Note that BQ depends only on the geometry of the diamond cell under study.
For Q ⊂ Ωi, we note ϕQ(ξ) = ϕi(ξ) and

ϕ
N
D (∇TDuT ) =

1

|D|
∑

Q∈QD

|Q|ϕQ(∇NQ uT ). (5)

For each D ∈ D, we choose δD ∈ RnD such that, the conservativity of the fluxes is
achieved, that is

(
ϕQK,K∗

(∇TDuT +BQK,K∗
δD),ν∗

)
=
(
ϕQK,L∗

(∇TDuT +BQK,L∗
δD),ν∗

)

(
ϕQL,K∗

(∇TDuT +BQL,K∗
δD),ν∗

)
=
(
ϕQL,L∗

(∇TDuT +BQL,L∗
δD),ν∗

)

(
ϕQK,K∗

(∇TDuT +BQK,K∗
δD),ν

)
=
(
ϕQL,K∗

(∇TDuT +BQL,K∗
δD),ν

)

(
ϕQK,L∗

(∇TDuT +BQK,L∗
δD),ν

)
=
(
ϕQL,L∗

(∇TDuT +BQL,L∗
δD),ν

)
.

(6)

We then only have to solve for each diamond cell in DΓ a nonlinear problem and
∇ND uT can be seen as a nonlinear implicit function of ∇TDuT . Note that δD = 0 as
soon as D ⊂ Ωi for some i = 1, · · · , N .

Theorem 2. Under assumptions (H1)-(H3), for all uT ∈ RT and all diamond cell
D, there exists a unique δD(∇TDuT ) ∈ RnD satisfying (6). The scheme (4)-(6) admits
a unique solution.

For simplicity we state here error estimates obtained when u belongs to the space
E = {u ∈ C(Ω̄), u ∈ C2(Ωi)∀i}, even though the result can be extended to the
case where u|Ωi

∈W 2,pi(Ωi). We consider a family of meshes with convex diamond
cells. The geometrical regularity of the meshes is controlled by a quantity denoted
by reg(T ), see [2] for more details.
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Theorem 3. Assume that the flux ϕ satisfies (H1)-(H3). Let f ∈ Lp′min(Ω) and
assume that the solution u to (1) belongs to E.

There exists C > 0 depending on u, on ‖f‖
L

p′
min

and on reg(T ) such that

‖u− uT ‖2Lp + ‖∇u−∇NuT ‖2Lp ≤ C size(T )2(pmin−1), if pmax ≤ 2

‖u− uT ‖pLp + ‖∇u−∇NuT ‖pLp ≤ C size(T )
pmax

pmax−1 , if pmin ≥ 2.

As usual, these error estimates (which do not use any geometric assumptions on the
solution) are pessimistic and numerical results given in Section 3 show that we can
expect a much better behavior of these schemes.

Theorems 2 and 3 can be proved by following similar arguments than the ones
presented in [2] for the case pi = pj , ∀i, ∀j.

3 Numerical Results

3.1 An Iterative Method to Solve the m-DDFV Scheme

We propose to solve the fully nonlinear discrete problem (4)-(6) by the following
decomposition-coordination algorithm (see [6, 2]). Let A = (AQ)Q∈Q be a family of
definite positive 2 × 2 matrices, playing the role of heterogeneous and anisotropic

augmented parameters and γ ∈
]
0, 1+

√
5

2

]
. The algorithm acts in three steps:

• Step 1: Find (uT ,n, δnD) solution of

∑

Q∈Q

|Q|AQ(∇TDuT ,n +BQδ
n
D − gn−1

Q ,∇TDvT ) (7)

=
1

2

∑

K

|K|fKvK +
1

2

∑

K∗

|K∗|fK∗vK∗ +
∑

Q∈Q

|Q|(λn−1
Q ,∇TDv), ∀vT ∈ R

T .

∑

Q∈QD

|Q|tBQAQ(BQδ
n
D +∇TDuT ,n − gn−1

Q )−
∑

Q∈QD

|Q|tBQλn−1
Q = 0, ∀D ∈D. (8)

Equation (8) gives, on each D, a formula for δnD as a function of ∇TDuT ,n. It
follows that (7) is nothing but a global DDFV linear system to solve.

• Step 2: On each Q, find gnQ ∈ R2 solution of

ϕQ(gnQ) + λn−1
Q +AQ(gnQ −∇TDuT ,n −BQδnD) = 0. (9)

This is the unique nonlinear part of the algorithm and can be solved indepen-
dently on each quarter diamond cell, by using the Newton method for instance.

• Step 3: On each Q, compute λnQ by

λnQ = λn−1
Q + γAQ(gnQ −∇TDuT ,n −BQδnD). (10)

In [2] the following result is proven.

Theorem 4. Let T be a DDFV mesh on Ω. For any family (ϕQ)Q of strictly mono-
tonic continuous maps from R2 onto itself, for any augmentation matrices family A
and any γ ∈

]
0, 1+

√
5

2

]
, the algorithm (7)-(10) converges, when n goes to infinity,

towards the unique solution to the m-DDFV scheme (4)-(6).
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3.2 Numerical Examples

We illustrate the behavior of the m-DDFV scheme compared to the DDFV one, on
two academic examples for Ω = Ω1∪Ω2 with Ω1 =]0, 0.5[×]0, 1[ and Ω2 =]0.5[×]0, 1[
and ϕi(ξ) = |ξ|pi−2ξ:

Test 1 : u(x, y) =




x

((
λ

p2−1
p1−1 − 1

)
(2x− 1) + 1

)
for x ≤ 0.5,

(1− x)((1 + λ)(2x− 1) + 1) for x ≥ 0.5,

Test 2 : u(x, y) =

{
sin(kπy)

((
2− 4

π

)
x+

(
4
kπ
− 1
))

for x ≤ 0.5,
sin(kπy)(1− x)

((
2 + 4

kπ

)
x− 1

)
for x ≥ 0.5.

In both cases the functions u, ϕ(z,∇u) ·n are continuous across the interface ∂Ω1∩
∂Ω2. The source terms is then computed by f = −div(ϕ(z,∇u)). For large values
of λ, test 1 provides an example of large jump of the gradient. Tables 1 and 2 show
that the DDFV method is first order in Lp norm whereas the m-DDFV is second
order for both meshes (see Fig. 3). Note that the order of the m-DDFV in W 1,p

norm is better on the mesh 2 (1.31) which is refined in the subdomain where p = 4
than for the regular triangular one (mesh 1 : 1.07).

Fig. 3. Example of meshes : mesh 1 (left), mesh 2 (right)

Table 1. Norm of the error for test 1 on mesh 1 with p1 = 2, p2 = 4, λ = 5.0

mesh size DDFV m-DDFV DDFV m-DDFV
Lp(Ω) Lp(Ω) W 1,p(Ω) W 1,p(Ω)

7.25E-02 4.70E-01 3.61E-02 2.5E+01 1.41
3.63E-02 2.36E-01 9.14E-02 2.03E+01 6.62E-01
1.81E-02 1.19E-01 2.24E-03 1.65E+01 3.11E-01
9.07E-03 6.01E-02 4.46E-04 1.34E+01 1.47E-01

Table 3 gives the convergence orders of the m-DDFV scheme for the test 2
for various values of (p1, p2) on the mesh 2. In this test the solution depends on
both variables x and y, but ∇u is continuous at the interface which explains that
DDFV and m-DDFV schemes have a similar behavior. Even though we get analogous
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Table 2. Norm of the error for test 1 on mesh 2 for p1 = 2, p2 = 4, λ = 5.0

mesh size DDFV m-DDFV DDFV m-DDFV
Lp(Ω) Lp(Ω) W 1,p(Ω) W 1,p(Ω)

8.83E-02 9.62E-01 9.93E-02 3.26E+01 2.52E+00
4.41E-02 4.82E-01 2.52E-02 2.62E+01 1.01E+00
2.21E-02 2.44E-01 6.31E-03 2.12E+01 4.09E-01
1.10E-02 1.23E-01 1.58E-03 1.71E+01 1.64E-01

convergence rate for (p1 = 2, p2 = 4) and (p1 = 4, p2 = 2), smaller global error is
obtained in the case when the mesh is more refined in the domain where pi is big.

4 Conclusions

We propose here a finite volume approach to approximate nonlinear transmission
problems on general 2D grids. The m-DDFV scheme we study is solved by means of
a decomposition-coordination method. Numerical results in the case of p−Laplacian
like operators illustrate the good behavior of the scheme especially in case of big
jumps of the gradient.

Table 3. Convergence rates in the two domains Ω1 and Ω2 for test 2 with k = 5

Lp1(Ω1) Lp2(Ω2) W 1,p1(Ω1) W 1,p2(Ω2)

p1 = 2, p2 = 1.5 2.00 1.99 1.49 1.69
p1 = 2, p2 = 4 2.00 2.00 1.56 1.20
p1 = 4, p2 = 2 2.04 1.98 1.20 1.60
p1 = 3, p2 = 4 2.11 2.02 1.30 1.19
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