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Summary. Mortar discretizations have been developed for coupling different ap-
proximations in different subdomains, that can arise from engineering applications
in complicated structures with highly non-uniform materials. The complexity of the
mortar discretizations requires fast algorithms for solving the resulting linear sys-
tems. Several domain decomposition algorithms, that have been successfully applied
to conforming finite element discretizations, have been extended to the linear systems
of mortar discretizations. They are overlapping Schwarz methods, FETI-DP (Dual-
Primal Finite Element Tearing and Interconnecting) methods, and BDDC (Balanc-
ing Domain Decomposition by Constraints) methods. The new result is that com-
plete analysis, providing the optimal condition number estimate, has been done for
geometrically non-conforming subdomain partitions and for problems with discon-
tinuous coefficients. These algorithms were further applied to the two-dimensional
Stokes and three-dimensional elasticity. In addition, a BDDC algorithm with an
inexact coarse problem was developed.

1 Introduction

Mortar discretizations were introduced in [2] to couple different approxima-
tions in different subdomains so as to obtain a good global approximate
solution. They are useful for modeling multi-physics, adaptivity, and mesh
generation for three dimensional complex structures. The coupling is done
by enforcing certain constraints on solutions across the subdomain interface
using Lagrange multipliers. We call these constraints the mortar matching
conditions.

The complexity of the discretizations requires fast algorithms for solving
the resulting linear systems. We focus on extension of several domain decom-
position algorithms, that have been successfully applied to conforming finite
element discretizations, to solving such linear systems. They are overlapping
Schwarz methods, FETI-DP (Dual-Primal Finite Element Tearing and In-
terconnecting) methods, and BDDC (Balancing Domain Decomposition by
Constraints) methods, see Section 3 of [19], [5, 4], and [16, 17].
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The new result is that complete analysis, providing the optimal condition
number bound, was done for geometrically non-conforming subdomain parti-
tions and for problems with discontinuous coefficients. These algorithms are
further extended to the Stokes problem and three-dimensional elasticity. In
addition, using an inexact solver for the coarse problem the BDDC method
was extended to a three–level algorithm.

Throughout this paper, hi and Hi denote the mesh size and the subdo-
main diameter, and C is a generic positive constant independent of the mesh
parameters and problem coefficients.

2 Mortar Discretization

We consider a model elliptic problem,

−∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1)

where Ω is a polyhedral domain in R3, f(x) is a square integrable func-
tion in Ω, ρ(x) is a positive and bounded function. We decompose Ω into a
non-overlapping subdomain partition {Ωi}i, that can be geometrically non-
conforming. In a geometrically non-conforming partition, a subdomain can
intersect its neighbors in a part of a face, a part of an edge, or a vertex. This
allows a subdomain partition that is not necessarily a triangulation of Ω. We
then introduce a triangulation Ti to each subdomain Ωi and denote by Xi

the conforming piecewise linear finite element space associated to the trian-
gulation Ti. These triangulations can be non matching across the subdomain
interface Γ =

⋃
i,j(∂Ωi ∩ ∂Ωj). We can select a set of subdomain faces of

which union covers Γ , see [18, Section 4.1]. We then denote those faces {Fn}n

and call them nonmortar faces.
A subdomain Ωi, with a nonmortar face Fn as its face, can intersect more

than one neighbors {Ωj}j through Fn. This gives a partition {Fn(i,j)}j to
Fn, where Fn(i,j) is the common part of Ωi and Ωj . We call Fn(i,j) mortar
faces. We note that the mortar faces can be only part of subdomain faces
while nonmortar faces are a full subdomain face. On each nonmortar Fn ⊂ Ω,
we introduce a Lagrange multiplier space M(Fn) based on the finite element
space Xi, see [2, 22, 6] for the detailed construction.

We define a product space

X =
∏

i

Xi,

and introduce a mortar matching condition on (v1, · · · , vN ) ∈ X

∫

Fn

(vi − φ)ψ ds = 0, ∀ψ ∈M(Fn), (2)
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where φ = vj on Fn(i,j) ⊂ Fn. A mortar finite element space is defined by

X̂ = {v ∈ X : v satisfies (2)} ,
and mortar discretization is to approximate the solution u of (1) in the mortar

finite element space X̂. The approximation error is given by

N∑

i=1

‖u− uh‖2
H1(Ωi)

≤ C
N∑

i=1

h2
i |log(hi)|‖u‖2

H2(Ωi)
,

where uh is the approximate solution, see [1]. The additional log factor does
not appear when the subdomain partition is geometrically conforming.

3 An Overlapping Schwarz Method

To build an overlapping Schwarz preconditioner, we introduce two auxiliary
partitions of Ω. They are an overlapping subregion partition {Ω̃j}j and a
coarse triangulation {Tk}k of Ω.

For each subregion Ω̃j , we introduce a finite element space X̃j as a subspace

of X̂ in the following way. Among the nodes in the finite element space X, we
define by genuine unknowns the nodes that are not contained in the interior
of the nonmortar faces. The space X̃j is then built from the basis functions

of each genuine unknowns, that are supported in Ω̃j . By assigning values of
the basis functions at the nodes on the nonmortar faces using the mortar
matching condition (2), we can obtain the resulting basis elements contained

in X̂.
Similarly, we can construct a coarse finite element space X̃0 that belongs to

X̂. Let XH be the piecewise linear conforming finite element space associated
to the coarse triangulation {Tk}k. First we interpolate a function v ∈ XH to
the produce space X using the nodal interpolant Ih : XH → X such that

Ih(v) = (Ih
1 (v), · · · , Ih

N (v)),

where Ih
i (v) denote the nodal interpolant of v to the space Xi. We then modify

values of Ih(v) at the nodes on the nonmortar faces using the mortar matching

condition so that obtain the resulting interpolant Im(v) contained in X̂. The

coarse finite element space X̃0 is given by

X̃0 = Im(XH) ⊂ X̂.

The two–level overlapping Schwarz algorithm consists of solving the local
and coarse (when j = 0) problems; find Tju ∈ X̃j such that

a(Tju, vj) = a(u, vj), ∀vj ∈ X̃j (j ≥ 0).

For the overlapping Schwarz algorithm applied to the mortar discretization
of the elliptic problem (1), we proved the condition number estimate, see [13].



84 H.H. Kim

Theorem 1. We assume that the diameter of Ωi is comparable to any coarse
triangle Tk that intersects Ωi and the diameter Hi of Ωi satisfy Hi ≤ CH̃j,

where H̃j is the diameter of subregion Ω̃j that intersects Ωi. In addition, we
assume that the mesh sizes of subdomains that intersect along a common face
are comparable. We then obtain the condition number bound for the overlap-
ping Schwarz algorithm,

κ(

J∑

j=0

Tj) ≤ Cmax
j,k

{(
1 +

H̃j

δj

)(
1 + log

Hk

hk

)}
,

where δj are the overlapping width of the subregion partition {Ω̃j}j, and
Hk/hk denote the number of nodes across subdomain Ωk.

4 BDDC and FETI–DP Algorithms

In this section, we construct BDDC and FETI–DP algorithms for the mortar
discretization. We first derive the primal form of the mortar discretization
and then introduce a BDDC algorithm for solving the primal form. Secondly
we introduce the dual form and build a FETI–DP algorithm that is closely
related to the BDDC algorithm.

We separate unknowns in the finite element space Xi into interior and
interface unknowns and after selecting appropriate primal unknowns among
the interface unknowns we again decompose the interface unknowns into dual
and primal unknowns,

Xi = X
(i)
I ×X

(i)
Γ , X

(i)
Γ = W

(i)
∆ ×W

(i)
Π , (3)

where I, Γ , ∆, and Π denote the interior, interface, dual, and primal un-
knowns, respectively.

The primal unknowns are related to certain primal constraints selected
from the mortar matching condition (2). They result in a coarse component
of the BDDC preconditioner so that a proper selection of such constraints is
important in obtaining a scalable BDDC algorithm. We consider {ψij,k}k, the
basis functions in M(Fn) that are supported in Fn(i,j), and introduce

ψij =
∑

k

ψij,k.

We assume that at least one such basis function ψij,k exists for each Fn(i,j) ⊂
Fn. On each interface Fn(i,j), we select the primal constraints for (w1, · · · , wN )

∈ XΓ (=
∏

iX
(i)
Γ ) as ∫

Fn(i,j)

(wi − wj)ψij ds = 0. (4)



Domain Decomposition Algorithms for Mortar Discretizations 85

For the case of a geometrically conforming partition, i.e., when Fn(i,j) is a full
face of two subdomains, the above constraints are the face average matching
condition because ψij = 1. We can change the variables to make the primal
constraints explicit, see [14, Sec 6.2], [15, Sec 2.3], and [9, Sec. 2.2]. We then
separate the unknowns in the spaceXi as described in (3). We will also assume
that all the matrices and vectors are written in terms of the new variables.

Throughout this paper, we use the notation V for the product space of
local finite element spaces V (i). The same applies to the vector notations v
and v(i). In addition, we use the notation V̂ for the subspace of V satisfying
mortar matching condition (2) and the notation Ṽ for the subspace satisfying
only the primal constraints (4). For example, we can represent the space

X̃Γ = {w ∈ XΓ : w satisfies the primal constraints (4)} ,

in the following way,
X̃Γ = W∆ × ŴΠ .

We further decompose the dual unknowns into the part interior to the non-
mortar faces and the other part to obtain

W∆ = W∆,n ×W∆,m,

where n and m denote unknowns at nonmortar faces (open) and the other
unknowns, respectively.

After enforcing the mortar matching condition (2) on functions in the

space X̃Γ , we obtain the matrix representation,

Bnwn +Bmwm +BΠwΠ = 0. (5)

Here we enforced the mortar matching condition using a reduced Lagrange
multiplier space, since the functions in the space X̃Γ satisfy the primal con-
straints selected from the mortar matching condition (2). The reduced La-
grange multiplier space is obtained after eliminating one basis element among
{ψij,k}k for each Fij ⊂ Fl so that the matrix Bn in (5) is invertible. There-
fore the unknowns wn of the nonmortar part are determined by the other
unknowns, wm, and wΠ , which are called genuine unknowns. We define the
space of genuine unknowns by

WG = W∆,m × ŴΠ

and define the mortar map,

R̃Γ =



−B−1

n Bm −B−1
n BΠ

I 0
0 I


 , (6)

that maps the genuine unknowns in WG into the unknowns in X̃Γ which
satisfy the mortar matching condition.
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To derive the linear system of the mortar discretization, we introduce sev-

eral matrices. The matrix S
(i)
Γ is the local Schur complement matrix obtained

from the local stiffness matrix A(i) by eliminating the subdomain interior
unknowns,

S
(i)
Γ = A

(i)
ΓI(A

(i)
II )−1(A

(i)
ΓI)

T =

(
S

(i)
∆∆ (S

(i)
Π∆)t

S
(i)
Π∆ S

(i)
ΠΠ

)
,

where ∆ and Π stand for the blocks corresponding to dual and primal un-
knowns, respectively. We define extensions of the spaces by

WG
R̃Γ−→X̃Γ

RΓ−→XΓ ,

where R̃Γ is the mortar map in (6) and RΓ is the product of restriction maps,

R
(i)

Γ : X̃Γ → X
(i)
Γ .

We next introduce the matrices SΓ and S̃Γ , the block diagonal matrix and
the partially assembled matrix at the primal unknowns, respectively, as

SΓ = diagi(S
(i)
Γ ), S̃Γ = R

t

ΓSΓRΓ .

The linear system of the mortar discretization is then written as:
find uG ∈WG such that

R̃t
Γ S̃Γ R̃ΓuG = R̃t

Γ gG, (7)

where gG ∈ WG is the part of genuine unknowns, i.e., the unknowns other
than the nonmortar part, of g ∈ XΓ , that is given by

g(i) = f
(i)
Γ −A

(i)
ΓI(A

(i)
II )−1f

(i)
I .

Here f (i) =

(
f

(i)
I

f
(i)
Π

)
is the local force vector. In the BDDC algorithm, we solve

(7) using a preconditioner M−1 of the form,

M−1 = R̃t
D,Γ S̃

−1
Γ R̃D,Γ ,

where the weighted extension operator R̃D,Γ is given by

R̃D,Γ = DR̃Γ =



Dn 0 0
0 Dm 0
0 0 DΠ


 R̃Γ .

Later, we will specify the weight Dn, Dm, and DΠ .
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We now develop a FETI–DP algorithm closely related to the BDDC al-
gorithm. In the FETI–DP algorithm, we solve the dual form of the mortar
discretization that is derived from the constrained minimization problem,

min
w∈X̃Γ

{
1

2
wtS̃Γw − wtg̃

}
,

with w satisfying the mortar matching condition (5). The mixed form to the
constrained minimization problem gives

S̃Γw +Btλ = g̃,

Bw = 0,

where B = (Bn, Bm, BΠ). After eliminating w, we obtain the dual form,

BS̃−1
Γ Btλ = BS̃−1

Γ g̃. (8)

We solve the equations of the dual form (8) iteratively using a preconditioner,

F̂−1
DP = BΣS̃ΓB

t
Σ ,

where

Bt
Σ = ΣBt =



Σn 0 0
0 Σm 0
0 0 ΣΠ


Bt.

As a result, we have obtained the two algorithms for solving the mortar
discretization and we write them into

BDDC = R̃t
D,Γ S̃

−1
Γ R̃D,Γ R̃

t
Γ S̃Γ R̃Γ , FDP = BΣS̃ΓB

t
ΣBS̃

−1
Γ Bt.

The convergence of the two algorithms depends on the condition number of
BDDC and FDP . We now show a close connection between them and then
provide weights D and Σ leading to scalable preconditioners. Let

PΣ = Bt
ΣB, ED = R̃Γ R̃

t
D,Γ .

Theorem 2. Assume that PΣ and ED satisfy
1. ED + PΣ = I,
2. E2

D = ED, P
2
Σ = PΣ ,

3. EDPΣ = PΣED = 0.
Then the operators FDP and BDDC have the same spectra except the eigen-
values 0 and 1.

The same result was first shown by [17] and later by [15] for the conforming
finite element discretizations. We are able to extend the result to the mortar
discretizations.
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The Neumann-Dirichlet preconditioner for the FETI-DP algorithms sug-
gested by [10] was shown to be the most efficient for the problems with dis-
continuous coefficients, see [3]. The weight of the Neumann-Dirichlet precon-
ditioner is given by

Σn = (Bt
nBn)−1, Σm = 0, ΣΠ = 0, (9)

and the condition number of the FETI-DP algorithm was shown to be

κ(FDP ) ≤ C(1 + log(H/h))2,

when the subdomain with smaller ρi is selected as the nonmortar side.
When the weight of the BDDC preconditioner is selected to be

Dn = 0, Dm = I, DΠ = I, (10)

the ED and PΣ satisfy the assumptions in Theorem 2. Therefore, the BDDC
algorithm equipped with the weight in (10) has the condition number bound,

κ(BDDC) ≤ C(1 + log(H/h))2,

and the BDDC algorithm is as efficient as the FETI-DP algorithm.

5 Applications of the BDDC and FETI-DP Algorithms

The BDDC and FETI-DP algorithms introduced in the previous section can
be generalized to the mortar discretizations of the Stokes problem and three
dimensional compressible elasticity problems. For these cases, the selection of
primal constraints is important in obtaining a scalable preconditioner.

We assume that the subdomain partition is geometrically conforming. We
denote the common face (edge) of two subdomains Ωi and Ωj by Fij in three
(two) dimensions. An appropriate Lagrange multiplier space M(Fij) is then
provided for the nonmortar part of Fij . We note that the space M(Fij) con-
tains the constant functions.

For the Stokes problem, we select the average matching condition across
the interface as the primal constraints, namely,

∫

Fij

vi ds =

∫

Fij

vj ds,

where Fij is the common face (edge) of ∂Ωi and ∂Ωj in three (two) dimensions.
For the elasticity problems, we select

∫

Fij

vi · IMij
(rk) ds =

∫

Fij

vj · IMij
(rk) ds, k = 1, · · · , 6,
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where rk are the six rigid body motions and IMij
(rk) is the nodal interpolant

of rk to the Lagrange multiplier space M(Fij) provided for the nonmortar
face Fij .

With the selection of the primal constraints, we showed the condition
number bound of the two algorithms

FDP ≤ C

(
1 + log

H

h

)2

, BDDC ≤ C

(
1 + log

H

h

)2

,

when the weight are given by (9) and (10); see [11] and [7, 8]. The BDDC and
FETI-DP algorithms of the elasticity can be extended to the geometrically
nonconforming subdomain partitions as well. For such a case, the Lagrange
multiplier space M(Fij) is the span of basis elements ψl of M(Fn) that are
supported in Fn(i,j). Here Fn(⊂ ∂Ωi) is the nonmortar face that is partitioned
by its mortar neighbors {Ωj}j .

We note that the BDDC preconditioner consists of solving local problems
and the coarse problem,

M−1 = R̃t
DS̃

−1
Γ R̃D,

= R̃t
D

(
I 0

−SΠ∆S
−1
∆∆ I

)(
S−1

∆∆ 0
0 F−1

ΠΠ

)(
I −S−1

∆∆S∆Π

0 I

)
R̃D.

As the increase of the number of subdomains, the cost for solving the coarse
component becomes a bottleneck of the computation. By solving the coarse
problem inexactly, we can speed up the total computational time.

BDDC algorithms with an inexact coarse problem were developed by [21,
20] for conforming finite element discretizations of elliptic problems in both
two and three dimensions. The idea is to group subdomains into a subregion
and to obtain a subregion partition. Using the additional level, we construct
a BDDC preconditioner of the coarse component FΠΠ in M−1. The resulting
preconditioner, called a three-level BDDC preconditioner, is given by

M
−1

= R̃t
DS

−1

Γ R̃D,

where S
−1

Γ denotes the matrix that is the part F−1
ΠΠ of S̃−1

Γ is replaced by
a BDDC preconditioner using the additional subregion level. The condition
number bound of the three–level BDDC algorithm was shown to be

κ(M
−1
R̃t

Γ S̃R̃Γ ) ≤ C

(
1 + log

Ĥ

H

)2(
1 + log

H

h

)2

,

where Ĥ, H, and h denote the subregion diameters, subdomain diameters,
and mesh sizes, respectively.

We obtain a subregion partition {Ω(j)}Nc
j=1, where each subregion Ω(j) is

the union of Nj subdomains Ω
(j)
i . An example of a subregion partition, that is
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Fig. 1. A subregion partition (left) and unknowns at a subregion (right) when

Ĥ/H = 4; small rectangles are subdomains in the left.

obtained from a geometrically non-conforming subdomain partition, is shown
in Fig. 1.

In the subregion partition, we define faces as the intersection of two subre-
gions and vertices (or edges) as the intersection of more than two subregions.
Finite element spaces for the subregions are given by the primal unknowns
of the two–level algorithm so that the subregion partition is equipped with
a conforming finite element space, for which the unknowns match across the
subregion interface. On this new level, the mortar discretization is no longer
relevant. We can then develop the theory and algorithm for the subregion
partition as in the two–level BDDC algorithm done for the conforming finite
element discretization. Analysis and numerical computations of the three-level
BDDC algorithm for mortar discretizations will be found in [12].
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