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1 Introduction

In DD (domain decomposition) methods, the main contribution to the computa-
tional work is due to the two major components – solvers for local Dirichlet prob-
lems on subdomains of decomposition and local problems on their faces. Without
loss of generality, we assume that the domains of FE’s (finite elements) serve as
subdomains of decomposition. At that, under the conditions of shape regularity, op-
timization of these components is reduced to obtaining fast preconditioners-solvers
for the stiffness matrix of the p reference element and the Schur complement, related
to its boundary.

Competitors for spectral FE’s are hierarchical FE’s, which have the tensor prod-
ucts of the integrated Legendre’s polynomials for the form functions. As a starting
point for optimization of major solvers for these two types of FE discretizations, pri-
marily served the finite-difference preconditioners, suggested by [5], see also [8] for
hierarchical and by [14] for spectral reference elements stiffness matrices. For internal
stiffness matrices of hierarchical elements, a number of fast preconditioners-solvers
have been justified theoretically by [6, 7, 2, 3] and thoroughly tested numerically.
For spectral elements, to the best of the authors knowledge, there is known, the
multilevel solver of [16], which efficiency was well approved numerically.

Hierarchical and spectral elements look differently. However, [11, 12] established
an interrelation between them, showing that in computations they can be treated
with a great measure of similarity. In particular, they considered optimal multilevel
and DD types preconditioners-solvers for 2-d spectral elements, similar to those de-
signed earlier for hierarchical elements. In this paper, first of all, we obtain fast
multiresolution wavelet preconditioners-solvers for the internal FE and face sub-
problems, arising in DD algorithms for 3-d discretizations by spectral elements. The
former realizes a technique alike the one implemented by [3] for hierarchical elements.
The preconditioner of the same kind can be derived for the mass matrix, allowing in
turn to obtain the face solver by K-interpolation. Inefficient prolongations from the
interface boundary can also compromise optimality of DD algorithm. We approve
the computationally fast prolongations by means of the inexact iterative solver for
inner problems on FE’s. With the mentioned three main fast DD components in
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hands, it is left to find a good preconditioner for the wire basket subproblem, hav-
ing relatively small dimension O(Rp), where R is the number of finite elements.
We use the one considered by [4] and other authors (see this paper for references),
assuming that in a whole it is sufficiently fast. Our main conclusion is that the DD
preconditioner-solver, with the pointed out components, has the relative condition
number O((1+log p)2), while solving the system of algebraic equations with the DD
preconditioner for the matrix requires O(N(1 + log p)) arithmetic operations, where
N ≃ Rp3 is the order of the FE system.

We use notations: Qp,x – the space of polynomials of the order p ≥ 1 in each
variable of x = (x1, x2, .., xd), d is the dimension; GLL and GLC nodes are the nodes
of the Gauss-Lobatto-Legendre and Gauss-Lobatto-Chebyshev quadratures, respec-
tively; signs ≺, ≻, ≍ are used for the inequalities and equalities hold up to positive
absolute constants; A+ – pseudo-inverse to a matrix A; A ≺ B with nonnegative
matrices A,B implies v⊤Av ≺ v⊤Bv for any vector v and similarly for signs ≻, ≍;
τ0 = (−1, 1)d is the reference cube. Notations | · |k,Ω , ‖·‖k,Ω stand for the semi-norm
and the norm in Sobolev’s space Hk(Ω), H̊1(Ω) = (v ∈ H1(Ω) : v|∂Ω = 0). Since
their similarity in our context, the both Lagrange elements with the GLL and GLC
nodes are called spectral.

2 Finite-Difference and Factorized Preconditioners for
Stiffness Matrices of Spectral p Elements

The GLL nodes ηi ∈ [−1, 1] satisfy (1 − η2
i )P ′p(ηi) = 0 , whereas the GLC nodes

are extremal points of the Chebyshev polynomials: ηi = cos (π(p−i)
p

), i = 0, 1, .., p .
For i ≤ N , the steps ℏi := ηi − ηi−1 of the both meshes have the asymptotic
behavior ℏi ≍ i/p2. The both orthogonal tensor product meshes with the nodes
x = ηα = (ηα1 , ηα2 , .., ηαd), α ∈ ω := {α = (α1, α2, .., αd) : 0 ≤ α1, α2, .., αd ≤ p},
are termed in the paper Gaussian. We consider the stiffness matrices Asp of the
respective Lagrange reference elements, induced by the Dirichlet integral

aτ0(u, v) =

∫

τ0

∇u · ∇v dx .

Let H(τ0) be the space of functions, continuous on τ0 and belonging to Q1,x on
each nest of the Gaussian mesh xk = ηi, then Asp denotes the preconditioner,
which is the FE matrix, corresponding to this space and Dirichlet integral aτ0 . As
a preconditioner for Asp in 3-d, it can be used the simpler matrix

Aℏ = ∆ℏ ⊗ Dℏ ⊗ Dℏ + Dℏ ⊗∆ℏ ⊗ Dℏ + Dℏ ⊗ Dℏ ⊗∆ℏ ,

where Dℏ is the diagonal matrix Dℏ = diag [h̃i = 1
2
(ℏi + ℏi+1)]pi=0 , with h̃i =

0 for i = 0, p + 1 , and ∆ℏ is the FE matrix of the bilinear form (v′, w′)(−1,1) on
the space H(−1, 1) of continuous and piece wise linear on the 1-d Gaussian mesh
x = ηi.

We also introduce the mass matrix Msp of the spectral element, its FE precon-
ditioner Msp, generated by the space H(τ0), and Mℏ := Dℏ ⊗ Dℏ ⊗ Dℏ .

Lemma 1. Uniformly in p

Aℏ ,Asp ≺ Asp ≺ Asp,Aℏ , Mℏ ,Msp ≺Msp ≺Msp,Mℏ .
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Proof. The inequalities for Asp in 1-d are due to [1], for the step to a greater di-
mension see, e.g., [4]. With the inequalities for Asp hold, the inequalities for Aℏ are
easy to obtain.

Now we will introduce factored preconditioners. The rest of this section and
Section 3 deal with matrices related to the internal unknowns. Usually they are
supplied with the lower index I, but in many instances we omit this index. Without
loss of generality it is assumed p = 2N .

The change of variables ṽ = Cv by the diagonal matrix C = p−4 D
−1/2
ℏ

⊗
D
−1/2
ℏ

⊗ D
−1/2
ℏ

(for 2-d C = p−2 D
−1/2
ℏ

⊗ D
−1/2
ℏ

) transforms AI,ℏ as the matrix

of a quadratic form into the matrix ÃI,ℏ := C−1AℏC
−1. Let us introduce also

(p−1)× (p−1) matrices ∆sp = tridiag [−1, 2,−1] and Dsp = diag [1, 4, .., N2, (N−
1)2, (N − 2)2, .., 4, 1], and the (p− 1)3 × (p− 1)3 matrix

ΛI,sp = ∆sp ⊗Dsp ⊗Dsp + Dsp ⊗∆sp ⊗Dsp + Dsp ⊗Dsp ⊗∆sp . (1)

Lemma 2. Matrices ÃI,ℏ , ΛI,sp and simultaneously the matrix ΛI,C := CΛI,spC
and the stiffness matrix AI,sp are spectrally equivalent uniformly in p.

See [11, 12] for the proof.
Since matrix C is diagonal, the arithmetical costs of solving systems with

matrices ΛI,C and ΛI,sp are the same in the order. Matrix ΛI,sp looks exactly
as the 7-point finite-difference approximation on the uniform square mesh of size
~ = 2/p = 1/N of the differential operator

Lspu = −
[
φ2(x2)φ2(x3)u,1,1 + φ2(x1)φ2(x3)u,2,2 + φ2(x1)φ2(x2)u,3,3

]
,

u|∂τ0 = 0, where φ(x) = min(x+ 1, x− 1), x ∈ [−1, 1]. Indeed, for φi := φ(−1 + i~)
and u = (ui)

p−1
i1,i2,i3=1 expanded by zero to the boundary nodes

ΛI,spu|i = − 1

~2

∑

k=1,2,3

φ2
ilφ

2
ij [ui−ek − 2ui + ui+ek ] , 1 ≤ im ≤ (p− 1) ,

where i = (i1, i2, i3), all numbers k, l, j ∈ (1, 2, 3) are different, ek = (δk,l)
3
l=1, and

δk,l are Kronecker’s symbols.
We compare ΛI,sp with the finite-difference preconditioner for the hierarchical

reference element, see, e.g., Λe in (2.5) of [11]. At d = 2, the related differential
operators Lsp L, respectively, are similar, see for L (2.7), (2.8) in the same paper.
In each quarter of τ0, the differential expression for Lsp is the same as for L, defined
on the square (0, 1)2, up to the constant multiplier and rotation and translation of
the axes. The same is true for finite-difference operators ΛI,sp, Λe. At d = 3, the
differential and finite-difference operators, related to the preconditioners for spectral
and hierarchical elements, are different even in the order: Lsp is the differential
operator of the 2-nd order, whereas L of the 4-th. However, multipliers Dsp, ∆sp and
respectively ∆, D in the representations of ΛI,sp, Λe by the sums of Kronecker’s
products are similar, see (1) above and (2.5) of [11]. Due to this, all known fast
solvers for systems with the stiffness matrices of hierarchical reference elements can
be adapted to systems with the stiffness matrices of spectral reference elements of
any of the two types. We present two examples in the next section.

Instead of ΛI,sp, one can as well use spectrally equivalent FE matrices, generated
with the use of the 1-st order elements.
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3 Fast Multilevel Wavelet Preconditioners-solvers for
Interior of Reference Element and Face Problems

In order to obtain a fast preconditioner-solver for the internal stiffness matrix AI,sp

of a spectral element, it is sufficient to design a fast solver for the preconditioner
ΛI,sp. For convenience, it is assumed p = 2N, N = 2ℓ0−1.

For each l = 1, 2, ..., ℓ0, we introduce the uniform mesh xli, i = 0, 1, .., 2Nl,
Nl = 2l−1, x0 = −1, x2Nl = 1 of the size ℏl = 21−l and the space V l(−1, 1) of
the continuous on (−1, 1) piece wise linear functions, vanishing at the ends of this
interval. The dimension of V l(−1, 1) is N l := pl − 1 = 2l − 1 with pℓ0 = p. Let
φli ∈ V l(−1, 1) be the the nodal basis function for the node xli, so that φli(x

l
j) = δi,j

and V l(−1, 1) = span
{
φli
}pl−1

i=1
. For the Gram matrices

∆l = ℏl

(
〈(φli)′, (φlj)′〉ω=1

)pl−1

i,j=1
, Ml = ℏ

−1
l

(
〈φli, φlj〉ω=φ

)pl−1

i,j=1

with φ introduced in Section 2 and 〈v, u〉ω :=
∫ 1

−1
ω2v u dx , we establish

∆ℓ0 = ∆sp , M := Mℓ0 ≍ Dsp .

The representation V l = V l−1⊕W l results in the decomposition V =W1⊕W2⊕
... ⊕Wℓ0 with the notations V = Vℓ0 and W1 = V1. Let {ψlk }

pl−1, ℓ0
k,l=1 denote the

multiscale wavelet basis, composed of some single scale bases {ψlk}
pl−1

k=1 in the spaces
W l = span {ψlk}

pl−1

k=1 . It generates the matrices

∆wlet =
(
〈(ψki )′, (ψlj)

′〉1
)pl−1,ℓ0

i,j=1, k,l=1
, Mwlet =

(
〈ψki , ψlj〉φ

)pl−1,ℓ0

i,j=1, k,l=1
,

D1 = diag [〈(ψli)′, (ψli)′, 〉1]
pl−1,ℓ0
i,l=1 , D0 = diag [〈ψli, ψli, 〉φ]

pl−1,ℓ0
i,l=1 .

The transformation matrix from the multiscale wavelet basis to the FE basis
{φl0k }p−1

k=1 is denoted by Q. Thus, if v and vwlet are the vectors of the coeffi-
cients of a function from V(0, 1), represented in these two bases, respectively, then
v = Q⊤ vwlet.

Theorem 1. There exist multiscale wavelet bases, such that ∆−1
sp ≍ Q⊤D−1

1 Q,
M−1

sp ≍ Q⊤D−1
0 Q, and matrix-vector multiplications Qw, Q⊤w require O(p)

arithmetic operations.

Proof. The proof is simpler than the proof of similar results in [3], because the
weight φ is symmetric on (-1,1). The cited authors justified existence of multiscale
wavelet bases with the required properties in the case of the space V(0, 1) := { v ∈
V(−1, 1) | v(x) = 0 at x /∈ (0, 1) } and the weight φ = x.

Theorem 2. Let BI,sp = CBI,spC and

B
−1
I,sp =





(Q⊤ ⊗Q⊤ )[ D0 ⊗ D1 + D1 ⊗ D0 ]−1(Q⊗Q), d = 2,

(Q⊤ ⊗Q⊤ ⊗Q⊤)[D0 ⊗ D0 ⊗ D1 + D0 ⊗ D1 ⊗ D0+

D0 ⊗ D0 ⊗ D1]−1(Q⊗Q⊗Q),Q d = 3 .

Then BI,sp ≍ AI,sp and, therefore, cond [B−1
I,spAI,sp] ≺ 1.The arithmetical cost of

the operation B−1
I,spv for any vector v is O(pd).



Fast DD Algorithms for 3-d Spectral Discretizations 563

Proof. In view of Lemmas 1 and 2, it is sufficient to prove the equivalence
cond [B−1

I,spΛI,sp] ≍ 1. The last is the consequence of the mentioned above relation-
ships ∆ℓ0 = ∆sp and M := Mℓ0 ≍ Dsp, Theorem 1, and the representations of
the involved matrices by the corresponding sums of Kronecker products.

Another important problem for DD algorithms is development of fast solvers for
internal problems on faces. As it is now known, see, e.g., [15], at nonsignificant lost
in the condition, it is reduced to the preconditioning of the matrix of the quadratic
form 00| · |21/2,τ0 , τ0 = (−1, 1) × (−1, 1), on the subspace of polynomials Q̊p,x of
two variables x = (x1, x2), vanishing on the boundary ∂τ0. Here 00| · |1/2,τ0 is the

norm in the space H
1/2
00 (τ0), with the square τ0 representing a typical face of the 3-d

reference cube.

Theorem 3. Let d0,i, d1,i be diagonal entries of the matrices D0,D1, respectively,
and D1/2 be the diagonal matrix with the entries on the main diagonal

d
(1/2)
i,j = d0,id0,j

√
d1,i/d0,i + d1,j/d0,j .

Let also S0 = C S0 C and S−1
0 = (Q⊤ ⊗Q⊤) D−1

1/2 (Q⊗Q) . Then for all v ∈ Q̊p,x
and vectors v, representing v in the basis M̊2,p, the norms 00| v |1/2,F0

and ||v||S0

are equivalent uniformly in p.

Proof. For the square τ0 = (0, 1)2, we have the preconditioner BI,sp = CBI,spC for
the stiffness matrix AI,sp. Similarly, we can define the preconditioner MI,sp =
CMI,spC for the internal mass matrix MI,sp with M−1

I,sp = (Q⊤ ⊗ Q⊤ )[ D0 ⊗
D0 ]−1(Q⊗Q). The further proof is produced by Peetre’s K-interpolation method.

Presented fast solvers for the internal and face problems can be easily generalized
on the “orthotropic” spectral elements with the shape polynomials having different
orders along different axes.

4 Domain Decomposition Algorithm for Discretizations
by Spectral Elements

Let we have to solve the problem

aΩ(u, v) :=

∫

Ω

̺(x)∇u · ∇v dx = (f, v)Ω , ∀ v ∈ H̊1(Ω) ,

in the domain Ω = ∪Rr=1τr , which is an assemblage of compatible and in general
curvilinear finite elements occupying domains τr. We assume that the finite elements
are specified by means of non degenerate mappings x = X (r)(y) : τ0 → τr satisfying
the generalized conditions of the angular quasiuniformity, see, e.g., [10]. The coef-
ficient ̺ in the DD algorithm under consideration may be piece wise constant, but
for brevity we imply ̺(x) ≡ 1. For the system Ku = f of FE equations, we apply
PCG (Preconditioned Conjugate Gradient Method) with the DD preconditioner

K−1 = K +
I + PVB→V S−1

B P⊤VB→V , S−1
B = S +

F + PVW→VB (SB
W )−1P⊤VW→VB

,
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of the same structure as in [9, 10]. The involved in the preconditioner matrices are
defined as follows.

i) KI = diag [h1BI,sp, h2BI,sp, . . . , hRBI,sp] is the block diagonal precondi-

tioner for the internal Dirichlet problems on FE’s, where BI,sp is the multiresolution
wavelet preconditioner-solver found in Theorem 2 and hr is the characteristic size
of a finite element τr.

ii) SF = diag [κ1S0, κ2S0, . . . , κQS0] is the block diagonal preconditioner for
the internal problems on faces of finite elements, where S0 is the multiresolution
wavelet preconditioner for one face, defined in Theorem 3, Q is the number of dif-
ferent faces Fk ⊂ Ω, and κk are multipliers. Let for a face Fk of the discretization,
r1(k) and r2(k) are the numbers of two elements τr1(k) and τr2(k), sharing the face
Fk. Then κk = (hr1(k) + hr2(k)) .

iii) The preconditioner SB
W for the wire basket subproblem. We borrow it, as

well as the prolongation PVW→VB , from [4], see also [15]. Let us note that the solving
procedure for the system with the matrix SB

W is described in these papers up to
solution of the sparse subsystem of the order O(R)×O(R). We assume that there
is a solver for this subsystem with the arithmetical cost not greater O(Rp3).

iv) The matrix PVB→V performs prolongations from the interelement boundary
on the computational domain Ω. Its restriction to each FE is the master prolongation
P0 defined for the reference element. For ∀vB , living on ∂τ0, we set P0vB := u with
the subvectors uI ,uB , where uB := vB and uI := vI+Pit(vB−vB), where v,vI ,vB
have for its entries the mean value on ∂τ0 of the polynomial v ∈ Op,x, v ↔ vB . The
matrix Pit is implicitly defined by the fixed number k0 ≍ (1 + log p) of the iterations
wk+1
I = wk

I − σk+1B
−1
I,sp[AI,spw

k
I − AIB,sp(vB − vB)], w0

I = 0 , with Chebyshev

iteration parameters σk, so that uI = vI + wk0 . Above, indices I,B are used for
the subvectors, living on τ0 and ∂τ0, respectively, and for the corresponding blocks
of matrices, so that AI,sp,AIB,sp are the blocks of AI,sp, which in the iteration
process can be replaced by the blocks Aℏ,I ,Aℏ,IB of Aℏ .

Theorem 4. The DD preconditioner-solver K provides the condition number
cond [K−1K] ≤ c(1+log p)2, whereas for any f the arithmetical cost of the operation
K−1f is O(p3(1 + log p)R).

See [13] for the proof. Changes in the definition of K allowing to retain Theorem 4
in the case of variable ̺, ̺ ≍ ̺, where ̺ > 0 is any element wise constant function,
are obvious. Parallelization, robustness and h-adaptivity properties of the designed
DD solver are exactly the same as for the DD solver in the case of hierarchical
elements presented in [9], see also [13]. However, p-adaptivity is less flexible due to
the Lagrange interpolation nature of spectral elements.
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