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Summary. We construct optimal order multilevel preconditioners for interior-
penalty discontinuous Galerkin (DG) finite element discretizations of 3D elliptic
boundary-value problems. A specific assembling process is proposed which allows
us to characterize the hierarchical splitting locally. This is also the key for a local
analysis of the angle between the resulting subspaces. Applying the correspond-
ing two-level basis transformation recursively, a sequence of algebraic problems is
generated. These discrete problems can be associated with coarse versions of DG
approximations (of the solution to the original variational problem) on a hierarchy
of geometrically nested meshes. The presented numerical results demonstrate the
potential of this approach.

1 Introduction

Discontinuous Galerkin (DG) finite element (FE) methods have gained much
interest in the last decade due to their suitability for hp-adaptive techniques.
They offer several advantages, e.g. the ease of treatment of meshes with hang-
ing nodes, elements of varying shape and size, polynomials of variable degree,
parallelization, preservation of local conservation properties, etc. An excellent
overview and a detailed analysis of DG methods for elliptic problems can be
found in [1]. Unfortunately, DG discretizations result in excessive number of
degrees of freedom (DOF) as compared to their counter-part, i.e. the standard
FE methods. Developing efficient preconditioning techniques, which yield fast
iterative solvers, thus becomes of significant importance.

Optimal-order preconditioners obtained from recursive application of two-
level FE methods have been introduced and extensively analyzed in the con-
text of conforming methods, see e.g., [2, 3, 4]. For DG discretizations geo-
metric multigrid (MG) type preconditioners and solvers for the linear system
of equations have been considered in [6, 9]. However, our approach falls into
the category of algebraic multilevel techniques. The method is obtained from
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recursive application of the two-level algorithm. A sequence of FE spaces is
created using geometrically nested meshes. A specific splitting of the bilinear
terms is proposed which results in an assembling process similar to that of the
conforming methods. In this approach one avoids the projection onto a coarse
(auxiliary) space [7, 13], where the auxiliary space is related to a standard
Galerkin discretization, and instead, generates a sequence of algebraic prob-
lems associated with a hierarchy of coarse versions of DG approximations of
the original problem.

The content of this paper is summarized as follows. In Section 2 we state
our model problem and discuss the DG approximation. Discrete formulation
and matrix assembly, based on the splitting proposed in [12], are parts of
Section 3. In Section 4 we comment on the construction of a proper hierarchical
basis transformation for the linear systems arising from DG discretization. The
analysis of the angle between the induced subspaces is the subject of Section
5. Finally, numerical experiments are presented in Section 6.

2 Model Problem and DG Approximation

Consider a second order elliptic problem on a bounded Lipschitz domain Ω ⊂
R3:

−∇ · (A (x)∇u) =f (x) in Ω, (1a)

u(x) =uD on ΓD, (1b)

A∇u · n =uN on ΓN . (1c)

Here n is the exterior unit normal vector to ∂Ω ≡ Γ . The boundary is assumed
to be decomposed into two disjoint parts ΓD and ΓN , and the boundary data
uD, uN are smooth. For the DG formulation below we shall need the existence
of the traces of u and A∇u ·n on the faces in Ω, and the solution u is assumed
to have the required regularity. It is assumed that A is a symmetric positive
definite matrix such that

c1 |ξ|2 ≤ Aξ · ξ ≤ c2 |ξ|2 ∀ξ ∈ R3.

Let Th be a non-overlapping partition of Ω into a finite number of elements
e. For any e ∈ Th we denote its diameter by he and the boundary by ∂e. Let
F = ē+ ∩ ē− be a common face of two adjacent elements e+, and e−. Further,
let h = maxe∈Th

he denote the characteristic mesh size of the whole partition.
The set of all the internal faces is denoted by F0, and FD and FN contain the
faces of finite elements that belong to ΓD and ΓN , respectively. Finally, F is
the set of all the faces, i.e., F = F0 ∪FD ∪FN . We assume that the partition
is shape-regular. We allow finite elements to vary in size and shape for local
mesh adaptation and the mesh is not required to be conforming, i.e. elements
may possess hanging nodes. Further, the face measure hf is constant on each

face F ∈ F such that hf = |F| 12 , for F ∈ F .
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On the partition Th we define a broken Sobolev space:

V := H2(Th) = {v ∈ L2(Ω) : v|e ∈ H2(e),∀e ∈ Th}.
Note that the functions in V may not satisfy any boundary condition. By

Vh := Vh(Th) = {v ∈ L2(Ω) : v|e ∈ Pr(e),∀e ∈ Th},
where Pr is the set of polynomials of degree r ≥ 1, we define a finite dimen-
sional subspace of V. Obviously, Vh = Πe∈Th

Pr(e). For ease of notations in
what follows, on V we introduce the following forms

(A∇huh,∇hvh)Th
:=
∑

e∈Th

∫

e

A∇huh · ∇hvhdx, 〈p, q〉Fg :=
∑

F∈Fg

∫

F

p · qds,

where Fg is one of the sets F , F0, FD, FN or any of their combinations.
Let us now recall the DG formulation for second order elliptic problems. In

recent years a large number of DG FEM were developed for elliptic boundary
value problems, for review see, e.g. [1] and the references therein. Below, we
consider the standard interior penalty (IP) DG method, see, e.g., [1]. For the
problem (1), the primal IP-DG formulation can be stated as follows:
Find uh ∈ V such that

A(uh, vh) = L(vh), ∀vh ∈ V, (2a)

where the bilinear form A(·, ·) : V × V → R and the linear form L(·) : V → R

are defined by the relations

A(uh, vh) =(A∇huh,∇hvh)Th
+ αh−1

f 〈[[uh]] , [[vh]]〉F0∪FD

− 〈{{A∇huh}} , [[vh]]〉F0∪FD
− 〈[[uh]] , {{A∇hvh}}〉F0∪FD

, (2b)

L(vh) =

∫

Ω

fvhdx+ αh−1
f 〈uD, vh〉FD

− 〈uDn, A∇hvh〉FD
+ 〈uN , vh〉FN

.

(2c)

Here {{·}} and [[·]] denote the trace operators for average and jump, respec-
tively, and α is a parameter which is to be defined to guarantee the coercivity
of the bilinear form A, see e.g. [1, 11].

As usual, we assume that the Dirichlet boundary conditions are defined
by a given function uD ∈ H1(Ω) in the sense that the trace of u− uD on ΓD

is zero. For the sake of simplicity, we also assume that uD is such that the
boundary condition can be exactly satisfied by the approximations used. For
the coercivity, boundedness, and convergence properties of the bilinear form
A the reader can refer, e.g., [1, 11].

3 Discrete Formulation and Matrix Assembly

The weak formulation (2) is transformed into a set of algebraic equations by
approximating uh and vh using trilinear polynomials in each cubic element as
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ue,h =
7∑

j=0

ũe,jNe,j (x) , ve,h =
7∑

j=0

ṽe,jNe,j (x) , x ∈ e ⊂ R3. (3)

Here ũe,j ∈ R8 and ṽe,j ∈ R8 are the expansion coefficients of uh and the
test function vh in the element e, respectively, and Ne,j are trilinear basis
functions.

We now briefly show the computation of the element stiffness matrix.
Consider a general element e with all its face internal. Let its neighboring
elements, which share a face with this element, be denoted by e+1 , e+2 , e+3 , e+4 ,
e+5 , and e+6 . Here ·+ represents the neighboring element and digits 1, . . . , 6
represent the face number with which the neighboring element is attached.

Using the definition of the trace operators {{·}} and [[·]] and the specific
splitting of the bilinear terms proposed in [12] the resulting elemental bilinear
form reads

Ae(uh, vh) =

∫

e

A∇huh · ∇hvhdx− 1

2

6∑

f=1

∫

Ff

((
vene + ve+

f
ne+

f

)
·A∇hue

+A∇hve ·
(
uene + ue+

f
ne+

f

))
ds

+
αh−1

f

2

6∑

f=1

∫

Ff

(
vene + ve+

f
ne+

f

)
·
(
uene + ue+

f
ne+

f

)
ds. (4)

In this approach, the DOF of the element e are connected with only those
DOF of its neighboring elements e+f which are at the common face.

Now letN = 8Ne denote the total number of DOF in the system. Using the
polynomial approximation (3) into the weak form (2), with elemental bilinear
form (4), we get the following linear system of equations

Ax = b, (5)

where x ∈ RN , A ∈ RN×N with N2
e blocks of size 8 × 8, and b ∈ RN , denote

the vector of expansion coefficients, the global stiffness matrix, and the right
hand side data vector, respectively.

4 Generalized Hierarchical Basis

In this section we discuss the two-level hierarchical basis (HB) transformation
which is used in the construction of the multilevel preconditioner. Let us
consider a hierarchy of partitions Thℓ

⊂ Thℓ−1
⊂ . . . ⊂ Th1

⊂ Th0
of Ω, where

the notation Thk
= Th ⊂ TH = Thk−1

points out the fact that for any element e
of the fine(r) partition Th there is an element E of the coarse(r) mesh partition
TH such that e ⊂ E. For the construction of the preconditioner of the linear
system (5) resulting from the IP-DG approximation of the basic problem (1)
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its DOF are partitioned into a fine and a coarse (sub-) set, indicated by the
subscripts 1 and 2, respectively. The partitioning is induced by a regular mesh
refinement at every level (k − 1) = 0, 1, . . . , ℓ− 1. In other words, by halving
the mesh size, i.e., h = H/2, each element is subdivided into eight elements
of similar shape, herewith producing the mesh at levels k = 1, 2, . . . , ℓ. Hence,
the linear system (5) can be represented in the 2 × 2 block form as

[
A11 A12

A21 A22

](
x1

x2

)
=

(
b1

b2

)
(6)

where A21 = AT
12. By using the two-level transformation matrix

J =

[
I11 P12

0 I22

]
, (7)

the system to be solved in the new basis has the representation

Â x̂ = b̂, (8)

where Â and its submatrices Â11, Â12 Â21, Â22 are given by

Â = JTAJ =

[
Â11 Â12

Â21 Â22

]
, (9a)

Â11 = A11, Â12 = A11P12 +A12, Â21 = PT
12A11 +A21, (9b)

Â22 = PT
12A11P12 +A21P12 + PT

12A12 +A22. (9c)

The vectors x̂ and b are transformed according to x = J x̂ and b̂ = JT b,
where

x1 = x̂1 + P12x̂2, x2 = x̂2, (10a)

b̂1 = b1, b̂2 = PT
12b1 + b2. (10b)

If the interpolation matrix P12 in (7) is chosen in such a way that the ma-

trix Â22 in (9c) corresponds to a coarse discretization of the original problem
then P12 (and thus J) will constitute an HB transformation. In order to apply
a local analysis, see the next Section, P12 is to be defined for a set of macro
elements {E} that covers the whole mesh. The general macro element we are
using to define the local interpolation matrix PE is simply the union of eight
elements that share one vertex. The macro element accumulates 160 DOF, 32
of which define then an element on the next coarser level. The interpolation
weights are simply taken to be 1/8 for the 8 interior fine DOF, 1/4 for the 48
fine DOF located at the face centers of the macro-element, and 1/2 for the 72
fine DOF associated with macro-element edges.
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5 Local Estimation of the Constant in the CBS
Inequality

It is known that the constant γ in the Cauchy-Bunyakowski-Schwarz (CBS)
inequality, which is associated with the abstract angle between the two sub-
spaces induced by the two-level hierarchical basis transformation, plays a key
role in the derivation of optimal convergence rate estimates for two- and mul-
tilevel methods. Moreover, the value of the upper bound for γ ∈ (0, 1) is part
of the construction of a proper stabilization polynomial in the linear algebraic
multilevel iteration (AMLI) method, see [3, 4].

For the constant γ in the strengthened CBS inequality, the following rela-
tion holds

γ = cos(V1, V2) = sup
u ∈ V1, v ∈ V2

A(u, v)√
A(u, u)A(v, v)

, (11)

where A(·, ·) is the bilinear form given by (2b). If V1 ∩ V2 = {0} then γ is
strictly less than one. As shown in [8], the constant γ can be estimated locally
over each macro-element E ∈ TH , i.e. γ ≤ max

E
γE , where

γE = sup
u ∈ V1(E), v ∈ V2(E)

AE(u, v)√
AE(u, u)AE(v, v)

, v 6= const.

The above mentioned spaces Vm(E), m = 1, 2, contain the functions from Vm

restricted to E and AE(u, v) corresponds to A(u, v) restricted to the macro
element E.

Evidently, the global two-level stiffness matrix Â can be assembled from
the macro-element two-level stiffness matrices ÂE , which are obtained from
assembling the element matrices for all elements e contained in E in the (local)
hierarchical basis. In simplified notation this can be written as

Â = JTAJ =
∑

E∈TH

ÂE =
∑

E∈TH

JT
EAE JE .

Like the global matrix, the local matrices are also of the following 2× 2 block
form

ÂE =

[
ÂE,11 ÂE,12

ÂE,21 ÂE,22

]
= JT

E

[
AE,11 AE,12

AE,21 AE,22

]
JE , (12)

where the local macro-element two-level transformation matrix JE is defined
by

JE =

[
I PE

0 I

]
, (13)

and the transformation-invariant (local) Schur complement is given by
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SE = ÂE,22 − ÂE,21Â
−1
E,11ÂE,12 = AE,22 −AE,21A

−1
E,11AE,12. (14)

In the present context the choice of PE is based on simple averaging, see [11].
We know from the general framework of two-level block (incomplete) factor-
ization methods that it suffices to compute the minimal eigenvalue λE;min of
the generalized eigenproblem (cf. [8, Theorem 6])

SEvE,2 = λEÂE,22vE,2, vE,2 ⊥ (1, 1, . . . , 1)T , (15)

in order to conclude the following upper bound for the constant γ in (11):

γ2 ≤ max
E∈TH

γ2
E = max

E∈TH

(1 − λE;min). (16)

This relation then implies condition number estimates for the corresponding
two-level preconditioner (of additive and multiplicative type), see, e.g., [2].

The analysis of multilevel methods obtained by recursive application of the
two-level preconditioner necessitates the establishment of this kind of (local)
bounds for each coarsening step since the two-level hierarchical basis transfor-
mation is also applied recursively. This requires the knowledge of the related
(macro) element matrices on all coarse levels. For the hierarchical basis trans-
formation, as described in detail in [11], we have a very simple recursion rela-
tion for the element matrices. This recursion relation shows that the sequence
of (global) coarse-grid matrices can be associated with coarse-discretizations
of the original problem but with an exponentially increasing sequence of sta-
bilization parameters α(j). In the following Lemma and Theorem we state the
relation between the element matrices at successive levels and provide a local
estimate for the CBS constant. For the proof the reader is referred to [11].

Lemma 1. Let Â(ℓ) := (J (ℓ))TAJ (ℓ) denote the stiffness matrix from (5) in

hierarchical basis, where A =
∑

e∈Th
Ae and Ae = Ae(α) =: A

(0)
e (α) ∀e ∈

Th denotes the element matrix. Let us further assume that Ae has the same
representation over all the elements of the domain. Then, if one neglects the
correction matrices related to the boundary conditions, the coarse-grid problem
at level (ℓ− j), j = 1, . . . , ℓ, (involving the matrices J (ℓ), J (ℓ−1), . . . , J (ℓ−j+1))
is characterized by the element matrix

A(j)
e (α) = Ae(α

(j)) = Ae(2
j α). (17)

In other words, the stabilization parameter α after j applications of the HB
transformation equals 2j α.

Theorem 1. Consider the HB macro-element matrix Â
(j)
E (α) associated with

the eight elements defining the macro-element as a cube with side 2hℓ−j where

the element matrix A
(j)
e (α) from Lemma 1 is used in the standard way to

assemble A
(j)
E (α). Then for the eigenvalues of (15) we have the lower bound
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λ
(j)
E;min = λE;min(α(j)) ≥ 1

16

(
1 − 1√

2α(j)

)
=

1

16

(
1 − 1√

2 2j α

)
(18)

for all α ≥ 3/2, and thus the following relation holds for γE

γE ≤
√

15

16
+

1

16
√

2α(j)
. (19)

Remark 1. The bound (19) in Theorem 1 tells us that the condition number
of the multiplicative preconditioner (with exact inversion of the A11-block)
can be stabilized using Chebyshev polynomials of degree five. However, as
illustrated in the numerical examples below, this goal can also be achieved by
employing four inner generalized conjugate gradient iterations.

6 Numerical Results

In this section we present numerical results which demonstrate the capabilities
of the method. The computations are performed on Sun Fire V40z workstation
with 4 AMD Opteron 852 CPUs (2.6GHz) with 32 GB RAM. For approximat-
ing u in all the examples we use trilinear elements i.e. linear shape functions
for each of the variables x, y, and z. The stabilization parameter α is taken
as 10. The pivot block in the multilevel preconditioner is approximated using
incomplete LU (ILU) factorization based on a drop tolerance tol [12, 14]. For
both the examples below we take Ω as a unit cube (0, 1) × (0, 1) × (0, 1).

Example 1. Consider the Poisson problem with homogeneous Dirichlet bound-
ary conditions and choose f such that the analytic solution of the problem is
given by u = x (1 − x) y (1 − y) z (1 − z) exp (2x+ 2y + 2z). The tolerance tol
is taken as 10−2.

Example 2. Consider the model problem (1) with homogeneous Dirichlet
boundary conditions, f = 1, and the coefficient A as follows:

A =

{
1 in (I1 × I1 × I1)

⋃
(I2 × I2 × I1)

⋃
(I2 × I1 × I2)

⋃
(I1 × I2 × I2)

ε elsewhere

}
,

where I1 = (0, 0.5] and I2 = (0.5, 1), and ε = {0.1, 0.01, 0.001}. In this example
the tolerance tol is chosen heuristically by relating it to the parameter ε as
ε× 10−2.

For solving the linear system arising from various examples with varying h
we employ the nonlinear algebraic multilevel iteration method (NLAMLI), see
[5, 10, 12]. The stabilization of the condition number is achieved by using some
fixed small number ν of inner generalized conjugate gradient (GCG) iterations.
Here we choose ν = 4 in all computations. The starting vector for the outer
iteration is the zero vector and the stopping criteria is ‖r(nit)‖/‖r(0)‖ ≤ δ =
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10−6, where nit is the number of iterations we report in the tables below.
The coarsest mesh in all computations is of size 4×4×4 and has 512 DOF.
The finer meshes for 1/h = 8, 16, 32, 64 consist of 4096, . . . , 2097152 DOF,
respectively.

Table 1. Numerical results

1/h nit ρ sec

8 27 0.59 0.47

16 27 0.60 4.76

32 27 0.60 44.27

64 27 0.60 422.09

(a) Example 1

ε = 0.1 ε = 0.01 ε = 0.001

1/h nit ρ nit ρ nit ρ

8 25 0.57 25 0.56 25 0.56

16 28 0.61 28 0.60 28 0.61

32 30 0.62 29 0.62 30 0.62

64 30 0.62 29 0.62 30 0.63

(b) Example 2

In Table 1(a) we present the number of iterations, the average convergence
factor ρ and the total CPU time (including the time for the construction of
the preconditioner) for Example 1. We observe that the number of iterations
is constant and the CPU time is proportional to the problem size which shows
that the overall solution process is of optimal order of computational complex-
ity. The same holds for Example 2, cf. Table 1(b). These results also indicate
the robustness of the preconditioner with respect to the jumps in the coeffi-
cient A.
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