
On the Multiscale Solution of Constrained
Minimization Problems

Rolf Krause

Institute for Numerical Simulation
Wegelerstraße 6
D-53115 Bonn
krause@ins.uni-bonn.de

1 Introduction

For the constrained minimization of convex or non-convex functionals on the
basis of multilevel or domain decomposition methods, different strategies have
been proposed within the last decades. These include nonlinear and monotone
multigrid methods, see [5, 9, 12, 16, 20], multilevel optimization strategies and
multilevel Trust-Region methods, see [8, 21], nonlinear domain decomposition
methods [1, 6, 22, 23], multigrid methods as linear solvers in the framework
of interior point based methods, see [4, 24] and multigrid methods applied
in the framework of primal-dual active set strategies or semi-smooth Newton
methods, see [11] for the latter. For a nonlinear multigrid method for smooth
problems we refer to [10]. We remark that the references given here are far
from exhaustive and refer the reader to the references cited therein.

From the multiscale point of view, two features might be employed in
order to distinguish between the different methods. The first one is the way
the constraints are incorporated into the multiscale hierarchy. The second one
is the way the nonlinearity is intertwined with the multiscale structure.

On the one hand, in case interior point methods, active set strategies or
semi-smooth Newton methods are used as solution method, domain decompo-
sition or multilevel methods are often used as an inner linear solver within an
outer smooth or non-smooth iteration process. Then, the outer iteration pro-
vides the convergence of the iterates to a minimizer whereas the inner solver
is only applied to linear problems. In order to accelerate the overall iteration
process, often the arising linear subproblems are solved inexactly. In this case,
the choice of the linear solution method can also effect the convergence of the
overall nonlinear scheme significantly, since the approximate correction given
by the iterative linear solver might provide a completely different descent di-
rection then the solution of the linear system itself. As a consequence, even
if the original nonlinear constrained minimization problem is reduced to a se-
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quence of linear subproblems, the nonlinearity shows also up within the linear
subproblems.

On the other hand, following nonlinear domain decomposition and multi-
level strategies, the nonlinear iteration process can in contrast be carried out
within the subspaces provided by the considered splitting, see [1, 14, 23]. In
case of a multilevel method, for example, the nonlinearity might be evaluated
on all levels of the multilevel hierarchy. The resulting information gathered
on the multilevel hierarchy can then be used to provide faster convergence
of the nonlinear iteration process. A possible drawback of this approach is
that spurious coarse grid corrections might spoil the convergence of the non-
linear method, cf. [17]. A remedy can be found in adapting the multilevel
decomposition to the nonlinearities by, e.g. using solution dependent interpo-
lation operators and bilinear forms. Although this requires at least partially
reassembling of the coarse grid stiffness matrices, the additional effort is eas-
ily justified by the resulting gain in robustness and convergence speed of the
multilevel method.

2 Constrained Minimization

Let H be a Hilbert space and ∅ 6= K ⊂ H a closed and convex subset. We
consider the constrained minimization Problem: find u ∈ K

J(u) ≤ J(v) , v ∈ K , (1)

where J : H −→ R is a convex and l.s.c. functional. Under this assumptions,
a minimizer exists, which is also unique of J is strictly convex, see, e.g. [7].
By introducing the characteristic functional

χK(v) =

{
0 , if v ∈ K ,
∞ , else,

the constraints can be translated into the non-smooth and nonlinear functional
χK, leading to the unconstrained minimization problem: find u ∈ H

(J + χK)(u) ≤ (J + χK)(v) , v ∈ H . (2)

Since the resulting non-smooth energy J + χK prevents the straight forward
application of, e.g. a gradient method or Newton’s method, often the func-
tional J+χK is replaced by a differentiable one, e.g. J+χα

K, α a regularization
parameter. This allows for applying Newton’s method to the resulting first or-
der conditions for a minimum

(J + χα
K)′(uα)(v) = 0 , v ∈ H . (3)

A different and non-smooth approach can be found by formulating the neces-
sary conditions for a minimizer of J as variational inequality. In this case, the
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energy functional J is generated by the H-elliptic bilinear form a(·, ·) and by
the linear functional f on H as

J(u) =
1

2
a(u, u) − f(u) , (4)

the minimization problem (1) can equivalently be reformulated as the varia-
tional inequality: find u ∈ K

a(u, v − u) ≥ f(v − u) , v ∈ K , (5)

see [7]. The advantage of the latter formulation is that the non-smooth struc-
ture of the minimization problem (1) is preserved. Numerical methods based
on (5) therefore can be expected to give results with higher accuracy.

After discretization of (1) by, e.g. finite elements, we obtain the finite
dimensional minimization problem: find uL ∈ KL

J(uL) ≤ J(v) , v ∈ KL , (6)

where the closed and convex set ∅ 6= KL ⊂ SL approximates K and SL is a
finite dimensional subspace of H. Here, the index L serves as discretization
parameter. We remark that instead of solving the nonlinear problem (6) in
finite dimensions it is also possible to apply, e.g. an interior point method in
the function space H directly, see [24]. The approximate computation of the
resulting Newton corrections then gives rise to linear subproblems, which can
be solved by linear multigrid methods. Here, we do not follow this approach
but rather focus on the efficient computation of a solution to the finite dimen-
sional constrained minimization problem (6). This solution can be obtained
by either applying, e.g. a semi-smooth Newton method or a primal dual ac-
tive set strategy to the necessary first order conditions, cf. (5), or by attacking
the minimization problem (6) directly. Consequently, a multigrid method can
either be used as a solver or preconditioner for the linearized problem, or it
can serve as a nonlinear solver by itself.

3 Low Frequency Representation of Constraints

Here, as an example for (1), let us consider a contact problem in elastic-
ity. Subject to volume and surface forces, an elastic body is pressed against
a rigid foundation which cannot be penetrated, see, e.g., Figure 1. The ac-
tual zone of contact γC depends on the sought deformations and is unknown
in advance. We identify the elastic body in its reference configuration with
the (polyhedral) domain Ω ⊂ R3 and set as solution space H = (H1(Ω))3.
The boundary ∂Ω is decomposed into three disjoint parts, ΓD, the Dirich-
let boundary with meas2(ΓD) > 0, ΓN , the Neumann boundary and ΓC , the
possible contact boundary. We assume γC ⋐ ΓC . At ΓC , we enforce the lin-
earized non-penetration condition u ·n ≤ g, cf. [13], with respect to the outer
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normal n. Here, g is the distance in normal direction to the obstacle in the ref-
erence configuration. The normal and tangential displacements, respectively,
are un = u · n and uT = u − un · n. We use boldface symbols for tensor and
vector quantities and the summation convention is enforced on indices running
from 1, . . . , 3. The stresses σ are given by Hooke’s law σij(u) = Eijml ul,m,
where Hooke’s tensor (Eijml)

3
i,j,l,m=1, Eijlm ∈ L∞(Ω), 1 ≤ i, j, l,m ≤ 3 is

assumed to be sufficiently smooth, symmetric and uniformly positive definite
and ǫ(u) = 1

2 (∇u + (∇u)T ) is the linearized strain tensor. The minimization
problem (1) now constitutes the elastic contact problem without friction, if
we define the set of admissible displacements by

K = {u ∈ H |u · n ≤ g on ΓC} (7)

and choose J to be the quadratic elastic energy

J(v) =
1

2
a(v,v) − f(v) =

1

2

∫

Ω

σ(v) : ǫ(v) dx−
∫

Ω

fv dx , (8)

see [13]. Here f ∈ L2(Ω) accounts for the volume forces and surface tractions.
The finite dimensional minimization problem (6) is now obtained by discretiz-
ing by finite elements. To this end, let T = (T ℓ)L

ℓ=0 denote a family of nested
and shape regular meshes with discretization parameter hℓ. Here, L > 0 is
the index of the finest level and hℓ is the mesh-size of T ℓ. The meshes may
consist of tetrahedrons, hexahedrons, pyramids or prisms. We denote the set
of all nodes of T ℓ by N ℓ and the nodes on the possible contact boundary ΓC

are Cℓ = ΓC ∩N ℓ. By Sℓ ⊂ SL we denote the spaces of first order Lagrangian
finite elements on Level ℓ.

Multilevel methods for this type of problem have been considered by [3,
5, 12, 20] for scalar problems and by [16] for the system given above.

Construction of Subspaces and Coarse Level Energies

We first give the algorithmic formulation for a nonlinear and non-smooth
multigrid method which has been implemented in the C++–toolbox Ob-
sLib++, cf. [17].

Algorithm 1 (Non-smooth Multigrid Method)
(1) Initialize uL0 . For k = 0, . . . , kmax do:

(2) Compute an approximate solution cL of the problem: find wL ∈ SL, such that

(J + χKL)(uLk + wL) ≤ (J + χKL)(uLk + w) , v ∈ SL.

Set ūL = uLk + cL.

(3) For ℓ < L do:

Choose subspace X ℓ
ūL , convex set Dℓ

ūL , ūl ∈ Dℓ
ūL and functional Qℓ

ūL

Coarse grid correction: find cℓ ∈ Dℓ
ūL , such that

Qℓ
ūL(ūl + cℓ) ≤ Qℓ

ūL(ūl + v) , v ∈ Dℓ
ūL .

(5) Set uLk = PL(ūL +
∑
ℓ<L cℓ)
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Here, in order to allow for an adaptation of the coarse grid basis to the actual
iterate, we have replaced the multilevel decomposition induced by the spaces
Sℓ by the subspaces {X ℓ

ūL}ℓ<L which may depend on the smoothed iterate ūL

obtained after the leading fine grid smoothing (2) in Algorithm 1. The convex
sets Dℓ

ūL provide a multilevel decomposition of KL, see [1, 16, 23]. By means
of the mapping PL : SL −→ SL, the feasibility of the iterates is ensured.
Examples are global damping of the coarse grid corrections or line search. In
case, the coarse grid corrections are feasible by construction of Dℓ

ūL , PL will
be the identity. In case of a parallel multiscale method, PL may also serve as a
non-linear synchronization which is necessary for synchronizing the different
iterates obtained on the different processors. For an example, we refer to
Figure 2 and Table 3. Finally, on each Level 0 ≤ ℓ < L, the correction in X ℓ

ūL is
computed with respect to the possibly level dependent convex functional Qℓ

ūL .
This step requires either the restriction of the linear or nonlinear defect or the
projection of the smoothed iterate ūL onto X ℓ

ūL in order to obtain the start
iterate ūℓ. Concerning the construction of the coarse grid models, the straight
forward approach would be to set Qℓ

ūL = J+χKℓ . However, the characteristic
functional χKL in general cannot be represented on the coarser grids ℓ < L. As
a consequence, coarse grid corrections originating from Qℓ

ūL = J +χKℓ might
interfere in an undesirable way with J+χKL , thus spoiling the convergence or
efficiency of the multilevel method, see [17]. Therefore, a suitable multiscale
representation of the non-smooth nonlinearities has to be constructed, which
guarantees the nonlinear convergence of our multiscale method as well as their
efficiency and robustness.

For the contact problem, the leading minimization step (2) in Algorithm 1
can be realized by applying a nonlinear Gauß-Seidel method. By means of the
resulting smoothed iterate ūL, we can define the set

AL
ūL = {p ∈ CL | ūL(p) · n(p) = g(p)} (9)

of active nodes on level L. In order to ensure the feasibility of the coarse grid
corrections, they must at least vanish at all active nodes p ∈ AL

ūL in normal
direction. In general, using the standard nodal multilevel basis this is not
possible. We now show how suitable subspaces XL

ūL can be obtained. Let λℓ
p

be the standard nodal hat function for p ∈ N ℓ and let {Ei}1≤i≤3 denote the
Cartesian basis vectors of Rd. We replace the standard nodal basis functions
λℓ

p = (λℓ
p · E1, . . . , λ

ℓ
p · Ed)

T of Sℓ for p ∈ Cℓ by

{λℓ
p · e1(p), . . . , λ

ℓ
p · ed(p)} , (10)

where {ei}1≤i≤3 is an orthonormal basis associated with p ∈ CL and with
e1(p) = n(p). As a consequence of (10), the first component of the displace-
ments at the nodes p ∈ Cℓ is always the displacement in normal direction. Let
now Iℓ+1

ℓ : Sl → Sl+1 denote the interpolation operator with respect to the lo-

cal transformation (10). The algebraic representation Iℓ+1
ℓ = (ipq)p∈N l+1,q∈N l

of Iℓ+1
ℓ is a rectangular matrix with the 3 × 3 blocks ipq ∈ R3×3. We note
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that due to (10) for p ∈ CL the blocks ipq in general are not diagonal, if the
normals differ along ΓC . Now, we introduce the sets Aℓ ⊂ Cℓ × {1, . . . , d}
of active degrees of freedom for each Level ℓ ≤ L. On Level L, we set
AL = {(p, 1) | p ∈ AL

ūL}. On the coarser levels, the spaces X ℓ
ūL can be de-

fined by removing the degrees of freedom in Aℓ from the nodal basis of Sℓ.
Possible choices for the multiscale representation of the set AL include now
(1 ≤ i, j ≤ 3)

1. Aℓ = {(q, 1) | q ∈ Cℓ and ūL(q) · n(q) = g(q)}.
2. Set recursively for ℓ < L: Aℓ = {(q, 1) | ∃(p, 1) ∈ Aℓ+1 : (iℓ+1

ℓ )11pq 6= 0}.
3. Set recursively for ℓ < L: Aℓ−1 = {(q, j) | ∃(p, i) ∈ Aℓ+1 : (iℓ+1

ℓ )ij
pq 6= 0}.

In addition to 1—3, we employ truncated basis functions {µℓ
q}q∈N ℓ , see [16].

For ℓ < L, they can be defined by

µℓ
q = λℓ

q −
∑

p∈int suppλℓ
q∩AL

ūL

ωqp λ
L
p · n(p) ,

where the weights ωqp are such that for all active nodes p ∈ AL
ūL it holds for

ℓ ≤ L that µℓ
q(p) · n(p) = 0. Thus, the resulting multilevel basis provides a

multiscale representation of the active constraints AL
ūL on all coarser levels

ℓ < L. We remark that the search directions µℓ
q are never explicitly com-

puted, since the corresponding stiffness matrix can be obtained recursively by
modifying the interpolation operator and using local reassembling.

Global Convergence

Despite the coarse grid spaces, we also have to choose the coarse grid ener-
gies Qℓ

ūL and the convex sets of feasible corrections Dℓ
ūL . Using the multigrid

method as nonlinear solver by itself, following the idea of monotone multigrid
methods, see [14], global convergence is achieved by guaranteeing that during
the multigrid iteration process the convex functional J+χKL always decreases.
The minimizer of (6) is sought by successive minimization in direction of all
basis functions of the subspaces X ℓ

ūL originating from the truncated basis. In
order to ensure the feasibility of the coarse grid corrections, inner approxi-
mations Dℓ

ūL of the set KL are constructed for ℓ < L. Choosing Qℓ
ūL = J ,

then the monotonicity of the iteration guarantees the global convergence of
the resulting monotone multigrid method for contact problems, see [16]. In
the following, we denote this method by M-MG.

For unconstrained convex minimization problems, [21] has shown the con-
vergence of a multilevel optimization method if the coarse grid problems are
solved “accurately enough”. Then, it can be guaranteed that a descent direc-
tion is provided by the coarse grid corrections. In [8], Trust-Region strategies
are intertwined with multilevel optimization methods. In all cases, the suf-
ficient decrease of the functional J is used to ensure the convergence of the
multilevel method. Let us remark that the convergence proof in [10] for a
smooth nonlinear multigrid method is also based on a minimization property.
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Influence of the Multilevel Splitting

As an alternative to using the multigrid method as nonlinear solution method,
it can also be applied as linear solver or as a preconditioner within a nonlinear
strategy as, e.g. a primal dual active set strategy. We therefore consider the
influence of the multilevel decompositions X ℓ

ūL given above in the context of
a monotone multigrid method as well as in the context of a primal dual active
set strategy. Let us define the active set of uL

k by AL
k = {p ∈ CL | sn(p) +

ρ(uL
k (p) · n(p) − g(p)) > 0}, where sn(p) = a(uL

k , λ
L
p · n(p)) − f(λL

p · n(p))
are the discrete normal stresses and ρ > 0 is an algorithmic parameter. An
inexact multigrid based primal-dual active set strategy can be obtained from
Algorithm 1 by replacing χKL in step (2) by the characteristic functional of
the set XL

uL
k−1

= {v ∈ SL |v(p) · n(p) = 0, p ∈ AL
k−1} and by using the linear

coarse grid corrections induced by setting Qℓ
ūL = J and X ℓ

ūL = Dℓ
ūL . In each

step k, the steps (2) and (3) in Algorithm 1 amount to the inexact solution
of a linear sub-problem of the form: find c ∈ XL

uL
k−1

, such that

a(c,v) = (f ,v) − a(w,v), v ∈ XL
uL

k−1
, (11)

where w ∈ SL and w(p) · n(p) = g(p) for p ∈ AL
k−1.

Primal-dual active set strategies are known to converge superlinearly, if
the initial iterate uL

0 is sufficiently close to the solution. If, in addition the
stiffness matrix is an M -matrix and the linear systems (11) are solved exactly,
also global convergence can be shown, see [11]. Global convergence can also
be obtained using Trust-Region Strategies. As a matter of fact, in case the
linear sub-problems (11) are solved only inexactly, the choice of the employed
multilevel decomposition strongly influences the convergence of the overall
nonlinear strategy. We illustrate this for a Hertzian contact problem in 3d.
Here, a sphere is pressed in z-direction against the rigid plane {z = 0}. The
material parameters are E = 105 and ν = 0.3 and we have L = 5 levels of
adaptive refinement and 659.409 degrees of freedom on Level 5. In Table 1,
the resulting numbers of W(3, 3)-cycles are shown for this multigrid based
active set strategy. We use the coarse grid spaces induced by the active sets
Aℓ given on the previous page and the truncated basis as well as the globally
convergent monotone multigrid method M-MG with the truncated basis. The
iteration is stopped, if ‖uL

k+1−uL
k ‖a/‖uL

k −uL
k−1‖a ≤ 10−12, ‖u‖a = a(u, u)1/2.

The initial iterate uL
0 is given by random values in the interval [−0.2,−0.1].

For the definition of the set KL we consider two different cases. Firstly, the
case of constant normal direction at ΓC , i.e. we take as normal direction a
n(p) = (0, 0,−1)T for all p ∈ CL (“equal normals”), and secondly, n(p) the
outer normal at p ∈ CL (“outer normals”). As can be seen from Table 1,
for the case of the outer normals, the constraints at the interface are locally
not decoupled and spurious corrections from the coarser grids can spoil the
convergence. We emphasize that the truncated basis functions showed to pro-
vide the best nonlinear search directions with respect to both, efficiency and
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robustness. As a by product, they can also be used for the multilevel rep-
resentation of Dirichlet values. The slightly higher iteration numbers for the
monotone multigrid method show the influence of the multilevel decomposi-
tion of the set KL, since for M-MG the feasibility of the coarse grid corrections
is enforced by the construction of the sets Dℓ

ūL .
Summing up, regardless of using a multigrid method as inexact solver

within a non-smooth solution method or as nonlinear solver by itself, the
multilevel decomposition has to be adapted to the active constraints in order
to provide a fast and robust method.

4 Low Frequency Representation of Nonlinearities

Approximation by Quadratic Functionals

We now consider the case where the functional to be minimized is non-
quadratic and non-differentiable. As example we choose elastic contact with
Tresca friction. The corresponding minimization problem, after discretization,
is given by: find u ∈ KL

(J + jL
sn

)(uL) ≤ (J + jL
sn

)(v) , v ∈ KL . (12)

Here, J is the elastic energy (8) and the friction functional jL
sn

is given by

jL
sn

(v) =
∑

p∈CL

F |sp,n| |vp,T | , (13)

| · | the Euclidean norm in R2 and sn = (sp,n)p∈CL are the prescribed
scaled boundary stresses, and F > 0 is the coefficient of friction. We write
up,n = un(p) and up,T = uT (p). Tresca’s friction law induces a non-smooth
relationship between tangential displacements and tangential stresses, cf. [13].
Taking into account the efficiency and robustness of SQP-methods, the con-
struction of the coarse level functionals Qℓ

ūL might be based on a quadratic
approximation of J + jL

sn
. However, since jL

sn
is non-differentiable, this turns

out to be a non-trivial task. We therefore proceed as follows, see [15, 17]. After
ūL in Algorithm 1 has been obtained, the subsequent coarse grid corrections
are restricted to a neighborhood DL

ūL of ūL where ūL
T 6= 0 and therefore the

energy J + jL
sn

is smooth. In contrast to the Trust-Region techniques given
in [8], here the neighborhood DL

ūL is locally defined by box constraints. This
allows us to construct the coarse grid models Qℓ

ūL on the basis of the quadratic
approximation

QūL(v) =
1

2

(
a(v,v) + j′′ūL(ūL)(v,v)

)

−
(
f(v) − j′ūL(ūL)(v) + j′′ūL(ūL)(ūL,v)

)
(14)
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of J + jL
sn

on DL
ūL , where we have set

jūL(v) =
∑

p∈BL

F|sp,n||vp,T | , v ∈ SL . (15)

Here, BL ⊂ CL denotes the set of all sliding nodes w.r.t. ūL, i.e. all nodes p ∈
CL with ūL

p,T 6= 0. As coarse grid model we use Qℓ
ūL = QūL from (14). For the

construction of the subspaces X ℓ
ūL we again use the truncated basis functions.

At all sticky nodes, i.e. p ∈ CL with ūp,T = 0, truncation is employed in
all directions, such that µℓ

q · ei(p) = 0 for 1 ≤ i ≤ 3. Now setting Dℓ
ūL =

{v ∈ X ℓ
ūL | (ūL

p,T ,vp,T ) ≥ 0 , p ∈ CL} the global convergence of the resulting
multigrid method can be shown, see [18]. Again, the convergence proof relies
on the successive minimization of the frictional energy, but now the coarse
grid functionals Qℓ

ūL are different from the fine grid functional.
Since the sliding directions ūL

p,T differ along ΓC , we again equilibrate the
constraints by applying a basis transformation as in (10), but now only in the
tangential space span{e2(p),e3(p)}. This allows for a better representation of
the sets Dℓ

ūL in X ℓ
ūL .

As an example, we consider an elastic block pressed onto a rigid plane.
A coarse triangulation of a cube with eight hexahedrons is refined adaptively
until 190, 888 elements are obtained on Level L = 6. In Figure 1, the resulting
number of iterates of M-MG on Level 6 are shown if this additional basis
transformation is applied (lower line) or not (upper line), again for the stop-
ping criterion given above. As can be seen, adapting the spaces X ℓ

ūL to the
nonlinearity jsn

improves the robustness and efficiency of the method. For
details, we refer to [18]. As an additional example, Figure 1 shows a torus
in contact with a rigid foundation and the tangential stresses for F = 0.3 at
the contact interface. As can be seen, the sharp interface between sliding and
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Fig. 1. Torus in contact with a rigid foundation Left: Deformed geometry. Middle:
First component of the tangential stresses. Right: Block on plane: Robustness w.r.t
to the coefficient of friction. Influence of coarse grid spaces X ℓ

ūL

sticky nodes in the tangential stresses is perfectly resolved by our non-smooth
minimization approach.
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Semi-smooth Approach

The regularized problem (3) motivates another possibility to ensure that the
coarse grid corrections provide a descent direction for the minimization prob-
lem (6). To enforce the pointwise given constraints un ≤ g for our contact
problem, one could use the classical logarithmic barrier function to obtain the
smooth energy functional

(J + χKL
µ
)(u) = J(u) − µ

∑

p∈CL

ln(g(p) + ε− un(p)) , (16)

µ > 0, ε ≥ 0 parameters. The disadvantage of this formulation is that ill-
conditioning of the resulting Hessian may occur. Moreover, due to the regu-
larization, the solution of the minimization problem (6) is only obtained in
the limit µ → 0 and therefore some accuracy is lost. However, in the context
of our nonlinear multigrid method, this approach can be used to construct the
coarse grid energies Qℓ

ūL for ℓ < L on the basis of the formulation (16). To
this end, on Level L, the leading minimization step (2) in Algorithm 1 is done
by means of a non-smooth method as, e.g. a nonlinear Gauß-Seidel method.
Then, the spaces X ℓ

ūL are constructed using the truncated basis functions
w.r.t (9). As coarse grid energies, we use the quadratic approximation (14)
for the smooth energy (16). By means of this semi-smooth method, the coarse

Fig. 2. Cube with hole in contact with a rigid cylinder inside Left: Parallel decom-
position with 16 subdomains. Middle: Grid on Level ℓ = 1. Right: Normal stresses.

grid corrections are encouraged to stay within the feasible set, which gives
rise to a “better” descent direction. In addition, the regularization does not
influence the accuracy of the results, since it is only applied on the coarser
grids. In Table 2, the resulting number of iterates for the contact problem
from Figure 2 for µ = 10−4 and ε = 10−7 are shown. Here, we compare the
monotone multigrid method using the truncated basis functions with (M-MG)
and without (NL-MG) enforcing the feasibility of the coarse grid corrections
with the combined approach (C-MG). In order to stress the nonlinear iter-
ation process, the components of the initial iterate uL

0 are chosen randomly
in [−100, 100]. For the coarse grid problems, the respective method as alge-
braic multigrid method is used. As can be seen, the inner approximation of
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Table 1. Iteration numbers illustrating the resolution of constraints for the different
multilevel splittings given in Section 3

Level 5 Splitting 1 Splitting 2 Splitting 3 trc. Basis M-MG

equal normals 15 34 34 15 17

outer normals no conv. no conv. > 100 15 25

Table 2. Non-smooth and combined non-smooth and regularization approach for
randomly chosen initial iterate

Level # it. M-MG # it. NL-MG # it C-MG # dof # contacts

1 34 34 34 5,016 228

2 44 24 23 22,326 854

3 70 140 35 142,146 3,226

Table 3. Iteration numbers illustrating the scalability for the parallelized non-
smooth multigrid method M-MG. Nested iteration, example from Figure 2.

Level ℓ #it. 1 Processor #it. 2 Proc. #it. 4 Proc. #it. 8 Proc. #it. 16 Proc.

2 16 17 17 17 16

3 17 18 18 18 18

the feasible set in M-MG requires additional iterations to identify the contact
boundary. Setting Dℓ

ūL = X ℓ
ūL , as in NL-MG, in contrast to the previous sec-

tion, here does not improve the convergence speed. However, the combined
approach C-MG provides a good multilevel search strategy for bad initial it-
erates. We remark that in case of a better start iterate, all three strategies
show similar iteration numbers. Our numerical experiments have been carried
out in the framework of the finite element toolbox [2] and the C++–toolbox
ObsLib++, see [17]. The hexahedral grids have been created using the Cubit
grid generator, see [19].

Acknowledgement. We thank C. Groß for his help in implementing the UG/Cubit
Interface and the anonymous referees for their remarks.

References

[1] L. Badea and J. Wang. An additive Schwarz method for variational
inequalities. Math. Comp., 69(232):1341–1354, 1999.

[2] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz–
Reichert, and C. Wieners. UG – a flexible software toolbox for solving
partial differential equations. Comput. Vis. Sci., 1:27–40, 1997.

[3] V. Belsky. A multi–grid method for variational inequalities in contact
problems. Computing, 51:293–311, 1993.

[4] M. Benzi, E. Haber, and L. R. Hansson. Multilevel algorithms for large
scale interior point methods in bound constraint optimization. Technical
report, Emory University, Atlanta, 2005.



104 R. Krause

[5] A. Brandt and C.W. Cryer. Multigrid algorithms for the solution of linear
complementarity problems arising from free boundary problems. SIAM
J. Sci. Stat. Comput., 4:655–684, 1983.

[6] Z. Dostál, F.A.M. Gomes Neto, and S.A. Santos. Duality based domain
decomposition with natural coarse space for variational inequalities. J.
Comput. Appl. Math., 126(1-2):397–415, 2000.

[7] R. Glowinski. Numerical Methods for Nonlinear Variational Problems.
Series in Computational Physics. Springer, New York, 1984.

[8] S. Gratton, A. Sartenaer, and P. Toint. Recursive trust-region methods
for multiscale nonlinear optimization. CERFACS, 06(32), 05 2006. 06.

[9] W. Hackbusch and H.D. Mittelmann. On multi–grid methods for varia-
tional inequalities. Numer. Math., 42:65–76, 1983.

[10] W. Hackbusch and A. Reusken. Analysis of a damped nonlinear multi-
level method. Numer. Math., 55:225–246, 1989.

[11] M. Hintermüller, K. Ito, and K. Kunisch. The primal dual active set
strategy as a semismooth Newton method. SIAM J. Optim., 13(3):865–
888, 2003.

[12] R.H.W. Hoppe. Multigrid algorithms for variational inequalities. SIAM
J. Numer. Anal., 24:1046–1065, 1987.

[13] N. Kikuchi and J.T. Oden. Contact Problems in elasticity. SIAM, 1988.
[14] R. Kornhuber. Adaptive Monotone Multigrid Methods for Nonlinear

Variational Problems. Teubner–Verlag, Stuttgart, 1997.
[15] R. Kornhuber. On constrained Newton linearization and multigrid for

variational inequalities. Numer. Math., 91:699–721, 2002.
[16] R. Kornhuber and R. Krause. Adaptive multigrid methods for Signorini’s

problem in linear elasticity. Comput. Vis. Sci., 4:699–721, 2001.
[17] R. Krause. From inexact active set strategies to nonlinear multigrid meth-

ods. In P. Wriggers and U. Nackenhorst, editors, Analysis and Simulation
of Contact Problems, volume 27. Springer, 2006.

[18] R. Krause. A non-smooth multiscale method for solving frictional two-
body contact problems in 2d and 3d with multigrid efficiency. Technical
Report INS–Preprint No. 604, INS, University of Bonn, 2006.

[19] Sandia National Laboratories. Cubit 9.1 mesh generation toolkit, 2004.
[20] J. Mandel. A multi–level iterative method for symmetric, positive definite

linear complementarity problems. Appl. Math. Optim., 11:77–95, 1984.
[21] S. G. Nash. A multigrid approach to discretized optimization problems.

Optim. Methods Softw., 14:99–116, 2000.
[22] X. C. Tai. Rate of convergence for some constraint decomposition meth-

ods for nonlinear variational inequalities. Numer. Math., 93:755–786,
2003.

[23] X.-C. Tai and J. Xu. Global and uniform convergence of subspace correc-
tion methods for some convex optim. problems. Math. Comp., 71:105–
124, 2002.

[24] M. Weiser. Interior point methods in function space. Technical report,
Zuse Institute Berlin (ZIB), Berlin, 2003.


