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1 Introduction

There are composite materials created from two constituents, composite matrix and
reinforcement. The reinforcement is usually significantly stiffer than the composite
matrix and proper orientation of the reinforcement leads to excellent overall prop-
erties of the composite materials. Interaction between the reinforcement and the
composite matrix is very important. Perfect or imperfect bonding between the rein-
forcement and matrix may occur. The perfect bonding takes place only for lower level
of applied loads. The perfect bonding occurs when there is no slip between interface
points on fiber and points on composite matrix. In other words, interface points on
fiber and matrix have the same displacements. Higher load levels cause debonding
which decreases the overall stiffness of the composite. The debonding causes dif-
ferent displacements on the fiber and matrix. A special attention is devoted to the
modeling of the interaction between the matrix and reinforcement because it can
reduce properties of the composite.

The modeling of the interaction is based on pullout tests. The arrangement of
such tests is the following. There is a composite matrix with one embedded fiber
which is under tension. The growing force in the fiber causes debonding of matrix-
fiber connection and fiber moves out from the matrix. Detailed description of pullout
effects is relatively complicated and several simplified approaches are used. This
contribution deals with the case with perfect bonding between reinforcement and
matrix as well as debonding which is controlled by a linear relationship. The most
general model with nonlinear debonding is not studied, but it is in the center of our
attention.

This contribution deals with application of the FETI method to bonding or
debonding problems. The perfect bonding can be directly described by the classi-
cal FETI method while the debonding can be modeled by slightly modified FETI
method. The FETI method offers all necessary components for bonding/debonding
problems.
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2 Overview of the FETI Method

The FETI method was introduced by Farhat and Roux in 1991 in [2]. It is a non-
overlapping domain decomposition method which enforces the continuity among
subdomains by Lagrange multipliers. The FETI method or its variants have been
applied to a broad class of two and three dimensional problems of the second and
the fourth order. More details can be found e.g. in [6, 3, 4, 5, 1].

The FETI method will be shortly described on a problem of mechanical equilib-
rium of a solid body. The finite element method is used for the problem discretiza-
tion. The equilibrium state minimizes the energy functional

Π(u) =
1

2
uTKu− uT f , (1)

where u denotes the vector of unknown displacements, K denotes the stiffness matrix
and f denotes the vector of prescribed forces.

Let the original domain be decomposed to m subdomains. Unknown displace-
ments defined on the j-th subdomain are located in the vector uj . All unknown
displacements are located in the vector

uT =
(

(u1)T , (u2)T , . . . , (um)T
)
. (2)

The stiffness matrix of the j-th subdomain is denoted Kj and the stiffness matrix
of the whole problem has the form

K =




K1

K2

. . .

Km


 . (3)

The nodal loads of the j-th subdomain are located in the vector f j and the load
vector of the problem has the form

fT =
(

(f1)T , (f2)T , . . . , (fm)T
)
. (4)

Continuity among subdomains has the form

Bu = 0 (5)

where the boolean matrix B has the form

B =
(
B1,B2, . . . ,Bm) . (6)

The matrices Bj contain only entries equal to 1,−1, 0. With the previously defined
notation, the energy functional has the form

Π(u,λ) =
1

2
uTKu− uT f + λ

TBu (7)

where the vector λ contains Lagrange multipliers. Stationary conditions of the en-
ergy functional have the form
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∂Π

∂u
= Ku− f + BT

λ = 0 (8)

∂Π

∂λ
= Bu = 0 . (9)

Equation (8) expresses the equilibrium condition while (9) expresses the continuity
condition. The known feature of the FETI method is application of a pseudoinverse
matrix in relationship for unknown displacements

u = K+
(
f −BT

λ
)

+ Rα (10)

which stems from floating subdomains. The stiffness matrix of a floating subdomain
is singular. The matrix R contains the rigid body modes of particular subdomains
and the vector α contains amplitudes that specify the contribution of the rigid body
motions to the displacements. The pseudoinverse matrix and the rigid body motion
matrix can be written in the form

K+ =




(K1)+

(K2)+

. . .

(Km)+


 , R =




R1

R2

. . .

Rm


 . (11)

Besides of utilization of the pseudoinverse matrix, a solvability condition in the form

(
f −BT

λ
)
⊥ ker K = R (12)

has to be taken into account. Substitution of unknown displacements to the conti-
nuity condition leads to the form

BK+BT
λ = BK+f + BRα . (13)

The solvability condition can be written in the form

RT
(
f −BT

λ
)

= 0 . (14)

Usual notation in the FETI method is the following

F = BK+BT (15)

G = −BR (16)

d = BK+f (17)

e = −RT f . (18)

The continuity and solvability conditions can be rewritten with the defined notation
in the form

(
F G

GT 0

)(
λ

α

)
=

(
d
e

)
. (19)

The system of equations (19) is called the coarse or interface problem.
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3 Modification of the Method

The classical FETI method uses the continuity condition (5) which enforces the same
displacements at the interface nodes. If there is a reason for different displacements
between two neighbor subdomains, the continuity condition transforms itself to a
slip condition. The slip condition can be written in the form

Bu = s . (20)

The vector s stores slips between interface nodes. For this moment, the slip is as-
sumed to be prescribed and constant.

Let the boundary unknowns be split to two disjunct parts. The boundary un-
knowns which satisfy the continuity condition are located in the vector uc, while
the boundary unknowns which satisfy the slip condition are located in the vector
us. Similarly to the continuity condition in the FETI method, the vectors uc and
us can be written in the form

uc = Bcu (21)

us = Bsu (22)

where Bc and Bs are the boolean matrices. Now, the continuity condition has the
form

Bcu = 0 (23)

and the slip condition has the form

Bsu = s . (24)

The conditions (23) and (24) can be amalgamated to a new interface condition

Bu =

(
Bc

Bs

)
u =

(
0
s

)
= c . (25)

The energy functional can be rewritten to the form

Π =
1

2
uTKu− uT f + λ

T (Bu− c) . (26)

The stationary conditions have the form

Ku− f + BT
λ = 0 (27)

Bu = c . (28)

As was mentioned before, the system of two stationary conditions is accompanied by
the solvability condition (12). The expression of the vector u given in (10) remains
the same and the interface condition has the form

BK+BT
λ = BK+f + BRα − c (29)

and the solvability condition has the form

RT
(
f −BT

λ
)

= 0 . (30)
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The coarse problem can be written with the help of notation (15) - (18) in the form

(
F G

GT 0

)(
λ

α

)
=

(
d− c

e

)
. (31)

The modified coarse problem (31) differs from the original coarse problem (19) by
the vector of prescribed slips c on the right hand side.

The prescribed slip between two subdomains is not a common case. On the
other hand, the slip often depends on shear stress. Discretized form of equations
used in the coarse problem requires a discretized law between slip as a difference of
two neighbor displacements and nodal forces as integrals of stresses along element
edges. One of the simplest laws is the linear relationship

c = Hλ (32)

where H denotes the compliance matrix. Substitution of (32) to the coarse problem
(31) leads to the form

(
F + H G
GT 0

)(
λ

α

)
=

(
d
e

)
. (33)

It should be noted that the coarse system of equations (33) is usually solved by the
modified conjugate gradient method. Details can be found in [3] and [5]. The only
difference with respect to the system (19) is the compliance matrix H. Only one
step, the matrix-vector multiplication, of the modified conjugate gradient method
should be changed. The compliance matrix may be a diagonal or nearly diagonal
matrix.

4 Numerical Examples

Four cases of bonding/debonding behavior are computed by the classical and mod-
ified FETI method. There are always two subdomains. One subdomain represents
the composite matrix and the other one represents the fiber. A perfect bonding is
described directly by the classical FETI method. The usual continuity condition is
used. The displacements of the fiber and composite matrix at a selected point are
identical and the situation is depicted in Figure 1 (left).

An imperfect bonding is described by the modified FETI method with the con-
stant compliance matrix H. The displacements of a fiber are greater than the dis-
placements of the composite matrix. The greater force is applied, the greater slip
occurs. The situation is depicted in Figure 1 (right).

A perfect bonding followed by an imperfect bonding is modeled by the modified
FETI method. At the beginning, the compliance matrix is zero which expresses
infinitely large stiffness between subdomains. At a certain load level, debonding
effect is assumed and the compliance matrix is redefined and it is a constant matrix
in the following steps. The displacements of the fiber and matrix are the same at the
beginning but then they are different. The situation is depicted in Figure 2 (left).

The last example shows a similar problem to the previous one. The compliance
matrix H is not assumed constant but the compliances are growing from zero values
up to a certain level. It means, that the stiffness is decreasing from infinitely large
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value to some finite value. The greater force acts, the higher compliance is attained
and the greater slip between the fiber and the composite matrix occurs. The situation
is depicted in Figure 2 (right).
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Fig. 1. Perfect bonding (left). Imperfect bonding (debonding) (right).
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Fig. 2. Imperfect bonding: with delay (left), with changing compliance (right).

5 Conclusions

A slight modification of the FETI method is proposed for problems with the imper-
fect bonding between the composite matrix and reinforcement. The perfect bonding
is modeled by the classical FETI method. Application of a constant compliance
matrix leads to linear debonding while a variable compliance matrix can describe
nonlinear debonding effects. The advantage of the proposed modification stems from
the structure of the compliance matrix which can be nearly diagonal and therefore
computationally cheap. The second advantage stems from possible parallelization.
Each fiber, generally each piece of reinforcement, as well as the composite matrix
can be assigned to one processor and thus large problems may be solved efficiently.
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