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Summary. Optimized Schwarz methods (OSM) have shown to be an efficient it-
erative solver and preconditioner in solving partial differential equations. Different
investigations have been devoted to study optimized Schwarz methods and many
applications have shown their great performance compared to the classical Schwarz
methods. By simply making slight modifications of transmission conditions between
subdomains, and without changing the size of the matrix, we obtain a fast and a
robust family of methods. In this paper we give an extension of optimized Schwarz
methods to cover three-dimensional partial differential equations. We present the
asymptotic behaviors of optimal and optimized Schwarz methods and compare it to
the performance of the classical Schwarz methods. We confirm the obtained theo-
retical results with numerical experiments.

1 Introduction

The classical Schwarz algorithm has a long history. In 1869, Jacob Schwarz intro-
duced an alternating procedure to prove existence and uniqueness of solutions to
Laplace’s equation on irregular domains. More than a century later the Schwarz
method was used as a computational method in [9]. The advent of computers with
parallel architecture give a wide popularity to this method. Recently, [6, 7] gives
a mathematical analysis of the Schwarz alternating method at the continuous level
and presented different versions of the method, including the extension to many sub-
domains decomposition. The method was investigated as a preconditioner for dis-
cretized problems in [2]. The convergence properties of the classical Schwarz methods
are well understood for a wide variety of problems, see e.g., [12, 11]. Recently a new
class of Schwarz methods know as optimized Schwarz methods have been introduced
to enhance the convergence properties of the classical Schwarz methods. They con-
verge uniformly faster than the classical Schwarz methods due to the exchange of
solution and its derivatives between subdomains. Many studies have been devoted
to OSM more specifically in 1d and 2d spaces, see e.g., [5, 3]. A convergence analysis
of OSM was done in [4], where a uniform convergence independently of the mesh
parameter h has been proved. Those methods have been investigated for problems
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with discontinuity and anisotropy, see e.g., [8], they were also analyzed for systems
of PDE’s see [1]. Some industrial applications of OSM in the domain of weather
predictions are shown in [10]. For a comparison of OSM with modern DDM like
direct Schur methods, FETI and their variants see, e.g. [3, 8]. In this paper we give
an extension of OSM to three-dimensional partial differential equations.

2 The Classical Schwarz Method

Throughout this paper we consider the following model problem

L(u) = (η −∆)(u) = f, in Ω = R
3, η > 0, (1)

where we require the solution to be bounded at the infinity. We decompose Ω into
Ω1 = (−∞, ℓ) × R2, and Ω2 = (0,∞) × R2, where ℓ ≥ 0 is the size of the overlap.
The Jacobi Schwarz method on this decomposition is given by

Lun1 = f, in Ω1, un1 (ℓ, y, z) = un−1
2 (ℓ, y, z),

Lun2 = f, in Ω2, un2 (0, y, z) = un−1
1 (0, y, z).

(2)

By linearity we consider only the case f = 0 and analyze convergence to the zero so-
lution. Taking a Fourier transform of the Schwarz algorithm (2) in y and z directions,
we obtain

(η + k2 +m2 − ∂xx)ûn1 = 0, x < ℓ, k ∈ R, m ∈ R, ûn1 (ℓ, k,m) = ûn−1
2 (ℓ, k,m),

(η + k2 +m2 − ∂xx)ûn2 = 0, x > 0, k ∈ R, m ∈ R, ûn2 (0, k,m) = ûn−1
1 (0, k,m),

where k and m are the frequencies in y and z directions, respectively. Therefore the
solutions in the Fourier domain take the form

ûnj (x, k,m) = Aj(k,m)eλ1(k,m)x +Bj(k,m)eλ2(k,m)x, j = 1, 2, (3)

where λ1(k,m) = κ and λ2(k,m) = −κ, with κ =
√
η + k2 +m2. Due to the

condition on the iterates at the infinity and using transmission conditions, we find
that

û2n
1 (0, k,m)=e−2ℓκû0

1(0, k,m) and û2n
2 (ℓ, k,m)=e−2ℓκû0

2(ℓ, k,m). (4)

Thus the convergence factor of the classical Schwarz method is given by

ρcla = ρcla(η, k,m, ℓ) := e−2ℓκ ≤ 1, ∀k ∈ R, ∀m ∈ R. (5)

The convergence factor depends on the problem parameter η, the size of the overlap
ℓ and on k and m. Figure 1 on the left shows the dependence of the convergence
factor on k and m for an overlap ℓ = 1

100
and η = 1. This shows that the classical

Schwarz method damp efficiently high frequencies, whereas for low frequencies the
algorithm is very slow.
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Fig. 1. Left: The convergence factor ρcla compared to ρT0 and ρT2. Right: The
convergence factor ρcla compared to ρOO0 and ρOO2 and to the convergence factor
of two-sided optimized Robin method.

3 The Optimal Schwarz Method

We introduce the following modified algorithm

L(un1 ) = f, inΩ1, (S1 + ∂x)(un1 )(ℓ, ., .) = (S1 + ∂x)(un−1
2 )(ℓ, ., .),

L(un2 ) = f, inΩ2, (S2 + ∂x)(un2 )(0, ., .) = (S2 + ∂x)(un−1
1 )(0, ., .),

(6)

where Sj , j = 1, 2, are linear operators along the interface that depend on y and
z. As for the classical Schwarz method it suffices by linearity to consider the case
f = 0. Taking a Fourier transform of the new algorithm (6), we obtain

(η + k2 +m2 − ∂xx)ûn1 = 0, x < ℓ, k ∈ R, m ∈ R,
(σ1(k,m) + ∂x)(ûn1 )(ℓ, k,m) = (σ1(k,m) + ∂x)(ûn−1

2 )(ℓ, k,m),
(7)

(η + k2 +m2 − ∂xx)ûn2 = 0, x > 0, k ∈ R, m ∈ R,
(σ2(k,m) + ∂x)(ûn2 )(0, k,m) = (σ2(k,m) + ∂x)(ûn−1

1 )(0, k,m),
(8)

where σj(k,m) is the symbol of the operator Sj(y, z). We proceed as in the case of
the classical Schwarz method and using transmission conditions, we obtain

û2n
1 (0, k,m) =

σ1(k,m)− κ
σ1(k,m) + κ

.
σ2(k,m) + κ

σ2(k,m)− κe
−2ℓκû0

1(0, k,m). (9)

Defining the new convergence factor ρopt by

ρopt = ρopt(η, k,m, ℓ, σ1, σ2) :=
σ1(k,m)− κ
σ1(k,m) + κ

.
σ2(k,m) + κ

σ2(k,m)− κe
−2ℓκ. (10)

We compare the convergence factor ρopt(η, k,m, ℓ, σ1, σ2) with the one of the classical
Schwarz method given in (5), and one can see that they differ only by the factor in
front of the exponential term. Choosing for the symbols

σ1(k,m) := κ and σ2(k,m) := −κ, (11)

the new convergence factor vanishes identically, ρopt ≡ 0, and the algorithm con-
verges in two iterations, independently of the initial guess, the overlap size ℓ and
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the problem parameter η. This is an optimal result since convergence in less than
two iterations is impossible, due to the exchange information necessity between
the subdomains. Furthermore, with this choice of σj the exponential factor in the
convergence factor becomes irrelevant and one can have Schwarz methods without
overlap. In practice we need to back transform the transmission conditions with σ1

and σ2 from the Fourier domain to the physical domain to obtain S1 and S2. The
fact that σj contain a square-root, the optimal operators Sj are non-local operators.
In the next section we will approximate σj by polynomials in ik and im, so Sj would
consist of derivatives in y and z and thus be local operators.

4 Optimized Schwarz Methods

We approximate the symbols σj(k,m) found in (11) as follows

σapp1 (k,m) = p1 + q1(k2 +m2) and σapp2 (k,m) = −p2 − q2(k2 +m2). (12)

Hence the convergence factor (10) of the optimized Schwarz methods becomes

ρ = ρ(η, k,m, ℓ, p1, p2, q1, q2) :=
κ− p1 − q1(k2 +m2)

κ+ p1 + q1(k2 +m2)
.
κ− p2 − q2(k2 +m2)

κ+ p2 + q2(k2 +m2)
e−2ℓκ.

(13)

Theorem 1. The optimized Schwarz method (6) with transmission conditions de-
fined by the symbols (12) converges for pj > 0, qj ≥ 0, j = 1, 2, faster than the
classical Schwarz method (2), |ρ| < |ρcla| for all k and m.

Proof. The absolute value of the term in front of the exponential in the convergence
factor (13) of the optimized Schwarz method is strictly smaller than 1 provided
pj > 0, and qj ≥ 0 which shows that |ρ| < |ρcla| for all k and m.

Now, we introduce a low frequency approximations using a Taylor expansions about
zero. Expanding the symbols σj(k,m), j = 1, 2, we obtain

σ1(k,m) =
√
η + 1

2
√
η

(k2 +m2) +O1(k4,m4),

σ2(k,m) = −√η − 1
2
√
η

(k2 +m2) +O2(k4,m4),
(14)

where O1(k4,m4) and O2(k4,m4) contain high order terms in m and k. The con-
vergence factor ρT0 of the zeroth order Taylor approximation is defined by

ρT0(η, k,m, ℓ) =

(
κ−√η
κ+
√
η

)2

e−2ℓκ, (15)

and the convergence factor ρT2 of the second order Taylor approximation would
have the form

ρT2(η, k,m, ℓ) =

(
κ−√η − 1

2
√
η

(k2 +m2)

κ+
√
η + 1

2
√
η

(k2 +m2)

)2

e−2ℓκ. (16)

Figure 1 on the left shows the convergence factors obtained with this choice of
transmission conditions compared to the convergence factor ρcla. One can clearly see
that OSM are uniformly better than the classical Schwarz method, in particular the
low frequency behavior is greatly improved. Note that OSM converge even without
overlap. In particular, we have the following theorem.
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Theorem 2. The optimized Schwarz methods with Taylor transmission conditions
and overlap ℓ have an asymptotically superior performance than the classical Schwarz
method with the same overlap. As ℓ goes to zero, we have

max
|k|≤π

ℓ
,|m|≤π

ℓ

|ρcla(η, k,m, ℓ)| = 1− 2
√
ηℓ+O(ℓ2),

max
|k|≤π

ℓ
,|m|≤π

ℓ

|ρT0(η, k,m, ℓ)| = 1− 4
√

2η1/4
√
ℓ+O(ℓ),

max
|k|≤π

ℓ
,|m|≤π

ℓ

|ρT2(η, k,m, ℓ)| = 1− 8η1/4
√
ℓ+O(ℓ).

Without overlap, the optimized Schwarz methods with Taylor transmission conditions
are asymptotically comparable to the classical Schwarz method with overlap ℓ. As ℓ
goes to zero, we have

max
|k|≤π

ℓ
,|m|≤π

ℓ

|ρT0(η, k,m, 0)| = 1− 4

√
η

π
ℓ+O(ℓ2),

max
|k|≤π

ℓ
,|m|≤π

ℓ

|ρT2(η, k,m, 0)| = 1− 8

√
η

π
ℓ+O(ℓ2).

Proof. The proof is based on a Taylor expansion of the convergence factors, where
we estimate the maximum frequency by π/ℓ.

Zeroth Order Optimized Transmission Conditions

Using the same zeroth order transmission conditions on both sides of the interface,
p1 = p2 = p and q1 = q2 = 0, the convergence factor in (13) becomes

ρOO0(η, k,m, ℓ, p) :=

(
κ− p
κ+ p

)2

e−2κℓ. (17)

To find the optimal parameter p∗ of the associated Schwarz method, known as
Optimized of Order 0 (OO0), we need to solve the following min-max problem

min
p≥0

(max
k,m
|ρOO0(η, k,m, ℓ, p)|) = min

p≥0

(
max
k,m

(
κ− p
κ+ p

)2

e−2κℓ

)
. (18)

We introduce the minimum and the maximum frequencies fmin and fmax of all the
frequencies k and m. The asymptotic performance of the Optimized zeroth order
Schwarz method is given by the next theorem, where we omit the proof due to the
restriction on the present paper.

Theorem 3. (Robin asymptotic)
The asymptotic performance of the Schwarz method with optimized Robin transmis-
sion conditions and overlap ℓ, as ℓ goes to zero, is given by

max
k,m

fmin≤
√
k2+m2≤π

ℓ

|ρOO0(η, k,m, ℓ, p∗)| = 1− 4.21/6(f2
min + η)1/6ℓ1/3 +O(ℓ2/3). (19)

The asymptotic performance of OO0 without overlap is asymptotically equivalent to
the classical Schwarz method with overlap ℓ, as ℓ goes to zero, we have
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max
k,m

fmin≤
√
k2+m2≤π

ℓ

|ρOO0(η, k,m, 0, p∗)| = 1− 4
(f2

min + η)1/4√
π

√
ℓ+O(ℓ). (20)

Proof. The idea of the proof in the case of overlapping subdomains is based on the
ansatz p∗ = Cℓα, where α < 0 and Taylor expansion of the convergence factor with

p = p∗. A computation shows that p∗ =
(4(f2

min+η))1/3

2
ℓ−1/3.

Second Order Optimized Transmission Conditions

Using the same second order transmission conditions on both sides of the interface,
p1 = p2 = p and q1 = q2 = q, the expression (13) of the convergence factor simplifies
to

ρOO2(η, k,m, ℓ, p, q) =

(
κ− p− q(k2 +m2)

κ+ p+ q(k2 +m2)

)2

e−2κℓ. (21)

To determine the optimal parameters p∗ and q∗ for OSM of Order 2 (OO2), we need
to solve the min-max problem

min
p,q≥0

(max
k,m
|ρOO2(η, k,m, ℓ, p, q)|) = min

p,q≥0

(
max
k,m

(
κ− p− q(k2 +m2)

κ+ p+ q(k2 +m2)

)2

e−2κℓ

)
.

(22)
We have the following.

Theorem 4. (Second order)
The asymptotic performance of the Schwarz method with optimized second order
transmission conditions and overlap ℓ, as ℓ goes to zero, is given by

max
k,m

fmin≤
√
k2+m2≤fmax

|ρOO2(η, k,m, ℓ, p∗, q∗)| = 1− 4.23/5(f2
min + η)1/10ℓ1/5 +O(ℓ2/5).

(23)
The asymptotic performance of OO2 without overlap is equivalent to the classical
Schwarz with overlap ℓ. As ℓ approaches zero, we obtain

max
k,m

fmin≤
√
k2+m2≤fmax

|ρOO2(η, k,m, 0, p∗, q∗)| = 1− 4

√
2(f2

min + η)1/8

π1/4
ℓ1/4 +O(ℓ1/2).

(24)

Proof. We do a Taylor expansion of the convergence factor with p∗ = C1ℓ
α and

q∗ = C2ℓ
β , where α < 0 and β > 0, we show that p∗ = 2−3/5(f2

min + η)2/5ℓ−1/5 and
q∗ = 2−1/5(f2

min + η)−1/5ℓ3/5.

Figure 1 on the right shows a comparison of the convergence factors of the opti-
mized Schwarz methods with the classical Schwarz method. We also compare the
convergence factor of the classical Schwarz method with the convergence factor of
the two-sided optimized Schwarz method, where we use different Robin transmis-
sion conditions between the two subdomains. As one can see the optimized Schwarz
methods have a great performance compared to the classical Schwarz method.
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Fig. 2. Number of iterations required by the classical and the optimized Schwarz
methods, with overlap ℓ = h. On the left the methods are used as iterative solvers,
and on the right as preconditioners for a Krylov method.
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Fig. 3. Number of iterations required by the optimized Schwarz methods without
overlap between subdomains. On the left the methods are used as iterative solvers,
and on the right as preconditioners for a Krylov method.

5 Numerical Experiments

We perform numerical experiments for our model problem (1) on the unit cube,
Ω = (0, 1)3. We decompose the unit cube Ω into two subdomains Ω1 = (0, b) ×
(0, 1)2 and Ω2 = (a, 1) × (0, 1)2, where 0 < a ≤ b < 1, so that the overlap is
ℓ = b − a. We use a finite difference discretization with the classical seven-point
discretization and a uniform mesh parameter h. In practice, we usually use a small
overlap between subdomains, in our experiments we chose the overlap ℓ to be exactly
the mesh parameter h, i.e., ℓ = h. Figure 2 on the left shows the number of iterations
versus the mesh parameter h in the case of an overlap, for all the methods used as
an iterative solvers, on the right the methods are used as preconditioners for a
Krylov method. In figure 3 we show the number of iterations in the case of non-
overlapping subdomains. On the left the methods are used as iterative solvers, whilst
on the right the methods are used as preconditioners for a Krylov method. For both
decompositions the numerical results show the asymptotic behavior predicted by
the analysis.
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6 Conclusion

In this paper we presented an extension of the optimal and optimized Schwarz
methods to cover three-dimensional partial differential equations. We showed the
impact of transmission conditions on the convergence factor of Classical Schwarz
method. We also showed theoretically and numerically that the optimized Schwarz
methods are fast and have a great improved performance compared to the classical
Schwarz method.
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