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1 Introduction

The BDDC method [2] is the most advanced method from the BDD family [5].
Polylogarithmic condition number estimates for BDDC were obtained in [6, 7] and
a proof that eigenvalues of BDDC and FETI-DP are same except for an eigenvalue
equal to one was given in [7]. For important insights, alternative formulations of
BDDC, and simplified proofs of these results, see [1] and [4].

In the case of many substructures, solving the coarse problem exactly is becoming
a bottleneck. Since the coarse problem in BDDC has the same form as the original
problem, the BDDC method can be applied recursively to solve the coarse problem
approximately, leading to a multilevel form of BDDC in a straightforward manner [2].
Polylogarithmic condition number bounds for three-level BDDC (BDDC with two
coarse levels) were proved in [10, 9]. This contribution is concerned with condition
number estimates of BDDC with an arbitrary number of levels.

2 Abstract Multispace BDDC

All abstract spaces in this paper are finite dimensional. The dual space of a linear
space U is denoted by U ′, and 〈·, ·〉 is the duality pairing. We wish to solve the
abstract linear problem

u ∈ U : a(u, v) = 〈f, v〉 , ∀v ∈ U, (1)

for a given f ∈ U ′, where a is a symmetric positive semidefinite bilinear form on
some space W ⊃ U and positive definite on U . The form a (·, ·) is called the energy
inner product, the value of the quadratic form a (u, u) is called the energy of u, and
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the norm ‖u‖a = a (u, u)1/2 is called the energy norm. The operator A : U 7→ U ′

associated with a is defined by

a(u, v) = 〈Au, v〉 , ∀u, v ∈ U.

Algorithm 1 (Abstract multispace BDDC) Given spaces Vk and operators Qk
(k = 1, . . . ,M) such that

U ⊂ V1 + · · ·+ VM ⊂W, Qk : Vk → U,

define a preconditioner B : r ∈ U ′ 7−→ u ∈ U by

B : r 7→
M∑

k=1

Qkvk, vk ∈ Vk : a (vk, zk) = 〈r,Qkzk〉 , ∀zk ∈ Vk.

The following estimate can be proved from the abstract additive Schwarz theory
[3]. The case when M = 1, which covers the existing two-level BDDC theory set in
the spaces of discrete harmonic functions, was given in [8].

Lemma 1. Assume that the subspaces Vk are energy orthogonal, the operators Qk
are projections, and

∀u ∈ U : u =
M∑

k=1

Qkvk if u =
M∑

k=1

vk, vk ∈ Vk. (2)

Then the abstract multispace BDDC preconditioner from Algorithm 1 satisfies

κ =
λmax(BA)

λmin(BA)
≤ ω = max

k
sup
vk∈Vk

‖Qkvk‖2a
‖vk‖2a

.

Note that (2) is a type of decomposition of unity property.

3 BDDC for a 2D Model Problem

Let Ω ⊂ R2 be a bounded polygonal domain, decomposed into N nonoverlapping
polygonal substructures Ωi, i = 1, ..., N , which form a conforming triangulation.
That is, if two substructures have a nonempty intersection, then the intersection is
a vertex, or a whole edge. Let Wi be the space of Lagrangian P1 or Q1 finite element
functions with characteristic mesh size h on Ωi, and which are zero on the boundary
∂Ω. Suppose that the nodes of the finite elements coincide on edges common to two
substructures. Let

W = W1 × · · · ×WN ,

U ⊂ W be the subspace of functions that are continuous across the substructure
interfaces, and

a (u, v) =

N∑

i=1

∫

Ωi

∇u∇v, u, v ∈W.
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We are interested in the solution of the problem (1).
Substructure vertices will be also called corners, and the values of functions from

W on the corners are called coarse degrees of freedom. Let W̃ ⊂W be the space of all
functions such that the values of any coarse degrees of freedom have a common value
for all relevant substructures and vanish on ∂Ω. Define UI ⊂ U ⊂W as the subspace
of all functions that are zero on all substructure boundaries ∂Ωi, W̃∆ ⊂ W as the
subspace of all function such that their coarse degrees of freedom vanish, define W̃Π

as the subspace of all functions such that their coarse degrees of freedom between
adjacent substructures coincide, and such that their energy is minimal. Then

W̃ = W̃∆ ⊕ W̃Π , W̃∆ ⊥a W̃Π . (3)

Functions that are a-orthogonal to UI are called discrete harmonic. In [7] and
[8], the analysis was done in spaces of discrete harmonic functions after eliminating

UI ; this is not the case here, so W̃ does not consist of discrete harmonic functions
only.

Let E : W̃ → U be the operator defined by taking the average over the sub-
structure interfaces.

Algorithm 2 (Original BDDC) Define the preconditioner r ∈ U ′ 7−→ u ∈ U as
follows. Compute the interior pre-correction:

uI ∈ UI : a (uI , zI) = 〈r, zI〉 , ∀zI ∈ UI , (4)

updated the residual:

rB ∈ U ′, 〈rB , v〉 = 〈r, v〉 − a (uI , v) , ∀v ∈ U

compute the substructure correction and the coarse correction:

u∆ = Ew∆, w∆ ∈ W̃∆ : a (w∆, z∆) = 〈rB , Ez∆〉 , ∀z∆ ∈ W̃∆

uΠ = EwΠ , wΠ ∈ W̃Π : a (wΠ , zΠ) = 〈rB , EzΠ〉 , ∀zΠ ∈ W̃Π (5)

and the interior post-correction:

vI ∈ UI : a (vI , zI) = a (u∆ + uΠ , zI) , ∀zI ∈ UI .

Apply the interior post-correction and add the interior pre-correction:

u = uI + (u∆ + uΠ − vI) . (6)

Denote by P the energy orthogonal projection from U to UI . Then I − P is
known as the projection onto discrete harmonic functions.

Lemma 2. The original BDDC preconditioner from Algorithm 2 is the abstract mul-
tispace BDDC from Algorithm 1 with M = 3 and

V1 = UI , V2 = (I − P )W̃∆, V3 = (I − P )W̃Π ,

Q1 = I, Q2 = Q3 (I − P )E,

and the assumptions of Lemma 1 are satisfied.
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Because of (3) and and the fact that ‖I‖a = 1, we only need an estimate of

‖(I − P )Ew‖a on W̃ , which is well known [6].

Theorem 1. The condition number of the original BDDC algorithm satisfies κ ≤ ω,
where

ω = sup
w∈W̃

‖(I − P )Ew‖2a
‖w‖2a

≤ C
(

1 + log
H

h

)2

. (7)

4 Multilevel BDDC and an Abstract Bound

The substructuring components from Section 3 will be denoted by an additional
subscript 1, as Ωi1, i = 1, . . . N1, etc., and called level 1. The spaces and operators
involved can be written concisely as a part of a hierarchy of spaces and operators:

U
q

UI1
P1
←⊂ U1

E1
←⊂ W̃1 ⊂ W1

q

Ũ2
I2
← W̃Π1 ⊕ W̃∆1

q

UI2
P2
←⊂ U2

E2
←⊂ W̃2 ⊂ W2

q

Ũ3
I3
← W̃Π2 ⊕ W̃∆2

q

...
q

UI,L−1

PL−1
←⊂ UL−1

EL−1
←⊂ W̃L−1 ⊂ WL−1

q

ŨL
IL
← W̃Π,L−1 ⊕ W̃∆,L−1





(8)

We will call the coarse problem (5) the level 2 problem. It has the same finite

element structure as the original problem (1) on level 1, so we have U2 = W̃Π1. Level
1 substructures are level 2 elements, level 1 coarse degrees of freedom are level 2
degrees of freedom. The shape functions on level 2 are the coarse basis functions in
W̃Π1, which are given by the conditions that the value of exactly one coarse degree
of freedom is one and others are zero, and that they are energy minimal in W̃1. Note
that the resulting shape functions on level 2 are in general discontinuous between
level 2 elements. Level 2 elements are then agglomerated into nonoverlapping level
2 substructures, etc. Level k elements are level k − 1 substructures, and the level k
substructures are agglomerates of level k elements. Level k substructures are denoted
by Ωik, and they are assumed to form a quasiuniform conforming triangulation with
characteristic substructure size Hk. The degrees of freedom of level k elements are
given by level k − 1 coarse degrees of freedom, and shape functions on level k are
determined by minimization of energy on each level k − 1 substructure separately,
so Uk = W̃Π,k−1. The mapping Ik is an interpolation from the level k degrees of

freedom to functions in another space Ũk. For the model problem, Ũk will consist
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of functions which are (bi)linear on each Ωik. The averaging operators on level k,

Ek : W̃k → Uk, are defined by averaging of the values of level k degrees of freedom
between level k substructures Ωik. The space UIk consists of functions in Uk that
are zero on the boundaries of all level k substructures, and Pk : Uk → UIk is the
a−orthogonal projection in Uk onto UIk. For convenience, let Ωi0 be the original
finite elements, H0 = h, and I1 = I.

Algorithm 3 (Multilevel BDDC) Given r ∈ U ′1, find u ∈ U1 by (4)–(6), where
the solution coarse problem (5) is replaced by the right hand side preconditioned by
the same method, applied recursively. At the coarsest level, (5) is solved by a direct
method.

Lemma 3. The multilevel BDDC preconditioner in Algorithm 3 is the abstract mul-
tispace BDDC preconditioner (Algorithm 1) with M = 2L − 2 and the spaces and
operators

V1 = UI1, V2 = (I − P1)W̃∆1, V3 = UI2, V4 = (I − P2)W̃∆,2, . . .

V2L−4 = (I − PL−2)W̃∆,L−2, V2L−3 = UI,L−1, V2L−2 = (I − PL−1)W̃L−1,

Q1 = I, Q2 = Q3 = (I − P1)E1, . . .

Q2L−4 = Q2L−3 = (I − P1)E1 · · · (I − PL−2)EL−2,

Q2L−2 = (I − P1)E1 · · · (I − PL−1)EL−1,

satisfying the assumptions of Lemma 1.

The following bound follows from writing of multilevel BDDC as multispace
BDDC in Lemma 3 and the estimate for multispace BDDC in Lemma 1.

Lemma 4. If for some ωk ≥ 1,

‖(I − Pk)Ekwk‖2a ≤ ωk ‖wk‖
2
a , ∀wk ∈ W̃k, k = 1, . . . , L− 1, (9)

then the multilevel BDDC preconditioner satisfies κ ≤ ∏L−1
k=1ωk.

5 Multilevel BDDC Bound for the 2D Model Problem

To apply Lemma 4, we need to generalize the estimate (7) to coarse levels. From

(7), it follows that for some C̃k and all wk ∈ Uk, k = 1, . . . , L− 1,

min
uIk∈UIk

‖IkEkwk − IkuIk‖2a ≤ C̃k
(

1 + log
Hk

Hk−1

)2

‖Ikwk‖2a . (10)

Denote |w|a,Ωi
k

=
(∫

Ωi
k
∇w∇w

)1/2

.

Lemma 5. For all k = 0, . . . , L− 1, i = 1, . . . , Nk,

ck,1 |Ik+1w|2a,Ωi
k
≤ |w|2a,Ωi

k
≤ ck,2 |Ik+1w|2a,Ωi

k
, ∀w ∈ W̃Πk, ∀Ωik, (11)

with ck,2/ck,1 ≤ Ck, independently of H0,. . . , Hk+1.
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Proof. For k = 0, (11) holds because I1 = I. Suppose that (11) holds for some k <

L− 2 and let w ∈ W̃Π,k+1. From the definition of W̃Π,k+1 by energy minimization,

|w|a,Ωi
k+1

= min
w∆∈W̃∆,k+1

|w + w∆|a,Ωi
k+1

. (12)

From (12) and the induction assumption, it follows that

ck,1 min
w∆∈W̃∆,k+1

|Ik+1w + Ik+1w∆|2a,Ωi
k+1

(13)

≤ min
w∆∈W̃∆,k+1

|w + w∆|2a,Ωi
k
≤ ck,2 min

w∆∈W̃∆,k+1

|Ik+1w + Ik+1w∆|2a,Ωi
k

Now from [10, Lemma 4.2], applied to the piecewise linear functions of the form
Ik+1w on Ωik+1,

c1 |Ik+2w|2a,Ωi
k+1
≤ min
w∆∈W̃∆,k+1

|Ik+1w + Ik+1w∆|2a,Ωi
k+1
≤ c2 |Ik+2w|2a,Ωi

k+1
(14)

with c2/c1, bounded independently of H0, . . . , Hk+1. Then (12), (13) and (14) imply
(11) with Ck = Ck−1c2/c1.

Theorem 2. The multilevel BDDC with for the model problem with corner corner
coarse degrees of freedom satisfies the condition number estimate

κ ≤ ∏L−1
k=1Ck

(
1 + log

Hk

Hk−1

)2

.

Proof. By summation of (11), we have

ck,1 ‖Ikw‖2a ≤ ‖w‖
2
a ≤ ck,2 ‖Ikw‖

2
a , ∀w ∈ Uk,

with ck,2/ck,1 ≤ Ck, so from (10),

‖(I − Pk)Ekwk‖2a ≤ Ck
(

1 + log
Hk

Hk−1

)2

‖wk‖2a , ∀wk ∈ W̃k,

with Ck = CkC̃k. It remains to use Lemma 4.

For L = 3 we recover the estimate by [10]. In the case of uniform coarsening,
i.e. with Hk/Hk−1 = H/h and the same geometry of decomposition on all levels
k = 1, . . . L− 1, we get

κ ≤ CL−1 (1 + logH/h)2(L−1) . (15)

6 Numerical Examples and Conclusion

A multilevel BDDC preconditioner was implemented in Matlab for the 2D Laplace
equation on a square domain with periodic boundary conditions. For these boundary
conditions, all subdomains at each level are identical and it is possible to solve very
large problems on a single processor. The periodic boundary conditions result in a
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Table 1. 2D Laplace equation results for H/h = 2. The number of levels is Nlev
(Nlev = 2 for the standard approach), the number iterations is iter, the condition
number estimate is κ, and the total number of degrees of freedom is ndof.

Nlev corners only corners and faces ndof

iter κ iter κ

2 2 1.5625 1 1 16
3 8 1.8002 5 1.1433 64
4 11 2.4046 7 1.2703 256
5 14 3.4234 8 1.3949 1,024
6 17 4.9657 9 1.5199 4,096
7 20 7.2428 9 1.6435 16,384
8 25 10.5886 10 1.7696 65,536

Table 2. 2D Laplace equation results for H/h = 4.

Nlev corners only corners and faces ndof

iter κ iter κ

2 9 2.1997 6 1.1431 256
3 14 4.0220 8 1.5114 4,096
4 21 7.7736 10 1.8971 65,536
5 30 15.1699 12 2.2721 1,048,576

Table 3. 2D Laplace equation results for H/h = 8.

Nlev corners only corners and faces ndof

iter κ iter κ

2 14 3.1348 7 1.3235 4,096
3 23 7.8439 10 2.0174 262,144
4 36 19.9648 13 2.7450 16,777,216

stiffness matrix with a single zero eigenvalue, but this situation can be accommo-
dated in preconditioned conjugate gradients by removing the mean from the right
hand side of Ax = b. The coarse grid correction at each level is replaced by the
BDDC preconditioned coarse residual.

Numerical results are in Tables 1-3. As predicted by Theorem 2, the condition
number grows slowly in the ratios of mesh sizes for a fixed number of levels L. How-
ever, for fixed Hi/Hi−1 the growth of the condition number is seen to be exponential
in L. With additional constraints by side averages, the condition number is seen to
grow linearly. Our explanation is that a bound similar to Theorem 2 still applies,
though possibly with (much) smaller constants, so the exponential growth of the
condition number is no longer apparent.
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