
Concepts for an Efficient Implementation of
Domain Decomposition Approaches for
Fluid-Structure Interactions

Miriam Mehl1, Tobias Neckel1, and Tobias Weinzierl1

Institut für Informatik, TU München
Boltzmannstr. 3, 85748 Garching,
{mehl,neckel,weinzier}@in.tum.de

1 Introduction

In the context of fluid-structure interactions, there are several natural starting points
for domain decomposition. First, the decomposition into the fluid and the structure
domain, second, the further decomposition of those domains into subdomains for
parallelisation, and, third, the decomposition of the solver grid into finer and coarser
levels for multilevel approaches. In this paper, we focus on the efficient implemen-
tation of the first two types of domain decomposition. The underlying concepts
offer a kind of framework that can be ‘filled’ with variable content on the part of
the discretization, the actual equation solver, and interpolations and projections for
the inter-code communication. According to this pursuit of flexibility, modularity,
and reusability, we restrict to partitioned approaches regarding the decomposition
into fluid and structure domain, that is we use existing stand-alone fluid and struc-
ture solvers for the coupled fluid-structure simulation. The essential tools we use to
achieve efficiency are space-partitioning and space-filling curves. Space-partitioning
grids – quad- and octree grids are the most famous representations – are cartesian
grids arising from a recursive local refinement procedure starting from a very coarse
discretization of the domain. See Fig. 1 for examples. Such grids and the associated
trees are widely used for example in computer graphics, grid generation, as compu-
tational grids etc. (compare [3]). They allow for the development of very efficient
algorithms due to their strict structure and their local recursivity.

In Sect. 2, we describe our concept for the efficient and flexible realization of
a partitioned approach for the simulation of fluid-structure interactions (or other
multi-physics problems) and identify differences in comparison to MpCCI [9], the
successor of GRISSLi [1]. MpCCI nowadays is the most widely used software for the
coupling of several codes. Section 3 introduces the algorithmic and implementation
aspects of our flow solver. It has to be fast and parallel (as many time steps are
required), physically correct (forces acting on the structure), and easily integrable
(frequent exchange of information over the coupling surface). In this paper, our focus
will be on the two aspects parallelization and integrability. For further informations
on physical correctness and general efficiency of our concept, we refer to [4, 3, 6].



592 M. Mehl, T. Neckel, T. Weinzierl

Fig. 1. Left: two-dimensional adaptive space-partitioning grid describing a spherical
domain; right: three-dimensional adaptive space-partitioning grid describing a flow
tube with asymmetrically oscillating diameter.

2 Decomposition I: Fluid – Structure

The main idea behind the concept of partitioned fluid-structure simulations is sim-
plicity and flexibility with respect to the choice of solvers and the coupling strategy.
However, it is not trivial to reach this task in practice. Here, the development of
appropriate software components for the coupling of two different codes is decisive
but, in contrast to the examination of numerical coupling strategies, a somewhat
neglected field. Thus, we will concentrate on these neglected informatical aspects
and propose a concept that can be ‘filled’ with the suitable mathematical content
in a flexible way. The most widely used software MpCCI works quite well for a fixed
pair of codes but has severe drawbacks as soon as one wants to exchange solvers
and/or the coupling strategy frequently. To eliminate these drawbacks, we introduce
a client-server approach with a coupling client containing the coupling strategy and
acting as a really separating layer between the solvers, which strongly facilitates the
exchange of components of the coupled simulation.

The coupling client has to address two components of coupling: first, the ex-
change of interface data (such as velocities, forces, . . .) between the solvers involved
and, second, the control of the coupled simulation, that is the execution of the cou-
pling strategy (explicit/implicit). Figure 2 displays the general concepts of MpCCI

and of our approach [3].

2.1 Data Exchange

At the interface between fluid and structure, we have to introduce some mapping of
data between two, in general non-matching grids. In the MpCCI concept, this mapping
is done directly from one solver to the other with the help of either given library
routines or specialized user-defined interpolations. This implies that each solver has
to know the grid of the other solver and, thus, inhibits the exchange of one solver
without changing the code of the other one. Our concept introduces a third separate
component, the coupling component, which holds its own description of the interface
between fluid and structure in the form of a surface triangulation (Fig. 3), which we
will refer to as the central mesh in the following. The solvers have to map their data



Efficient Implementation of DD for Fluid-Structure Interactions 593

fluid solver

+ coupling

structure solver

+ coupling

data

data

data
data

MPCCI

interpolation

server fluid

+ interpolation

server structure

+ interpolation

request

data

requestdata

Client

surface

coupling

Fig. 2. Schematic view of the general coupling concepts used in MpCCI (left) and
in our framework (right).

to or get their data from the central mesh. Thus, we can now exchange one solver
without changing the data mapping in the other one. Of course, the concrete choice
of the resolution and the grid points of the central mesh may depend on one or both
solver grids. However, the general concepts and algorithms needed in each solver to
perform the mapping of data between the solver grids and the central mesh are not
affected by this concrete choice as they only depend on the principle structure of
the central mesh.

The basis for all data mappings between solver grid and central mesh is – in-
dependent of the concrete choice of interpolation and projection operators – the
identification of relations between data points of both grids. For the mapping of
data from the solver to the central mesh, these relations are in general inclusion
properties of surface nodes with respect to the solver grid cells. For the transport
of data the way back from the central surface mesh to the solver grid, we need
projections from the solver grid nodes to the surface triangles (see Fig. 3 for an
example with a cartesian fluid grid). Whereas localizing a surface node in a solver
grid cell is an easy task, finding projections on surface triangles requires more so-
phisticated methods. At this point, space-partitioning grids come into play as a key
structure for the access of the (two-dimensional) surface triangulation in a spatial
(three-dimensional) context.

 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 
 ! ! 

"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
"!"!"
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#
#!#!#

$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$
$!$!$ %!%!%!%!%!%!%!%!%!%!%!%!%!%!%

%!%!%!%!%!%!%!%!%!%!%!%!%!%!%
%!%!%!%!%!%!%!%!%!%!%!%!%!%!%
%!%!%!%!%!%!%!%!%!%!%!%!%!%!%

&!&!&!&!&!&!&!&!&!&!&!&!&!&!&
&!&!&!&!&!&!&!&!&!&!&!&!&!&!&
&!&!&!&!&!&!&!&!&!&!&!&!&!&!&
&!&!&!&!&!&!&!&!&!&!&!&!&!&!&

'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'
'!'!'!'!'!'!'!'!'!'!'!'!'!'!'

(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!(
(!(!(!(!(!(!(!(!(!(!(!(!(!(!()!)!)

)!)!)
)!)!)
)!)!)

*!*!*
*!*!*
*!*!*
*!*!*

Fig. 3. Left: Surface triangulation of a cylinder and cartesian grid cells at the
boundary of the cylinder; right: data transport between the surface triangulation
and a cartesian fluid grid: interpolation of stresses at surface nodes from values at
the nodes of the fluid grid cell containing the respective surface node (left), copying
data from projection points of fluid boundary points on the surface triangulation to
the respective boundary grid point (right, taken from [3]).



594 M. Mehl, T. Neckel, T. Weinzierl

The algorithm to determine projection points is very closely related to the al-
gorithm creating a new space-partitioning fluid grid (see Sect. 3) from the surface
triangulation. In both cases, we have to identify intersections of solver grid cells and
surface triangles. Here, the big potentials of space-partitioning grids are their inher-
ent location awareness and their recursive structure, which permits the development
of highly efficient algorithms exploiting the possibilities of handing down informa-
tions already gained in father cells to their son cells. Figure 4 gives an impression
on how fast the resulting algorithms work for the example of grid generation.

octree depth time (in sec.) # octree nodes

7 0.872 84, 609

9 3.375 1, 376, 753

11 24.563 22, 104, 017

13 293.875 353, 685, 761

Fig. 4. Runtimes for the generation of an octree grid from a surface triangulation
of a car. Computed on a Pentium 4 with 2.4GHz and 512kB Cache and sufficient
main memory to hold all data required (Intel C++ compiler 8.0).

2.2 Coupling Strategy

Except from data transfer, all other aspects of the coupling of two codes such as
the definition and implementation of a coupling strategy and control of the whole
coupled simulation are left to the user in MpCCI. That is, they have to be implemented
in one or both of the involved solvers. As a consequence, an independent exchange
of on component, either the coupling strategy or one of the solvers, is impossible.
In contrast, our concept is based on a client-server approach (Fig. 2 and [2]). A so-
called coupling-client controls the whole simulation. Fluid and structure solvers act
as servers receiving requests from the client. The coupling strategy is implemented
in the client and, thus, separated from the solvers.

3 Parallel Fluid Solver

This paragraph describes some properties and aspects of our fluid solver currently
being developed [3]. Hereby, the focus is to provide a solver which at the same
time offers the possibility to exploit the most efficient numerical methods such as
multigrid and grid adaptivity and, at the same time, to be highly efficient in terms
of hardware or, in particular, memory usage and parallelizability. In this paper,



Efficient Implementation of DD for Fluid-Structure Interactions 595

we restrict ourselves to the parallelization concepts which again are, the same as
all other technical and implementation aspects, independent on the concrete math-
ematical content (FE-/FV-discretization, linear/nonlinear solvers, etc.). The only
invariant is the choice of cartesian space-partitioning grids as computational grids.
These grids offer several advantages. First, their strict structure minimizes memory
requirements. Second, the recursive structure allows for a very cache-efficient imple-
mentation of data structure and data access (see [6]). Third, grid adaptivity can be
arbitrarily local (no restriction to block-adaptivity). Fourth, the mapping of data
between the solver grid and the central mesh of the coupling client is supported in
an optimal way as the mapping algorithms are based on space-partitioning cartesian
grids themselves (cf. Sect. 2.1 and Fig. 4). Fifth, finally, a balanced parallelization
can be done in a natural way using the properties of space-filling curves.

Figure 5 shows a cut-off of the computed flow field together with the underlying
grid for the two-dimensional flow around a cylinder at Reynolds number 20.

Fig. 5. Flow around a cylinder (Reynolds number 20): cut-off of the flow field and
the underlying grid.

For the parallelization of our flow solver, we developed an implementation of
a spatial domain decomposition method based on the combination of our space-
partitioning computational grid with space-filling curves, which are known to be
an efficient tool for the parallelization of algorithms on adaptively refined grids [5].
Hereby, the ‘obvious’ method is to string together the cells of the adaptive grid
along the corresponding iterate of a space-filling curve and afterwards ‘cut’ the
resulting cell string into equal pieces and assign one process to each of the pieces.
For the domains of the single processes formed by these pieces of the cell string, a
quasi-minimality of the domain surface resulting from the locality properties of the
space-filling curve can be shown [5]. Thus, we get a balanced domain decomposition
with quasi-minimal communication costs. The disadvantage of this simple approach
is that we have to process the whole grid sequentially to build up the cell string.

In contrast to this, our domain decomposition algorithm works completely in
parallel. It never has to handle the whole grid on a single master processor. Instead,
we recursively distribute sub-tree of the cell-tree among the available processors
simultaneously to the set-up phase of the adaptive grid. Each process refines its
domain until it reaches a limit in the work load that requires the outsourcing of sub-



596 M. Mehl, T. Neckel, T. Weinzierl

trees to other processes. Thus, every process holds a complete space-partitioning
grid and all the distributed space-partitioning grids together form the global grid
or the associated tree, respectively (see Fig. 6). Note that this level-wise domain
decomposition process implies a tree order of the computing nodes, too. In the end,
the algorithm lists the nodes level by level depending on the workload and, thus,
the algorithm is pretty flexible concerning dynamical self-adaptivity. To maintain a
balanced load distribution even for extremely local adaptive grid refinements (e.g.,
at singularities) and grid coarsenings (e.g., as a reaction to changing geometries),
the algorithm also supports the merging of the grid partitions of two processes.

Fig. 6. Distribution of a space-partitioning grid (left) and the associated tree (right)
to four processes (marked black, dark grey, grey and white).

Our algorithm uses the Peano space-filling curve to traverse the grid cells and,
thus, also splits up the domain at certain points on this curve. As mentioned above,
the resulting partition is known to be quasi-optimal and connected [5].

In addition to producing a quasi-minimal amount of communication, the Peano
curve allows for a very efficient realization of the communication due to two prop-
erties (e.g., which we could not show for any Hilbert curve). First, the Peano
curve fulfills a projection property [7], that is the d-dimensional mapping onto a
lower-dimensional submanifold aligned with the coordinate axes results in a lower-
dimensional Peano curve. Second, it has the so-called palindrome property [7], that
is the processing order of cell faces on such a submanifold is not only a Peano curve
again but even the same Peano curve at both sides of the submanifold only with
inverted order. Thus, the locality properties of the Peano curve on a submanifold
separating two partitions imply good data access locality in the interprocess com-
munication and, in addition, due to the palindrome property, there is no need for
reordering data sent to neighboring processes. This highly improves the communi-
cation efficiency.

In Table 1, we give some results achieved with an old version of our program
still relying on a sequential domain decomposition algorithm and not yet working
with asynchronous communication as our new code does. The left picture of Fig. 1
shows the domain decomposition for an adaptive two-dimensional grid for a sphere
computed with our new code.

4 Conclusion

We proposed concepts for two substantially different types of domain decomposition
occurring in the context of partitioned simulation of fluid-structure interactions. We



Efficient Implementation of DD for Fluid-Structure Interactions 597

Table 1. Parallel speedup achieved for the solution of the three-dimensional Poisson
equation on a spherical domain on an adaptive grid with 23, 118, 848 degrees of
freedom. The computations were performed on a myrinet cluster consisting of eight
dual Pentium III processors with 2 GByte RAM per node [8].

processes 1 2 4 8 16

speedup 1.00 1.95 3.73 6.85 12.93

could show the great potential of space-partitioning grids in each case. For the link-
up of fluid and structure solver via a coupling client we use them as a tool to develop
fast algorithms to connect the different grids involved. In the fluid solver itself, they
are used as a computational grid, enhancing (among others) the parallelization pos-
sibilities. With this work, we have shown the general functionality and efficiency
of all components: octree algorithms in the coupling client, Navier-Stokes solver
on adaptively refined Cartesian grids, balanced parallelization of a solver on adap-
tively refined Cartesian grids. From this basis, we will establish a unified framework
for the simulation of fluid-structure interactions including a (commercial) structure
solver, integrate different mathematical methods for code coupling, data mapping,
discretization, and linear solvers and perform numerous simulations for various ex-
amples to further approve the payload and the flexible applicability of our basic
concepts.

References

[1] U. Becker-Lemgau, M. Hackenberg, B. Steckel, and R. Tilch. Interpolation man-
agement in the grissli coupling-interface for multidisciplinary simulations. In
K.D. Papailiou, D. Tsahalis, J. Périaux, C. Hirsch, and M. Pandolfi, editors,
Computational Fluid Dynamics ’98, Proceedings of the 4th Eccomas Conference
1998, pages 1266–1271, 1998.

[2] M. Brenk, H.-J. Bungartz, M. Mehl, R.-P. Mundani, A. Düster, and D. Scholz.
Efficient interface treatment for fluid-structure interaction on cartesian grids. In
Proc. of the ECCOMAS Thematic Conf. on Comp. Methods for Coupled Problems
in Science and Engineering, 2005.

[3] M. Brenk, H.-J. Bungartz, M. Mehl, and T. Neckel. Fluid-structure interaction
on cartesian grids: Flow simulation and coupling environment. In H.-J. Bungartz
and M. Schäfer, editors, Fluid-Structure Interaction, volume 53 of Lecture Notes
in Computational Science and Engineering, pages 233–269. Springer, 2006.

[4] H.-J. Bungartz and M. Mehl. Cartesian discretisation for fluid-structure inter-
action - efficient flow solver. In Proceedings ECCOMAS CFD 2006, European
Conference on Computational Fluid Dynamics, Egmond an Zee, September 5th-
8th 2006, 2006.

[5] M. Griebel and G.W. Zumbusch. Hash based adaptive parallel multilevel methods
with space-filling curves. NIC Series, 9:479–492, 2002.



598 M. Mehl, T. Neckel, T. Weinzierl

[6] F. Günther, M. Mehl, M. Pögl, and Ch. Zenger. A cache-aware algorithm for
pdes on hierarchical data structures based on space-filling curves. SIAM J. Sci.
Comput., 28(5):1634–1650, 2006.

[7] A. Krahnke. Adaptive Verfahren höherer Ordnung auf cache-optimalen Daten-
strukturen für dreidimensionale Probleme. PhD thesis, Institut für Informatik,
TU München, 2005.

[8] M. Mehl. Cache-optimal data-structures for hierarchical methods on adaptively
refined space-partitioning grids. In M. Gerndt and D. Kranzlmüller, editors,
International Conference on High Performance Computing and Communications
2006, HPCC06, volume 4208 of LNCS, pages 138–147. Springer, 2006.

[9] Fraunhofer SCAI. Mpcci: Multidisciplinary simulations through
code coupling, version 3.0.4 MpCCI Manuals [online], url:
http://www.scai.fraunhofer.de/592.0.html [cited 18 oct. 2006], 2006.


