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Summary. We present a parallel numerical approach for intracellular calcium dy-
namics. Calcium is an important second messenger in cell communication. The dy-
namics of intracellular calcium is determined by the liberation and uptake by cellular
stores as well as reactions with buffers. We develop models and numerical tools to
study the liberation of calcium from the endoplasmic reticulum (ER). This pro-
cess is characterized by the existence of multiple length scales. The modeling of the
problem leads to a nonlinear reaction-diffusion system with natural boundary con-
ditions in 2D. We used piecewise linear finite elements for the spatial discretization
and time discretization by a linearly implicit Runge-Kutta scheme. We used the
CHACO package for the domain decomposition. In our description the dynamics
of IP3-controlled channels remains discrete and stochastic. It is implemented in the
numerical simulation by a stochastic source term in the reaction diffusion equation.
The strongly localized temporal behavior due to the on-off behavior of channels as
well as their spatial localization is treated by an adaptive numerical method.

1 Introduction

Ca2+ acts as an intracellular messenger regulating multiple cellular functions such
as gene expression, secretion, muscle contraction or synaptic plasticity. The Ca2+

signal employed by a variety of processes is a transient increase of the concentration
in the cytosol. This is modeled by a system of reaction-diffusion equations with
stochastic source terms for which we present numerical simulations.

In this article, we will outline the following important factors in the numeri-
cal solution of the problem: grid adaptivity, space and time discretization, coupling
between space and time approximations, and parallelization. Briefly, it is very impor-
tant to have a adaptive grid refinement in the area of clusters to obtain an efficient
and fast numerical solutions. The finite element method is very suitable to handle
these unstructured grids and complex geometry. We use a linearly implicit methods
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to avoid nonlinear algebraic systems which arise for fully implicit methods after
the time discretization. The classical embedding technique for ordinary differential
equation integrators is employed to estimate the error in time. An automatic step
size selection procedure ensures that the step size is as large as possible to guarantee
the desired precision. To speed up the calculations parallelization is essential. Here
the domain decomposition enters at the level of solution of algebraic system, see [1].

The paper is organized as follows. In the second Section we present the model
which comprises calcium-buffer binding, diffusion and transport through the ER
membrane. We will then introduce our method and strategies for grid adaptation,
finite-element discretization and time-stepping in Section 3. Section 4 presents test
results using sequential calculations and based on the domain decomposition method
which is basic to our parallel code. Section 5 gives a short discussion of our work.

2 Governing Equations

The model consists of equations for the following deterministic quantities: calcium
concentration in the cytosol and the ER as well as concentrations of several buffers.
The current 2D model describes the concentrations of the involved chemical species
in a thin layer on both sides of an idealized plane ER membrane. More details
regarding the 2D modeling can be found in [2]. The evolution of concentrations will
be determined by diffusion, transport of calcium through the ER membrane, and
the binding and unbinding of buffer molecules to calcium:

∂c

∂t
= Dc∆c + (Pl + Pc(r))(E − c)− Pp c2

K2
d + c2

−
∑

i

Hi(c, bi), (1)

∂E

∂t
= DE∆E + γ

[
(Pl + Pc(r))(E − c)− Pp c2

K2
d + c2

]
−
∑

j

Kj(c, bE,j), (2)

∂bi
∂t

= Db,i∇2bi +Hi(c, bi), i = s,m, d, (3)

∂bE,j
∂t

= DE,j∇2bE,j +Kj(E, bE,j), j = s,m. (4)

Here c is the concentration of Ca2+ in the cytosol, E is the concentration in the ER.
The buffer concentration of bound calcium in the cytosol and the ER is given by bi or
bE,j , respectively. We have i = s, d,m and j = s,m, where s denotes a stationary, d a
dye and m a mobile buffers. All buffers are assumed to be distributed homogeneously
in the initial state. Immobile buffers are modeled by setting their diffusion coefficient
to zero. Total buffer concentrations in the cytosol and the ER are denoted by Bi
or Gj , respectively. The buffer binding and unbinding of calcium is modeled by the
usual mass-action kinetic terms:

Hi = k+
b,i(Bi − bi)c− k−b,ibi , Kj = k+

E,j(Gj − bE,j)E − k−E,jbE,j . (5)

The second to fourth terms on the right hand sides of (1)-(2) model the transport
of calcium through the membrane: leak current, current through IP3 controlled
channels, and pump current, respectively. Channels are typically clustered on the
membrane [2]. If a channel is open it contributes within the model to an effective
circular source area given by the channel flux term
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Pc(r) =

{
Pch if ‖r− xn‖ < Rn for a cluster n,
0 otherwise.

Here the radius Rn of the cluster n with Nopen,n open channels is then given by
Rn = Rs

√
Nopen,n. The parameter Rs is the source area of a cluster with one open

channel. The position of the cluster is given by a fixed position xn.
An additional complexity of the model stems from the stochastic behavior of

channel openings and closings, which needs to be incorporated into the computa-
tional approach. For an introduction to the hybrid algorithm to couple deterministic
and stochastic simulations see the recent paper by [5].

3 Numerical Method

3.1 Spatial Discretization Using Finite Elements

The domain Ω ⊆ R2 is a convex polygonal subset with piecewise smooth boundary
Γ . The state variables c(x, t), E(x, t), bm(x, t) and bEm(x, t) are functions of space
and time with values in Ω × [0, T ]. We shall denote by L2(Ω) the space of square-
integrable functions over Ω. This space is equipped with the standard inner product
〈u, v〉 =

∫
Ω
uv dx and ‖u‖0 = 〈u, u〉1/2. Next we define a Sobolev space of square

integrable functions and derivatives

H1(Ω) = {v ∈ L2(Ω), ∂iv ∈ L2(Ω), 1 ≤ i ≤ d} .

3.2 Semi Discretization in Space

The partial differential equations can be written in the following general form

∂u(x,t)
∂t

−∇ · (A(x)∇u(x, t)) + r(u(x, t)) = f in Ω × (0, T ] ,
u(x, t) = u0(x) on Ω × t = 0 ,
n · ∇u(x, t) = 0 on ∂Ω × [0, T ] ,

(6)

where u(x, t) is unknown, A(x) > 0 is the diffusion matrix and r(u(x, t)) is the
reaction function. Letting V = H1(Ω), multiplying the above equation for a given
time t by v ∈ V , integrating over Ω and using Green’s formula, we get the vari-

ational formulation. Now let Vh be a finite dimensional subspace of V with basis
{w1, . . . , wN}. Specifically we take continuous functions that are piecewise linear on
a quasi-uniform triangulation of Ω with mesh size h. Finally, we get a system of
ordinary differential equations in the form

Mu̇h + Auh + s(uh) = f , (7)

where M is the mass matrix, A is the stiffness matrix and s(uh) is the vector de-
pending on reaction term. The matrices are defined as follows

M = 〈wi, wj〉 , A = 〈A(x)∇wi,∇wj〉 , s(uh) = 〈r(
N∑

i=1

ui(t)wi(x)), wj〉 .

It is common practice to approximate the mass matrix M by a diagonal matrix,
which can be invertible easily. This is called a lumping process, see [4].
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3.3 Temporal Time-stepping of Continuous Equations

The ordinary differential equation system, acquired from the semi discretization in
space is solved numerically with finite difference methods. We considered the ODE
problem

∂u

∂t
= G(u), u(t0) = u0. (8)

The notation for time step is τ i = ti+1 − ti and ui to be the numerical solution
at time ti. The i-th time step of a W-method (linearly implicit Runge-Kutta type
method) of order p with embedding of order p̂ 6= p has the form

(I− τ iγJ)kj = G

(
ti + τ iaj ,u

i + τ i
j−1∑

l=1

bljkl

)
+

j−1∑

l=1

cljkl, j = 1, . . . , s, (9)

ui+1 = ui + τ i
s∑

l=1

dlkl , ûi+1 = ui + τ i
s∑

l=1

d̂lkl. (10)

The method coefficients γ, aj , bjk, cjk, dj , and d̂j are chosen such that the local error
of u is of order τp+1

i , the local error of û is of order τ p̂+1
i , and these orders are

independent of the matrix J that is used. We assume p > p̂ which is reasonable
since one would prefer to continue the integration with the higher order solution u.
In our computations we use a W-method with s = 3 stages and for the coefficients,
see [6].

After the i-th integration step the value ǫ =
∥∥ui+1 − ûi+1

∥∥ is taken as an esti-
mator of the local temporal error. A new time step τnew is computed by

τ̄ := βτ i
(
TOLt
ǫ

) 1
p̂+1

, τnew =




βmaxτ

i, τ̄ > βmaxτ
i,

βminτ
i, τ̄ < βminτ

i,
τ̄ , otherwise.

(11)

The parameter β > 0 is safety factor. The factors βmin and βmax restrict time step
jumps. If ǫ < TOLt we proceed to the next time step, otherwise the time step has
to be shortened and repeated. Finally, after time discretization, we get system of
algebraic equations in each stage. For solving the system in each stage we used the
BiCGSTAB method with ILU preconditioning.

3.4 Grid Adaptivity

As spatial adaptivity criterion we used the Z2 error estimator of [8], see also [7].
For the refinement we used the following strategy. Let λ(T ) ∈ N0 be the refinement
level of triangle T ∈ T , λmax ∈ N0 be a given maximum refinement level, and
φ1, . . . , φλmax be given real numbers satisfying 0 ≤ φ1 . . . ≤ φλmax . Here we used
the scaled indicator φT := ηZ,T /

√
T . For the initial grid and grid adaption we used

the program package UG, [1]. We refine the mesh until minimum 4 grid points lie
in the area of each channel. For the Test Cases 1 and 2 the initial triangulation a
diameter of 700 nm for the triangle is considered.

Test Case 1. In this case we considered one cluster with 20 channels and the
domain size is [0,18000 nm] × [0,18000 nm]. The final mesh for this test case can
be seen in the left hand Fig. 1.
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Fig. 1. Mesh level 6 for 1 cluster and 100 clusters, convergence result of cytosolic
calcium at different adaptive levels.

Test Case 2. In this case we considered 100 clusters with a distance of 4 µm and
each cluster consists of 20 channels. The domain size is [0,48000 nm] × [0,48000 nm].
The final mesh for this test case can be seen in the middle Fig. 1.

4 Numerical Results

In this subsection we will present the convergence results of one cluster with 1 open-
ing channel. In all simulations we used the parameters Dc = 200 µm2 s−1, DE =
200 µm2s−1, Dm = 40 µm2s−1, Ds = 0.01 µm2s−1, Pch = 3.0 µms−1, Pl =
0.025 µms−1, Pp = 200 µmµM s−1, Rs = 18 nm, Kd = 0.04 µM and initial solu-
tions for c0 = 0.06 µM, Ec = 700 µM . First let us consider that in the numerical
simulation one channel is open for a while. We tested the result with temporally
adapted different grid levels. For different levels the average value of cytosol calcium
concentration is shown in the right hand Fig. 1. The average value of the solution
is calculated by using the integral average f̄ = 1

|Ω|
∫
Ω
f(x) dx . In the next case, see

Fig. 2, we have incorporated grid adaptivity during the intermediate time steps at
mesh level 7. Here channel opening is considered in the stochastic regime. Initially
mesh level 7 contains 2737 nodes and 5284 elements, at time t = 6.504 s has 3216
nodes and 6242 elements, at time t = 8.92 s it reaches to 18493 nodes and 36796 el-
ements. In Fig. 3 the cytosolic calcium at different times with 100 clusters is shown.

Fig. 2. The numerical result of cytosolic calcium at time t = 6.504 s, 6.68 s, 8.92 s
in 1 cluster.
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Here the channel opening is simulated stochastically.

Fig. 3. The numerical result of cytosolic calcium at times = 5.50 s, 6.13 s, 9.60 s
in 100 cluster.

4.1 Numerical Results Using Domain Decomposition Methods

In our numerical code to run the simulation time 100 s on a single processor, the
CPU time takes around 50 days. To reduce the computational time and to be able to
increase the number of mesh elements to millions the use of parallel computer archi-
tectures is mandatory. For the domain decomposition we used the graph partition-
ing package CHACO of [3]. The load balancing scheme Recursive Inertial Bisection
(RIB) serves well for this problem. Load balancing has been achieved as follows: the
meshes of level-0 to level-5 have been kept on one processor and the level-6 mesh has
been distributed to all processors. The mesh decomposition to different processors is
shown in Fig. 4.1. Computations for this problem have been carried out on HP-UX
B.11.11 machines with 2GB RAM for each processor this is connected to a 64 node
cluster with 3GFOLPS processor speed at our Institute.

Fig. 4. Domain decomposition using 16, 32 and 48 processors

Performance data of the simulations are presented in Table 1. The time step
size is kept constant in all simulations for the sake of comparison. The first column
shows the number of processors used and the last column shows the efficiency of
the processors. This efficiency can be calculated using 1

P
T (1)
T (P )

, where T (1) and T (P )
are total CPU time for 1 processor and P processors. Efficiency is increased if we
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Table 1. Comparison of CPU times using different processors

no. of procs unknowns time steps cpu time efficiency

1 133,296 10 26m 46s -
16 133,296 10 2m 16s 0.7381
32 133,296 10 1m 2s 0.8095
48 133,296 10 38s 0.8805
56 133,296 10 32s 0.8962

increase the number of processors, because of the data structure of the programming
package. The increase of the efficiency for 56 processors is 89.62%.

5 Conclusions

In this article we have presented sequential and parallel numerical results for in-
tracellular calcium dynamics in 2 dimensions. In the sequential case, we presented
the results of hybrid deterministic and stochastic models. In a test, we obtained
good agreement between all mesh levels when channels open for a prescribed time.
We observed that spatial adaptivity in time is important if channels open and close
stochastically. It is challenging to extend the computations to higher numbers of
clusters and 3 dimensions. Furthermore, we presented parallel numerical results us-
ing domain decomposition for a setup, where the channels open in a prescribed
deterministic way. Here we obtained a reasonably accurate numerical solution upon
increasing the number of processors. Extension of our parallel program to stochastic
channel dynamics is in progress.
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meinschaft (DFG), Germany for financial support under the project grants (Wa
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