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Summary. The main goal of this paper is to present the application of a decentral-
ization optimization principle from Game Theory to the solution of direct and inverse
problems in Fluid Dynamics. It is shown in particular that multicriteria optimization
methods “à la Nash” combine ideally with domain decomposition methods, with or
without overlapping in order to solve complex problems. The resulting methodology
is flexible and in the case of design problems has shown to perform well when using
adjoint based techniques or evolutionary algorithms for the optimization.

The above methodology is applied to the simulation and shape design optimiza-
tion for flows in nozzles and around aerodynamical shapes.The results of various
numerical experiments show the efficiency of the method presented here.

1 Introduction

In this paper we introduce a new methodology to solve inverse problems in
Fluid Dynamics using Genetic Algorithms and Game Theory. This method-
ology amounts to finding (suitable) Nash points for “local inverse problems”.
These Nash points are approximated by Genetic Algorithms (GAs) suitably
constructed. This is an example of a completely general method, presented in
[7] and [4]. GAs are different from traditional optimization tools and based on
digital imitation of biological evolution. Game Theory replaces here a global
optimization problem by a non-cooperative game based on Nash equilibrium
with several players solving local constrained sub-optimization tasks. The
main idea developed here is to consider two Nash applications of Game The-
ory under conflict introduced in a flow analysis solver (1) and a GAs optimizer
(2) as follows:
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(1) a flow analysis solver modeled by the potential equations uses over-
lapping domain decomposition methods (DDM). A variant of the classical
DDM Schwarz method is considered with optimal control/GAs techniques. It
uses the distance of local solutions on the overlapping regions as global fit-
ness function described in a previous paper with GAs [11]. Then a Nash/GAs
game whose decentralized players are in charge of the matching of local solu-
tions as multi fitness functions is associated to the global problem. During the
evolution process the search space of each genetic point at the interfaces of
overlapping domain is implemented on adapted interval. This new approach
is shown to request less information for convergence than the global one.

(2) the above DDM flow solver is then used to feed a Nash/GAs optimizer
for the surface pressure reconstruction of nozzle shapes parameterized with
local Bézier’s splines. During this Nash iteration, the information exchange
between DDM flow solver is nested to the shape-GAs optimizer.

Numerical experiments presented on inverse problems of a nozzle with
Laplace’s solver illustrate both the efficiency and robustness of decentralized
optimization strategies. The promising inherent parallel properties of Nash
games implemented with GAs on distributed computers and their possible
further extensions to non-linear flows are also discussed.

2 Nash and GAs

2.1 Generalities

Many multi objective optimization problems are still not solved perfectly and
some are found to be difficult to solve using traditional weighted objective
techniques [17, 6]. GAs have been shown to be both global and robust over
a broad spectrum of problems. Shaffer was the first to propose a genetic al-
gorithm approach for multi objectives through his Vector Evaluated Genetic
Algorithms (VEGA [15]), but it was biased towards the extreme of each ob-
jective. Goldberg proposed a solution to this particular problem with both
non dominance Pareto-ranking and sharing, in order to distribute the solu-
tions over the entire Pareto front [5]. This cooperative approach was further
developed in [16], and lead to many applications [14]. All of these approaches
are based on Pareto ranking and use either sharing or mating restrictions to
ensure diversity; a good overview can be found in [3]. Another non coopera-
tive approach with the notion of player has been introduced by J. Nash [10]
in the early 50’ for multi objective optimization problems originating from
Game Theory and Economics. The following section is devoted to an original
non cooperative multi objective algorithm, which is based on Nash equilibria.

2.2 Definition of a Nash Equilibrium

For an optimization problem with G objectives, a Nash strategy consists in
having G players, each optimizing his own criterion. However, each player has
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to optimize his criterion given that all the other criteria are fixed by the rest
of the players. When no player can further improve his criterion, it means that
the system has reached a state of equilibrium called Nash Equilibrium. Let E
be the search space for the first criterion and F the search space for the second
criterion. A strategy pair (x, y) ∈ E × F is said to be a Nash equilibrium iff:

fE(x, y) = inf
x∈E

fE(x, y)

fF (x, y) = inf
y∈F

fF (x, y)

It may also be defined by:
u = (u1, . . . , uG) is a Nash equilibrium iff: ∀i,∀vi

Ji(u1, .., ui−1, ui, ui+1, ..uG) ≤ Ji(u1, .., ui−1, vi, ui+1, ..uG)

It may be difficult to exhibit such an equilibrium in particular for non
differentiable problems.

2.3 Description of a Nash/GAs

The following stage consists in merging GAs and Nash strategy in order to
make the genetic algorithm build the Nash Equilibrium for a complete de-
scription (see [13, 18]).

Let s = XY be the string representing the potential solution for a dual
objective optimization, where X corresponds to the first criterion and Y to
the second one. The first idea is to assign the optimization task of X to a
player called Player 1 and the optimization task of Y to Player 2. Thus,
as advocated by Nash theory, Player 1 optimizes s with respect to the first
criterion by modifying X, while Y is fixed by Player 2. Symmetrically, Player
2 optimizes s with respect to the second criterion by modifying Y while X is
fixed by Player 1 (see [13] for details).

The next step consists in creating two different populations, one for each
player. Player 1’s optimization task is performed by population 1 whereas
Player 2’s optimization task is performed by population 2.

Let Xk−1 be the best value found by Player 1 at generation k − 1, and
Yk−1 the best value found by Player 2 at generation k − 1. At generation
k, Player 1 optimizes Xk while using Yk−1 in order to evaluate s (in this
case, s = XkYk−1). At the same time, Player 2 optimizes Yk while using
Xk−1 (s = Xk−1Yk). After the optimization process, Player 1 sends the best
value Xk to Player 2 who will use it at generation k + 1. Similarly, Player
2 sends the best value Yk to Player 1 who will use it at generation k + 1.
Nash equilibrium is reached when neither Player 1 nor Player 2 can further
improve their criteria.

This setting may seem to be similar to that of Island Models in Parallel
Genetic Algorithms (PGA [9]). However, there is a fundamental difference
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Fig. 1. Description of a nozzle with two subdomains

which lays in the notion of equilibrium for Nash approach. Nash equilibria do
not correspond only to robust convergence, but have also very good stability
properties compared to cooperative strategies. The mechanisms of the Nash-
GAs described here are directly used in the following sections.

3 An Implementation of Nash/GAs Game for the DDM
Flow Problem

3.1 Description of the DDM Flow Problem

The DDM optimization problem considered here concerns an incompressible
potential flow in a nozzle modeled by the Laplace equation with Dirichlet
boundary conditions at the entrance and exit and homogeneous Neumann
conditions on the walls. As shown in Fig. 1, the computational domain Ω
is decomposed into two subdomains Ω1 and Ω2 with overlapping Ω12 whose
interfaces are denoted by γ1 and γ2. We shall prescribe potential values, g1
on γ1 and g2 on γ2, as extra Dirichlet boundary conditions in order to ob-
tain potential solutions Φ in each subdomain. Using domain decomposition
techniques, the problem of the flow can be reduced to minimize the following
functional [2]:

JF (g1, g2) =
1

2
‖ Φ1(g1) − Φ2(g2) ‖2 (1)

where Φ1 and Φ2 are the solutions in the overlapping subdomain Ω12, ‖ · ‖ de-
notes an appropriate norm, whose choice will be made precise in the examples
which follow.

For the minimization problem (1), we have presented a variant of the
classical DDM Schwarz method with optimal control/GAs techniques [11] and
have made a further extension with genetic treatment at the interface of the
subdomains (for details, see [12]). In the following sections, an implementation
of Nash/GAs with decentralized players will be addressed.

3.2 Decentralized Multi-Fitness Functions

As mentioned above, in the previous work of references [11, 12], the global fit-
ness function used in GAs is the distance of local solutions on the overlapping
domains (see (1)), which could be
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JF (g1, g2) =
1

2

∫

Ω12

|Φ1(g1) − Φ2(g2)|2dΩ . (2)

In this paper, we use boundary integrals instead of the domain integral and
we choose for (2) the criteria introduced in (3). The minimization problem
(1) can be reduced to minimize the following function based on boundary
integral:

JFB(g1, g2) =
1

2

∫

γ1

|Φ1(g1)−Φ2(g2)|2dγ1 +
1

2

∫

γ2

|Φ1(g1)−Φ2(g2)|2dγ2. (3)

Being associated to the global fitness function JFB(g1, g2), the decentralized
multi fitness functions JFB1(g1, g2) and JFB2(g1, g2) are defined with the
following two minimizations:

inf
g1

JFB1(g1, g2) with JFB1(g1, g2) =
1

2

∫

γ1

|Φ1(g1) − Φ2(g2)|2dγ1,

inf
g2

JFB2(g1, g2) with JFB2(g1, g2) =
1

2

∫

γ2

|Φ1(g1) − Φ2(g2)|2dγ2. (4)

The inf of the functionals (2) or (3) is zero. Therefore if in searching for a Nash
equilibrium (4) we find one such that infg1

= 0 and infg2
= 0 then it is the

solution of inf (3). There could be other Nash points which would not solve
the problem if infg1

> 0 for instance. The global DDM solution can be found
through searching a Nash equilibrium between the above two minimizations
based on the treatments described in the next sections.

3.3 An Implementation of Nash/GAs Game

Following the description of section 2.3, we can simulate the DDM flow op-
timization problem as a Nash game with two decentralized players, Flow-
GA1 and Flow-GA2 in charge of objective functions JFB1(g1, g2) and
JFB2(g1, g2), respectively. Note that each player optimizes the corresponding
objective function with respect to non-underlined variables. After discretiza-
tion of the problem, we have g1 =g1i and g2 =g2i, i = 1, ny (ny is mesh size
in y direction). Following the genetic treatment at the interface of reference
[12], for each interface, one point is binary encoded (for instance, g11 for γ1

and g21 for γ2). Other values of g1i and g2i (i ≥ 2) are corrected by numerical
values (for details, see [12]). The whole structure of the implementation based
on the information exchange between players is described as follows:

Step 0: (Initialization) Given initial interval (gmin, gmax) as search space for two
genetic points, g11 and g21, and then start with two set of randomly created
genetic points to form two initial populations for each players, Flow-GA1 and
Flow-GA2.

Step 1: Flow-GA1 and Flow-GA2 run separately until the iteration number equals
the exchange frequency number.
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Step 2: Exchange current the fittest flow information between Flow-GA1 and Flow-
GA2.

Step 3: Repeat the Step 1 to Step 2 until no player can further improve his fitness.

It should be noted that Flow-GA1 operates for the left part and Flow-GA2
for the right part of the nozzle. In fact, we have prescribed δ0 = 1

2 (gmax−gmin)
in the initialization step. In this paper, Flow-GA1 updates g2 from the fittest
individual of Flow-GA2. Besides, the search space of g11 is adapted with:

(g21 − δn, g21 + δn)

where g21 is the first component of vector g2 updated by other player, Flow-

GA2, through Nash-exchange and δn = faδn−1, where fa < 1. In other words,
δn is adapted and gradually approached to a small value with the Nash gener-
ation, which can ensure accuracy similar to a real value encoding. Numerical
experiments have shown that this treatment is helpful for the present method
to have the Nash equilibrium. In the meantime Flow-GA2 player is doing the
same as Flow-GA1 player.

The significant extent of parallelism properties gained from the above
method has further improvement compared with previous work of reference
[11] or other flow solvers using Domain Decomposition techniques. This DDM
flow solver will be used to feed a Nash/GAs shape optimizer described in the
following section.

4 Shape Optimization Problem Using Nash/GAs with
DDM

The DDM shape optimization problem considered here involves the inverse
problem of a nozzle using a reconstruction technique and domain decompo-
sition method using Nash/GAs. For the inverse problem, the global shape
optimization is to find a shape (denoted, y = s(x), x ∈ [A,B], see Fig. 1) of
a nozzle which realizes a prescribed pressure distribution on its boundary for
a given flow condition. This problem has the following formulation:

inf
s
JS(s) with JS(s) =

1

2

∫

[AB]

|ps − pt|2ds (5)

where pt is a given target pressure and ps the actual flow pressure on the shape
s. Let s1(x), x ∈ [A,D] and s2(x), x ∈ [C,B] be the split shapes, then if s(x) =
s1(x)

⋃
s2(x), we consider the two following local optimization problems:

inf
s1

JS1(s1, s2) with JS1(s1, s2) =
1

2

∫

[AD]

|ps1
− pt|2ds1

inf
s2

JS2(s1, s2) with JS2(s1, s2) =
1

2

∫

[CB]

|ps2
− pt|2ds2 (6)
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with the constraint that s1 = s2 on interval C,D. Then inf JS1 = 0 on s1
and inf JS2 = 0 on s2 is the solution of (6) considered in the sequel. The
global shape optimization solution can be found through searching a Nash
equilibrium between the above two minimizations. The DDM flow problem
described in the section 3 will provide information to the shape optimization
problem using Nash strategy.

4.1 Parameterization of the Shape of the Nozzle

Using GAs, the candidate shapes of the inverse problem mentioned above are
represented by a Bézier curve of order n, which reads [1]:

x(t) =

n∑

i=0

cint
i(1 − t)n−ixi, y(t) =

n∑

i=0

cint
i(1 − t)n−iyi

where cin = n!
i!(n−i)! and (xi, yi) are control points of the curve, t is the param-

eter whose values vary between [0,1]. To limit the size of the search space, we
vary the control points only in the y direction with fixed xi values. JS(s) is
used as fitness function and real coding is used for yi, which forms a string
denoted {y0y1y2...yn−1yn}. One site uniform crossover and non-uniform mu-
tation are used in the present work (for details, see the work of Michalewicz
[8]). The treatment of continuity between two split shapes mentioned above
will be described in the next section.

4.2 Solution Method and Its Implementation

Following the description of section 2.3, we can now play a practical game
of this DDM-shape optimization problem with two players, Shape-GA1 and
Shape-GA2 in charge of objective functions JS1(s1, s2) and JS2(s1, s2), re-
spectively. With DDM, Shape-GA1 has a follower Flow-GA1 with objective
function JF1(g1, g2) and Shape-GA2 has another follower Flow-GA2 with ob-
jective function JF2(g1, g2). Note that each player or follower optimizes the
corresponding objective function with respect to non-underlined variables.
The whole structure of the implementation based on the information exchange
between players is described as follows:

Step 0: (Initialization) Start with a randomly created shape s(x), x ∈ [A,B] and
split it into two curves s1 and s2 as starting curves for Shape-GA1 and Shape-
GA2

Step 1: Shape-GA1 and Shape-GA2 run separately until the iteration number
equals the exchange frequency number.

Step 2: Exchange current the fittest shape information between Shape-GA1 and
Shape-GA2.

Step 3: Repeat the Step 1 to Step 2 until no player can further improve his fitness.
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It is noted that Shape-GA1 operates for the left part and Shape-GA2 for
the right part of the nozzle. In this paper, Shape-GA1 receives the y coordinate
value and slope of the point D from the fittest curve s2 of Shape-GA2. This
value will be used for the end control point of the Bézier curve of s1 in Shape-
GA1 for the next step. This treatment ensures continuity and is expected to
have smoothness at the overlapping segment ĈD. Shape-GA2 does the same
as Shape-GA1 meanwhile.

The calculation of each shape fitness requires to solve the flow equations
by CFD solvers over the whole domain. Combining DDM with the local geo-
metrical optimization, the flow field can be solved separately by two followers
Flow-GA1 and Flow-GA2 in each subdomain. The flow-GAs returns the cur-
rent fittest flow solution to Shape-GAs for computing fitness of each shape and
the information exchange between two followers happens during the exchange
between the shape players. We are satisfied when each local problem gives
“zero” (very small) for the local criteria.

The problem (6) with Shape-GA1 and Shape-GA2 is a Nash problem solved
with a floating point coded GA, whereas the problem (4) with Flow-GA1 and
Flow-GA2 is solved with a binary coded Nash GA. Problems (4) and (6) are
coupled since a precise solution of the DDM flow solver via (4) is necessary
to evaluate candidate solutions of optimization problem via (6).

5 Results and Analysis

With the method presented above, we have tested both the DDM flow problem
and the nozzle reconstruction problem, respectively. Exchange frequency for
Nash/GAs is 1. The potential values are predicted by a finite element Laplace’s
solver based on a direct Choleski method. The probability of crossover Pc =
0.85 and the probability of mutation Pm = 0.09 are not carefully selected
but are fixed for Flow-GAs. The parameters used in Shape-GAs are 0.6 for
crossover rate and 0.108 for mutation rate.

We first present the preliminary results of the DDM flow problem with the
Nash/GAs game described in the the section 3. The convergence histories of
the fittest individual are shown in Fig. 2. Following the trace of the domain
integral of the current fittest values of JF (g1, g2), we find that the value of the
domain integral JF has been reduced from 1.2E-2 to 1.6E-7, which confirms
that the present Nash/GAs method works well for the test case.

The numerical results of the method described in the section 4 tested for
a nozzle reconstruction problem are presented in Figs. 3-5. As the pressure
distribution Cp matches the target, the corresponding nozzle shape is recon-
structed successfully (see Fig. 5).
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Fig. 2. Convergence histories: (a) Flow-GA1 and (b) Flow-GA2
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6 Conclusion and Possible Extensions

From the experiments described in this paper, it is clear that GAs and DDM
may provide robust tools to solve complex distributed optimization problems.
It is shown that one can decompose a “global” cost function into a sum of
“local” cost functions and under circumstances it is sufficient to look for Nash
equilibrium points (or special Nash points). The multi objective techniques
with decentralized players discussed here demonstrate convincingly that com-
bining ideas from Economics or Game Theory with GAs may lead to power-
ful distributed optimization methods for Engineering problems. A significant
saving in the above process in terms of elapsed time in a distributed parallel
networked environment is anticipated by replacing expensive global commu-
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nication (standard strong collective optimality) by local communication (non
standard weaker individual optimality).

The preliminary results presented above should be checked on many sub-
domains in dimension 3 and extended to non linear flow situations. Very
many other problems can be considered by related methods. Some of them
are indicated in the CRAS note by the authors [7] and several papers are in
preparation.
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