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Summary. Spectral element approximations based on triangular elements and on
the so-called Fekete points of the triangle have been recently developed. p-multigrid
methods offer an interesting way to resolve efficiently the resulting ill-conditioned
algebraic systems. For elliptic problems, it is shown that a well chosen restriction
operator and a good set up of the coarse grid matrices may lead to valuable results,
even with a standard Gauss-Seidel smoother.

1 Introduction

As well known, high-order approximations are highly accurate as soon as the solu-
tion is smooth and, usually, require less grid-points than low-order methods. Un-
fortunately, the resulting algebraic system is severely ill-conditioned. Thus, for a
two-dimensional (2D) second order Partial Differential Equation (PDE), a high or-
der Finite Element Method (FEM) usually yields a condition number proportional
to N*, where N = p is the (total) degree of the polynomial approximation on each
triangular element. Efficient solvers are then required.

Different approaches have been investigated in our previous works. Especially,
for Fekete triangular spectral elements we have focused on Overlapping Schwarz
methods [7] and on Schur complement methods [9]. In both cases, the idea was to
consider each element as a different subdomain and then to apply classical domain
decomposition preconditioners. Similarly, here we investigate a p-multigrid method
so that the roughest approximation may be the one obtained with the standard
Py FEM. For the usual SEM (Spectral Element Method), a multigrid spectral ele-
ment approach was first proposed in [10] and more recently investigated in [3]. For
standard spectral methods one can cite [13, 4] and, among others, [6] for hp-FEM.

The outline of the paper is the following. To be self contained, in Section 2 the
Fekete-Gauss TSEM (Triangles based SEM) is briefly described. In Section 3 we
propose different restriction algorithms and strategies for setting up the coarse-grid
algebraic systems, test these different approaches and then optimize the smoother
for one triangular spectral element. In Section 4, the best approach is implemented
in a TSEM solver, applied to an elliptic model problem and a convergence study is
carried out. We conclude and offer some perspectives in Section 5.



486 V. Dolean, R. Pasquetti, F. Rapetti
2 The Fekete-Gauss TSEM

The (quadrilateral-based) SEM makes use of the Gauss-Lobatto-Legendre (GLL)
points, for both the approximation and the quadrature points. GLL points have
indeed nice approximation and integration properties. Unfortunately, such a single
set of points does not exist for the triangle. Thus, in its initial version the Fekete
points based TSEM [11] may fail to show the “spectral accuracy” property [8].
The Fekete-Gauss TSEM makes use of two sets of points:
- The Fekete points, {x;}i=;, as approximation points:

n

u(x) ~ Zu(ml) pi(z), ze€T

1=0

where the ¢; are the Lagrange polynomials, given by ¢;(z;) = ;5.
- Gauss points, {y; }i~, as quadrature points:

/Tuv dT =~ Z piu(y:)v(y:)

i=0

where the p; are the Gauss quadrature weights.

Let T = {(r,s) : =1 <m,s, r+s <0} and Pn(T) be the set of polynomials
on T of total degree < N. Let n = (N + 1)(N +2)/2 and {+;}7—; be any basis of
Pn (T). The Fekete points {x;}i—; are those which maximize over T the determinant
of the Vandermonde matrix V, given by Vi; = ¢;(x;), 1 <4,j < n.

In Fig. 1 (top) we compare the GLL points of the quadrilateral and the Fekete
points of the triangle [12], for N = 12 (maximum degree in each variable for the
quadrilateral and total degree for the triangle). In Fig. 1 (bottom) we give the
Gauss points of the triangle for M = 19 (maximum polynomial degree for which
the quadrature is exact) and those obtained from the Gauss points, with a mapping
of the quadrilateral onto the triangle. The latter set of points may be of interest
for values of M for which symmetrically distributed Gauss points are unknown.
As advocated in [5], GLL points mapped onto the triangle may be used for both
approximation and quadrature points, but at the price of an useless accumulation
of points in one vertex.

The Fekete points of the triangle show some nice properties [12, 1]: (i) Fekete
points are GLL points for the cube; (ii) Fekete points of the triangle are GLL points
on the sides; (iii) The Lagrange polynomials based on Fekete points are maximum
at these points.

3 Multigrid Strategy for the Triangle

We assume to have two grids, a coarse grid (grid 1) and a fine grid (grid 2) and denote
the polynomial approximation degree by Nj, the set of Fekete points by {z]} and
the Lagrange polynomials based on these points by {¢?}, for grid 7, 1 < j < 2.
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Fig. 1. Top: Triangle-Fekete and quadrilateral-GLL points (N = 12), Bottom:
Triangle-Gauss and quadrilateral-Gauss mapped points (M = 19)

3.1 Prolongation / Restriction Operators and Coarse Grid System

Defining a prolongation operator is natural in the frame of spectral methods. Since
the numerical approximation is everywhere defined, one has simply to express the
coarse grid approximation at the Fekete points of the fine grid, to obtain:

ua(@f) = wi(a?) = 3 (@)} (ad)

where u; = un; denotes the numerical approximation on grid j. In matrix form,
with obvious notations:

uz = Puy, [Pl :‘P;(zf)

Defining a restriction operator is less straightforward. We have investigated the
following approaches:

- Interpolation: similarly to what is done for the prolongation operator, one can
use the fine grid approximation to set up the restriction operator:

ui(z}) =Y ua(a})el(x), w =Rus, [Rly=¢}(x).
J

Such an approach is essentially justified for collocation methods, i.e., when the Right
Hand Side (RHS) is a function and not an integral simply associated to a particular
point through the corresponding Lagrange polynomial.

- Transposition (variational methods): if one takes into account the particular
structure of the RHS, then
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(fr0) = (£ _wi@)e]) =>_ i (@3)(f,9]) sothat R=P*
J J

- Projection: let {1;}§2, be an orthogonal hierarchical basis, e.g., the Koornwin-
der-Dubiner basis [2], then :

up(a?) = Y dppr(z}) and wi(wi) = Y dxtp(z])

k<no k<ni

so that: R = Vi[Id,0]V2"" (Id, Identity matrix). Again this approach is better
adapted to collocation methods.

It remains to set up the coarse grid algebraic system. On the coarse grid one has
to solve Aje; = ri, with r1 = Rry (r2, residual at the fine grid level; e;, error at
the coarse grid level). One has at least the two following possibilities:

- Matrix A; may be set up directly, i.e., like A2. This approach is the one used
in [10].

- Matrix A1 may be set up from: A1 = RA2P, i.e., by “aggregation” of As. In
this case one can easily check that if R = Pt, then e; such that Aie; = Rrs solves
the constrained optimization problem: minimize

#(u*) = 0.5(A2u”,u”) — (b,u”) constrained by
u” = us + Pe; .
Numerical tests have been carried out for —Au + v = f in T, with the exact

solution: Uezact = sin(2z + y) sin(z + 1) sin(1 — y) and the corresponding source
term and Dirichlet boundary conditions.

Table 1. Number of iterations at the fine grid level / number of V-cycles. Compar-
ison with Gauss-Seidel (GS).

N-Grids | I-D | T-D | P-D | T-A |GS
(6,12) |48 /6|83 /11|48 /6|40 /5|78
(3,6,12) |48 /6|92 /12|48 /6|40 / 5|78
(6,12,18) |92 / 12|356 / 45|84 / 11|72 / 9|203
(3,6,12,18)[92 / 12364 / 46|84 / 11|72 / 9|203

Depending on (i) the restriction strategy: Interpolation, Transposition or Pro-
jection and (ii) the setting up of the coarse matrix: Direct or Aggregation, four
cases are considered: I-D, T-D, P-D and T-A. In these numerical tests, the number
of grids is not restricted to 2, we use a V-cycle and at the smoothing grid levels 4
Gauss-Seidel iterations.

The number of iterations at the fine grid and the number of V-cycles required to
get a residual less than 1076 are given in Table 1. The multigrid results are compared
to those obtained with the Gauss-Seidel (GS) method. Clearly, the transposition-
aggregation (T-A) strategy gives the best results. Moreover, one observes that the
number of iterations at the fine grid level is nearly independent of the number of
grids involved in the V-cycle.
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3.2 Analysis of the Smoother

On the basis of the following Successive Over Relaxation (SOR) decomposition of
the matrix As, associated to the fine grid

A= LDtwn) - La-w)p-wt]=N-M

w w
with D, L, U: the Diagonal, strictly Lower and Upper triangular parts of Az, we
want to optimize the relaxation coefficient w and the number of iterations m of each
SOR smoothing. Note that the GS smoothing is recovered for w = 1 and that, to
obtain a stable algorithm, 0 < w < 2.

We follow here an approach similar to the one proposed in [10]. Let n be the
iteration index, defined as the sum of the number of iterations on grid 2 and the
number of coarse grid corrections, €” the error and r™ the residual.

- Pre-smoothing: after m iterations:

en+m _ (NflM)men rn+m — A2en+m _ AQ(NflM)mAglrn
- After the coarse grid correction:
en+m+l en+m _ PA;lRI'ner
et = (Id — Ay PAT'R) e

- Post-smoothing: after m iterations:

rn+2m+1 _ AQ(NilM)mAgl rn+m+1 — Trn
T = Ay(N“'M)™ Ay (Id — AsPAT'R)Ao(N ' M) A5 " .

Then:
[T = et < T = 2 ], plw, m) = ([T D

The parameter p(w, m) that we have introduced may constitute a good indicator of
the smoothing efficiency and so it allows an optimization of the relaxation parameter
and of the number of iterations.

From the conclusion of Section 3.1, the restriction is achieved by transposition
and the coarse grid matrix A; is set up by aggregation of the fine grid matrix As.
Figure 2 shows isolines of p in the (m,w) plane. Clearly, choosing w = 1 appears
satisfactory and increasing the number of iterations beyond 4 appears useless, since
this does not allow to really decrease the value of p.

4 Application to a Model Problem

The present multigrid method has been implemented in a TSEM solver using the
T-A strategy and an arbitrary number (> 2) of grids. The matrix A;, associated to
the level i, is computed from :

K
A = Z/Ri Apiv1 B R, =P}
k=1
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Fig. 2. p(w,m) for the || - || (left) and || - |2 norms (right); N1 = 3, N2 = 6 (top)
and N1 =6, N2 = 12 (bottom)

where R;, P; are the restriction and prolongation operators between grids ¢ (coarse)
and i+1 (fine), 3" is the stiffness sum and Ay, ;41 is the element matrix associated to
the element k < K at the grid level (:41). Note that the restriction and prolongation
operators are set up on the reference element, where the polynomial approximation
holds, and so they do not depend on the element index k.

Convergence tests have been made for the elliptic PDE, —Au +uv = f in
2 = (—1,1)%, with the exact solution tegact = sin(rz) sin(my) and corresponding
Dirichlet boundary conditions and source term.

The computational domain 2 = (—1,1)? has been discretized using K = 10 x
10 x 2 = 200 triangular elements and N = 12. One has then 14641 degrees of freedom
and the condition number of the system matrix equals 55345.

In Fig. 3 are shown convergence results for different configurations involving
from 2 to 4 grids and comparisons are provided with the Conjugate Gradient and
the Gauss-Seidel algorithms. Clearly the multigrid technique appears very efficient.
Moreover, just like for one triangular element, the results obtained with N = 12 for
the fine grid show that the convergence rate is nearly independent of the number of
grids, so that the exact solve is only required on a very coarse grid. The convergence
result given for the finer grid N = 18 shows that the convergence rate only slightly
deteriorates, consistently with the results obtained for one element.
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Fig. 3. MG convergence for N = (6,12), N = (3,6,12), N = (2,3,6,12) (10 cycles)
and N = (3,6,12,18) (13 cycles). Comparisons with CG and GS for N = 12.

5 Conclusion and Perspectives

A multigrid approach has been investigated for the TSEM approximation of elliptic
problems. In particular,

- For one triangular Fekete-Gauss spectral element, different formulations of the
restriction operator and of the coarse grid matrix have been compared. The best
results are obtained when the restriction operator is defined by transposition and
the coarse matrices by aggregation.

- An analysis of the influence of the control parameters (w and m) of the SOR-
smoother has been carried out. Good properties are obtained for w = 1 and m = 4.

- This multigrid approach has been implemented in a TSEM solver and tests
have been carried out for a model problem.

Many points have not yet been investigated, e.g., (i) influence of a deformation
of the mesh, (ii) comparisons with standard (quadrilateral based) SEM and (iii)
improvement of the smoother.

Beyond that, it would be interesting to provide extensions to 3D geometries and
also to more realistic problems, like fluid flows in complex geometries.
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