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Summary. We propose a Robin domain decomposition algorithm to approximate
a frictionless Signorini contact problem between two elastic bodies. The present
method is a generalization to variational inequality of Lions’ nonoverlapping domain
decomposition method. The Robin algorithm is a parallel one, in which we have to
solve a contact problem on each domain.

1 Introduction

Contact problems take an important place in computational structural mechanics
(see [8, 10, 13] and the references therein). Many numerical procedures have been
proposed in the literature. They are based on standard numerical solvers for the
solution of global problem in combination with a special implementation of the non-
linear contact conditions (see [5, 4]).
The numerical treatment of such nonclassical contact problems leads to very large
(due to the large ratio of degrees of freedom concerned by contact conditions) and ill-
conditioned systems. Domain decomposition methods are good alternative to over-
come this difficulties (see [2, 3, 15, 11, 14]).

The aim of this paper is to present and study an efficient iterative schemes
based on domain decomposition techniques for a nonlinear problem modeling the
frictionless contact of linear elastic bodies. The present method is a generalization
to variational inequality of the method described in [17, 9]. It can be interpreted as
a nonlinear Robin-Robin type preconditioner.

2 Weak Formulation of the Continuous Problem

Let us consider two elastic bodies, occupying two bounded domains Ωα, α = 1, 2,
of the space R2. The boundary Γα = ∂Ωα is assumed piecewise continuous, and
composed of three complementary parts Γαu , Γαℓ and Γαc . The body Ω

α
is fixed on
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the set Γαu of positive measure. It is subject to surface traction forces Φα ∈ (L2(Γαℓ ))2

and the body forces are denoted by fα ∈ (L2(Ωα))2. In the initial configuration, both
bodies have a common contact portion Γc = Γ 1

c = Γ 2
c . We seek the displacement

field u = (u1, u2) (where the notation uα stands for u|Ωα) and the stress tensor
field σ = (σ(u1), σ(u2)) satisfying the following equations and conditions (1)-(3) for
α = 1, 2: 



div σ(uα) + fα = 0 in Ωα,
σ(uα)nα − Φα = 0 on Γαℓ ,
uα = 0 on Γαu .

(1)

The symbol div denotes the divergence operator of a tensor function and is defined
as

div σ =
(∂σij
∂xj

)
i
.

The summation convention of repeated indices is adopted. The elastic constitutive
law, is given by Hooke’s law for homogeneous and isotropic solid:

σ(uα) = Aα(x)ε(uα), (2)

where Aα(x) = (aαijkh(x))1≤i,j,k,h≤2 ∈ (L∞(Ωα))16 is a fourth-order tensor satisfy-
ing the usual symmetry and ellipticity conditions in elasticity. The linearized strain
tensor ε(uα) is given by

ε(uα) =
1

2

(
∇uα + (∇uα)T

)
.

We will use the usual notations for the normal and tangential components of
displacement and stress vector on the contact zone Γc:

uαN = uαi n
α
i , [uN ] = u1n1 + u2n2 ,

σαN = σij(u
α)nαi n

α
j , σαT = σij(u

α)nαj − σαNnαi ,
where nα is the unitary normal exterior to Ωα.
The unilateral contact law on the interface Γc is given by:

[uN ] ≤ 0, σN ≤ 0, σN · [uN ] = 0. (3)

The contact is supposed frictionless so on Γc we get:

σT = 0.

In order to give the variational formulation corresponding to the problem (1)-(3),
let us introduce the following spaces

V α =
{
vα ∈ (H1(Ωα))2, v = 0 on Γαu

}
, and V = V 1 × V 2

equipped with the product norm ‖ · ‖V =
(∑2

α=1 ‖ · ‖2(H1(Ωα))2

) 1
2
,

H 1
2 (Γc) =

{
ϕ ∈ (L2(Γc))

2; ∃v ∈ V α; γv|Γc
= ϕ

}
,

H
1
2 (Γc) =

{
ϕ ∈ L2(Γc); ∃v ∈ H1(Ωα); γv|Γc

= ϕ
}
,
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where γ is the usual trace operator. Now, we denote by K the following non-empty
closed convex subset of V :

K =
{
v = (v1, v2) ∈ V , [vN ] ≤ 0 on Γc

}
.

The variational formulation of problem (1)-(3) is

{
Find u ∈ K such that

a(u, v − u) ≥ L(v − u), ∀v ∈ K, (4)

where
a(u, v) = a1(u, v) + a2(u, v),

aα(u, v) =

∫

Ωα

Aα(x)ε(uα) · ε(vα)dx, (5)

and

L(v) =

2∑

α=1

∫

Ωα

fα · vα dx+

∫

Γα
ℓ

Φα · vαdσ.

There exists a unique solution u to problem (4) (see [7, 13]).

3 Multibody Formulation and Algorithm

In the following, we will use some lift operators which allow us to build specific
function from their values on Γc. For α = 1, 2, let

Rα : H 1
2 (Γc) −→ V α

ϕ −→ Rαϕ = vα,
(6)

where vα is the solution of
{
aα(vα, w) = 0 ∀w ∈ V α with w = 0 on Γc
vα = ϕ on Γc.

The two-body contact problem (4) is approximated by an iterative procedure
involving a contact problem for each body Ωα with a rigid foundation described by
a given initial gap gα.
Given gα0 ∈ Γc, α = 1, 2, for m ≥ 1, we build the sequence of functions (u1

m)m≥0

and (u2
m)m≥0, by solving in parallel the following problems:

Step 1:
1. Solve the contact problem

−div(σ(u1
m)) = f1 in Ω1,

σ(u1
m)n1 = Φ1 on Γ 1

ℓ ,

u1
m = 0 on Γ 1

u ,

σ1
T,m = 0 on Γc, (7)

u1
mn

1 ≤ g1
m−1 on Γc,
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σ1
N,m ≤ 0 on Γc,

σ1
N,m(u1

mn
1 − g1

m−1) = 0 on Γc,

with initial gap g1
m−1 = αS1(σ2

N,m−1 − σ1
N,m−1)− u2

m−1n
2.

2. Solve the contact problem

−div(σ(u2
m)) = f2 in Ω2,

σ(u2
m)n2 = Φ2 on Γ 2

ℓ ,

u2
m = 0 on Γ 2

u ,

σ2
T,m = 0 on Γc, (8)

u2
mn

2 ≤ g2
m−1 on Γc,

σ2
N,m ≤ 0 on Γc,

σ2
N,m(u2

mn
2 − g2

m−1) = 0 on Γc,

with initial gap g2
m−1 = αS2(σ1

N,m−1 − σ2
N,m−1)− u1

m−1n
1.

Step 2:
Relaxation

g1
m = (1− δm)g1

m−1 + δm(αS2(σ1
N,m − σ2

N,m)− u2
mn

2) on Γc, (9)

g2
m = (1− δm)g2

m−1 + δm(αS1(σ2
N,m − σ1

N,m)− u1
mn

1) on Γc. (10)

A key point in this algorithm is the choice of αSi , i = 1, 2:
- αSi is non-negative constant. It is the simplest choice but leads to an h-

independent algorithm which is very sensible to boundary conditions.
- αSi is the Steklov-Poincaré operator defined on the interface Γαc of Ωα as

introduced in [1]. This operator is not practical if the domains Ωα are too large, but
it has interesting features. Mainly, it can be defined for any geometry and for any
elliptic operator, including three-dimensional anisotropic heterogeneous elasticity,
and it is coercive positive selfadjoint operator. In practice, this choice consists to
resolve two auxiliary problems before step 2. These auxiliary problems are written
by:
m ≥ 0, α = 1, 2

−div(σ(wαm)) = 0 in Ωα,

σ(wαm)nα = 0 on Γαℓ ,

wαm = 0 on Γαu , (11)

σ(wαm)nα = ±(σ(u1
m)n1 − σ(u2

m)n2) on Γc.

So the variational formulation of our algorithm takes the following form:

Given gα0 , α = 1, 2,∈ H 1
2 (Γc), for m ≥ 1, we build the sequence of functions

(u1
m)m≥0 ∈ V 1 and (u2

m)m≥0 ∈ V 2 by solving the following problems:

1st step:

Find uαm ∈ V α− (gαm−1),

aα(uαm, v
α − uαm) ≥ (fα, wα − uαm)∀vα ∈ V α− (gαm−1) (12)
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where
V α− (ϕ) = {v ∈ V α/ vnα ≤ −ϕ on Γαc } .

2nd step:





Find w1
m ∈ V 1,

a1(w1
m, v) = −a2(u2

m, R
2γ(v)) + (f2, R2γ(v))− a1(u1

m, v) + (f1, v)∀v ∈ V 1.

Find w2
m ∈ V 2,

a2(w2
m, v) = a1(u1

m, R
1γ(v))− (f1, R1γ(v)) + a2(u2

m, v)− (f2, v)∀v ∈ V 2.

(13)

3th step:




g1
m = (1− δm)g1

m−1 + δm(w2
mn

2 − u2
mn

2) on Γc,

g2
m = (1− δm)g2

m−1 + δm(w1
mn

1 − u1
mn

1) on Γc.
(14)

We refer to [12] for the convergence results of the continuous algorithm (12)-(14)
and its finite elements approximation.

Remark 1. Another choice of αSi , for i = 1, 2, is to create an artificial small “dream”
domain having Γc as one of its faces on which we define the Steklov-Poincaré operator
(see [16, 18]).

4 Numerical Experiments

In this section we describe some numerical results obtained with algorithm (12)-
(14) for various relaxation parameter δ and various degrees of freedom n = n1 + n2

(d.o.f in Ω1 ∪ Ω2) and m (d.o.f. on Γc). The computation is based on the itera-
tive method of successive approximations. Each iterative step requires to solve two
quadratics programming problems constrained by simple bounds. Our implementa-
tion uses recently developed algorithm of quadratic programming with proportioning
and gradient projections [6].

The computation efficiency shall be assessed by

ITouter/ITinner,

where ITouter (resp. ITinner) denotes the number of outer iterations (resp. the total
number of conjugate gradient steps i.e the number of matrix-vector multiplications
by Hessians).

The numerical implementations are performed in Scilab 2.7 on Pentium 4, 2.0
GHz with 256 MB RAM. We set tol = 10−8 and we break down iterations, if their
number is greater than eight hundred. For all experiments to be described below,
the stopping criterion of Algorithm (12)-(14) is

‖g1
m − g1

m−1‖
‖g1
m‖

+
‖g2
m − g2

m−1‖
‖g2
m‖

≤ tol,

where || · || denotes the Euclidean norm. The precisions in the inner iterations are
adaptively adjusted by the precision achieved in the outer loop.
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Let us consider the plane elastic bodies

Ω1 = (0, 3)× (1, 2) and Ω2 = (0, 3)× (0, 1)

made of an isotropic, homogeneous material characterized by Young’s modulus Eα =
2.1 1011 and Poisson’s ratio να = 0.277. The decomposition of Γ 1 and Γ 2 read as:

Γ 1
u = {0} × (1, 2), Γ 1

c = (0, 3)× {1}, Γ 1
l = Γ 1 \ Γ 1

u ∪ Γ 1
c ,

Γ 2
u = {0} × (0, 1), Γ 2

c = (0, 3)× {1}, Γ 2
l = Γ 2 \ Γ 2

u ∪ Γ 2
c .

<−−

<−− Γ1
u

Γ2
u

Ω1

Γc

Ω2

l12(3, s)

l12(s, 2)

Γ2
l

Γ1
l

Fig. 1. Setting of the problem

The volume forces vanish for both bodies. The non-vanishing surface traction
ℓ1 = (l11, l

1
2) (respectively, ℓ2 = (l21, l

2
2)) act on Γ 1

l (respectively, on Γ 2
l ):

l11(s, 2) = 0, l12(s, 2) = −3 106 − 1 106 s, s ∈ (0, 3),

l11(3, s) = 0, l12(3, s) = 2 106, s ∈ (1, 2),

l21(s, 0) = 0, l22(s, 0) = 0, s ∈ (0, 3),

l21(3, s) = 0, l22(3, s) = 0, s ∈ (0, 1).

The Table 1 gives convergence of the algorithm (12)-(14) for different values of
the relaxation parameter δ and various degrees of freedom (n and m). The results
obtained show that the number of outer iterations (for an optimal value of δ=0.95)
does not depend on the degrees of freedom n and m.
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Table 1. Convergence of the algorithm

n/m δ = 0.1 δ = 0.5 δ = 0.7 δ = 0.95 δ = 1

12/3 287/903 76/243 62/208 47/160 −
36/6 285/899 79/272 66/237 49/179 −
288/16 270/878 74/282 79/295 45/188 −
816/24 296/957 92/332 93/340 47/204 −
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