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Summary. We describe a block matrix iterative algorithm for solving a linear-
quadratic parabolic optimal control problem (OCP) on a finite time interval. We
derive a reduced symmetric indefinite linear system involving the control variables
and auxiliary variables, and solve it using a preconditioned MINRES iteration, with
a symmetric positive definite block diagonal preconditioner based on the parareal
algorithm. Theoretical and numerical results show that the preconditioned algorithm
converges at a rate independent of the mesh size h, and has parallel scalability.

1 Introduction

Let (t0, tf ) denote a time interval, let Ω ⊂ R2 be a polygonal domain of size of order
O(1) and let A be a coercive map from a Hilbert space L2(to, tf ;Y ) to L2(to, tf ;Y ′),
where Y = H1

0 (Ω) and Y ′ = H−1(Ω), i.e., the dual of Y with respect to the pivot
space H = L2(Ω); see [2]. Denote the state variable space as Y = {z ∈ L2(to, tf ;Y ) :
zt ∈ L2(to, tf ;Y ′)}, where it can be shown that Y ⊂ C0([to, tf ];H); see [2]. Given
yo ∈ H, we consider the following state equation on (t0, tf ) with z ∈ Y:

{
zt +Az = Bv for to < t < tf ,

z(0) = yo.
(1)

The distributed control v belongs to an admissible space U = L2(to, tf ;U), where
in our application U = L2(Ω), and B is an operator in L(U , L2(to, tf ;H)). It can be
shown that the problem (1) is well posed, see [2], and we indicate the dependence
of z on v ∈ U using the notation z(v). Given a target function ŷ in L2(to, tf ;H)
and parameters q > 0, r > 0, we shall employ the following cost function which we
associate with the state equation (1):

J(z(v), v) :=
q

2

∫ tf

t0

‖z(v)(t, .)− ŷ(t, ·)‖2L2(Ω) dt+
r

2

∫ tf

t0

‖v(t, ·)‖2L2(Ω) dt. (2)

For simplicity of presentation, we assume that yo ∈ Y and ŷ ∈ L2(to, tf ;Y ), and
normalize q = 1. The optimal control problem for equation (1) consists of finding a
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controller u ∈ U which minimizes the cost function (2):

J(y, u) := min
v∈U

J(z(v), v). (3)

Since q, r > 0, the optimal control problem (3) is well posed, see [2].
Our presentation is organized as follows: In § 2 we discretize (3) using a finite el-

ement method and backward Euler discretization, yielding a large scale saddle point
system. In § 3, we introduce and analyze a symmetric positive definite block diago-
nal preconditioner for the saddle point system, based on the parareal algorithm [3].
In § 4, we present numerical results which illustrate the scalability of the algorithm.

2 The Discretization and the Saddle Point System

To discretize the state equation (1) in space, we apply the finite element method to its
weak formulation for each fixed t ∈ (to, tf ). We choose a quasi-uniform triangulation
Th(Ω) of Ω, and employ the P1 conforming finite element space Yh ⊂ Y for z(t, ·),
and the P0 finite element space Uh ⊂ U for approximating v(t, ·). Let {φj}q̂j=1 and

{ψj}p̂j=1 denote the standard basis functions for Yh and Uh, respectively. Throughout

the paper we use the same notation z ∈ Yh and z ∈ Rq̂, or v ∈ Uh and v ∈
Rp̂, to denote both a finite element function in space and its corresponding vector
representation. To indicate their time dependence we denote z and v.

A discretization in space of the continuous time linear-quadratic optimal control
problem will seek to minimize the following quadratic functional:

Jh(z, v) :=
1

2

∫ tf

to

(z − ŷ)T (t)Mh(z − ŷ)(t) dt+
r

2

∫ tf

to

vT (t)Rhv(t) dt (4)

subject to the constraint that z satisfies the discrete equation of state:

Mhż +Ah z = Bhv, for to < t < tf ; and z(to) = yho . (5)

Here (z − ŷh)(t) denotes the tracking error, where ŷh(t) and yh0 belong to Yh and

are approximations of ŷ(t) and yo (for instance, use L2(Ω)-projections into Yh). The

matrices Mh, Ah ∈ R
q̂×q̂
h , Bh ∈ Rq̂×p̂ and Rh ∈ Rp̂×p̂ have entries (Mh)ij := (φi, φj),

(Ah)ij := (φi,Aφj), and (Bh)ij := (φi,Bψj) and (Rh)ij := (ψi, ψj), where (·, ·)
denotes the L2(Ω) inner product.

To obtain a temporal discretization of (4) and (5), we partition [to, tf ] into l̂
equal sub-intervals with time step size τ = (tf − to)/l̂. We denote tl = to + l τ
for 0 ≤ l ≤ l̂. Associated with this partition, we assume that the state variable
z is continuous in [to, tf ] and linear in each sub-interval [tl−1, tl], 1 ≤ l ≤ l̂ with

associated basis functions {ϑl}l̂l=0. Denoting zl ∈ Rq̂ as the nodal representation

of z(tl) we have z(t) =
∑l̂
l=0 zlϑl(t). The control variable v is assumed to be a

discontinuous function and constant in each sub-interval (tl−1, tl) with associated

basis functions {χl}l̂l=1. Denoting vl ∈ Rp̂ as the nodal representation of v(tl−(τ/2)),

we have v(t) =
∑l̂
l=1 vlχl(t).

The corresponding discretization of the expression (4) results in:

Jτh (z,v) =
1

2
(z− ŷ)TK(z− ŷ) +

1

2
vTGv + (z− ŷ)Tg. (6)
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The block vectors z := [zT1 , . . . , z
T
l̂

]T ∈ Rl̂q̂ and v := [vT1 , . . . , v
T
l̂

]T ∈ Rl̂p̂ denote the
state and control variables, respectively, at all the discrete times. The discrete target

is ŷ := [ŷT1 , . . . , ŷ
T
l̂

]T ∈ Rl̂q̂ with target error el = (zl − ŷhl ) for 0 ≤ l ≤ l̂. Matrix

K = Dτ ⊗Mh ∈ R(l̂q̂)×(l̂q̂), where Dτ ∈ Rl̂×l̂ has entries (Dτ )ij :=
∫ tf
to
ϑi(t)ϑj(t)dt,

for 1 ≤ i, j ≤ l̂, while G = rτIl̂⊗Rh ∈ R(l̂p̂)×(l̂p̂), where ⊗ stands for the Kronecker

product and Il̂ ∈ Rl̂×l̂ is an identity matrix. The vector g = (gT1 , 0
T , . . . , 0T )T where

g1 = τ
6
Mhe0. Note that g1 does not necessarily vanish because it is not assumed

that yh0 = ŷh0 .
Employing the backward Euler discretization of (5) in time, yields:

Ez + Nv = f , (7)

where the input vector is f := [(Mhy
h
0 )T , 0T , ..., 0T ]T ∈ Rl̂q̂. The block lower bidiag-

onal matrix E ∈ R(l̂q̂)×(l̂q̂) is given by:

E =




Fh
−Mh Fh

. . .
. . .

−Mh Fh


 , (8)

where Fh = (Mh + τAh) ∈ Rq̂×q̂. The block diagonal matrix N ∈ R(l̂q̂)×(l̂p̂) is
given by N = −τIl̂ ⊗Bh. The Lagrangian Lh(z,v,q) for minimizing (6) subject to
constraint (7) is:

Lτh(z,v,q) = Jτh (z,v) + qT (Ez + Nv − f). (9)

To obtain a discrete saddle point formulation of (9), we apply optimality conditions
for Lh(·, ·, ·). This yields the symmetric indefinite linear system:




K 0 ET

0 G NT

E N 0






y
u
p


 =




Kŷ − g
0
f


 , (10)

where ŷ := [(ŷh1 )T , . . . , (ŷh
l̂

)T ]T ∈ Rl̂q̂. Eliminating y and p in (10), and defining

b := NTE−T
(
KE−1f −Kŷ + g

)
yields the reduced Hessian system:

(G + NTE−TKE−1N)u = b. (11)

The matrix H := G+NTE−TKE−1N is symmetric positive definite and (u,Gu) ≤
(u,Hu) ≤ µ(u,Gu), where µ = O(1 + 1

r
); for details see [4]. As a result, the

Preconditioned Conjugate Gradient method (PCG) can be used to solve (11), but
each matrix-vector product with H requires the solution of two linear systems, one
with E and one with ET . To avoid double iterations, we define the auxiliary variable
w := −E−TKE−1Nu. Then (11) will be equivalent to the symmetric indefinite
system: [

EK−1ET N
NT −G

] [
w
u

]
=

[
0
−b

]
. (12)

The system (12) is ill-conditioned and will be solved using the MINRES algorithm
with a preconditioner of the form P := diag(E−Tn K̂E−1

n ,G−1); see [5]. For a fixed
number of parareal sweeps n, E−1

n and E−Tn are linear operators. We next define
the operator E−1

n and then analyze the spectral equivalence between E−TKE−1 and
E−Tn K̂E−1

n .
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3 Parareal Approximation E−T
n

K̂E−1

n

An application of E−Tn K̂E−1
n to a vector s ∈ R(l̂q̂)×(l̂q̂) is performed as follows: Step

1, apply E−1
n s :→ ẑn using n applications of the parareal method described below.

Step 2, multiply K̂zn :→ t̂ where K̂ := D̂τ ⊗Mh, D̂τ := blockdiag(D̂1
τ , . . . , D̂

k̂
τ ),

and the D̂k
τ are the time mass matrices associated to the sub-intervals [Tk−1, Tk].

And Step 3, apply E−Tn t̂n :→ x, i.e., the transpose of Step 1.
To describe En, we partition the time interval [to, tf ] into k̂ coarse sub-intervals

of length ∆T = (tf − to)/k̂, setting T0 = to and Tk = to + k∆T for 1 ≤ k ≤ k̂.
We define fine and coarse propagators F and G as follows. The local solution at
Tk is defined marching the backward Euler method from Tk−1 to Tk on the fine
triangulation τ with an initial data Zk−1 at Tk−1. Let m̂ = (Tk − Tk−1)/τ and

jk−1 =
Tk−1−T0

τ
. It it is easy to see that:

MhZk = FZk−1 + Sk, (13)

where F := (MhF
−1
h )m̂Mh ∈ Rq̂×q̂, Sk :=

∑m̂
m=1

(
MhF

−1
h

)m̂−m+1
sjk−1+m with

Z0 = 0. Imposing the continuity condition at time Tk, for 1 ≤ k ≤ k̂, i.e., MhZk −
FZk−1 − Sk = 0, we obtain the system:




Mh

−F Mh

. . .
. . .

−F Mh







Z1

Z2

...
Zk̂


 =




S1

S2

...
Sk̂


 . (14)

The coarse solution at Tk with initial data Zk−1 ∈ Rq̂ at Tk−1 is given by
one coarse time step of the backward Euler method MhZk = GZk−1 where G :=
Mh(Mh +Ah∆T )−1Mh ∈ Rq̂×q̂. In the parareal algorithm, the coarse propagator G
is used for preconditioning the system (14) via:




Zn+1
1

Zn+1
2

...
Zn+1

k̂


 =




Zn1
Zn2
...
Zn
k̂


 +







Mh

−G Mh

. . .
. . .

−G Mh







−1 


Rn1
Rn2
...
Rn
k̂


 , (15)

where the residual vector Rn := [Rn1
T , ..., Rn

k̂
T ]T ∈ Rk̂q̂ is defined in the usual way

from the equation (14).
We are now in position to define ẑn := E−1

n s. Let ẑn be the nodal representation
of a piecewise linear function ẑn in time with respect to the fine triangulation τ on
[to, tf ], however continuous only inside each coarse sub-interval [Tk−1, Tk], i.e., the
function ẑn can be discontinuous across the points Tk, 1 ≤ k ≤ k̂ − 1, therefore,

ẑn ∈ R(l̂+k̂−1)q̂. On each sub-interval [Tk−1, Tk], ẑn is defined marching the backward
Euler method from Tk−1 to Tk on the fine triangulation τ with initial condition Znk−1

at Tk−1.

Theorem 1. For any s ∈ R(l̂q̂)×(l̂q̂) and ǫ ∈ (0, 1/2), we have:

γmin

(
E−1s,KE−1s

)
≤
(
E−1
n s, K̂E−1

n s
)
≤ γmax

(
E−1s,KE−1s

)
,
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where

{
γmax := (1 +

ρ2n(tf−to)

τǫ
+ 2ǫ)/(1− 2ǫ),

γmin := (1− ρ2n(tf−to)

τǫ
− 2ǫ)/(1 + 2ǫ).

Proof. Let Vh := [v1, ..., vq̂] and Λh := diag{λ1, ..., λq̂] be the generalized eigenvectors
and eigenvalues of Ah with respect to Mh, i.e., Ah = MhVhΛhV

−1
h . Let z := E−1s

with z(t) =
∑q̂
q=1 αq(t)vq, and ẑn := E−1

n s with ẑn(t) =
∑q̂
q=1 α

n
q (t)vq. We note

that αnq might be discontinuous across the Tk. Then:

(E−1s,KE−1s) = ‖z‖2L2(to,tf ;L2(Ω)) =
∑q̂
q=1 ‖αq‖2L2(to,tf ),

(E−1
n s, K̂E−1

n s) = ‖ẑn‖2L2(to,tf ;L2(Ω)) =
∑q̂
q=1 ‖αnq ‖2L2(to,tf ),

and therefore:

‖αnq ‖2L2(to,tf ) =
(
αnq − αq, αnq + αq

)
L2(to,tf )

+ ‖αq‖2L2(to,tf )

≤ 1

4ǫ
‖αnq − αq‖2L2(to,tf ) + ǫ‖αnq + αq‖2L2(to,tf ) + ‖αq‖2L2(to,tf )

≤ 1

4ǫ
‖αnq − αq‖2L2(to,tf ) + 2ǫ‖αnq ‖2L2(to,tf ) + (1 + 2ǫ)‖αq‖2L2(to,tf ),

which reduces to:

(1− 2ǫ)‖αnq ‖2L2(to,tf ) ≤ (1 + 2ǫ)‖αq‖2L2(to,tf ) + 1
4ǫ
‖αnq − αq‖2L2(to,tf ).

For each tl ∈ [Tk−1, Tk] we have:

|αnq (tl)− αq(tl)| = (1 + τλq)
−(tl−Tk−1)/τ |αnq (Tk−1)− αq(Tk−1)|,

and since λq > 0 implies (1 + τλq)
−(tl−Tk−1)/τ ≤ 1, we obtain:

‖αnq − αq‖2L2(Tk−1,Tk) ≤ ∆T |αnq (Tk−1)− αq(Tk−1)|2.

Hence:

(1− 2ǫ)‖αnq ‖2L2(to,tf ) ≤ (1 + 2ǫ)‖αq‖2L2(to,tf ) +
tf − to

4ǫ
max

0≤k≤k̂
|αnq (Tk)− αq(Tk)|2.

Using the Lemma 1 (see below) with αq(T0) = 0 and initial guess α0
q(Tk) = 0, and

using

max
0≤k≤k̂

|αq(Tk)|2 = |αq(Tk′)|2 ≤
4

τ
min
β
‖αq(Tk′) + βt‖2L2(Tk′ ,Tk′+τ)

we obtain:

max
0≤k≤k̂

|αnq (Tk)− αq(Tk)|2 ≤ ρ2
n max

0≤k≤k̂
|αq(Tk)|2 ≤ 4ρ2

n

τ
‖αq‖2L2(to,tf ),

and the upper bound (16) follows. The lower bound follows similarly.
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Remark 1. Performing straightforward computations we obtain:

min
ǫ
γmax(ǫ) = 1 +

4√
1 + τ

ρ2n(tf−to)
− 1

.

Hence, for small values of ρn, we have γmax − 1 ≈ 4

√
ρ2n(tf−to)

τ
. The dependence

of γmax − 1 with respect to τ is sharp as evidenced in Table 1 (see below) since it
increases by a

√
2 factor when τ is refined by half.

Decompose Zk =
∑q̂
q=1 αq(Tk)vq and Znk =

∑q̂
q=1 α

n
q (Tk)vq, and denote

ζnq (Tk) := αq(Tk)− αnq (Tk). The convergence of the parareal algorithm for systems
follows from the next lemma which it is an extension of the results presented in [1].

Lemma 1. Let ∆T = (tf − to)/k̂ and Tk = to + k∆T for 0 ≤ k ≤ k̂. Then,

max
1≤k≤k̂

|αq(Tk)− αnq (Tk)| ≤ ρn max
1≤k≤k̂

|αq(Tk)− α0
q(Tk)|,

where ρn := sup0<β<1

(
e1−1/β − β

)n
1
n!

∣∣∣∣ d
n−1

dβn−1

(
1−βk̂−1

1−β

)∣∣∣∣ ≤ 0.2984n.

Proof. Using Theorem 2 from [1] we obtain:

ζnq =
(

(1 + λqτ)−∆T/τ − βq
)
T (βq)ζ

n−1
q , (16)

where βq := (1 + λq∆T )−1 and T (β) :=
{
βj−i−1 if j > i, 0 otherwise

}
is a

Toeplitz matrix of size k̂. Applying (16) recursively we obtain:

max
1≤k≤k̂

|ζnq | ≤ ρqn max
1≤k≤k̂

|ζ0
q |,

where:
ρqn :=

∥∥∥
(

(1 + λqτ)−∆T/τ − βq
)n
T n(βq)

∥∥∥
L∞

. (17)

Since λq > 0 and βq ≤ (1 + λq∆T )−∆T/τ ≤ e−λq∆T , we obtain

| (1 + λqτ)−∆T/τ − βq| ≤ |e−λq∆T − βq| = |e1−1/βq − βq|, (18)

which yields:

ρqn ≤ |e1−1/βq − βq|n‖T n(βq)‖L∞ ≤ sup
0<β<1

|e1−1/β − β|n‖T n(β)‖L∞ .

By considering ‖T n(β)‖∞ ≤ ‖T (β)‖n∞ =

∣∣∣∣
1−βk̂−1

1−β

∣∣∣∣
n

, a simpler upper bound for

ρn can be obtained:

sup0<β<1

∣∣∣e1−1/β − β
∣∣∣
n
∣∣∣∣
1−βk̂−1

1−β

∣∣∣∣
n

≤
(

sup0<β<1
e1−1/β−β

1−β

)n
≈ 0.2984n,

and the maximum is attained around β∗ = 0.358, independently of n and k̂ (β∗
presents slight variation for 1 ≤ n and 6 ≤ k̂, cases of practical interest).
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4 Numerical Experiments

The optimal control problem we consider involves the 1D-heat equation:

zt − zxx = v, 0 < x < 1, 0 < t < 1,

with boundary conditions z(t, 0) = z(t, 1) = 0 for t ∈ [0, 1], and initial data z(0, x) =
0 for x ∈ [0, 1]. The control variable v(·) corresponds to the forcing term, and the
target function is the nodewise interpolation of the function ŷ(t, x) = x(1 − x)e−x.
We choose a tolerance tol ≤ 10−6 for the left preconditioned MINRES.

Table 1 lists the value of (γmax − 1) for different values of τ and n. The results
confirm Remark 1. Table 2 lists the number of MINRES iterations as ∆T and τ vary
while (∆T/τ) remains constant. Choosing n = 2, 4, 7 iterations for the Parareal, the
number of iterations for the MINRES basically remains constant when h or τ are
refined, and so the results indicate scalability. Table 3 lists the number of MINRES
iterations for n = 2 and τ = (1/512) for different values of (∆T/τ). It indicates also
scalability with respect to ∆T . Like in [4], we observe numerically that the number
of MINRES iterations grows logarithmically with respect to 1/r.

Table 1. Values of γmax−1 when τ is refined. Parameters h = 1/10 and ∆T = 1/20.

n \ l̂ 200 400 800 1600

n = 1 0.864415 1.449299 2.473734 4.371709
n = 2 0.070835 0.097852 0.136802 0.193845
n = 3 0.007760 0.010765 0.015141 0.021165
n = 4 0.000865 0.001224 0.001715 0.002397

Table 2. MINRES iterations using a parareal with n = 2/4/7 as preconditioners.
Parameters r = 0.0001 and ∆T/τ = 16.

k̂ 4 8 16 32

l̂ 64 128 256 512

h = 1/16 62 / 40 / 42 58 / 44 / 44 60 / 50 / 44 60 / 50 / 44
h = 1/32 60 / 42 / 42 58 / 44 / 44 60 / 50 / 44 62 / 50 / 44
h = 1/64 60 / 42 / 42 58 / 44 / 44 60 / 50 / 44 62 / 50 / 44
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