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A commonly used method for fitting smooth functions to noisy data is the thin-plate
spline method. Traditional thin-plate splines use radial basis functions and conse-
quently require the solution of a dense linear system of equations whose dimension
grows linearly with the number of data points. Here we discuss a method based on
low order polynomial functions with locally supported basis functions. An advan-
tage of such an approach is that the resulting system of equations is sparse and its
dimension depends linearly on the number of nodes in the finite element grid instead
of the number of data points.

Another advantage is that an iterative solver, such as the conjugate gradient
method, can be used. However it can be shown that the system of equations is similar
to those arising from Tikhonov regularisation, and consequently the equations are
ill-conditioned for certain choices of the parameters. To ensure that the method is
robust an appropriate preconditioner must be used.

In this paper we present the discrete thin-plate spline method and explore a set
of preconditioners. We discuss some of the properties that are unique to our partic-
ular formulation and verify that the multiplicative Schwarz method is an effective
preconditioner.

1 Introduction

The thin-plate spline method is a popular data fitting technique because it is in-
sensitive to noise in the data. For a general domain Ω the thin-plate spline f (as
discussed by [10] and [3]) minimises the functional

Jα(f) =
1

n

n∑

i=1

(f(x(i))− y(i))2

+α

∫

Ω

∑

|ν|=2

(
2

ν

)
(Dνf(x))2dx, (1)

where ν = (ν1, ..., νd) is a d dimensional multi-index, |ν| = ∑d
s=1 νs, x is a predictor

variable in Rd, and x(i) and y(i) are respectively the corresponding i-th predictor
and response data value (1 ≤ i ≤ n).
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The parameter α controls the trade-off between smoothness and fit. Techniques
for choosing α automatically, such as generalised cross validation (GCV), can be
found in [5, 10].

Radial basis functions are often used to represent f , as they give an analytical
solution of the minimiser of the functional in (1). However the resulting system of
equations is dense, and furthermore its dimension is directly proportional to the
number of data points.

In [7, 8] we proposed a discrete thin-plate spline method that uses piecewise
functions with local support defined on a finite element mesh. In particular, the
method described in Section 2 uses standard multi-linear finite element basis func-
tions. The advantage of using functions with local support is that the dimension of
the resulting system of sparse equations depends only on the number of grid points
in the finite element mesh.

The system of equations resulting from the finite element discretisation can be
manipulated to form a symmetric positive definite system, as shown in Section 3.
However for small values of α this system is ill-conditioned and the convergence
slows down markedly. Section 4 discusses some of reasons causing the difficulties
with the convergence rate, and Section 5 shows that the convergence rate can be
improved by using the multiplicative Schwarz preconditioner.

2 Discrete Thin Plate Splines

For simplicity most of the discussion is focused on two dimensional (2D) examples,
although the theory generalises to three dimensions and the code has been developed
for both two and three dimensions.

The smoothing problem from (1) can be approximated with finite elements so
that the discrete smoother f is a linear combination of piecewise multi-linear basis
functions (hat functions) bi(x) ∈ H1

0 ,

f(x) =
m∑

i=1

cibi(x) = b(x)T c.

The idea is to minimise Jα over all f of this form. The smoothing term (the sec-
ond term in (1)) is not defined for piecewise multi-linear functions, but the non-
conforming finite element principle can be used to introduce piecewise multi-linear
functions u = (b(x)Tg1,b(x)Tg2) to represent the gradient of f . The functions f
and u satisfy the relationship

∫

Ω

∇f(x) · ∇bj(x) dx =

∫

Ω

u(x) · ∇bj(x) dx, (2)

for all the basis functions bj . This relationship ensures that u is an approximation
of the gradient of f in a weak sense.

Constraint (2) is equivalent to the relationship

Lc−G1g1 −G2g2 = 0, (3)

where L is a discrete approximation to the negative Laplace operator and (G1, G2)
is a discrete approximation to the transpose of the gradient operator.
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We now consider the minimiser of the functional

Jα(c,g1,g2) =
1

n

n∑

i=1

(b(x(i))T c− y(i))2 + α

∫

Ω

2∑

s=1

∇(bTgs) · ∇(bTgs) dx

= cTAc− 2dT c + yTy/n+ α
(
gT1 Lg1 + gT2 Lg2

)
. (4)

Our smoothing problem consists of minimising this functional over all vectors
c,g1,g2 defined on the domain Ωh, subject to the constraint (3).

The matrices L, G1 and G2 are constructed independent of the data points but
the matrix

A =
1

n

n∑

i=1

b(x(i))b(x(i))T ,

and vector

d =
1

n

n∑

i=1

b(x(i))y(i),

are assembled by sweeping through the data points. Matrix A is symmetric, nonneg-
ative, and sparse. In regions where the support of the basis functions do not contain
any data points the matrix is zero.

The smoothing function defined by f(x) = b(x)T c has essentially the same
smoothing properties as the original thin plate smoothing spline, provided the dis-
cretisation is small enough, see [6].

By using Lagrange multipliers, the minimisation problem may be rewritten as
the solution of the following linear system of equations




A 0 0 L
0 αL 0 −GT1
0 0 αL −GT2
L −G1 −G2 0







c
g1

g2

w


 =




d
0
0
0


 −




h1

h2

h3

h4


 , (5)

where w is a Lagrange multiplier associated with constraint (3). The vectors
h1, · · · ,h4 store the Dirichlet boundary information.

For examples where the exact form of a the minimiser is known, the Dirichlet
boundary conditions can be set accordingly, see [8]. Different boundary conditions
will give different forms of the minimiser, we plan to explore this idea further as a
means to incorporate prior information.

3 Solution of the Linear System

One way to solve (5) is to eliminate all the variables except g1 and g2, which gives

[
αL+GT1 ZG1 GT1 ZG2

GT2 ZG1 αL+GT2 ZG2

] [
g1

g2

]
=

[
GT1 L

−1d
GT2 L

−1d

]
−
[
h2 +GT1 L

−1h
h3 +GT2 L

−1h

]
, (6)

where Z = L−1AL−1, h = h1 −AL−1h4 and c = L−1 (G1g1 +G2g2 − h4).
Applying Z to a vector is equivalent to solving two systems of equations involving

the Laplacian, so it is important to use an efficient Poisson solver. Fortunately there
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are techniques, such as the multigrid method, that are optimal for the solution of
such problems.

System (6) is symmetric positive definite and may be solved using the precon-
ditioned Conjugate Gradient (PCG) method.

The matrix on the left-hand side of (6) can be rewritten as

[
αL̂+ K̂T K̂

]
, (7)

where

L̂ =

[
L 0
0 L

]
and K̂T =

[
GT1
GT2

]
L−1A1/2.

This is similar to the type of matrix arising in Tikhonov regularisation.
The system K̂T K̂ is symmetric positive semidefinite, and for small values of α

(6) is close to a semidefinite system. As shown in Section 5 the convergence rate of
the PCG method deteriorates as α is reduced and in some cases the PCG method
diverges.

3.1 Properties of Gradient Matrices

i i i i

u1 u2 u3 u4 u5

Fig. 1. Example grid in 1D used to demonstrate that the matrix G1 may be singular.

The matrices Gs may be singular. To illustrate this consider the 1D grid shown
in Figure 1. The stencil corresponding to the finite element approximation of the
gradient is

h
[
−1 0 1

]

and thus the vector u =
[
a 0 a 0 a

]T
belongs to the null space of G1. In other words

we can assign any constant value to the points marked by squares in Figure 1 and the
gradient will be zero. Similar examples can be constructed for higher dimensional
grids.

Instead of the domain shown in Figure 1, consider the domain labelled Subgrid
1 in Figure 2. The matrix G1 defined on this domain is non-singular. We require
domains like those shown in Figure 1 in order to use the multigrid method to solve
the Laplacian. This lead to the use of the domain decomposition method to define
subgrids where the matrices Gs are non-singular, thus reducing the convergence rate
(see Section 4). As the subgrids are relatively small it is possible to use a different
Laplacian solver, such as a sparse direct method.
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i i i

u1 u2 u3 u4

u2 u3 u5u4

Subgrid 1

Subgrid 2

Fig. 2. Example subdivision of a grid in 1D where the gradient matrix is non-
singular.

4 Preconditioners

For practical applications small α values are not usually of interest because the
results will contain too much noise, however search algorithms like GCV may require
some evaluations for small α before they find the optimal value of α. For larger values
of α (α > 10−5) the preconditioner

M =

[
L−1 0

0 L−1

]
(8)

works very well, but for smaller α a different preconditioner is required. Finding an
effective preconditioner for small values of α was a challenge.

The type of preconditioners we consider here are subspace correction precondi-
tioners. In particular we focused on the algorithms presented in [4] and [11]. Recall
that we are trying to solve (6) using the PCG method as it is a positive definite
system. Solving (6) directly on a subspace is difficult because of the presence of
the inverse Laplacian. Therefore we noted that (6) is a short cut to solving (5). It
is straightforward to project (5) onto the subgrid and, once again, eliminate all of
the variables except g1 and g2 (defined on the subgrid). Note that by using (5)
and then eliminating the variables, the right-hand-side of the equation will contain
some information about c and w; this is how the global L−1 is incorporated into
the system. As a consequence, values for c and w must be generated during the
preconditioning step.

The first approach we looked at was the two-level preconditioner presented by
[4], which is designed for matrices similar to those given by (7). Unfortunately the
form of the matrices Gs would not allow the use of the injection operator as in the
paper referenced above.

The next approach we tried was to use multiplicative and additive Schwarz
methods with the subgrids defined in such a way as to ensure that the matrices
Gs are non-singular. The PCG method was also used to solve (6) defined on each
subgrid as described at the beginning of this section. The approach improved the
convergence rate slightly, but not enough to offset the extra cost of generating the
c and w vectors.
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5 Multiplicative Schwarz

A preconditioner which gives robust results is the multiplicative Schwarz precondi-
tioner, combined with a sparse direct method to solve (5) on each subgrids. This
avoids the inverse Laplacian found in (6). The sparse direct method we used is
umfpack_di_numeric from the UMFPACK package [2].

The (symmetric) multiplicative Schwarz approach is the same as Algorithm 3.4 in
[11]. Equation 2.1 in [11] was repeatedly applied until either ‖uk+1−uk‖/‖uk+1‖ <
10−2 or the number of iterations reached an upper bound (currently 20). We have
chosen this approach as it is cheap and the tolerance does not have to be too accurate
for the preconditioner.

We now present two examples highlighting the performance of the multiplicative
Schwarz algorithm. The test runs were carried out using a code developed by Stals.
The code is a parallel finite element code and we plan to move these test runs to
a parallel machine, at which time we will explore the use of the additive Schwarz
algorithm.

In the first example the data points x(i) (1 ≤ i ≤ n) sit on the lattice defined
by dividing the square [1/p, 1− 1/p]× [1/p, 1− 1/p] into p− 1 equally spaced sub-
squares, where p = 100 and hence n = 992. The values assigned to each data point
were y(i) = x

(i)
1 + x

(i)
2 . The Dirichlet boundary conditions were set so that the

expected value for each entry of gs is 1 and w = 0 (for all values of α).
The multi-linear basis functions in the finite element formulation fit the solution

exactly, so any error in the solution is due to algebraic error. This problem is a good
test of the convergence of the PCG method. The stopping criterion used in the PCG
algorithm is based on the Hestenes-Stiefel rule [1, 9]. A small tolerance of 10−12 was
set to ensure that the error remained small for small α.

Table 1 shows the difference in the convergence between the inverse Laplacian
preconditioner and the multiplicative Schwarz preconditioner for different values of
m and α. The number of subgrids was kept at 4 and four levels of overlap was used.
In all examples the multiplicative Schwarz preconditioner was faster than the inverse
Laplacian preconditioner. There is a sudden jump in the number of iterations for
the α = 10−7 and m = 4225 case indicating that we may need to look at increasing
the overlap.

The second example also used a uniform grid with p = 1000 and n = 9992.
The values assigned to each data point were y(i) = fy(x(i)) where fy(x) =
exp

(
−30‖0.65− x‖22

)
+ exp

(
−30‖0.35− x‖22

)
. The boundary conditions are h1 =

fy|Γ , (h2,h3) = ∇fy|Γ and h4 = −α∆fy|Γ where Γ is the boundary of Ωh.
The solution depends on the choice of α. The tolerance in the stopping criterion

was decreased to 10−6 and the number of subgrids remained at four with four levels
of overlap. Table 2 tabulates the convergence results.

6 Conclusion

The multiplicative Schwarz algorithm with a sparse-direct solver on the subgrids
is an efficient preconditioner for the systems of equations arising from the discrete
thin-plate spline method.
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Table 1. Convergence rate for the first test problem. The time is in seconds. The
column labelled Laplace is the results for the preconditioner given by (8). The col-
umn labelled Mult S is the multiplicative Schwarz preconditioner. CG It is the total
number of PCG iterations and MS It is the total number of times the Multiplicative
Schwarz algorithm was called.

m α = 10−6 α = 10−7

Laplace Mult S Laplace Mult S

CG It Time CG It MS It Time CG It Time CG It MS It Time

1089 72 16 4 21 4 266 96 5 39 7
4225 120 116 4 21 18 254 247 49 370 187
16641 147 713 6 56 146 283 1424 7 54 147
66049 141 2999 16 164 1612 309 6611 12 144 1401

Table 2. Convergence rate for the second test problem. The column labelling is the
same as the first example.

m α = 10−6 α = 10−7

Laplace Mult S Laplace Mult S

CG It Time CG It MS It Time CG It Time CG It MS It Time

1089 36 27 3 23 22 66 33 3 34 23
4225 37 66 2 17 33 93 122 3 42 45
16641 37 268 2 27 104 98 590 3 36 118
66049 38 1133 3 59 639 110 2884 3 50 581
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