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1 Introduction

In this paper we report on a non-overlapping and an overlapping domain decom-
position method as preconditioners for the boundary element approximation of an
indefinite hypersingular integral equation on a surface. The equation arises from an
integral reformulation of the Neumann screen problem with the Helmholtz equation
in the exterior of a screen in R3.

It is well-known that the linear algebraic system arising from the boundary ele-
ment approximation to this integral equation is indefinite, and an iterative method
like GMRES can be used to solve the system. Preconditioners by domain decompo-
sition methods can be used to reduce the number of iterations. A non-overlapping
preconditioner for the hypersingular integral equation reformulation of the 2D prob-
lem is studied in [10]. In this paper we study both non-overlapping and overlapping
methods for the 3D problem. We prove that the convergence rate depends logarith-
mically on H/h for the non-overlapping method, and on H/δ for the overlapping
method, where H and h are respectively the size of the coarse mesh and fine mesh,
and δ is the overlap size. We note that domain decomposition methods with finite
element approximations for the Helmholtz equation have been studied by many
authors; see e.g. [2, 3, 5].

2 The Neumann Screen Problem and Boundary Integral
Equation

Let Γ be a planar surface piece in R3 with polygonal boundary. The problem to be
studied consists in finding U satisfying
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∆U + k2U = 0, in ΩΓ := R
3 − Γ ,

∂U

∂n
= g, on Γ,

∂U

∂n
− ikU = o(1/r), as r := |x| → ∞,

(1)

where k is a nonzero constant and g a given function. The condition at infinity is
the well-known radiation condition.

The solution U can be expressed as a double-layer potential

U(x) =
1

4π

∫

Γ

u(y)
∂

∂ny

eik|x−y|

|x− y| dsy, x ∈ ΩΓ ,

where u = [U ] is the jump of U across Γ . It is shown in [9] that solving (1) is
equivalent to solving

Dku(x) = g(x), x ∈ Γ, (2)

where the operator Dk is defined as

Dkφ(x) := − 1

4π

∫

Γ

φ(y)
∂

∂nx

∂

∂ny

eik|x−y|

|x− y| dsy, x ∈ Γ. (3)

The Sobolev spaces H̃1/2(Γ ) and H1/2(Γ ) and their duals H−1/2(Γ ) and

H̃−1/2(Γ ) (respectively) are defined as usual; see [7]. It is shown in [9] that the
operator D0 defined as in (3) with k = 0 is a continuous and surjective mapping

from H̃1/2(Γ ) onto H−1/2(Γ ). Moreover, Dk can be written as

Dk = D0 +K, (4)

where K is a bounded operator from H̃1/2(Γ ) into L2(Γ ). Let

b(v, w) := 〈Dkv, w〉 ∀v, w ∈ H̃1/2(Γ ),

(where 〈Dkv, w〉 denotes the duality pairing which coincides with the L2 inner prod-
uct on Γ if Dkv, w ∈ L2(Γ )) then the bilinear form b(·, ·) can be written as

b(v, w) = a(v, w) + c(v, w),

where a(v, w) = 〈D0v, w〉 and c(v, w) = 〈Kv,w〉. The bilinear form a(·, ·) is a

positive-definite and symmetric bilinear form on H̃1/2(Γ ) satisfying

a(v, v) ≃ ‖v‖H̃1/2(Γ )
2 ∀v ∈ H̃1/2(Γ ), (5)

whereas b(·, ·) is indefinite and satisfies

Re(b(v, v)) ≥ γ‖v‖H̃1/2(Γ )
2 − η‖v‖L2(Γ )

2 ∀v ∈ H̃1/2(Γ ),

for some γ > 0 and η > 0 independent of v.
A weak form of (2) is the problem of finding

u ∈ H̃1/2(Γ ) : b(u, v) = 〈g, v〉 ∀v ∈ H̃1/2(Γ ). (6)

The problem (6) will be approximated by first constructing a finite-dimensional

subspace S ⊂ H̃1/2(Γ ), and then finding

uS ∈ S : b(uS , v) = 〈g, v〉 ∀v ∈ S. (7)
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3 Additive Schwarz Algorithm

3.1 General Framework

Additive Schwarz methods provide fast solutions to (7) by solving (at the same time)
problems of smaller size. Let S be decomposed as

S = S0 + · · ·+ SJ , (8)

where Si, i = 0, . . . , J , are subspaces of S. Let Qi : S → Si be projections defined
by

bi(Qiv, w) = b(v, w) ∀v ∈ S, ∀w ∈ Si, (9)

where the bilinear forms bi(·, ·), i = 0, . . . , J , are to be defined later. Then the
additive Schwarz method for (7) consists in solving the equation

QuS = g̃,

where Q = Q0 + · · · + QJ is the additive Schwarz operator and g̃ is given by g̃ =
g0 + · · ·+ gJ with gi ∈ Si being solutions of

bi(gi, w) = 〈g, w〉 ∀w ∈ Si.

This equation is solved iteratively by the GMRES method. Starting with an initial
guess u0 and the initial residual r0 = g̃ − Qu0, we compute the mth iterate um as
um = u0+zm where zm is chosen to minimize the residual norm ‖g̃−Q(um−1+z)‖a,
where ‖v‖a = a(v, v). It is proved in [4] that

‖rm‖a ≤
(

1− C2
1

C2

)m/2
‖r0‖a,

where rm = g̃ −Qum and

C1 = inf
v∈S

a(v,Qv)

a(v, v)
, C2 = sup

v∈S

a(Qv,Qv)

a(v, v)
. (10)

We now define two different subspace decomposition of the form (8) which re-
sult in two different preconditioners: a non-overlapping method and an overlapping
method.

3.2 Non-overlapping Algorithm

Boundary Element Space

We first define the finite-dimensional space S in (7) on a two-level grid.
The coarse grid. Assume that Γ is partitioned into subdomains Γi, i = 1, . . . , N ,

where each subdomain Γi is the image of the reference square R̂ = (−1, 1)2 under
a smooth bijective mapping Fi : R̂ → Γi. Denoting by H the diameter of the
subdomains, we assume that

‖JFi‖L∞(R̂) � H and ‖JF−1
i
‖L∞(R̂) � H−1,
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where JFi denotes the Jacobian matrix of the transformation and the norm is a
matrix norm. The partition is assumed to be conforming in the sense that the non-
empty intersection of a pair of distinct subdomains is a single common vertex or
edge of both subdomains, and that each vertex of the domain Γ coincides with at
least one subdomain vertex.

We define on this coarse grid the space V0 of continuous piecewise bilinear func-
tions, vanishing on the boundary of Γ .

The fine grid. Each subdomain Γi is further divided into disjoint quadrilateral
or triangular elements, giving a locally uniform mesh of element of size hi in Γi. We
denote by h the maximum value of hi, i = 1, . . . , N .

The finite-dimensional space S is defined as the space of continuous piecewise-
bilinear functions (in the case of quadrilateral elements) or piecewise-linear functions
(in the case of triangular elements) on the fine grid, vanishing on the boundary of

Γ . We also define subspaces Vj = S ∩ H̃1/2(Γj) of functions in S supported in Γ j .
We denote by N = {xk : k ∈ I} the set of all vertices of elements in the

fine grid which are not on the boundary of Γ (where I is some index set), by
Nw = {xk ∈ N : xk lies on a subdomain boundary} the wirebasket, and by φk ∈ S
the nodal basis function at xk, i.e., φk(xl) = δkl.

Subspace Decomposition

The non-overlapping method is defined by the subspace decomposition (8) where

S0 = ΠFV0, (coarse space)

S1 = span{{}φk : xk ∈ Nw}, (wirebasket space)

Si = Vi−1 ∀i = 2, . . . , N + 1, (interior spaces),

in which ΠF is the interpolation operator which interpolates continuous functions
into functions in S. (Note that J = N + 1.)

The bilinear forms bi(·, ·) on Si (see (9)) are defined as follows:

b0(v, w) = b(ΠCv,ΠCw) ∀v, w ∈ S0,

b1(v, w) =

N∑

j=1

∑

xk∈∂Γj

hjv(xk)w(xk), ∀v, w ∈ S1,

bi(v, w) = a(v, w) ∀v, w ∈ Si, i = 2, . . . , J.

Here ΠC is the interpolation operator that interpolates continuous functions into
functions in V0.

Algorithm

The preconditioning technique is in practice performed by computing the action of
the inverse of the preconditioner B on a residual r ∈ S when GMRES is used to
solve (7) iteratively. This consists of the solution of independent problems on each
of the subspaces involved in the decomposition.

1. Coarse space correction:

u0 ∈ S0 : b0(u0, v) = 〈r, v〉 ∀v ∈ S0
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2. Wirebasket space correction:

u1 ∈ S1 : b1(u1, v) = 〈r, v〉 ∀v ∈ S1

3. Interior space corrections:

ui ∈ Si : bi(ui, v) = 〈r, v〉 ∀v ∈ Si, i = 2, . . . , J.

4. Preconditioned residual:

B−1r =

J∑

j=0

uj .

Matrix Representation

Let Ψ be the set of nodal basis functions. We use the bilinear form a(·, ·) (respec-
tively, b(·, ·)) to compute the stiffness matrix Aa (respectively, Ab). The coefficient
vector v of a function v ∈ S is given as v = ΨTv, where T denotes transpose. Let
Φ0 be the vector composed of the nodal basis functions for the subspace S0. Then
we denote by R0 the rectangular matrix that represents Φ0 in the basis Ψ , i.e.,
Φ0 = R0Ψ . We also define Ri, i = 1, . . . , J , to be matrices of entries 0 and 1 such
that RiΨ forms the nodal bases for Si. If v = B−1r then v =

∑J
i=0 RT

i A−1
i RiMr

where, noting the bilinear form used in each subspace,

A0 = R0AbR
T
0 , A1 = R1DR

T
1 , Ai = R1AaR

T
i , i = 2, . . . , J.

The size of A1 is large; however, the matrix D computed with the bilinear form
b1(·, ·) is a diagonal matrix.

3.3 Overlapping Algorithm

Overlapping Subdomains

As in [11], we extend each subdomain Γj in the following way. First we define, for
some δ > 0 called the overlap size,

Ṽj = span{{}φk : xk /∈ Γ j , dist(xk, ∂Γj) ≤ δ},

and denote
Γ̃j = supp{φk : φk ∈ S̃j},

which is the shaded area in Figure 1. (Here the distance is defined with the max
norm ‖x‖ = max{|x1|, |x2|} where x = (x1, x2).) The extended subdomain Γ ′j is

then defined as Γ ′j = Γ j ∪ Γ̃j . We note that Γ ′j need not be a quadrilateral domain.
Also, if δ is chosen such that δ ∈ (0, H], then

diam(Γ ′i ) ≃ H. (11)
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δ

δ

Γj Γj

δ δ

Fig. 1. • vertex at a distance δ to Γ j , Γ̃j : shaded region, Γ ′j = Γj∪Γ̃j : overlapping
subdomain.

Subspace Decomposition

The decomposition (8) is performed with subspaces Sj , j = 0, . . . , J = N , defined
as

S0 = ΠFV0,

Sj = Vj ∪ Ṽj = S ∩ H̃1/2(Γ ′j) ∀j = 1, . . . , J.

The bilinear forms bi(·, ·) on Si (see (9)) are defined as follows:

b0(v, w) = b(ΠCv,ΠCw) ∀v, w ∈ S0,

bi(v, w) = a(v, w) ∀v, w ∈ Si, i = 1, . . . , J.

Algorithm

The overlapping preconditioner is performed in the same manner as the non-
overlapping version, with subspace corrections being

ui ∈ Si : bi(ui, v) = 〈r, v〉 ∀v ∈ Si, i = 0, . . . , J.

Matrix Representation

As in the case of non-overlapping method, the updated residual vector is given by
v =

∑J
i=0 RT

i A−1
i RiMr where

A0 = R0AbR
T
0 , Ai = R1AaR

T
i , i = 2, . . . , J.
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3.4 Convergence

The preconditioned GMRES method using the non-overlapping and overlapping
preconditioners converges with constants C1 and C2 (see (10)) slightly dependent
on the mesh sizes H and h and the overlap size δ, as given in the following theorem.

Theorem 1.

• Bound for C1: There exists H0 > 0 such that for all H ∈ (0, H0] and u ∈ S
there hold (

1 + log2 H

h

)−1

a(u, u) � a(u,Qu)

for the non-overlapping method, and

(
1 + log2 H

δ

)−1

a(u, u) � a(u,Qu)

for the overlapping method.
• Bound for C2: There exists H1 > 0 such that for all H ∈ (0, H1] and u ∈ S

there holds, for both methods,

a(Qu,Qu) � a(u, u) .

Proof. Sketch of the proof: First we note that

a(Qu,Qu) ≃ ‖Qu‖H̃1/2(Γ )
2 �

J∑

i=0

‖Qiu‖H̃1/2(Γi)
2 ≃

J∑

i=0

a(Qiu,Qiu).

Using this result, the boundedness of Q0, and the definition of the projections Qi,
we can prove the bound for C2.

The proof of the bound for C1 is more complicated and involves the operator
P = P0 + · · · + PJ where Pi is defined as Qi but with the bilinear form a(·, ·)
in the place of b(·, ·). This operator P is in fact the additive Schwarz operator
for the positive definite operator D0 (see (4)). It is proved in [6] and [1] for the
nonoverlapping method that

(
1 + log2 H

h

)−1

a(v, v) � a(Pv, v),

and in [11] for the overlapping method that

(
1 + log2 H

δ

)−1

a(v, v) � a(Pv, v).

The difference in P and Q is due to the bounded operator K in (4), and further
analysis to obtain similar estimates for Q involves this operator. For a detailed proof,
see [8].



654 E.P. Stephan, M. Maischak, T. Tran

4 Numerical Experiments

We solve equation (2) with k = 5 and g(x) ≡ 1 on a uniform triangular mesh,
by using the non-overlapping and overlapping preconditioners. In Table 1 we re-
port on the number of iterations and CPU times (in seconds) when the equation
is solved without any preconditioner, and when the non-overlapping preconditioner
is used with various values of H/h. In Table 2 we report on the number of iter-
ations and CPU times when the overlapping preconditioner is used with various
values of H/δ. Choosing a suitable mesh size ratio H/h, we observe that the non-
overlapping as well as the overlapping preconditioned method clearly outperform
the non-preconditioned method in iteration numbers and CPU times. Here we use
the GMRES without restart and stop if the relative residual is less than 10−10. The
local problems in computing the correction steps are solved by the GMRES or, if
appropriate, by CG.

Table 1. Number of iterations and CPU times (in parentheses). WP: without pre-
conditioner

DoF WP Non-overlapping

H/h = 2 H/h = 4 H/h = 8 H/h = 16

9 6 (0.01) 6 (0.01)
49 17 (0.02) 17 (0.01) 17 (0.02)
225 23 (0.02) 20 (0.03) 20 (0.02) 21 (0.04)
961 31 (0.15) 21 (0.24) 21 (0.12) 23 (0.20) 23 (0.62)
3969 44 (3.02) 21 (4.39) 21 (1.62) 21 (1.75) 26 (4.16)
16129 63 (84.94) 21 (93.72) 21 (32.18) 21 (29.86) 24 (41.06)

Table 2. Number of iterations and CPU times (in parentheses) of overlapping
method

DoF δ = h δ = 2h

H/h = 2 H/h = 4 H/h = 8 H/h = 16 H/h = 2 H/h = 4 H/h = 8 H/h = 16

9 6 (0.02) 6 (0.02)
49 19 (0.01) 18 (0.02) 17 (0.03) 20 (0.02)
225 28 (0.04) 24 (0.03) 22 (0.05) 22 (0.09) 26 (0.08) 26 (0.09)
961 30 (0.39) 27 (0.23) 26 (0.34) 25 (0.86) 26 (0.65) 29 (0.48) 27 (0.57) 27 (1.17)
3969 30 (6.53) 28 (2.50) 27 (2.84) 28 (6.12) 31 (8.34) 31 (3.92) 28 (4.13) 28 (7.99)
16129 30 (135.47) 28 (43.76) 27 (41.14) 29 (58.46) 35 (166.31) 31 (53.10) 29 (49.80) 29 (69.04)
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