
AMDiS - Adaptive Multidimensional
Simulations: Parallel Concepts

Angel Ribalta, Christina Stoecker, Simon Vey, and Axel Voigt

Crystal Growth Group, Research Center Caesar, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany. {ribalta,stoecker,vey,voigt}@caesar.de

Summary. We extend the parallel adaptive meshing algorithm by [2] to further
reduce communication requirements in solving PDEs by parallel algorithms. Imple-
mentation details and first results for time dependent problems are given.

1 Introduction

In this work we describe the parallelization concepts of our finite element software
AMDiS [7], which is a C++ toolbox for solving systems of partial differential equa-
tions. It uses adaptive mesh refinement based on local error estimates, to keep the
number of unknowns as small as possible. Bank and Holst [2] introduced a new ap-
proach for parallelizing such adaptive simulation software, which can be summarized
in the following steps:

1. Solve the problem on a relative coarse mesh. Estimate element errors and create
partitions with approximately equal error.

2. Each processor solves the problem on the whole domain Ω, but does adaptive
refinements only within its assigned local domain (including some overlap).

3. Construct the global solution out of all local solutions by a partition of unity
method.

This idea differs from the classical domain decomposition approach in two main
points. First, the load balancing is not done before every iteration, but only once at
the beginning of computation. Second, the processors do not restrict computations
to their local partitions, but refine only within these partitions. Both points lead to
reduced communication needs between the processors, and mainly the second point
makes it relatively easy to port a sequential software into a parallel one, because
necessary code changes are reduced to a minimum.

In section 2 we explain how the domain decomposition is realized in AMDiS,
followed by a description of necessary changes in the parallel adaptation loop in
section 3. The construction of the global solution is subject of section 4. In section
5 we show some numerical results also for time dependent problems. And finally
section 6 contains some conclusions and an outlook to further work.

616 A. Ribalta et al.

2 Domain Decomposition

To prepare parallel computations, first the decision must be made, how the work
is distributed amongst the given number of processors. Like already mentioned in
section 1, the main idea is to do a domain decomposition on a relative coarse mesh,
such that the sum of estimated errors in the different domains Ωi is approximately
the same. The coarse mesh can be constructed by a given number of adaptive re-
finement steps starting from a (very coarse) macro triangulation. These initial re-
finement steps can be done by one processor which sends the result to all other
processes, or they can be done by all processors in parallel. The second approach
has the benefit, that no communication has to be done after this phase, because all
processors come to the same result in nearly the same time. After domain decom-
position each processor i does its calculation on the whole domain, but refines the
mesh only within its partition Ω+

i , which is the domain Ωi including some overlap
with neighboring partitions.

The domain decomposition is computed with help of the parallel graph parti-
tioning and sparse matrix ordering library ParMETIS [5]. ParMETIS first creates
the dual graph of the mesh and then partitions this graph considering the error
estimates as element weights. When constructing the dual graph, the degree of con-
nectivity among the vertices in the graph can be given, by specifying the number of
nodes that two elements at least have to share, so that the corresponding vertices are
connected by an edge in the dual graph. For the partitioning of AMDiS meshes this
number is set to the dimension of the mesh, because this is the number of common
vertices of two neighboring simplices.

Setting this number to one, a dual graph with a higher connectivity is con-
structed, which can be used for an efficient overlap computation. The overlap is
computed on the coarse mesh which is used for the domain decomposition. An over-
lap of Ωi of size k includes all elements of the coarse mesh, that have a distance of
at most k to any element within Ωi. Two elements have a distance of 1, if they have
at least one common node. A breadth-first search on the dual graph with higher
connectivity can be used to determine all elements with distance d ≤ k to domain
Ωi.

In Figure 1 the overlap of size 1 for domain Ω1 on the coarse two dimensional
mesh is shown (left hand side). In the middle one can see the global fine mesh after
parallel computations, and on the right hand side the corresponding fine mesh of
rank 1 is shown. The dashed line at the overlap boundary indicates, that Ω+

i is an
open domain. The finite element basis functions that are located at this boundary
do not belong to partition i, which is important for the partition of unity method.

3 Parallel Adaptation Loop

The adaptation loop keeps nearly the same as in sequential computation. The only
thing to do here, is to ensure, that error estimations and refinements are done only
on the local partition (including overlap). One goal for the parallel adaptation is to
achieve a mesh, which is as similar as possible to that of the sequential computation.
To reach this goal, the right refinement strategy has to be chosen. If the strategy
depends on global values like the maximal error estimated on Ω, synchronization

AMDiS - Adaptive Multidimensional Simulations: Parallel Concepts 617

global fine mesh local fine mesh .coarse mesh

21

4 3

21

4 3

element status
partition 1

IN

OVERLAP

OUT

Fig. 1. Overlap of partition 1 on the coarse mesh (left), global fine mesh (middle),
and fine mesh of rank 1 (right)

after each iteration is needed to determine and communicate this value. This syn-
chronization could slow down the parallel computation drastically. So we use the
equidistribution strategy described in [6] where the refinement depends only on the
total error tolerance which is known in advance.

4 Building the Global Solution

After the parallel adaptation loop, every process has computed the solution on the
whole domain Ω. But refinements for process rank was only done in Ω+

rank. Out of
this region the solution was computed on a very coarse mesh, and so it may not be
very accurate. In this section we describe the construction of a final global solution
out of the local rank solutions by a parallel partition of unity method. Here each
process rank computes a weighted sum of all local solutions on its domain Ωrank
using the other solutions ui on Ωirank for all i 6= rank. In section 4.1 the concept
of mesh structure codes is described, which provides an efficient way to exchange
information about the binary mesh structure at different processes. Using these
information, it is easy to synchronize meshes and exchange local solutions in the
overlap regions, what is explained in section 4.2. Finally section 4.3 shows, how the
parallel partition of unity is built locally by the single processes.

4.1 Mesh Structure Code

To be able to construct a global solution using the partition of unity method, first
the local solutions in overlap regions must be exchanged between the different pro-
cesses. An easy way to do this, is first to synchronize the meshes within these regions,
and than exchange the values of corresponding nodes. The concept of mesh struc-
ture codes allows to synchronize the meshes in a very efficient way using the MPI
communication protocol.

Refinement in AMDiS is done by bisectioning of simplicial elements. The two
new elements are stored as children of the bisected element. So a binary tree arises,
where each element has either two children or no children. An inner element is
represented by a 1 in the mesh structure code, a leaf element is represented by a 0.
Furthermore a unique order of tree elements must be given, which is independent

618 A. Ribalta et al.

1 2

3

4

5 6

0 1 3 4 5 6 2

1 1 0 1 0 0 0

pre−order traverse:

mesh structure code:

0

1

4

0

3

5 6

2
leaf element

refined element

Fig. 2. Mesh structure code of an adaptively refined triangle

of the sequence of adaptive refinements and coarsenings. This order is defined by a
pre-order traversal of the tree elements. In Figure 2 the construction of the mesh
structure code for an adaptive refined triangle is shown. The resulting binary code
in this example can be represented by the decimal value 104. Depending on the
size of the binary tree and of the internal integer representation, not one but a
vector of integers is necessary to represent the whole tree. To exchange the mesh
structures between different processors only one or a few integer values for each
macro element has to be sent over MPI. The goal of mesh synchronization is to
create the composition of all meshes in overlap regions. To do this, mesh structure
codes can be merged very efficiently at binary level. Then the local mesh can be
adjusted to this composite mesh structure code.

4.2 Mesh Synchronization and Value Exchange

The process with rank rank will construct the global solution within its domain
Ωrank. Here fore it needs the local solution ui on Ωirank of every other process
i 6= rank which has an overlap with Ωrank. After adapting the local mesh according
to the composite mesh structure code the different meshes have common nodes at
least in the overlap region. But due to different adaptation sequences in the meshes,
these nodes can have different indices, which makes the value exchange difficult.
A unique node order can be constructed by sorting the nodes lexicographically in
ascending order by their coordinates. So for every other rank i a sending order is
created on Ωranki and a receiving order on Ωirank. To avoid serialization in the MPI
communication, first a process sends in a non blocking way to all other processes,
and after that receives in a blocking way from the other processes.

4.3 Parallel Partition of Unity

Now process rank has all relevant informations to construct the global solution on
Ωrank by a partition of unity (see [1]), which is defined by a weighted sum over all
local solutions ui:

uPU (x) :=
numRanks∑

i=1

γi(x)ui(x) ∀x ∈ Ω (1)

AMDiS - Adaptive Multidimensional Simulations: Parallel Concepts 619

where
∑numRanks
i=1 γi(x) = 1 for all x ∈ Ω. We set γi(x) := Wi(x)∑N

j=1Wj(x)
with Wi(x) :=

∑
φ∈Φc

i
φ(x) where Φci is the set of linear coarse grid basis functions within Ω+

i . The

partition of unity now is evaluated at all coordinates where fine grid basis functions
of Ωi are located. In [3] an upper bound for the error in H1 semi norm resulting from
the partition of unity is given. Assume u ∈ H2(Ω), then ‖u−uPU‖H1 ≤ C(h+H2),
where h is the maximal edge size of mesh i in Ωi and H is the maximal edge size of
mesh i in Ω \Ωi. In particular, if h ≤

√
H:

‖u− uPU‖H1 ≤ C(h) . (2)

5 Numerical Results

In this chapter we present two examples that demonstrate the functionality of the
parallelization approach. In section 5.1 the Poisson equation is solved on the unit
square. Section 5.2 shows an application in the field of image processing and provides
an extension of the approach to time dependent problems.

5.1 Poisson Equation

We solve the Poisson equation

−∇u(x) = f(x) ∀x ∈ Ω (3)

u(x) = g(x) ∀x ∈ ∂Ω (4)

with Ω = [0, 1] × [0, 1], f(x) = −(400x2 − 40)e−10x2

, and g(x) = e−10x2

. The

analytical solution is u(x) = e−10x2

, shown in Figure 3 a). In Figure 3 b) the time
lines of a parallel computation with eight processors are shown. In this case a speedup
of 5.8 to the serial computation was reached. The optimal speedup is not reached due
to the overhead of parallel initialization at the beginning and the partition of unity
at the end, as well as by a certain load imbalance during the parallel adaptation
loop. To get an impression of the error that arises due to the partition of unity, we
compared the solution after parallel computation with the true analytical solution
and computed the pointwise error, the error in L2 norm, and the error in the H1

semi norm. Afterwards we synchronized the meshes on the whole domain Ω and
solved the problem on this global mesh again on one single processor. In Table 1
the measured errors for the single cases are listed. The final solve step reduced the
pointwise and L2 error by about one order of magnitude. However the error in H1

semi norm is reduced only by about ten percent.

Table 1. Errors for a computation with 4 processors before and after a final solve
step

pointwise error L2 error H1 error

before final solve 2.726 · 10−2 6, 207 · 10−5 3.508 · 10−3

after final solve 1.120 · 10−3 6.418 · 10−6 3.327 · 10−3

620 A. Ribalta et al.

a) b)

Fig. 3. Analytical solution of the Poisson equation and time lines of a parallel
computation with 8 processors

5.2 Perona-Malik Denoising

We now extend the approach to time dependent problems. For this we use the
Perona-Malik equation (see [4]) to reduce the noise level in a monochrome image.
The gray values of the image are interpreted as height field. A dogma in image
processing is that images are of high interest where the gradient of this height field
is large. So the Perona-Malik equation smooths regions with a small gradient and
sharpens regions with a large gradient. The equation reads

ut = div(g(|∇u|)∇u) (5)

with
g(s) := e−(s

2λ
)2 . (6)

The parameter λ determines the smoothing/sharpening properties. The time step
size determines the degree of denoising. In this example we do not use adaptive mesh
refinement, but use a fixed hierarchical mesh, which on the finest level represents
the resolution of the image. The domain decomposition and overlap computation is
done on a certain lower level of the mesh. After each time step a partition of unity
of the local rank solutions was computed. As initial solution we added random noise
of the interval [−30, 30] to a picture with gray values between 0 (black) and 255
(white). The picture domain is Ω = [0, 1]× [0, 1]. The parameter λ was set to 3000
and the time step size is 10−4. In Figure 4 a) the original in b) the noised picture is
shown. Figure 4 c) shows the denoising result after two time steps, 4 d) after four
time steps. To illustrate the view of one processor, in Figure 4 e) the local solution
of rank 4 after time step 4 is shown. In Figure 4 f) the corresponding local mesh is
presented.

6 Conclusions and Outlook

The concepts presented in this paper, allowed a parallelization of our finite element
software AMDiS with a comparatively small amount of redesign and reimplemen-
tation. With the ParMETIS library domain decomposition was done efficiently and

AMDiS - Adaptive Multidimensional Simulations: Parallel Concepts 621

a) original b) original + noise c) after 2 steps

d) after 4 steps e) view of rank 4 f) mesh of rank 4

Fig. 4. Parallel denoising of a monochrome picture

the concept of mesh structure codes enabled an easy way of mesh synchronization.
An aspect of future work is the treatment of time dependent problems with adaptive
refinements.

References

[1] I. Babuska and J. M. Melenk. The partition of unity method. Internat. J. Numer.
Methods Engrg., 40:727–758, 1997.

[2] R.E. Bank and M. Holst. A new paradigm for parallel adaptive meshing algo-
rithms. SIAM Rev., 45(2):291–323, 2003.

[3] M. Holst. Applications of domain decomposition and partition of unity methods
in physics and geometry. Proceedings of the Fourteenth International Conference
on Domain Decomposition Methods, pages 63–78, 2002.

[4] P. Perona and J. Malik. Detecting and localizing edges composed of steps, peaks
and roofs. Technical Report UCB/CSD-90-590, EECS Department, University
of California, Berkeley, 1990.

[5] K. Schloegel, G. Karypis, and V. Kumar. Parallel static and dynamic multi-
constraint graph partitioning. Concurrency and Computation: Practice and Ex-
perience, 14:219–240, 2002.

[6] A. Schmidt and K.G. Siebert. Design of Adaptive Finite Element Software, vol-
ume 42 of LNCSE. Springer, 2005.

[7] S. Vey and A. Voigt. ADMiS: adaptive multidimensional simulations. Comput.
Vis. Sci., 10(1):57–67, 2007.

