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Summary. We review our FETI based domain decomposition algorithms for the
solution of 2D and 3D frictionless contact problems of elasticity and related theo-
retical results. We consider both cases of restrained and unrestrained bodies. The
scalability of the presented algorithms is demonstrated on the solution of 2D and
3D benchmarks.

1 Introduction

The Finite Element Tearing and Interconnecting (FETI) method was originally pro-
posed by Farhat and Roux (see [15]) as a parallel solver for problems described
by elliptic partial differential equations. The computational domain is decomposed
(teared) into non-overlapping subdomains that are “glued” by Lagrange multipliers,
so that, after eliminating the primal variables, the original problem is reduced to a
small, relatively well-conditioned, possibly equality constrained quadratic program-
ming problem that is solved iteratively. The time that is necessary for both the
elimination and iterations can be reduced nearly proportionally to the number of
the subdomains, so that the algorithm enjoys parallel scalability. Since then, many
preconditioning methods were developed which guarantee also numerical scalability
of the FETI methods (see, e.g., [18]). The equality constraints can be avoided by
using the Dual-Primal FETI method (FETI–DP) introduced by Farhat et al., see
[13]. The continuity of the primal solution at crosspoints is implemented directly
into the formulation of the primal problem by considering one degree of freedom
per variable at each crosspoint. Across the rest of the subdomain interfaces, the
continuity of the primal solution is once again enforced by Lagrange multipliers.
After eliminating the primal variables, the problem is again reduced to a small,
unconstrained, relatively well conditioned, strictly convex quadratic programming
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problem that is solved iteratively. An attractive feature of FETI–DP is that the lo-
cal problems are nonsingular. Moreover, the conditioning of the resulting quadratic
programming problem may be further improved by preconditioning, see [17], and
the method performs better than the original FETI method on the fourth order
problems.

Though the FETI and FETI-DP domain decomposition methods were originally
developed for solving efficiently large-scale linear systems of equations arising from
the discretization of the problems defined on a single domain Ω, it was soon ob-
served that they can be even more efficient for the solution of multidomain contact
problems, see e.g. [12, 5], and [1]. The reason is that the duality in this case not only
reduces the original discretized problem to a smaller and better conditioned prob-
lem, but it also transforms the more general inequalities describing non-penetration
into the bound constraints that can be treated much more efficiently. Moreover, since
the FETI method treats naturally such subdomains, this approach is well suited for
the solution of semicoercive contact problems with “floating” subdomains. These
observations were soon confirmed by numerical experiments ([12, 5], and [1]). Re-
cently, using new results in development of quadratic programming (see [11, 4]), the
experimental evidence was supported by theory (see [3, 6, 9, 10]). There are also
references to some other development of scalable algorithms for contact problems.
See also [16] or the paper by Krause in this proceedings.

In this paper, we review our work related to the development of scalable algo-
rithms for the solution of multibody contact problems by FETI–DP based methods
with a special stress on the solution of 3D problems. For the sake of simplicity, we
consider only the frictionless problems of linear elasticity with the linearized, possi-
bly non-matching non-interpenetration conditions implemented by mortars, but the
results may be exploited also for the solution of the problems with friction or large
deformations with more sophisticated implementation of the kinematic constraints,
see e.g. [8].

2 FETI and Contact Problems

Assuming that the bodies are assembled from the subdomains Ω(s), the equilibrium
of the system may be described as a solution u of the problem

min j(v) subject to

Ns∑

s=1

B
(s)
I v(s) ≤ gI and

Ns∑

s=1

B
(s)
E v(s) = o, (1)

where j(v) is the energy functional defined by

j(v) =

Ns∑

s=1

1

2
v(s)TK(s)v(s) − v(s)T f (s),

v(s) and f (s) denote the admissible subdomain displacements and the subdomain
vector of prescribed forces, K(s) is the subdomain stiffness matrix, B(s) is a block of

the matrix B =
[
BTI ,B

T
E

]T
that corresponds to Ω(s), and gI is a vector collecting

the gaps between the bodies in the reference configuration. The matrix BI and the
vector gI arise from the nodal or mortar description of non-penetration conditions,
while BE describes the “gluing” of the subdomains into the bodies.
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To simplify the presentation of basic ideas, we can describe the equilibrium in
terms of the global stiffness matrix Kg, the vector of global displacements ug, and
the vector of global loads fg. In the original FETI methods, FETI I and FETI II,
we have

Kg = diag(K(1), . . . ,K(Ns)), ug =




u(1)

...

u(Ns)


 , and fg =




f (1)

...

f (Ns)


 ,

where K(s) is a positive definite or positive semidefinite matrix.
A distinctive feature of the FETI-DP method is that the continuity of the com-

ponents of the displacement field at some “corner” interface nodes is not enforced by
the Lagrange multipliers, but is achieved by defining the corner unknowns only at
the global level, while defining all other displacement unknowns at the subdomain
level. If the subscripts c and r are chosen to designate all the degrees of freedom
that correspond to the corners and remainders, respectively, then the subdomain
and global stiffness matrices have the form

K(s) =

[
K

(s)
rr K

(s)
rc

K
(s)
cr K

(s)
cc

]
and Kg =

[
Kgrr Kgrc
Kgcr Kgcc

]
, Kg

rr = diag(K(1)
rr , . . . ,K

(Ns)
rr ),

where Kgrr = diag(K
(1)
rr , . . . ,K

(Ns)
rr ) is nonsingular and Kgcc is a positive definite or

semidefinite small matrix.
Whichever variant of the domain decomposition we use, the energy function

reads

j(vg) =
1

2
vTg Kgvg − fTg vg

and the vector of global displacements ug solves

min j(vg) subject to BIvg ≤ gI and BEvg = o. (2)

Alternatively, the global equilibrium my be described by the Karush-Kuhn-
Tucker conditions (e.g. [2])

Kgug = fg − BTλ, λI ≥ o, λ
T
I (BIu− gI) = o, (3)

where g =
[
gTE ,o

T
]T

, and λ =
[
λTI ,λ

T
E

]T
denotes the vector of Lagrange multipliers

which may be interpreted as the reaction forces. The problem (3) differs from the
linear problem by the non-negativity constraint on the components of reaction forces
λI and by the complementarity condition.

We can use the left equation of (3) and the sparsity pattern of Kg to eliminate
the displacements. We shall get the problem to find

max Θ(λ) s.t. λI ≥ o and RT (fg − BTλ) = o, (4)

where

Θ(λ) = −1

2
λTBK†gB

T
λ + λ

T (BK†gfg − g)− 1

2
fgK

†
gfg, (5)

K†g denotes a generalized inverse that satisfies KgK
†
gKg = Kg, and R denotes the full

rank matrix whose columns span the kernel of Kg. Recalling the FETI notation
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F = BK†gB
T , e = RT fg, G = RTBT , P = GT (GGT )†G, d = BK†gfg − g,

denoting Q = I − P, and observing that Qλ = λ for any feasible λ, we can modify
(4) to

min θ(λ) s.t. λI ≥ 0 and Gλ = e, (6)

where

θ(λ) =
1

2
λ
TQFQλ − λ

TQ d.

Alternatively, the Lagrange multipliers of the solution are determined by the KKT
conditions for (4) which read

Fλ − d + GTα = o, λI ≥ o, and Gλ = e. (7)

For details concerning the matrices and parallel implementation, see e.g. in [8,
12], and [1].

3 Algorithms

We implemented two FETI based algorithms for the solution of contact problems,
using the research software which is being developed in Stanford. The first one,
FETI-DPC, is based on FETI-DP domain decomposition method. The algorithm
uses the Newton-like method which solves the equilibrium equation (7) in Lagrange
multipliers in the inner loop, while feasibility of each step is ensured in the outer
loop by the primal and dual planning steps. The algorithm exploits standard FETI
preconditioners, namely the Schur and lumped ones. The additional speedup of con-
vergence is achieved by application Krylov type acceleration scheme. The algorithm
exploits a globalization strategy in order to achieve monotonic global convergence.

The second algorithm is based on the TFETI domain decomposition (see [7]), a
variant of the FETI-I domain decomposition method (see [14]), which treats all the
boundary conditions by Lagrange multipliers, so that all the subdomains are floating,
and their kernels are known a priori and can be used in construction of the natural
coarse grid. It exploits our recently proposed algorithms MPRGP (Modified Propor-
tioning with Reduced Gradient Projection) by Dostál and Schöberl (see [11]) and
SMALBE (Semimonotonic Augmented Lagrangians for Bound and Equality con-
strained problems) (see [3, 4]). The SMALBE, a variant of augmented Lagrangian
method with adaptive precision control for the solution of quadratic programming
problems with bound and equality constraints, is applied to (6). It enforces the
equality constraints by the Lagrange multipliers generated in the outer loop, while
the auxiliary bound constrained problems are solved approximately in the inner loop
by MPRGP, an active set based algorithm which uses the conjugate gradient method
to explore the current face, the fixed steplength gradient projection to expand the
active set, the adaptive precision control of auxiliary linear problems, and the re-
duced gradient with the optimal steplength to reduce the active set. The unique
feature of SMALBE with the inner loop implemented by MPRGP when used to (6)
is the rate of convergence in bounds on spectrum of the regular part of the Hessian
of θ, so that using the classical results by Farhat, Mandel, and Roux (see [14]), the
algorithm has been proved to be numerically scalable (see [6]).
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4 Numerical Experiments

Algorithms described in this paper were tested and their results compared on two
model contact problems.

The first 2D problem involves 6 rectangles in mutual contact as it is depicted
in Figure 1 (left). The left rectangles are fixed on the left side (blue arrows) while
the right ones are free and they are loaded (red arrows represent forces in oppo-
site direction) such a way that the problem has unique solution. Each rectangle
were further decomposed to the 4 subrectangles and therefore the original problem
were decomposed to 24 subdomains (Figure 1 (middle)). The performance of the
algorithms FETI-DPC and SMALBE is compared in Table 1. Outer iterations are
used only in the case of SMALBE method while the number of subiterations is used
only in methods FETI-DP. The number of dual plannings and primal plannings
of FETI-DPC methods corresponds to the number of expansion and proportioning
steps in the case of SMALBE method. Therefore they share the same column for
each methods. The numbers on the left side of the slashes represent the number of
iterations for 6 subdomains problem and the numbers on the right sides represent
the number of iterations for 24 subdomains problem. The resulting deformation with
distribution of the stresses are depicted in Figure 1 (right).

Fig. 1. 2D problem: decomposition in 6 subdomains (left), in 24 subdomains (mid-
dle), and computed stress distribution (right)

Table 1. Algorithms performance for 2D semicoercive problem with 6 and 24 sub-
domains.

Outer iter. Main iter. subiter. Primal plan. Dual plan.
(Exp. step) (Proport.)

FETI-DPC - 17/32 0/0 2/2 0/0
SMALBE 1/21 9/68 - 0/18 1/3
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The second 3D model problem consists of two bricks in mutual contact. The
bottom brick is fixed in all degrees of freedom while the upper one is fixed only in such
a way, that only vertical rigid body movement is allowed. This situation is depicted
in Figure 2 (left and middle). The forces are chosen so that not all constraints
are active on the contact interface as in Figure 2 (right). We have analyzed two
cases. The first one, with matching grid on the contact interface prescribes node-to-
node contact conditions. The second one allows non-matching grids and the mortar
elements were used for assembling of contact conditions. The resulting performance
of algorithms is collected in the Table 2. Columns in this table have the same meaning
as in 2D case.

Fig. 2. 3D problem with matching grids (left), with non-matching grids (middle),
and computed solution using non-matching grids (right)

Table 2. Algorithms performance for 3D problem with matching/non-matching grid
on contact interface.

Outer iter. Main iter. subiter. Primal plan. Dual plan.
(Exp. step) (Proport.)

FETI-DPC - 24/26 11/10 7/8 0/0
SMALBE 13/10 29/29 - 20/20 0/0

5 Comments and Conclusions

The FETI method turned out to be a powerful engine for the solution of contact
problems of elasticity. Results of numerical experiments comply with recent theo-
retical results and indicate high efficiency of the methods presented here. Future
research will include adaptation of the standard preconditioning strategies to the
solution of inequality constraint problems, problems with friction (see e.g. [8]), and
dynamic contact problems.
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