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Abdoulaye Samaḱe, Vincent Chabannes, Christophe Picard, and Christophe
Prud’homme

Additive Schwarz Method for DG Discretization of Anisotropic Elliptic
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Maksymilian Dryja, Piotr Krzẏzanowski, and Marcus Sarkis

A one-level additive Schwarz preconditioner for a discontinuous
Petrov-Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Andrew T. Barker, Susanne C. Brenner, Eun-Hee Park, and Li-Yeng Sung

A smooth transition approach between the Vlasov-Poisson and the
Euler-Poisson system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Giacomo Dimarco, Luc Mieussens, and Vittorio Rispoli

The parareal in time algorithm applied to the kinetic neutron diffusion
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
A.-M. Baudron, J.-J. Lautard, Y. Maday, and O. Mula

Achieving robustness through coarse space enrichment in the two level
Schwarz framework.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Nicole Spillane, Victorita Dolean, Patrice Hauret, Fréd́eric Nataf, Clemens
Pechstein, and Robert Scheichl

Optimized Schwarz algorithms in the framework of DDFV schemes. . . . . 391
Martin J. Gander, Florence Hubert, and Stella Krell

A Time-Dependent Dirichlet-Neumann Method for the Heat Equation . . . 399
Bankim C. Mandal

Hierarchical model (Hi-Mod) reduction in non-rectilinear d omains. . . . . . 407
Simona Perotto

The Origins of the Alternating Schwarz Method . . . . . . . . . . . . . . . . . . . . . 415
Martin J. Gander and Gerhard Wanner

Solving large systems on HECToR using the 2-Lagrange multiplier
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
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Space Decompositions and Solvers for
Discontinuous Galerkin Methods

Blanca Ayuso de Dios1 and Ludmil Zikatanov2

1 Introduction

The design and the analysis of efficient preconditioners fordiscontinuous Galerkin
discretizations has been subject of intensive research in the last decade with efforts
focused mainly on elliptic problems.

A standard point of view when studying most of the preconditioning and iterative
solution strategies, in general, is associated with a particularspace decomposition.
From the classical theory of Lions [25, 30, 34], we know that,the choice of the
space decomposition plays significant role in the construction and also in the con-
vergence properties of the resulting preconditioners. Fornonconfoming methods,
domain decomposition and multigrid preconditioners have been analyzed by estab-
lishing connections with their respective conforming subspaces [10, 27]. In the case
of DG methods, the discontinuous nature of the DG finite element spaces allows to
introduce and study not only space splittings pertinent to the conforming methods
but also consider new splittings which give rise to new techniques and ideas.

In most of the earlier works, relevant space splittings of the DG finite element
space, were introduced via a domain decomposition. Overlapping additive Schwarz
methods have been studied following the classical Schwarz theory for different DG
schemes [21, 9, 20]. Contrary to the conforming case, additive (and multiplicative)
Schwarz methods based on non-overlapping decomposition ofthe computational
domain have been constructed and proven to be convergent forDG methods. For
such type of preconditioners, novel features, which have noanalog in the conform-
ing case, arise. For both overlapping and non-overlapping Schwarz methods, the
splittings are stable in theL2-norm by construction and can be shown to be stable in
the natural DG energy norm, with constants depending on the mesh sizes relative to
the coarse and fine subspaces.

More sophisticated substructuring preconditioners have been studied recently
for two dimensional elliptic Poisson problems. In [17, 18, 19, 1] non-overlapping
BDDC, N-N, FETI-DP and BPS domain decomposition preconditioners are intro-
duced and analyzed for a Nitsche-type approximation. BDDC preconditioners are
studied in [15, 29] for IP-spectral and IP-hybridized methods. Also there, several
different approaches have been considered and new theoretical tools have been in-
troduced. And of course, the space splitting in which the preconditioner rely, comes

1 Center for Uncertainty Quantification in Computational Science & Engineering, Division of
Mathematics & Computer, Electrical and Mathematical Sciences& Engineering (CEMSE) King
Abdullah University of Science and Technology, Kingdom of Saudi Arabia, e-mail:blanca.
ayusodios@kaust.edu.sa ·2 Department of Mathematics, The Pennsylvania State Univer-
sity, University Park, USA, e-mail:ludmil@psu.edu

3
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always from domain decomposition. Starting directly with asplitting of the DG
space, dictated by a hierarchy of meshes, multigrid methodshave been proposed and
analyzed in [22, 11]. A different approach was taken in [16] and [14, 13], to develop
respectively, two-level and multilevel preconditioners for the Interior Penalty (IP)
DG methods. A common idea behind these works is to use the fictitious/auxiliary
spaces for which one knows how do develop a preconditioner. Such preconditioning
techniques have already been applied in a wide range of problems in the conforming
case.

The aforementioned auxiliary space preconditioners use error corrections from
the conforming finite element space and they are certainly related to the a posteriori
theory for DG methods [24]. In fact, the stable projections given in [24] provide the
required tools for constructing and analyzing the convergence of these precondition-
ers including the case of non-conforming meshes.

A novel approach was taken in [8] where a natural decomposition of the linear
DG finite element space was introduced. The components of thespace decomposi-
tion are orthogonal in the inner product provided by the DG bilinear form. Such a
splitting allows to devise efficient multilevel methods anduniform preconditioners
and analyze these iterative schemes in a clean and transparent way. This seems to be
the only approach available till now, to prove convergence for the solvers of thenon-
symmetricInterior Penalty methods. While the methodology has been applied to the
lowest order DG space and conforming meshes, it is valid in two and three dimen-
sions, and has already been adapted and extended to a larger family of problems:
elliptic with jump coefficients [6]; linear elasticity [5];and convection dominated
problems corresponding to drift-diffusion models for transport of species [7].

We present here a brief overview of some of the domain and space decomposi-
tion techniques that comprise a set of key tools used in developing and analyzing
solvers for DG methods. In Section 3 we focus on non-overlapping Schwarz domain
decomposition methods. In Section 4 and 5 we present the two main classes of space
decomposition methods commenting on their strengths and weaknesses.

2 Discontinuous Galerkin Methods

We consider the model problem for given dataf ∈ L2(Ω):

−∆u∗ = f in Ω u∗ = 0 on∂Ω , (1)

Here,Ω ⊂ Rd, d = 2,3 is a polygonal (polyhedral) domain. LetTh be a shape-
regular family of partitions ofΩ into d-dimensional simplexesT (triangles ifd = 2
and tetrahedrons ifd = 3) and leth = maxT∈Th

hT with hT denoting the diameter
of T for eachT ∈ Th. We denote byE o

h andE ∂
h the sets of all interior faces and

boundary faces (edges ind = 2), respectively, and we setEh = E o
h ∪E ∂

h . Let VDG
h

denote the discontinuous finite element space defined by:
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VDG
h =

{
u∈ L2(Ω) : u|T ∈ Pℓ(T) ∀T ∈Th

}
, (2)

wherePℓ(T) denotes the space of polynomials of degree at mostℓ on eachT. We
also define the conforming finite element space asVconf

h =VDG
h ∩H1

0(Ω).
We define theaverageandjumptrace operators. LetT+ andT− be two neighboring
elements, andn+, n− be their outward normal unit vectors, respectively (n±= nT± ).
Let ζ± andτ± be the restriction ofζ andτ to T±. We set:

2{ζ} = (ζ++ζ−), [[ζ ]] = ζ+n++ζ−n− onE ∈ E o
h ,

2{τ} = (τ++ τ−), [[τ ]] = τ+ ·n++ τ− ·n− onE ∈ E o
h ,

[[ζ ]] = ζn, {τ}= τ onE ∈ E ∂
h . (3)

We will also use the notation

(u,w)Th
= ∑

T∈Th

∫

T
uwdx 〈u,w〉Eh

= ∑
E∈Eh

∫

E
uw ∀u,w,∈VDG

h .

The approximation to the solution of (1) reads:

Find u∈VDG
h such that Ah(u,w) = ( f ,w)Th

, ∀w∈VDG
h , (4)

with Ah(·, ·) the bilinear form corresponding to the Interior Penalty (IP) method (see
[4]) defined by:

Ah(u,w)=(∇u,∇w)Th
−〈[[u]],{∇w}〉Eh

−〈{∇u}, [[w]]〉Eh
+〈Sh[[u]], [[w]]〉Eh

, (5)

whereSh = αeℓ
2
eh−1

e with αe≥ α∗ > 0 for all e∈ Eh, he denotes the length of the
edgee in d= 2 and the diameter of the facee in d= 3, andℓe= max

T+∩T−=e
{ℓT+ , ℓT−},

with ℓT± being the polynomial degree onT±. Following [12], the above IP-biliear
form can be re-written in terms of the weighed residual formulation:

Ah(u,w) = (−∆u,w)Th
+ 〈[[∇u]],{w}〉E o

h
+ 〈[[u]], (Sh[[w]]−{∇w})〉Eh

. (6)

Continuity and stability can be easily shown in the DG norm orin the induced
‖ · ‖A -norm, providedαe≥ α∗ > 0 is taken sufficiently large;

Continuity: Ah(u,w)≤ cc‖u‖A ‖w‖A ∀u,w∈VDG
h

Coercivity: Ah(u,u)≥ cs‖u‖2A ∀u∈VDG
h

(7)

3 Non-overlapping Domain Decomposition Schwarz methods

To define the non-overlapping preconditioners, we need to introduce some further
notation. We denote byTS the family of partitions ofΩ into N non-overlapping
subdomainsΩ = ∪N

i=1Ωi . Together withTS, we letTH andTh be two families of
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coarse and fine partitions, respectively, with mesh sizesH andh. The three families
of partitions are assumed to be shape-regular and nested:TS⊆TH ⊆Th.
Similarly as we did forTh in Section 2, we define the skeleton and the corresponding
sets of internal and boundary edges relative to the subdomain partition. In particular,
for each subdomainΩi ∈ TS we define the sets of internalE o

i = {e∈ Eh : e⊂ Ωi}
and boundary edgesE ∂

i = {e∈ Eh : e⊂ ∂Ωi}, and we setEi = E o
i ∪E ∂

i . Finally,
we denote byΓ the collection of all interior edges that belong to the skeleton of the
subdomain partition;

Γ =
N⋃

i=1

Γi , with Γi = {e∈ E o
h : e⊂ ∂Ωi}.

The subdomain partitionTS induces a natural space splitting of theVDG finite el-
ement space. More precisely, we have a local finite element subspace associated to
eachΩi for eachi = 1, . . . ,S, defined by

V i
h = {w∈VDG : w≡ 0 in ⊂Ω rΩi}. (8)

Let I T
i : V i

h −→ VDG
h be theprolongationoperator, defined as the standard inclu-

sion operator that maps functions ofV i
h into VDG

h . We denote byIi the correspond-
ing restriction operators defined (for eachi) as the transpose ofI T

i with respect
to theL2–inner product. For vector-valued functionsI T

i andIi are defined com-
ponentwise. Then the following splitting holds (orthogonal with respect toL2-inner
product):

VDG
h = I T

1 V1
h ⊕I T

2 V2
h ⊕ . . .⊕I T

N VN
h . (9)

LOCAL SOLVERS: Two types of local solvers have been considered:

(a). Exact local solvers:Following [21], the local solvers are defined as the re-
striction of the discrete bilinear form to the subspaceVi .

ai(ui ,wi) = Ah(I
T
i ui ,I

T
i wi) ∀ui ,wi ∈V i

h (10)

(b). Inexact local solvers:Following [2, 3] the local solvers are defined as the IP
approximation to the original problem (1) but restricted tothe subdomainΩi ;
i.e.,

−∆u∗i = f |Ωi in Ωi , u∗i = 0 on∂Ωi . (11)

Then, the bilinear form can be written as:

âi(ui ,wi) = (−∆ui ,wi)Th∩Ωi+ 〈[[∇ui ]],{wi}〉E o
i
+ 〈[[ui ]],Sh[[wi ]]−{∇wi}〉Ei ,

(12)
where in the above definition, edges onE ∂

i are regarded as boundary edges
(even thosee∈ E ∂

i r ∂Ωi so thate∈ E o
h ) and therefore the trace operators on

such edges are defined as in (3).

Observe that, in a conforming framework, the definitions given in(a) and(b) would
have given rise to exactly the same local solvers. The difference in the DG context,
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originates from the distinct definition of the trace operators on boundary and internal
edges and the fact thate∈ E ∂

i r ∂Ωi is an interior edge for the global IP method
(and so for (10)), but a boundary edge for (12). See [2, 3] for further details.

Let nowA be the matrix representation of the operator associated to the global IP
method (5), in some chosen basis (say nodal lagrange basis functions to fix ideas).
We denote byAi and Âi the matrix representation (stiffness matrix) of the oper-
ators associated to (10) and (12), respectively. At the algebraic level, a one-level
Additive Schwarz preconditioner is then defined byBone

add= ∑S
i=1 I

T
i S
−1
i Ii whereIi is

the matrix representation of the restriction operator andSi denotes here the matrix
representation of the local solver; and can be chosen to be eitherAi or Âi . Notice
however, that only for the choiceSi = Ai , the resulting one level additive Schwarz
methodBone

add corresponds to the standard block jabobi preconditioner for the global
stiffness matrixA. This can be easily checked by noting that the definition (10)gives
at the algebraic levelAi = IiAITi ; that is, the matricesAi are the principal subma-
trices ofA. In contrast, the one level additive Schwarz based on the choiceSi = Âi

cannot be obtained by starting directly from the algebraic structure of the global
matrixA; it would require further modifications of the prolongationand restriction
operators.

On the other hand, in view of the possibility of considering (at least) these two
definitions for the local solvers, a natural question arises. Namely, if the inexact
local solvers (12) are approximating the original PDE restricted to the subdomain,
which continuous problem is approximated by the exact localsolvers (10), if any.By
rewriting the bilinear form in the weighted residual formulation one easily obtains:

ai(ui ,wi) = (−∆ui ,wi)Th∩Ωi+ 〈[[∇ui ]],{wi}〉E o
i

+〈[[ui ]],(Sh[[wi ]]−{∇wi})〉E o
i ∪(E ∂

i ∩∂Ω)

+〈1
2∇ui ·n+Shui ,wi〉Γi −〈ui ,

1
2∇wi ·n〉Γi

(13)

The terms on the first and second lines are easy to recognize, the first imposes the
PDE on each element; the second is the consistency term and the terms in the second
line ensure stability and symmetry. As regards those in the last line, the first term
is imposing the boundary condition onΓi (the part of∂Ωir∂Ω ). The second term,
could be regarded as an artifact to ensure the symmetry of themethod. Then, one
can write the continuous problem





−∆u∗i = f |Ωi in Ωi ,
u∗i = 0 on∂Ωi ∩∂Ω ,

1
2

∂u∗i
∂ni

+Shu∗i = 0 onΓi .

(14)

This implies that the exact local solvers for the IP method (and in general for most
DG methods) are approximating the original problem but withtransmission Robin
conditions. And ash→ 0 the method enforcesu∗i = 0 onΓi . Whether such interface
boundary conditions are optimal or could be further tuned toimprove the conver-
gence properties of the classical Schwarz methods is a subject of current research.
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Optimization of the Schwarz methods with respect to the interface boundary con-
ditions has been recently studied in [23]. The final ingredient needed to define the
two-level Schwarz method is the coarse solver.
COARSE SOLVER: Let Vc :=VDG

H be the coarse space and letac : Vc×Vc −→ R be
the coarse solver defined by [21, 2, 3]:

ac(uc,wc) = Ah(I
T
c uc,I

T
c wc) ∀uc,wc ∈Vc (15)

whereI T
c : Vc −→VDG

h is the prolongation operator, defined as the standard inclu-
sion. Notice that with this definition, the corresponding matrices do indeed satisfy
the Galerkin property:A= ITcAcIc, but should be noted that unlike in a conforming
frameworkac(uc,wc) 6= AH(uc,wc). A two level Schwarz preconditioner can then
be defined:

Badd =
S

∑
i=1
ITi S

−1
i Ii + I

T
cA
−1
c Ic (16)

It is also possible to define the coarse solver as IP approximation (with the partition
TH and the coarse spaceVc) to the orginal problem (i.e., asAH(uc,wc)). However
with such definition, the Galerkin property is lost and in order to ensure scalability
of the resulting two level Schwarz preconditioner, more sophisticated prologation
and restriction operators are required [9].

Let now B−1 denote the inverse operator associated to the two level precondi-
tioner (16). To analyze the convergence properties of the resulting preconditioner
one needs to characterize the dependence of the constantsC1 andC0 in

C1Ah(w,w)≤ (B−1w,w)≤C2
0Ah(w,w) ∀w∈VDG

h (17)

The condition number of the preconditioned matrixBA is thenC2
0/C1. The proof of

(17) is often guided by Lions lemma (for a proof see [32], [31], [34, Lemma 2.4]),
which tells that the preconditioner can be written as

(B−1w,w) := inf
wi ∈V i

wc+∑i wi = w

(
ac(wc,wc)+∑

i
Ri(wi ,wi)

)
, (18)

where we have denoted byRi(·, ·) the approximate (or exact) subspace solveron
V i .

4 Ficticious Space and Auxiliary Space Methods

Ficticious Space Lemma was originally introduced by Nepomnyaschikh in [26], and
further used for developing and analyzing multilevel preconditioners for noncon-
forming approximations in [27] and for conforming methods with nonconforming
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meshes in [33]. There are two main ingredients to construct afictitious space pre-
conditioner for the operatorA : VDG

h −→VDG
h associated to the bilinear form (5).

(1) A fictitious spaceV, and an symmetric positive definite operatorA : V −→ V
associated with someA (·, ·) : V×V −→ R.

(2) A continuous, linear and surjective mappingΠ : V→VDG
h

The fictitious space preconditionerB is then defined as

B= Π ◦A
−1◦Π ∗ : VDG

h →VDG
h . (19)

The convergence properties of the preconditionerB depend on the choice of the ficti-
tious spaceV and ficticious operatorA. Typically, one chooses a fictitious pair(V,A)
for which it is simpler to construct a preconditioner. The analysis of such methods
is done via theFictitious space lemma[26], which states that ifΠ has a bounded
(in energy norm) right inverse and is stable inA norm, thenB is equivalent toA (in
the sense that they satisfy a corresponding (17)) with constants of equivalence (C1

andC2
0) depending on the stability and invertibility ofΠ . The auxiliary space idea,

comes from the observation (see [33]) that asurjectiveΠ is easy to construct for
the choiceV =VDG

h ×W for some spaceW (the factorVDG
h in the product plays a

crucial role).
One natural approach in constructing such preconditionersfor DG discretizations

is via subspace splitting which uses the corresponding conforming space as the com-
ponentW; that isV =VDG

h ×Vconf
h̃

, with W :=Vconf
h̃

denoting the conforming finite

element space with̃h chosenh̃≥ h. This is natural because one expects that the
smooth error (with small energy) is in this space. Then, for the auxiliary precondi-

tionerA
−1

one can choose his/her favourite solver inVconf
h̃

. Preconditioners based on
such splittings are found in [16] and [14], and more recentlyin [13, 15]. Two-level
methods based on three different splittings of the DG space are given in [16]. In [14],
an auxiliary space preconditioner is proposed (and analyzed) for IP discretizations
with non-conforming meshes and hanging nodes. This auxiliary space approach has
been recently extended and used for designing multilevel preconditioners in [13] for
the IP method with arbitrary polynomial degree. The resultsfrom [13] are further
used for constructing a BDDC preconditioner for such discretizations in [15].

We wish to point out that for the IP method such decompositions were already
known in the area of adaptivity and a posteriori error analysis for DG methods.
The following important decomposition is implicitly contained in In the seminal
work [24]:

VDG
h =Vconf

h ⊕Eh, (20)

whereEh = (Vconf
h )⊥ refers to the complementary space ofVconf

h in VDG (orthog-
onal with respect to the corresponding energy inner product). In fact, an explicit
construction of an interpolation operatorIh : VDG

h −→Vconf
h is provided, on simpli-

cial meshes, even in case of hanging nodes, which is stable inthe energy norm, and
therefore can be used as a component in constructing a stablesurjectiveΠ in the
design of an auxiliary space preconditioner.
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The analysis of the auxiliary space preconditioners using the conforming method
as a component of the space decomposition is carried out in a standard fashion by
introducing stable and accurate interpolation operators (see e.g. [14] or [16] for
such constructions). Alternatively, at least for theh-version, one may adapt and use
the framework developed in [24] to analyse the properties ofthese preconditioners.

5 Orthogonal space splittings in a nutshell

The approach we present now has been developed in [8] for developing uniform
solvers for the family of IP discretizations, including non-symmetric schemes. It
could be seen as a clever change of basis which allows for special decompositions
of the DG space. The ideas work in dimensionsd = 2,3 and are based on a natural
splitting of the linear DG FE space on simplicial meshes withno-hanging nodes.
Therefore, in all what followsVDG stands for the linear approximation space; i.e.,
ℓ= 1. Furthermore, to ease the presentation, we drop the subscript h from the finite
element space and the bilinear form, soA (·, ·) = Ah(·, ·). For multilevel consider-
ations see for instance [6]. To introduce the space splitting we first introduce some
notation.

Together with the IP bilinear formA (·, ·), we also consider the bilinear form
that results by computing all the integrals in (5) with the mid-point quadrature rule,
known as weakly penalized or IP-0 method:

A0(u,w) = (−∆u,w)Th
+ 〈[[∇u]],{w}〉E o

h
+ 〈P0

E([[u]]),Sh[[w]]−{∇w}〉Eh
, (21)

where, for eache∈ Eh, let P0
e : L2(e) −→ P0(e) is theL2-orthogonal projection

onto the constants on that edge defined by:

P0
e(u) :=

1
|e|

∫

e
u, ∀u∈ L2(e). (22)

We define the following two subspaces ofVDG

VCR := {v∈VDG : P0
e([[v]]) = 0 ∀e∈ E o

h } (23)

Z := {z∈VDG : P0
e({z}) = 0 ∀e∈ Eh} (24)

The first one is the well known lowest order Crouziex-Raviartfinite element space.
The above subspaces can be seen to be complementary to each other, and in fact it
is easy to prove that

VDG =VCR⊕Z . (25)

Notice that the explicit characterization of the subspacesallows to provide basis for
both spaces. (See Fig. 1).

A key property satisfied by the space decomposition (25) is that the two subpaces
are orthogonal in the enegy norm defined byA0(·, ·). In fact it can be easily shown
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Fig. 1 Basis functions (associated to an edge) for the Crouziex Raviart space (left figure) and the
Z space (right figure)

using (21) and the definition of the spaces (23) and (24) that

A0(v,z) = A0(z,v) = 0 ∀v∈VCR , z∈Z . (26)

This already suggest that by perfoming achange of basisof the standard Lagrange
basis forVDG to the ones inVCR andZ , the stiffness matrix representation ofA0

in the new basis have a block diagonal structure. Therefore,for the IP-0 method the
following algorithm is an exact solver:

Algorithm 1:Let u0 be a given initial guess. Fork≥ 0, and givenuk = zk+ vk, the
next iterateuk+1 = zk+1+vk+1 is defined via the two steps:

1. SolveA0(zk+1,ψz) = ( f ,ψz)Th
∀ψz∈Z .

2. SolveA0(vk+1,ϕ) = ( f ,ϕ)Th
∀ϕ ∈VCR.

Notice that algorithm 1 requires two solutions of smaller problems: one solution in
Z -space (step 1 of the algorithm 1), and one solution inVCR-space (step 2 of algo-
rithm 1). As we show next, the solution of the subproblems onZ and onVCR can
be done efficiently.

SOLUTION IN THE Z -SPACE: The functions inZ have non-zero jump on every
edge, which suggest the high oscillatory nature of its functions. Using the definition
of the space, the following useful property (Poincare-typeinequality) can be shown:

Lemma 1. LetZ be the space defined in (24).

h−2‖z‖20,Th
. A0(z,z). h−2‖z‖20,Th

, ∀z∈Z

By virtue of this lemma it follows that the condition number (denoted byκ) of the
block matrix associated to the restriction ofA0(·, ·) to the subspaceZ , sayAzz

0 ,
satisfiesκ(Azz

0 ) = O(1) and it is independent of the mesh size. Therefore, efficient
solver for the problem inZ is the Conjugate Gradient (CG) method with a simple
diagonal preconditioner.

SOLUTION IN VCR: The restriction ofA0(·, ·) to theVCR subspace gives the well-
known Crouziex-Raviart approximation method for (1) ;
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A0(v,ϕ) = (∇v,∇ϕ)Th
= ∑

T∈Th

(∇v,∇ϕ)T ∀ v,ϕ ∈VCR , (27)

Therefore, it is enough to resort to any of the solvers that have been already devel-
oped, for instance [10, 27, 28].

So far, an exact solver has been constructed in a simple and clean way for the
IP-0 method. A last ingredient is needed to provide uniformly convergent solvers
for the IP method (5) and it is formulated in next Lemma:

Lemma 2. LetA (·, ·) andA0(·, ·) be the bilinear forms of the IIPG method defined
in (5) and (21). Then, there exist c2 > 0 depending only on the shape regularity of
Th and c0 > 0 depending also on the penalty parameterα such that

c2A0(u,u). A (u,u)≤ c0A0(u,u) ∀u∈VDG. (28)

The above result establishes thespectral equivalencebetweenA0(·, ·) andA (·, ·).
Therefore, in terms of solution techniques, a uniform preconditioner for the IP-0
method, already provides a uniform preconditioner for the IP method.

These ideas and new framework, have been already extended and adapted for
designing and analyzing solvers for other problems:

• In [6] the case of second order elliptic problems with largejumps in the dif-
fusion coefficientis considered. In a first step, the space splitting (25) needsto be
modified to account for the jumps in the coefficient, while still being orthogonal with
respect to the correspondingA0(·, ·)-induced norm. The choice of a robust method
for approximating the continuous problem (definition of therelevantA (·, ·) bilinear
form) allows to guarantee that the corresponding spectral equivalence property (28)
holds with constantsc0,c2 independent of the mesh size and thejumping coefficient.
• In [5] efficient solvers are analyzed for IP approximations of linear elasticity

problems, considering all cases: the pure displacement, the mixed and the traction
free problems. The last two cases pose some extra pitfalls inthe analysis since the
spectral equivalence property (28) does not hold in those cases. In spite of that, the
ideas can still be used to construct block preconditioners (guided by the algebraic
structure ofA0(·, ·) due to the orthogonality) and prove uniform convergence.
• In [7] it is shown how to construct an efficient solver for the solution of the

linear system that arise from a DG discretization of a convection-diffusion problem,
in the convection dominated regime. The problem is relevantin semiconductor ap-
plications. In this case, the original method is a non-symmetric exponentially fitted
IP weakly-penalized.
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A finite element method for particulate flow

Eberhard B̈ansch1 and Rodolphe Prignitz1

1 Introduction

Particulate flow, i.e. the flow of a carrier fluid loaded with particles, plays an impor-
tant role in many technical applications. Let us just mention reactors, fluidized beds,
production of nano particles and many more. There exists a hierarchy of models how
to describe the particulate phase and how to describe the interaction between par-
ticles and fluid. For a comprehensive list of references we refer to the articles of
Esmaelli & Tryggvason [6] and Hu [12].

For certain applications it is mandatory to describe the fluid–particle interac-
tion and also a possible particle-particle interaction in full detail without simplified
parametrizations. Computational methods based on such full models are calleddi-
rect numerical simulations.

One of the most important points in simulating particulate flow is the numerical
representation of the particles’ geometry. In Feng et al. and Johnson & Tezduyar
[7, 13] a remeshing technique was used to explicitly follow the geometry in time;
Wan and Turek [22] introduced a mesh deformation technique and Glowinski et al.
[9] used Lagrange multipliers on regular grids. Also immersed boundary methods
are very popular, for example LeVeque & Li and Veeramani et al. [14, 20]. Dis-
tributed Lagrange multipliers to account for the stress boundary condition are used
in Bönisch & Heuveline and B̈onisch et al. [5, 4]. In Maury [16] a projection based
method was already introduced, still following explicitlythe geometry, thus requir-
ing remeshing.

Analytical results regarding existence, uniqueness and qualitative behavior of
solutions can be found for instance in Galdi and Serre [8, 19].

The approach presented here is based on theone domain approachby [19, 9],
but differs from the above mentioned articles in one or several aspects, since it

• does not require an explicit meshing of the particles’ domain;
• does not need an explicit evaluation of forces;
• uses asubspace projection methodto account for the constraint of rigid body

motion within the particles, thus avoiding a saddle point problem for this con-
straint;

• uses time dependent adaptively refined meshes to provide thenecessary geo-
metric resolution.

1 U of Erlangen, Cauerstr. 11, 91058 Erlangen, Germany, e-mail:{baensch}{prignitz}@
math.fau.de

15



16 Eberhard B̈ansch and Rodolphe Prignitz

It turns out that this novel method is therefore easy to implement (only few mod-
ules have to be added to an existing standard software) and rather efficient. A more
detailed presentation can be found in [17].

2 Mathematical Formulation

2.1 Model

In this section we introduce the mathematical model for particulate flows. For ease
of presentation we restrict ourselves to the case of a singleparticle. The extension to
more particles is straightforward, simply by adding an index. The model also holds
for the 2d-case, one just has to adapt the definition of the cross-product involved in
the equations.

Denote byΩ(t) ⊂ R3 the time-dependent domain occupied by an incompress-
ible, Newtonian fluid with velocityu and pressurep. Its motion is described by
the incompressible Navier-Stokes equations. A homogeneous no-slip condition is
prescribed on the outer boundaryΓD.

ΓD

Ω(t)
P(t)

U, ω

u���:C
C
CO

X

Θ
u, p

Fig. 1 ParticleP(t) of arbitrary shape inside the fluid domainΩ(t).

P(t)⊂R3 is the time-dependent domain of a rigid particle, with its center of mass
given byX = 1

|P(t)|
∫

P(t) xdx, while r = x−X is its relative coordinate. The particle’s
motion, being a rigid body motion, is governed by Newton’s law, describing values
for the translational and angular velocitiesU , ω, respectively, and the positionX.
The orientation in space is given by a complete system of orthogonal unit vectors
who’s coordinates are denoted byΘ . Since the particle is impermeable, we assume
Ω(t)∩P(t) = /0 for all timest > 0. Finally we assume (for simplicity) that the whole
volumeΩc = Ω(t)∪P(t)∪∂P(t) is time independent. See also Fig. 2.1 for a sketch
of the situation.

The motions of fluid and particle are coupled on one hand by theno-slip-
condition on the particle boundary Eq. (4) below and and on the other hand by
the stress and pressure forces of the fluid acting on the particle (in the right hand
sides of Eq. (5)). The mathematical model consists of a coupled system of partial
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differential equations (PDE) foru, p and of ordinary differential equations (ODE)
for U,ω,X andΘ reading in non-dimensional form

∂tu+(u·∇)u−∇ ·
(

1
Re

D[u]− pI

)
= 0 in Ω(t), (1)

∇ ·u = 0 in Ω(t), (2)

u = 0 onΓD, (3)

u =U +ω× r on ∂P(t), (4)

MU̇ = F−
∫

∂P(t)
σ nds, I ω̇ +ω× (Iω) =−

∫

∂P(t)
r×σ nds, (5)

Ẋ =U, Θ̇ = R[ω]Θ . (6)

The system has to be closed by appropriate initial conditions. Here, Re is the
Reynolds number,M andI the mass and inertia tensors, respectively;σ := 1

ReD[u]−
pI is the stress tensor, where D[·] is the deformation tensor D[u]i, j = ∂ jui +∂iu j . F
describes an external force acting on the particle like gravity, particle-particle (in
case of more than 1 particle) or particle-wall interaction.R[·] is the cross-product
operator.

2.2 Weak formulation

Following the idea and presentation in [9] a weak formulation of the system Eqs.
(1)-(6) is presented. This formulation is instrumental forderiving our numerical
method in the next section. Define

Hc(Ωc)=

{
(v,V,ξ )

∣∣v∈
(
H1(Ωc)

)3
,V ∈R3, ξ ∈R3,v= 0 onΓD, v=V+ξ×r in P(t)

}
.

(7)
Note that by the above definition the velocityv in Hc(Ωc) is defined on the combined
domainΩc and is restricted to the rigid body velocityV +ξ × r inside the particle.
For a shorter notation we introduce the bi- and trilinear forms

m(u,v) =
∫

Ωc
u·vdx, (8)

s(u,v) = 1
2Re

∫
Ωc

D[u] : D[v] dx, (9)

k(w;u,v) =
∫

Ωc
(w ·∇)u·vdx, (10)

b(q,v) =
∫

Ωc
q∇ ·vdx, (11)

and the variableβ = 1−α. Then Eqs. (1)–(6) can be compactly written as:
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Find (u, p) with u(t) ∈ Hc(Ωc), p(t) ∈ L2
0(Ωc) such that for all(v,q) ∈(

Hc(Ωc)×L2
0(Ωc)

)

m(u̇,v)+k(u;v,u)+s(u,v)−b(p,v)+

βMU̇ ·V +β (I ω̇ +ω× (Iω)) ·ξ = F ·V, (12)

b(q,u) = 0, (13)

Ẋ = U, (14)

Θ̇ = R[ω]Θ . (15)

Eqs. (12) and (13) are called thecombinedNavier-Stokes equations. The time de-
pendence ofΩ(t) andP(t) is now completely coded in the time dependent definition
of Hc(Ωc).

3 Numerical Method

The numerical scheme to solve the weak problem Eqs. (12)–(15) derived in the
previous section consists of the following six points:

1. splitting scheme to decouple the unknowns;
2. a pressure correction projection scheme based on a BDF2 method to efficiently

solve the combined Navier-Stokes equations;
3. subspace projection to incorporate the restrictions given by the function space

Hc(Ωc);
4. adaptivity in space;
5. preconditioning;
6. Barnes-Hut algorithm for particle-particle interaction.

3.1 Splitting by time discretization

Predictor

GivenFk, Xk andUk.

Xk+1 := Xk+ τUk+
τ2

2βM
Fk, Uk+ 1

2 :=Uk+
τ

2βM
Fk. (16)

Fk+1 = F(tk+1,Xk+1), Ŭ :=Uk+ 1
2 +

τ
2βM

Fk+1. (17)
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Combined Navier Stokes

Step 1 (Momentum equation)
Givenuk, uk−1, pk, χk, χk−1, Ŭ , ωk.
Setu⋆ = 2uk−uk−1, ω⋆ = 2ωk−ωk−1.

Finduk+1 ∈ Hc(Ωc) such that for allv ∈ Hc(Ωc)

m(uk+1,v) +γk(u⋆;uk+1,v)+ γs(uk+1,v)+
2
3

βMUk+1 ·V +2
3β Iωk+1 ·ξ + γ

2βω⋆×
(
Iωk+1

)
·ξ =

γb(pk,v) +m(4
3uk− 1

3uk−1,v)+ γb(4
3χk− 1

3χk−1,v)+

2
3

βMŬ ·V +2
3β Iωk ·ξ − γ

2βωk×
(
Iωk
)
·ξ . (18)

Step 2 (Computation of pressure correction)

Find χk+1 ∈ H1(Ωc) such that for allΨ ∈ H1(Ωc)

m(∇χk+1,∇Ψ) =
1
γ

b(Ψ ,uk+1). (19)

Step 3 (Pressure update in rotational form)

Find pk+1 ∈ L2
0(Ωc) such that for allq∈ L2

0(Ωc)

m(pk+1,q) = m(pk+ χk+1,q)−b(q,
2

Re
uk+1). (20)

Corrector

GivenΘ k, Xk, ωk, ωk+1, Uk andUk+1.

Θ k+1 =
(
I− τ

2
R
[
ωk+1

])−1(
I+

τ
2

R
[
ωk
])

Θ k. (21)

Xk+1 = Xk+
τ
2

(
Uk+Uk+1

)
. (22)

The above technique is used to to solve the highly coupled, highly nonlinear
system of equations. The presented algorithm decouples theposition and the ori-
entation of the particles (X andΘ ) from the combined Navier-Stokes equations
(u,U,ω andp). These are then further decoupled by a pressure correctionprojec-
tion method. Thus the philosophy here is to finally split the complex system into a
cascade of simple subproblems rather than using a (maybe more accurate but much
more expensive) monolithic approach.
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To be more precise, in order to discretize in time, the time interval (0,T)
is subdivided by discrete time instants: 0= t0 < t1 < · · · < tN = T. Denote by
τk+1 := tk+1− tk. For simplicity a fixed time step sizeτ is used:τk = τ for all
k= 1, . . .N. Moreover, defineγ = 2

3τ.
Then in each time step Eqs. (12)–(15) are split into three substeps. The first is

a predictor step for the new particle position and velocity,Xk+1, Ŭ , respectively.
In the second step values foruk+1, Uk+1, ωk+1 and pk+1 are computed based on a
BDF2 scheme. The last step is acorrector for Xk+1, Θ k+1.

The predictor step is aVelocity Verletmethod, which is of second order [21, 15]
and the common tool in particle dynamics.

The combined Navier Stokes equations are discretized by a projection method
in rotation form, see [11, 10]. To this end, the time derivative∂tu is replaced by a
BDF2 scheme having good stability properties, while the equations forU̇ andω̇ are
approximated by Crank-Nicolson differences, respectively.

The corrector uses the Crank-Nicolson scheme for time discretization.

3.2 Spatial discretization

The core problem in solving the time discretized system are the combined Navier
Stokes equations and in particular Eq. (18). The crucial point in the spatial dis-
cretization is to define a discrete counterpart ofHc(Ωc) and, moreover, the concrete
realization of this non–standard finite element space. A brief description of how to
solve this problem is given in the sequel, a more comprehensive presentation can be
found in [17].

Let T be a triangulation ofΩ . Since we are using theTaylor–Hoodelement for
velocity and pressure, the basic finite element space for thevelocity is given by the
space of piecewise quadratic elements:

X(Ωc)=

{
(v,V,ξ ) |v∈

(
C0(Ω c)

)2
, v∈

(
Pk(T)

)2
∀T ∈T ,V ∈R2, ξ ∈R,v= 0 onΓD

}
.

A discrete subspace ofHc(Ωc) is now given by

Xc(Ωc) =

{
(vc,V,ξ ) ∈ X(Ωc)| vc =V +ξ × r in P(t)

}
.

For a given time stepk the linear Eq. (18) may be rewritten with the bilinear forma,
the corresponding operatorA , and the cumulative right hand sideg: find u∈Xc(Ωc)
such that for allv∈ Xc(Ωc) it holds

a(u,v) =: (A u,v) = (g,v). (23)

To circumvent the explicit representation ofHc(Ωc), a subspace projectionπ : X→
Xc is used. With this operator (23) may be formulated in terms ofthestandardfinite
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element spaceX(Ωc): find ũ∈ X(Ωc) such that for allv∈ X(Ωc) it holds

(A πũ,πv) = (g,πv). (24)

Note that the solutionu is now easily found by takingu= πũ, whereũ is a solution
of Eq. (24). The above system now leads to the linear system ofequations for the
nodal vectorŨ of the form

ΠTAΠŨ = ΠTG, (25)

whereA is the system matrix corresponding to operatorA andΠ is a matrix rep-
resentation ofπ. We call this methodsubspace projection method. Note that, when
using iterative solvers, one can bypass to explicitly compute the modified system
matrix ΠTAΠ , but rather just needs to slightly modify the matrix vector product,
because one only has to take into account the action ofΠTAΠ on a vector. Because
the matrixΠ is quite simple, its not necessary to store it explicitly. Instead, a short
routine can perform the multiplication ofΠ andΠT with a vectorv. The following
pseudo–code shows this computation.

! Multiplication (u,U,omega)=Pi * (v,V,xi)
subroutine Pmul(v,V,xi,u,U,omega)

! U, omega
do ii=1,npart ! Number of particles

U(:,ii) = V(:,ii)
omega(ii) = xi(ii)

end do

! u = rigid body motion in the particle
do i=1,nk ! Number of DOFs

if( isparticle(i) ) then
ii= numpart(i)
r(:)= x(:,i) - xpart(:,ii)
u(1,i) = V(1,ii) - r(2) * xi(ii)
u(2,i) = V(2,ii) + r(1) * xi(ii)

else
u(:,i)= v(:,i)

end if
end do

end subroutine
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3.3 Adaptivity

One of the most important issues in simulating particulate flow is the numerical
representation of the particle’s geometry.

In Hu [12] a remeshing technique was used to explicitly follow the geometry in
time, Wan and Turek [22] introduced a mesh deformation technique and Glowin-
ski et al. [9] used Lagrange multipliers. In contrast to these methods, we use time
dependent adaptively refined/coarsened grids based on the bisection method [1] to
sufficiently resolve the region around the particle.

Fig. 2 Adaptive refined mesh around a particle. For an accurate representation it is useful to refine
the mesh on the particle boundary.

The overall algorithm was implemented in the finite element flow solver NAVIER,
for more details see [2].

3.4 Preconditioning

In general, the matrixΠTAΠ (if the kernel would be factored out) is ill conditioned
so that preconditioning is mandatory for an efficient solution strategy.

We developed a preconditioner based on inexact factorization that gave rather
satisfying results, see [18].

3.5 Particle interaction

Efficient evaluation of the particle-particle interactions in Eq. (17) is crucial. For a
large number of particles (more than, say, 1000) a naive implementation requiring
O(n2), n the number of dofs, would be prohibitive. Instead we use the Barnes-Hut
algorithm, which reduces the complexity toO(nlog(n)) with an acceptable loss of
accuracy, see [3].

The idea of the algorithm is to merge the forces created by a group of neighboring
particles into a single force of one pseudo-particle.
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In addition to the long range Coulomb forces we also add shortrange repulsive
forces in order to model particle collisions and avoid mutual penetration of particles.
A similar approach is used for near particle-wall collision.

4 Computational examples

In this section we present some applications of the method described above. Quan-
titative validations can be found in [17]. Here we present further numerical experi-
ments.

Fig. 3 Sedimentation of particles in 2D.

Fig. 3 shows a snapshot of a bunch of sedimenting particles (in 2D) under the
influence of gravity.

The next experiment considers the sedimentation of two spherical particles in a
cylindrical domaini in 3D. The particles are initially aligned on the center line, sep-
arated by a small distance of a few particle diameters in the starting configuration.
When gravity starts acting one can observe the following situations.

• Both particles start accelerating. There is no interactionbetween them.
• “Drafting”: after a while the slipstream of the first particle causes the second

one to accelerate a little more.
• “Kissing”: a near impact is inevitable as the second particle has a higher velocity

than the first one. The slower particle is pushed by the fasterone (the force is
transferred by the viscous fluid).
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Fig. 4 Velocities of two particles traversing the phases of drafting– kissing – tumbling.

• “Tumbling”: the above situation is unstable. To solve this conflict the slower
particle moves aside, so that the faster particle can pass it. This can be inter-
preted as tumbling, when observed in relative coordinates.

These four phases described are displayed in Fig. 4.
The last example is a snapshot of the lid driven cavity in 3D with 1000 immersed

particles, Fig. 5.

5 Discussion and Conclusion

A novel finite element method for the simulation of particulate flows was presented.
Its key ingredients are: one domain approach, splitting in time, subspace projection
method to account for the rigid body motion within the particles and time dependent
adaptively refined meshes. The advantages of the method are its easy implementa-
tion and its efficiency. Only few modifications are needed to extend an existing
Navier-Stokes code to simulate particulate flows by this method.
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Optimized Schwarz waveform relaxation for
nonlinear systems of parabolic type

Florian Ḧaberlein1 and Laurence Halpern1

1 Schwarz waveform relaxation algorithms for a linear system

Let L be a partial differential operator, possibly acting on vector functions(x, t) 7→
u(x, t) ∈ Rd, of the time variablet and the space variablex= (x1,x2). The equation
to be solved inΩ × (0,T) is

L u= F in Ω × (0,T), u(·,0) = u0 in Ω , Bu= g on ∂Ω . (1)

The domainΩ is split into subdomainsΩi with possible overlap. Table 1 on the left
shows the simplified case of a rectangleΩ = (A,B)×(E,F) divided into two rectan-
glesΩ1 = (A,C+L)×(E,F) andΩ2 = (C,B)×(E,F) with overlapL, this example
will be the model case in the paper. On the right is described the alternate algo-
rithm, via two transmission operatorsB j on Γj . Boundary conditions are enforced
on the other boundaries, of Dirichlet or Nemann type. A parallel Schwarz algorithm
for elliptic equations was introduced by P.L. Lions in [14],extending the origi-
nal Schwarz’s domain decomposition algorithm for the Laplace equation in [16].

Ω1 Ω2

L

Γ1Γ2

t







Luk

1 = F in Ω1 × (0, T )

uk

1(·, 0) = u0 in Ω1, Buk

1 = g on ∂Ω1\Γ1

B1u
k

1 = B1u
k−1

2
on Γ1 × (0, T )







Luk

2 = F in Ω2 × (0, T )

uk

2(·, 0) = u0 in Ω2, Buk

2 = g on ∂Ω2\Γ2

B2u
k

2 = B2u
k−1

1
on Γ2 × (0, T )

Table 1: Domain decomposition and Schwarz waveform relaxation algorithm

P.L. Lions also mentioned the possibility of using the algorithm for time depen-
dent problem. However, it was recognized and analyzed as a waveform algorithm
(see [13]) only in [7]. The authors defined theSchwarz waveform relaxation algo-
rithm, which uses as transmission operatorsB j ≡ Id, corresponding toDirichlet
transmission conditions. The convergence was analyzed with various tools, such as
maximum principle, Laplace transform in time. This algorithm enjoys superlinear
convergence over small time intervals, linear convergenceover large time intervals.
A more detailed historical account can be found in [10]. On large time intervals, a
Fourier analysis is useful. Considering a small overlap, the boundaries of the do-

1 LAGA, Université Paris 13, 99 Avenue J-B Clément, 93430 Villetaneuse, France, e-mail:
halpern@math.univ-paris13.fr
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mains can be rejected to infinity, and Fourier transform in the second variable can
be performed. This is the simplest way to proceed, but Fourier series on bounded in-
tervals can be used as well, though the objects are heavier, see [4] for an example in
structure mechanics. Numerical results show that the parameters obtained through
the analysis in an infinite domain are relevant.

Consider for instance the advection-diffusion reaction problem, with

L u := ∂tu+a·∇u−ν∆u. (2)

The algorithm for the errorek
j is the same, with vanishing dataF andu0. By Fourier

transform in time andx2, with dual variablesτ andξ , the Fourier transforms are
explicitely given by

êk
1(x1,ξ ,τ) = ηk

1(ξ ,τ)e
L−x
2ν (a− f (z)), êk

2(x1,ξ ,τ) = ηk
2(ξ ,τ)e

x
2ν (a+ f (z)),

with notations which will remain throughout the paper

z(ξ ,τ) = i(τ +a2ξ )+νξ 2, f (z) =
√

a2
1+4νz.

The coefficientsηk
j are obtained recursively, using the transmission relations. They

are governed by the convergence factorρD, and given in the parallel case by

ρD(z,L) := e−
L
2ν f (z), ηk

j = ρD(z,L)
k η0

j .

ρD is identically equal to 1 whenL = 0, so the algorithm is not convergent. For
positive overlap, the high frequencies are damped exponentially. More precisely,
for the rectangle case in Table 1, suppose the initial boundary value problem is
solved by finite differences in time and space on a regular grid, with meshes∆ t and
h= ∆x1 = ∆x2. Suppose Dirichlet boundary conditions are enforced on∂Ω . Then
the lowest frequency resolved by the grid onΓj is ξm = π

F−E , corresponding to a
mode sin( πx2

F−E ), while the highest frequency isξM = π
h , corresponding to a mode

sin(πx2
h ). The highest and lowest frequencies in time are defined in thesame way,

by τm = π
2T ,τM = π

∆ t .

τm =
π
2T

, τM =
π
∆ t

, ξm =
π

F−E
, ξM =

π
h
, K = z([τm,τM]× [ξm,ξM]).

In this paper, we consider only implicit schemes, with∆ t andh are comparable.
Then the uniform convergence factor is given by

sup
K
|ρD(z,L)| ∼ 1− L

2ν
Re f (ξm,τm).

It tends linearly to 1 when the overlap tends to 0. For reasonsof cost and memory,
the overlap is usually a few mesh points only, which implies that the convergence
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factor is highly dependent of the mesh size. It is therefore useful to design algorithms
with a more robust convergence behavior.

Schwarz algorithms with Robin transmission conditions were proposed in [15],
together with nonoverlapping subdomains.Optimized Schwarz waveform relaxation
algorithmshave afterwards been proposed, with or without overlap, to be able to ac-
celerate the convergence of the algorithm. They use approximations of the Dirichlet-
to Neumann operator, they are differential in time and in theboundary variable, and
take here the form

B ju := (n j)1(ν∂1u− a1

2
u)+

p
2

u+
q
2
(∂tu+a2∂2u−ν∂22u). (3)

When q = 0, the operators are calledRobin operators, while forq 6= 0, they are
referred to asVentceloperators. The coefficientspandqare calculated such that they
optimize the convergence factor of the algorithm in the Fourier variables. Define a
first degree polynomials(z) = p+ qz∈ P1. The choice ofp andq is a particular
case of the best approximation problem in the spacePn of complex polynomials
with degree lower thann:

ρ(z,s,L) =
s(z)− f (z)
s(z)+ f (z)

e−
L
2ν f (z), |ρ(z∗,s∗,L)|= inf

s∈Pn

sup
z∈K
|ρ(z,s,L)| := δ ∗n (L).

(4)
The analysis of the best approximation problem for the advection-diffusion equa-
tion in one dimension in the Robin case (n= 0) has been made “by hand” in [6] for
τm = 0. Further general tools for well-posedness of the best approximation prob-
lem (4) have been set in [2] for the Robin case, and applied to the one-dimensional
Ventcel-Schwarz algorithm. They are being extended in [1] to the 2-D case with
a complete analysis and explicit asymptotic formulae. Well-posedness of the algo-
rithm and convergence results, including variable coefficients and non planar bound-
aries in the nonoverlapping case, can be found in [11].

2 Optimized coefficients for the linear reactive transport system

We introduce a simplified system which has been used as a modelin F. Häberlein’s
thesis onCO2 sequestration. For the linearized system, we present optimized co-
efficients in closed form, extending previous results in [1]. A proof is given in the
one-dimensional overlapping case, which is new. These coefficients will be used in
the nonlinear case in§3.

Consider the system of equations foru = (u,v) in Ω × (0,T),

∂t(φu)+∇·(−ν∇u+au)−R(u,v) = 0, ∂t(φv)+R(u,v) = 0, (5)

whereΩ is a bounded domain inRd andu andv denote the concentration of the
mobile and fixed species, respectively.φ > 0 is the porosity which is supposed to
be constant in time,ν ≥ 0 is the scalar diffusion-dispersion coefficient,a ∈ Rd is
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the Darcy velocity. All physical properties are supposed tobe given and constant
in time. R(u,v) is a nonlinear function representing the chemical couplingterm.
The final goal is to be able to simulate general situations where the kinetic reac-
tion rate is fully nonlinear. We present in§3 a test case with a semilinear model
R(u,v) = k(v−Ψ(u)), wherek > 0 represents the reactive surface andΨ is a non-
linear function modeling an adsorption process, see Figure3, left. The domain de-
composition process relies on obtaining transmission conditions leading to a fast
convergence of the iterative approach. Therefore we consider first a linear coupling
term R(u,v) = k(v− cu) wherek > 0 represents the reactive surface andc > 0 an
equilibrium constant. The linear case models a chemical reaction that reaches its
equilibrium point atv= cu. By the same method of approximating the Dirichlet to
Neumann map, Ventcell transmission conditions can be obtained:

B j ·u :=±(ν∂1−
a1

2
)u+

p
2

u+
q
2
(φ∂t +a2∂2−ν∂22+kc)u− q

2
kv. (6)

The convergence factor is still defined by (4), withz replaced by

Z(ξ ,τ ,c) = z(ξ ,φτ)+kc
iφτ

iφτ +k
. (7)

Z(ξ ,τ ,c) appears as a perturbation of the functionz(ξ ,φτ) introduced previously,
and will be treated as a linear perturbation in the parameterc. The domain of opti-
mization isK(c) = Z([τm,τM]× [ξm,ξM],c).

Warning : in this text, the proofs are based very often on asymptotic considera-
tions. To alleviate the notations, we introduce the notation Q⋍ h or Q=∝(h) if there
existsC 6= 0 such thatQ∼Ch. The analysis below is an extension of that made in
the casec= 0 described above. The formulas include the casec= 0. The important
theoretical results in [2, 1] apply here, to give

1. Existence of solutions for the best approximation problem, overlap or not.
2. Uniqueness for smallL,∆ t andh, in the Robin casen= 0.
3. Uniqueness forL = 0, small∆ t andh, in the Ventcel casen= 1.
4. Forn= 0 and 1, consider the real function

F(s,L) = sup
Z∈K(c)∩{ℜZ≥0}

|ρ(Z,s(Z),L)| . (8)

If it has a local minimum inPn, it is the global minimum.

The last property will be decisive for the approximate computation of the best pa-
rameters.

Shortcuts are defined in one dimension byfm= f (Z(0,τm,c)), fM = f (Z(0,τM,c)).

Theorem 1.For positive c, small h⋍ ∆ t, if L = 0 or L ⋍ h, the best approximation
problem(4) in K(c) has a unique solution, whose coefficients are given in the 1-D

case asymptotically in terms of xm = ℜ( f (τm)), xM = ℜ( f (τM))∼
√

2νπφ
∆ t :
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dimension method overlap parameters(p∗,q∗) δ ∗ ∼ 1−2xm
p∗

1 n=0, Robin L= 0 p∗0(0) =
√

xm| fM |2−xM | fm|2
xM−xm

1−∝(∆ t
1
4 )

1 n=0, Robin L> 0 p∗0(L)∼ p∗0(0) 1−∝(∆ t
1
4 )

1 n=1, Ventcel L≥ 0 p1(L)∗ ∼ x
3
4
mx

1
4
M, q∗1(L)∼ 2ν p∗

xmxM
1−∝(∆ t

1
8 )

In two dimensions, define , for|a2|ξm > τm, τ0 as the largest real root of

φτ
(

1+c
k2

k2+ τ2φ2

)
= |a2|ξm,

the real function g1(s) =
k2

s+k2 ,

ξ1 = a2
(|a|2+4νkc(1−g1(φτm)))−

√
(|a|2+4νkc(1−g1(φτm)))2†+16ν2(φτm)2(1+cg1(φτm))2

8ν2φτm(1+cg1(φτm))
,

Zw =





Z(ξ1,τm) if ξm≤ |ξ1| ≤ ξM ,

Z(τ0,−sign(a2)ξm) if |ξ1| ≤ ξm andℜ f (τ0,−sign(a2)ξm)≤ℜ f (τm,−sign(a2)ξm),

Z(τm,−sign(a2)ξm) otherwise.
xw = ℜZw.

The best coefficients for the Robin-Schwarz algorithm (n= 0) are

overlap parameter p∗ δ ∗ ∼ 1−2xw
p∗

L = 0 p∗0(0)∼
√

2νπxwφ
∆ t 1−∝(∆ t

1
2 )

L > 0 p∗0(L)∼
3
√

νx2
w

2L 1−∝(L
1
3 )

Define the function

g(t) =
2t−
√

t2+1
t2+1

,

and for Q< Q0 ≈ 0.36900, t2(Q) is the only root of g(t) = Q larger than t0 =√
54+6

√
33/6≈ 1.567618292,

P(Q) =





√
1+
√

t2(Q)2+1( 1√
t2(Q)2+1

+Q) if Q < Q1≈ 0.1735,

1+Q if Q> Q1.
(9)

Defining C= ∆ t/h, the best coefficients for the Ventcel-Schwarz algorithm (n= 1)
are

overlap p∗1 q∗1 δ ∗ ∼ 1−2xw
p∗1

L = 0 p∗1(0)∼





4
√

νx3
wπ
h if Cxw < 2,

4

√
8νxwπ

hC(P( 2
Cxw

))2
if Cxw > 2,

q∗1(0)∼
2p∗1(0)π

hxw
1−∝(h

1
4 )

L > 0 p∗1(L)∼
5
√

νx4
w

2L q∗1(L)∼
2νx2

w

p∗1(L)
3 1−∝(L

1
5 )
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Proof. It relies on the use of the explicit formulations in [1] forc= 0, together with a
continuation argument. We present in detail the analysis for the Robin transmission
condition with overlap. Define

R0(τ ,s) =
∣∣∣∣
s− f (Z)
s+ f (Z)

∣∣∣∣
2

, R(τ ,s,L) = R0(τ ,s)e−Lℜ f (Z)/ν . (10)

Lemma 1. In one dimension, forτM ≫ 1 and L≪ 1 with L ⋍ τ−λ
M , the minmax

problem(4) in K(c) with n= 0 has a unique solution(s∗0(L),δ ∗0 (L)).

• If 0< λ < 3
4, it is the unique solution of the equation

R(τm,s,L) = R(τ+,s,L), (11)

whereτ+(s,L) is the unique local maximum point of R(·,s,L). It is asymptoti-
cally given by

s∗0(L)∼
3
√

(ℜ( f (τm)))2L
2ν δ ∗0 (L)∼ 1−2 3

√
ℜ( f (τm))L

2ν , (12)

• If 3
4 < λ ≤ 1, it is the unique solution of the equation

R(τm,s,L) = R(τM,s,L). (13)

It is asymptotically given by

s∗0(L)∼ s∗0, δ ∗0 (L)∼ δ ∗0 . (14)

Remark 1.Note that ifλ is close to 0, thenδ ∗0 (L) = 1−∝( 3
√

L), which gives the
best behavior, independent of∆ t. For the Dirichlet case, we would have

sup
K
|ρD(τ ,L)| = 1−∝(L).

If λ = 1, which is the case if the overlap contains a few grid points,then the overlap
does not improve the convergence. We will see that it is not the case in higher
dimension.

Proof of the Lemma Introduce the curveF : τ ∈ R+ 7→ f (τ) ∈ C. The domain
K(c) is F ([τm,τM]). The proof has four steps.

1. Study the graph ofF , see Figure 1.
2. Existence and uniqueness of a minmax reached at(s∗0(L),δ ∗0 (L)) follows from

the theoretical results above.
3. Prove that ifL is small,s is large, andLs is small, the functionτ 7→ R(τ ,s,L)

has a unique stationary pointτ+ ∼ s/Lφ corresponding to a maximum.
4. Prove that for smallL, there is a unique ¯s∗0(L) such thatR(τm,s,L) = R(τ+,s,L)

or R(τM,s,L) , and that it satisfies the assumptions in the previous item.
5. Prove that ¯s∗0(L) is a strict real minimum point ofF(·,L).
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6. Conclude by theoretical results that ¯s∗0(L) = s∗0(L).

Fig. 1 Geometric representation of the functionF definingK(c), for c= 1, k= 0 (magenta),
c= 1, k= 5 (blue),c= 10, k= 5 (green). The direction of increasingτ is indicated by the arrow.

The real and imaginary parts off , x(τ) andy(τ), are defined by:





x2−y2 = a2
1+4ν

kcτ2φ2

k2+ τ2φ2 ,

2xy= 4ντφ
(
1+ k2c

k2+τ2φ2

)
,

x≥ xm > 0, y≥ 0.

(15)

In the(x,y) plane, the curveF lies between the real axis and the bisectrix(y= x).
For further investigations, the derivatives ofx and y are needed. To simplify the
notations, introduce

ω = φτ , g1(s) =
k2

s+k2 , g2(s) = 1−cg1(s)+2cg1(s)
2,

and differentiate (15) to obtain the derivatives ofx andy, in terms ofx, y, g1, andg2

as:

{
x2−y2 = a2

1+4νkc(1−g1(ω2))

2xy= 4νω(1+cg1(ω2))
,

(
∂τx
∂τy

)
=

2νφ
x2+y2




2c
k

ωg2
1(ω2)x+g2(ω2)y

−2c
k

ωg2
1(ω2)y+g2(ω2)x


 .

(16)
The zeros of∂τx exist only at pointsτ with g2(ω2) < 0, which happens only if

c > 8 andg1(ω2) ∈]g̃1
1, g̃

2
1[⊂]0,1[, with g̃1

1 = c−
√

c2−8c
4c and g̃2

1 = c+
√

c2−8c
4c . Ac-

cordingly ∂τy vanishes only at pointsτ with g2(ω2) > 0, which happens ifc > 8
andg1(ω2) 6=∈]g̃1

1, g̃
2
1[, or c< 8 .
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To solve∂τx = 0, it will be easier to rewrite it in terms ofg1(ω2) < 0 only.
To do so, multiply the equation∂τx = 0 successively byx and byy, then replace
xy= 2νω(1+ cg1). In the resulting equation replaceω2g1(ω2) = k2(1−g1(ω2)),
and finally insert these values into the equationx2−y2 = a2

1+4νkc(1−g1(ω2)), to
obtain that∂τx(τ) = 0 is equivalent to

g1(ω2) is a root ofQ in (g̃1
1, g̃

2
1), with

Q(X) =−4c2(c+2b+2)X4+c2(3c+4b+8)X3−c(3c+4b+4)X2+cX−1.

Computing the derivatives ofQ, it is easy to see thatQ has a maximum point in
(0,1). SinceQ has alternate coefficients, it cannot have negative zeros. Compute
Q(0) = −1, Q(1) < 0. Q(g̃ j

1) = 4c2(g̃ j
1)

3(1− g̃ j
1)(1+ cg̃ j

1) > 0. This proves thatQ
has two roots in(0,1), outside(g̃1

1, g̃
2
1), which indeed correspond to zeros of∂τy.

This implies thatx is an increasing function ofτ, y′ vanishes for two values ofτ,
and the curve has the behavior depicted in Figure 1.

2. Rewrite the convergence factorRwith L = 2νℓ as

R0(τ ,s) =
(x−s)2+y2

(x+s)2+y2 , R(τ ,s,L) = R0(τ ,s)e−2ℓx

Compute for fixeds the derivative ofRwith respect toτ.

∂τR(τ , p,L) = (∂τR0(τ ,s)−2ℓ∂τxR0(τ ,s))e−2ℓx =
2νφS(τ , p, ℓ)
| f |2| f + p|4

with

S(τ,s, ℓ,c) =
(
4s(x2−y2−s2)−2ℓ| f 2−s2|2

)(2c
k

ωg2
1x+g2y

)
+8sxy

(
−2c

k
ωg2

1y+g2x

)
.

Supposeℓ small,s large, andℓs small. Forc= 0, S is a bi-quadratic polynomial in
thex variable

S̃(x,s, ℓ) =−4ℓx4+4(ℓb2+s)x2− ℓb2(b2−2s2)+2s(b2−s2).

S̃ has two positive roots, which behave asymptotically asx− ∼ s andx+ ∼
√

s/ℓ,

corresponding to two values ofτ, τ− ∼ s2

2νφ ≪ τ+ ∼ s
2νℓφ . SinceR tends to 0 at

infinity, τ− corresponds to a minimum, andτ+ to a maximum ofR.
We now extend the solution to positivec. A careful computation shows that

∂cS(τ±,s, ℓ,c)∼ 16sνx± 6= 0.

Therefore, by the implicit function theorem, in a neighborhood of 0, 0≤ c≤ c0,
the rootτ− (resp.τ+) continues in a minimum pointτ−(c), (resp. maximum point
τ+(c)) with τ±(0) = τ±. They have the same asymptotic behaviorτ+(c) ∼ s/2νℓ
(resp.τ−(c) ∼ s2/2ν) independent ofc, and one can iterate the argument, show-

ing for any c the existence of a functionτ+(c) ∼ s
2νℓφ (resp.τ−(c) ∼ s2

2ν ) with
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S(τ±(c),s, ℓ,c) = 0. They remain indeed global maximal and minimal points: sup-
pose that there exists another rootτ of S, and examine its asymptotic behav-
ior. Since∂τx(τ) > 0, it can not be at finite distance, since then we would have
S(τ , p, ℓ,c)∼−4s3x′ < 0. Suppose now thatτ ⋍ ℓ−θ with θ > 0. Then the principal
part ofS is:

−4ℓ(x(τ))4+4p(x(τ))2− p3(pℓ+2)

whose roots are equivalent to those ofS, proving that there is no other extremal point
thanτ±(c). Then

sup
τ∈K

R(τ ,s,L) =

{
max(R(τm,s,L),R(τ+,s,L)) if τ+ < τM,

max(R(τm,s,L),R(τM,s,L)) if τ+ > τM,

3. Compute now∂sR(τ ,s,L) = (∂sR(τ ,s,0))e−ℓx. It is easy to see thatR(τm,s,L)
is an increasing function ofs, R(τ+,s,L) a decreasing function ofs, andR(τM,s,L)
has a minimum reached fors= | f (τM)|.

If λ < 3
4, asymptotic considerations show that there exists a ¯s∗0 such thatR(τm,s,L)−

R(τ+,s,L)=0, and that

sup
τ∈K

R(τ ,s,L) =

{
R(τ+,s,L) for s< s̄∗0,

R(τm,s,L) for s> s̄∗0.

The other case is similar.
4. To prove that it is a strict local minimum, proceed as in [1]and evaluate asymp-

totically the sign of∂pR(τ+, s̄∗0(L),L)×∂pR(τm, s̄∗0(L),L)< 0.

2.1 Performances of different transmission conditions

In this test case inΩ = (0,1)× (0,1), the diffusion parameter isν = 1, advection
is a = (1 · 10−2, 5 · 10−2), the reactivity coefficient is set tok = 5 with an equi-
librium parameter ofc = 10. The finite volumes method is described in [8]. The
discretization parameters are∆ t = ∆x= ∆y= 2 ·10−2. The domainΩ is split into
Ω1 = [0, 0.5+L]× [0,1] andΩ2 = [0.5, 1]× [0,1]. A minimal overlap of sizeL=∆x
is used. A random initial guess is imposed on the interfaceΓ1. The results are plot-
ted in Figure 2. The expected behavior takes place. The best convergence behaviour
is obtained with optimised Ventcel conditions with overlapwhich reach the error
precision of 10−10 in only 6 iterations.
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Fig. 2 Iterations versus error of the domain decomposition iterates

3 Newton-Schwarz waveform relaxation for the nonlinear system

The Schwarz waveform relaxation algorithm was used for the semilinear heat equa-
tion ∂tu− c2(x)∂xxu+ f (u) = 0 in [5] . Under the condition thatf ′(x) ≤ a, the
same convergence behavior as in the linear case was exhibited and analyzed. Op-
timized Schwarz waveform relaxation algorihtm, with nonlinear transmission con-
ditions were first introduced in [11], for the semilinear wave equation. In [3], the
semilinear advection-diffusion reaction equation in 2 dimensions was considered,
∂tu−ν∆u+ f (u) = 0, wheref is constrained only to be inC2(R), with f (0) = 0.
Nonoverlapping Robin-Schwarz and Ventcell-Schwarz whereproposed and ana-
lyzed. The main difficulty in this case is that each iterate inTable 1 is solution
of a nonlinear problem, whose solution has to be defined properly, and has its own
time of existenceTn

j . The sequence(Tn
j )n is decreasing, and it must be shown that

there is a lower boundT∗ for these times. Then the convergence is achieved inside
(0,T∗). From a numerical point of view, a nonlinear system has to be solved in each
subdomain at every step, which has been implemented withP1 finite elements in
space, and a linearly implicit Euler scheme in time. It turnsout that the requirement
of small time interval given by the existence analysis is notcompelling (see also
[11]). Furthermore nonlinear transmission condition where the coefficientsp andq
depend on the iterates through the formulas of§1 were successfully implemented.

For the nonlinear reactive transport system, with suitableassumptions on the
coefficients, the same methods apply, for the existence and convergence analysis.
However, acceleration must be obtained. This has been done in F. Häberlein’s thesis
[8], where several scenarii where studied. First, writing the Schwarz iteration in an
interface substructuring manner, it is seen as a fixed point iteration for the interface
problem, preconditioned by the domain decomposition with transmission conditions
given by theB j . It will be calledClassical approach. For steady elliptic problems,
the resolution of the interface problem is accelerated by a Krylov algorithm (see
[17]). In this time-dependent non-linear frame, it is treated by a Newton-Krylov
algorithm (calledNested Iteration Approach). Each iteration requires the resolution
of smaller time-dependent nonlinear systems in the subdomains. This approach has
been successfully implemented and described in [9]. An interesting other approach
is calledCommon iteration approach. It is a Newton-Schwarz Krylov approach (see
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[12]) with the Jacobian explicitely computed.

Uk+1 =Uk+h, ∂th−ν∆h+ f ′(Uk)h=−(∂tU
k−ν∆Uk+ f (Uk)).

The linear problem above is solved by an optimized Ventcell-Schwarz domain de-
composition algorithm, accelerated by Krylov. The approach requires in every itera-
tion of the outer loop (indices inn) to set up a right hand side-vector that demands to
solve two linear problems in the subdomains. Moreover, in the matrix-vector mul-
tiplication inside the Krylov-method, only linear problems in the subdomains are
evaluated. No nested nonlinear iterative method is needed.For this reason and in
contrast to the approach above, this approach was called ’Common Iteration Ap-
proach’ (CIA) due to the common iterative approach of the nonlinear character of
the monodomain problem. The name ”Newton-Schwarz-Krylov“can be used in or-
der to explain the order of application of the different numerical tools: The global
problem is first attacked by a Newton-type method. At every iteration, the resulting
linear problem is decomposed by a Schwarz-type algorithm where the problem is
reduced to the interface variables. The resulting linear system is then solved by a
Krylov-type method.

The next simulation shows nonoverlapping Robin-Schwarz simulations in do-
main Ω = [0, 1]× [0, 1] ⊂ R2 with the subdomainsΩ1 = [0, 0.5]× [0, 1] and
Ω2 = [0.5, 1]× [0, 1]. The considered time window ist ∈ [0, 1]. Physical param-
eters areφ = 1, ν = 1.5, a = (5 · 10−2, 1 · 10−3). The nonlinear coupling term is
defined byR(u,v) = k(v−Ψ(u)) where

Ψ(u) =
QsKLu

(1+KLu−KSu)(1−KSu)

is the BET isotherm law withk= 100,QS= 2, KS= 0.7 andKL = 100 (cf. figure 3,
left). BET theory is a rule for the physical adsorption of gasmolecules on a solid sur-
face and serves as the basis for an important analysis technique for the measurement
of the specific surface area of a material. One observes the quadratic convergence
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of the new approaches since they are Newton-based, the quadratic convergence is
observed late in the history since the initial guess (randomly chosen) is far from the
exact solution. The classical approach shows only a superlinear convergence, also
in this case, the superlinear character appears late in the convergence history.
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Domain Decomposition for Boundary Integral
Equations via Local Multi-Trace Formulations

Ralf Hiptmair1, Carlos Jerez-Hanckes2, Jin-Fa Lee3, and Zhen Peng4

1 Introduction

This article is devoted to a formal derivation and discussion of a class of boundary
integral equation (BIE) formulations that have recently been introduced for second-
order transmission problems. We chose to dub this class “local multi-trace BIE for-
mulations” (MTF), which is inspired by two key features of its members:

(i) The methods rely on at least two pairs of trace data as unknowns on interfaces.
The accounts for the attribute “multi-trace”.

(ii) Formally, they are constructed by taking into account transmission conditions
pointwise or, at least, on parts of sub-domain boundaries, which is indicated by
the “local” attribute.

Initially, the development of these new methods was pursuedindependently by
numerical analysts and in computational electrical engineering, driven by different
objectives. In numerical analysis, the focus was on composite structures, that is,
partial differential equations with piecewise constant coefficients. There, the main
motivation was to find first-kind boundary integral formulations that, after Galerkin
boundary element discretization, are amenable to operatorpreconditioning, a pos-
sibility not offered by classical approaches, see [3, Section 4]. In engineering, re-
searchers were guided by a domain decomposition paradigm, aiming to localize
boundary integral equations for electromagnetic wave propagation at artificial inter-
faces for the sake of parallelization and block-preconditioning.

Both research efforts have been fairly successful: on the one hand, a comprehen-
sive theoretical understanding of the simplest representative of a local multi-trace
BIE formulations for Helmholtz transmission problem couldbe achieved in [8].
In a wider context the method is also covered in [3]. On the other hand, a host
of impressive applications of multi-trace methods is documented in computational
electromagnetism. A surface integral equation domain decomposition method based
on multi-trace formulation is presented in [15, 14] for time-harmonic electromag-
netic wave scatterings from homogeneous targets. The treatment of general bounded
composite targets is discussed in [13].

This article looks at MTF from a mathematical point of view, but, inspired by the
developments in the engineering community, adopts a different and more general

1 Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zürich, Switzerland, e-mail:
hiptmair@sam.math.ethz.ch ·2 Escuela de Ingenierı́a, Pontificia Universidad Católica de
Chile, Santiago, Chile, e-mail:cjerez@ing.puc.cl ·3 ElectroScience Laboratory, The Ohio
State University, Columbus, OH, USA, e-mail:lee.1863@osu.edu ·4 University of New Mex-
ico, Albuquerque, NM, USA, e-mail:zpeng@ece.umn.edu
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perspective compared to [8]. This work is mainly conceptualand does not aim to
pursue any comprehensive analysis. Rather it is meant to chart new ideas and direc-
tions of research. We have not included any numerical results nor are we going to
discuss details of Galerkin discretization by means of boundary elements. Detailed
studies of convergence of multi-trace BIE for 2D acoustic scattering discretized by
means of low-order boundary elements (BEM) are reported in [8, Sect. 5]. Concern-
ing the application of multi-trace methods for solving electromagnetic scattering
problems, convergence studies can be found in [13] for scattering at both single ho-
mogeneous objects and composite penetrable objects. Several complex large-scale
simulations are covered in [14] and demonstrate the capability of these methods to
model multi-scale electrically large targets.

2 Transmission Problems

Ω0

Ω1

Ω2

Ω3

Ω4

Γ01

Γ02

Γ03 Γ12

Γ13

Γ23

n0

n0

n0

n1

n1
n1

n2

n2

n2

n3

n3

n3

junction points

Let Ωi ⊂Rd, d= 2,3, i = 0, . . . ,N, be dis-
joint open connected Lipschitz “material
sub-domains” that form a partition in the
sense thatR3 = Ω0 ∪ ·· · ∪ΩN. Among
them onlyΩ0 is unbounded. Two adjacent
sub-domainsΩi andΩ j are separated by
their common interfaceΓi j , whose union
forms the skeletonΣ . ForN> 1 the skele-
ton Σ will usually not be orientable, nor
be a manifold.

Given diffusion coefficientsµi > 0, i = 0, . . . ,N, we focus on the model trans-
mission problem that seeksUi ∈ H1

loc(Ωi), i = 0, . . . ,N, solving

LiUi :=−div(µi gradUi)+Ui = 0 in Ωi , (1a)

Ui |Γi j
−U j

∣∣
Γi j

= 0 , µi
∂Ui

∂ni

∣∣∣∣
Γi j

+ µ j
∂U j

∂n j

∣∣∣∣
Γi j

= 0 onΓi j , (1b)

plus suitable decay conditions at infinity forU−Uinc, where the “incident field”Uinc

is an entire solution ofL0Uinc = 0 onΩ0 [11, Ch. 8]. The weak formulation of (1) is
posed on the Sobolev spaceH1(R3).

The transmission conditions (1b) connect two kinds of canonical traces on both
sides of interfaces. These traces are the Dirichlet traceTD,i , and Neumann trace
TN,i , defined for smooth functions onΩ i through

TD,i Ui := Ui |∂Ωi
, TN,i Ui := µi gradUi ·ni |∂Ωi

. (2)
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They can be extended to continuous operators [16, Sect. 2.6 &2.7] 1

TD,i : H1(Ωi)→ H
1
2 (∂Ωi) , TN,i : H(∆ ,Ωi)→ H−

1
2 (∂Ωi) . (3)

Then, (1b) can be recast as
(
TD,i

TN,i

)
Ui =

(
I 0
0 −I

)(
TD, j

TN, j

)
U j onΓi j , (4)

for which we embrace the compact notationTi Ui =XT j U j with obvious meanings
of the operatorsTi andX.

Remark 1.In fact, multi-trace boundary integral equations were firstdeveloped for
acoustic and electromagnetic scattering problems and we emphasize that the ideas
of this article will naturally apply to them, see [3].

3 Basic Multi-Trace Formulation

For the sake of lucidity, in this section we largely restrictourselves to the situation
N = 2, as sketched in Figure 1 ford = 2. For the purpose of presenting the local
multi-trace formulation this case is generic and completely captures the ideas and
essence of the methods.

3.1 Preliminaries

The starting point for deriving multi-trace boundary integral equations is the charac-
terization of traces of local solutions of (1) as the range ofa (compound) boundary
integral operator known asCaldeŕon projector, see [3, Sect. 2.3], [16, Sect. 3.6],
and [9, Sect. 5.6]. For the Calderón projector associated with the PDELiUi = 0 on
Ωi we write

Pi : H
1
2 (∂Ωi)×H−

1
2 (∂Ωi)→ H

1
2 (∂Ωi)×H−

1
2 (∂Ωi) , (5)

and recall thatPi is connected to the four key boundary integral operators for2nd-
order scalar PDEs according to

Pi = Ai +
1
2I , Ai =

(
−Ki Vi

Wi K′i

)
, (6)

where we have adopted the notationsKi , Vi , Wi , K′i from [16, Sect. 3.1] for the
double layer, single layer, hypersingular, and adjoint double layer boundary integral

1 As usual,H(∆ ,Ω) := {U ∈ H1(Ω) : ∆U ∈ L2(Ω)}.
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operators on∂Ωi , respectively. The Calderón projectors owe their importance to the
following fundamental theorem [3, Thm. 2.6].

Theorem 1. If and only if Ui solvesLiUi = 0 in Ωi (and satisfies exponential decay
conditions at∞ for i = 0), then(I−Pi)Ti Ui = 0.

Here, in the interest of compact notation, we relied on the total trace operator
Ti :=

(TD,i
TN,i

)
. Thus, ifU is a solution of (1), we conclude from Theorem 1

(
−Ai +

1
2I
)
Ti U = 0 , i = 1,2 ,

(
−A0+

1
2I
)
T0(U−Uinc) = 0 .

(7)

Fig. 1 Geometric situation
“N = 2” in 2D for deriva-
tion of multi-trace boundary
integral formulations. Black
lines indicate the sub-domain
boundaries, magenta lines
stand for Cauchy traces, of
which there are two on each
interface in the multi-trace
setting. Red dots mark junc-
tion points.
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Γ01
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3.2 Derivation

The derivation of the basic MTF casts both (7) and the transmission conditions (4)
into weak form. To do so, we need bilinear pairings2

[ui ,vi ]∂Ωi
:= 〈u,ν〉∂Ωi

+ 〈v,µ〉∂Ωi
, ui :=

(
u
µ

)
, vi :=

(
v
ν

)
∈T (∂Ωi) , (8)

on thelocal Cauchy trace spaces3

T (∂Ωi) := H
1
2 (∂Ωi)×H−

1
2 (∂Ωi) . (9)

2 Fraktur font is used to designate functions in the Cauchy tracespace, whereas Roman typeface is
reserved for Dirichlet traces, and Greek symbols for Neumann traces.
3 By Cauchy trace spaces we mean combined Dirichlet and Neumann traces.
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In (8), angle brackets designated the bi-linear duality product betweenH
1
2 (∂Ωi) and

H−
1
2 (∂Ωi), which reduces to anL2-pairing for sufficiently regular functions. Then

(7) is equivalent to
[(
−Ai +

1
2I
)
Ti U ,vi

]
∂Ωi

= r.h.s. ∀vi ∈T (∂Ωi) , i = 0,1,2 , (10)

with “r.h.s.”, here and below, representing a linear form onthe trial space that pro-
vides the excitation.

A possible weak form the transmission conditions (4) can sloppily be stated as
[
Ti U−XT j U , vi |Γi j

]
Γi j

= 0 ∀ “vi ∈T (∂Ωi)” . (11)

The attribute “sloppy” and the quotation marks hint at fundamental problems haunt-
ing (11) and those lurk in the failure of the bi-linear pairing [·, ·]Γi j

to be well defined
for restrictions of generic traces toΓi j .

Temporarily sweeping these difficulties under the rug (and restricting ourselves
to the situationN = 2 illustrated in Figure 1), we now combine (10) and (11) into

[(
A0−1

2I
)
T0U ,v0

]
∂Ω0
−σ01

[
T0U−XT1U , v0|Γ01

]
Γ01

−σ02

[
T0U−XT2U , v0|Γ02

]
Γ02

= r.h.s. ∀ “v0 ∈T (∂Ω0)” ,

[(
A1−1

2I
)
T1U ,v1

]
∂Ω1
−σ10

[
T1U−XT0U , v1|Γ10

]
Γ10

−σ12

[
T1U−XT2U , v1|Γ12

]
Γ12

= r.h.s. ∀ “v1 ∈T (∂Ω1)” ,

[(
A2−1

2I
)
T2U ,v2

]
∂Ω2
−σ21

[
T2U−XT1U , v2|Γ21

]
Γ21

−σ20

[
T2U−XT0U , v2|Γ20

]
Γ20

= r.h.s. ∀ “v2 ∈T (∂Ω2)” ,

(12)

where theσi j are non-zero weights. These are equations satisfied by the local
Cauchy tracesTi U , i = 0,1,2. Next, we treat these traces as unknowns and call
themu1, u2, andu3 which converts (12) into a system of (variational) boundary
integral equations. It deserves the label “multi-trace”, because the unknowns are
separate Cauchy traces for each sub-domain, which yields two pairs of unknown
traces on each interface, twice the number used in most otherboundary integral for-
mulations, see Figure 1. Adopting a compact notation, (forN = 2) the problem is
posed on themulti-trace space

MT (Σ) := T (∂Ω0)×T (∂Ω1)×T (∂Ω2) . (13)

The special variant of (12) proposed in [8] is recovered by setting σi j = −1
2. To

see, why this is a special choice, note that, for instance,
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[
u0, v0|Γ01

]
Γ01

+
[
u0, v0|Γ02

]
Γ02

= [u0,v0]∂Ω0
, u,v ∈T (∂Ω0) .

Thus, we achieve a massive cancellation of terms and arrive at thebasic multi-trace
formulation: seek(u0,u1,u2) ∈MT (Σ) such that

[A0u0,v0]∂Ω0
− 1

2

[
X u1|Γ01

, v0|Γ01

]
Γ01
− 1

2

[
X u2|Γ02

, v0|Γ02

]
Γ02
= r.h.s.

∀ “v0 ∈T (∂Ω0)” ,

[A1u1,v1]∂Ω1
− 1

2

[
X u0|Γ10

, v1|Γ10

]
Γ10
− 1

2

[
X u2|Γ12

, v1|Γ12

]
Γ12
= r.h.s.

∀ “v1 ∈T (∂Ω1)” ,

[A2u2,v2]∂Ω2
− 1

2

[
X u1|Γ21

, v2|Γ21

]
Γ21
− 1

2

[
X u0|Γ20

, v2|Γ20

]
Γ20
= r.h.s.

∀ “v2 ∈T (∂Ω2)” ,

(14)

where, again, the quotation marks acknowledge difficultiesbesetting the use of
generic traces as trial and test functions. The variationalformulations for general
N can be found in [3, Sect. 6] and [8, Sect. 3.2.3].

3.3 Analysis

Let us take a closer look at the coupling terms in (14). Forui ∈ T (∂Ωi) andv j ∈
T (∂Ω j) we find

X ui |Γi j
, v j
∣∣
Γi j
∈ H

1
2 (Γi j )×H−

1
2 (Γi j ) .

Unfortunately,H
1
2 (Γi j ) andH−

1
2 (Γi j ) are not in duality with pivot spaceL2(Γi j ).

More precisely,(ui ,v j) 7→
[
X ui |Γi j

, v j
∣∣
Γi j

]
Γi j

is not bounded onT (∂Ωi)×T (∂Ω j),

which renders (14) meaningless without the quotation marks.
As a remedy, more regular test functions have to be used, namely functions whose

restrictions toΓi j belong to theL2(Γi j )-dual ofH
1
2 (Γi j )×H−

1
2 (Γi j ), which is known

to coincide withH̃
1
2 (Γi j )×H̃−

1
2 (Γi j ), where the latter spaces are spaces of functions,

whose extensions by zero fromΓi j to ∂Ω j are still valid functions inH
1
2 (∂Ω j)×

H−
1
2 (∂Ω j). We remind that̃H

1
2 (Γi j )× H̃−

1
2 (Γi j ) is adensesubspace ofH

1
2 (Γi j )×

H−
1
2 (Γi j ) with strictly stronger norm, see [11, Ch. 3] and [8, Sect. 2]. Thus, proper

test spaces in (14) are

T̃ (∂Ω j) =
⊗

i 6= j

H̃
1
2 (Γi j )× H̃−

1
2 (Γi j ) , j = 0,1,2 , (15)

since the bilinear formm associated with (14) turns out to be bounded as a mapping
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m : MT (Σ)×M̃T (Σ)→ R ,

whereM̃T (Σ) is defined in analogy to (13) this time based oñT (∂Ω j).
A key observation concerns theblock skew-symmetricstructure of (14) due to

[
X ui |Γi j

, v j
∣∣
Γi j

]
Γi j

=−
[
X v j

∣∣
Γi j
, ui |Γi j

]
Γi j

,
ui ∈ T̃ (∂Ωi),

v j ∈ T̃ (∂Ω j) .
(16)

In light of the well known ellipticity of the boundary integral operators [16, Sect. 3.5.1]

∃C> 0 : | [A j v j ,v j ]∂Ω j
| ≥C

∥∥v j
∥∥2

T (∂Ω j )
∀v j ∈T (∂Ω j) , (17)

(16) immediately implies theMT (Σ)-ellipticity of m:

∃C> 0 : |m(
−→
v ,
−→
v )| ≥C

∥∥−→v
∥∥2

MT (Σ)
∀−→v ∈ M̃T (Σ) . (18)

From (18) we conclude existence and uniqueness of solutionsof (14) with trial space
M̃T (Σ). Not straightforwardly, however, because the lack of continuity of m on
MT (Σ)×MT (Σ) bars us from appealing to the Riesz representation theorem.
Fortunately, as elaborated in [8, Sect. 3.2.8], we can rely aresult by J.L. Lions [10,
Ch. III, Thm. 1.1] along with the density of̃MT (Σ) in MT (Σ):

Theorem 2.The variational problem(14) on MT (Σ)× M̃T (Σ) possesses a
unique solution inMT (Σ) that depends continuously on the right hand side.

Remark 2.The result of Theorem 2 crucially hinges on the ellipticity (18), which
can be taken for granted only for the choiceσi j = −1

2. For general weightsσi j

existence and uniqueness of solutions of (12) is an open problem.

Remark 3.For scattering problems the sesqui-linear form of (14) willbe merely co-
ercive. In this case uniqueness of solutions has to be established by other arguments,
see [8, Sect. 3.2.6], and existence follows from Fredholm theory.

4 Transformed Multi-Trace Formulations

4.1 Optimal transmission conditions

An important motivation for the development of multi-traceBIE was the desire to
obtain linear systems of equations that readily lend themselves to additive Schwarz
(“block Jacobi”) preconditioning. On the level of the transmission problem (1), this
amounts to solving local boundary value problems onΩi using Dirichlet or Neu-
mann boundary data from the previous iterates on the adjacent sub-domains. How-
ever, the transmission conditions (1b) may not lead to satisfactory convergence.
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To understand how alternative transmission conditions canboost an additive
Schwarz iteration, let us examine the very simple situationwith N = 1, Σ = Γ :=
∂Ω0 = ∂Ω1. There is a special transmission condition that effects convergence in
one step! To state it, we introduce the Dirichlet-to-Neumann (DtN) operators

DtN0,DtN1 : H
1
2 (Γ )→ H−

1
2 (Γ ) (19)

and their inverses, the Neumann-to-Dirichlet (NtD) operators

NtD0,NtD1 : H−
1
2 (Γ )→ H

1
2 (Γ ) , NtDi = DtN−1

i . (20)

The subscript indicates whether they are associated with a boundary value problem
LiU = 0 on Ω0 or Ω1, respectively. Recall that DtN operators, sometimes called
Steklov-Poincaŕe operators, return the Neumann trace of a solution of a boundary
value problem for prescribed Dirichlet data [11, Ch. 4]. TheDtN operators asso-
ciated with bounded subdomains are linear, butDtN0 is merely affine due to the
“nonzero boundary condition at infinity” imposed throughUinc. In any case, the
linear parts of the operatorsDtNi andNtDi are symmetric and positive.

Based on these operators, we introduce modified transmission conditions across
Γ :

TD,1U−NtD1(TN,1U) = TD,0U +NtD1(TN,0U) , (21a)

DtN0(TD,1U)+TN,1U = DtN0(TD,0U)−TN,0U . (21b)

These transmission conditions are perfectly symmetric with respect toΩ0 andΩ1,
since, thanks toNtDi = DtN−1

i , we can rewrite (21) in the equivalent form

DtN1(TD,1U)−TN,1U = DtN1(TD,0U)+TN,0U , (22a)

TD,1U +NtD0(TN,1U) = TD,0U−NtD0(TN,0U) . (22b)

Invertibility of the involved operators yields another equivalence

(21) ⇔ (22) ⇔
{
TD,1U = TD,0U ,
TN,1U = −TN,0U ,

(23)

which confirms that the original transmission conditions (4) are implied by our mod-
ified versions.

Following the policy of Section 3.2, we aim for an MTF based on(21) and first
cast the transmission conditions into weak form

[(I+M)T1U− (I+M)X(T0U),v]Γ = 0 ∀v ∈T (Γ ) , (24)

m
[(I−M)T0U− (I−M)X(T1U),v]Γ = 0 ∀v ∈T (Γ ) , (25)

with an affine linear operator
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M :=

(
0 −NtD1

DtN0 0

)
: T (Γ )→T (Γ ) . (26)

Note that in the above manipulations, we have usedXM = −MX. This yields the
generalized multi-trace formulation: seeku0,u1 ∈T (Γ ) such that

[(
−A0+

1
2I
)
u0,v

]
Γ +σ01[(I−M)u0− (I−M)X u1,v]Γ = 0 , (27a)

σ10[(I+M)u1− (I+M)X u0,v]Γ +
[(
−A1+

1
2I
)
u1,v

]
Γ = 0 , (27b)

for all v ∈ T (Γ ). Again, we may go after cancellation by settingσ01 = σ10 =−1
2,

so that (27a) is simplified to: seeku0,u1 ∈T (Γ ) such that

−
[
(A0−1

2M)u0,v
]

Γ + 1
2 [(I−M)X u1,v]Γ = 0 , (28a)

1
2 [(I+M)X u0,v]Γ −

[
(A1+

1
2M)u1,v

]
Γ = 0 , (28b)

for all v ∈ T (Γ ). This linear variational problem may be solved by means of the

following (undamped) additive Schwarz method: given approximationsu(k)0 ,u
(k)
1 ∈

T (Γ ), k= 0,1, . . ., computeu(k+1)
0 ,u

(k+1)
1 ∈T (Γ ) as solutions of

−
[
(A0−1

2M)u
(k+1)
0 ,v

]
Γ
+ 1

2

[
(I−M)X u

(k)
1 ,v

]
Γ
= 0 ,

1
2

[
(I+M)X u

(k)
0 ,v

]
Γ
−
[
(A1+

1
2M)u

(k+1)
1 ,v

]
Γ
= 0 .

∀v ∈T (Γ )
(29a)

(29b)

Lemma 1. Assuming unique solvability of the linear variational problem(29), and

u
(0)
0 = u

(0)
1 = 0, the iteration will become stationary after one step, withT0U = u

(1)
0

andT1U = u
(1)
1 , where U is the solution of the transmission problem(1).

Proof. Consider the boundary value problem posed onΩ0:

−div(µ0gradU (k+1))+U (k+1) = 0 in Ω0 , (30a)

DtN1(TD,0U (k+1))+TN,0U (k+1) = DtN1(TD,1U (k))−TN,1U (k) onΓ , (30b)

DtN0(TD,0U (k+1))−TN,0U (k+1) = DtN0(TD,1U (k))+TN,1U (k) onΓ , (30c)

U (k+1)−Uinc satisfies decay conditions at∞ , (30d)

and assume that it has a solution. Then, recalling Theorem 1 and the definition of

M, we find that withu(k)1 := T1U (k) the Cauchy tracesu(k+1)
0 := T0U (k+1) provide

a solution of (29a). However, in general (30) will fail to be ameaningful boundary
value problem, because too many boundary conditions are imposed onΓ . Yet, if
U (k) = 0, then the boundary conditions (30b) and (30c) become

DtN1(TD,0U (1))+TN,0U (1) = 0 onΓ , (31a)

DtN0(TD,0U (1))−TN,0U (1) = DtN0(0) onΓ . (31b)
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Notice that (31b) is redundant, satisfied byany solution of (30a) complying with
(30d). What remains in terms of effective boundary conditions onΓ is (31a), which
represents a well-posed impedance boundary condition und guarantees the existence

of a unique solutionU (k+1). The Cauchy traceu(1)0 := T0U (k) of that solution will
satisfy

−
[
(A0−1

2M)u
(1)
0 ,v

]
Γ
= 1

2

[(
0

DtN0(0)

)
,v

]

Γ
, (32)

which agrees with the variational problem (29a) to be solvedin the first step of the

Schwarz iteration with initial guessu(0)1 = 0.
Similar considerations apply to (29b). Here we start from the boundary value

problem with redundant boundary conditions

−div(µ1gradU (k+1))+U (k+1) = 0 in Ω1 , (33a)

DtN0(TD,1U (k+1))+TN,1U (k+1) = DtN0(TD,0U (k))−TN,0U (k)0 onΓ , (33b)

DtN1(TD,1U (k+1))−TN,1U (k+1) = DtN1(TD,0U (k))+TN,0U (k) onΓ . (33c)

If this has a solutionu(k+1), its Cauchy traceu(k+1)
1 := T1U (k+1) will solve (29b)

provided thatu(k)0 := T0U (k). Again, if U (k) = 0, the boundary conditions onΓ are
converted into

DtN0(TD,1U (1))+TN,1U (1) = DtN0(0) onΓ , (34a)

DtN1(TD,1U (1))−TN,1U (1) = 0 onΓ , (34b)

and the second is always fulfilled and can be dropped. This results in a well posed

elliptic boundary value problem and the Cauchy traceu
(1)
1 := T1U (k+1) solves

[
(A1+

1
2M)u

(1)
1 ,v

]
Γ
= 1

2

[(
0

DtN0(0)

)
,v

]

Γ
, (35)

which amounts to the second linear problem faced in the first step of the Schwarz
method (29) starting from zero.

By the definition of the Dirichlet-to-Neumann operators, the combined solutions
of the boundary value problems (30a), (31a), (30d) and (33a), (34a) provide a solu-

tion of the transmission problem (1). Thusu(1)0 andu(1)1 from (32) and (35) are the
Cauchy traces of that solution. Here we rely on the assumption of the Lemma that

ensures uniqueness ofu
(1)
0 andu(1)1 . Thus they are the desired final solutions and the

Schwarz iteration will become stationary after one step. 2

As a consequence of this Lemma, the additive Schwarz iteration (29) converges
after two steps, thanks to the transmission conditions (21)/(22), which we call “op-
timal” for this reason. Unfortunately, the “optimal transmission conditions” destroy
positivity of the resulting multi-trace operator, which turned out a key property in
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Section 3.3, see (18). We still find

[(I−M)X v1,v0]Γ =− [(I+M)X v0,v1]Γ ∀v0,v1 ∈T (∂Ω) ,

but the ellipticity of the diagonal operators, e.g.,

A0−1
2M=

(
−K0 V0+

1
2NtD1

W0− 1
2DtN0 K′0

)
, (36)

is lost. Hence, rigorous results about existence and uniqueness of solutions of (28)
are still missing even in the caseN = 1. This is an open problem for future research.

Moreover, the optimal transmission conditions (21) require the realization of
DtN and NtD operators. Their exact implementation is not an option for practical
schemes. Thus, in the next section we consider local approximations for the optimal
transmission conditions.

4.2 Local impedance transmission conditions

The considerations of the previous section suggest that forN > 1 we use transmis-
sion conditions similar to (21)locally on the interfaceΓi j , whereDtN j ,DtNi etc.
are replaced by suitable approximations. The resulting so-called local impedance
transmission conditions across the interfaceΓi j can be written in the form

Bi j (TD,i U)+TN,i U = Bi j (TD, j U)−TN, j U , (37a)

B ji (TD,i U)−TN,i U = B ji (TD, j U)+TN, j U . (37b)

whereBi j andB ji are invertible (affine) linear operators of “DtN-type” mapping

H
1
2 (Γi j ) ontoH−

1
2 (Γi j ). Parallel to the switch from (21) to (22), invertibility of the

involved operators yields another equivalence

TD,i U +Ci j (TN,i U) = TD, j U−Ci j (TN, j U) , (38a)

TD,i U−C ji (TN,i U) = TD, j U +C ji (TN, j U) . (38b)

whereCi j = B−1
i j : H−

1
2 (Γi j )→ H

1
2 (Γi j ) andC ji = B−1

ji : H−
1
2 (Γi j )→ H

1
2 (Γi j ). We

can then write the weak form of the local impedance transmission conditions as:

[(I+Si j )T j U− (I+Si j )X(Ti U),v]Γi j
= 0 ∀v ∈ T̃ (Γi j ) , (39)

m
[(I−Si j )Ti U− (I−Si j )X(T j U),v]Γi j

= 0 ∀v ∈ T̃ (Γi j ) , (40)

with an affine linear operator
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Si j :=

(
0 Ci j

−B ji 0

)
: T (Γi j )→T (Γi j ) . (41)

Retracing the steps detailed in Section 3.2 based on (39), weend up with thelocal
multi-trace variational problem, here stated forN = 2: seek(u0,u1,u2) ∈MT (Σ)
such that

[A0u0,v0]∂Ω0
+ 1

2 [S01u0,v0]Γ01
+ 1

2 [S02u0,v0]Γ02
−

1
2 [(I+S01)X u1,v0]Γ01

− 1
2 [(I+S02)X u2,v0]Γ02

= 0 ,

[A1u1,v1]∂Ω1
+ 1

2 [S10u1,v1]Γ01
+ 1

2 [S12u1,v1]Γ12
−

1
2 [(I+S10)X u0,v1]Γ01

− 1
2 [(I+S12)X u2,v1]Γ12

= 0 ,

[A2u2,v2]∂Ω2
+ 1

2 [S20u2,v2]Γ02
+ 1

2 [S21u2,v2]Γ12
−

1
2 [(I+S20)X u0,v2]Γ02

− 1
2 [(I+S21)X u1,v2]Γ12

= 0 ,

(42)

for all (v1,v2,v3) ∈ M̃T (Σ). Of course, local pairings on interfaces involve re-
strictions onto those interfaces even if not apparent from the notation. As explained
in Section 3.3, this entails using the more regular test spaceM̃T (Σ).

An additive Schwarz method analogous to (29) may be applied to (42) as an
iterative solver or preconditioner. The corresponding undamped iteration seeks

(u
(k+1)
0 ,u

(k+1)
1 ,u

(k+1)
2 ) ∈MT (Σ) such that

[
A0u

(k+1)
0 ,v0

]
∂Ω0

+ 1
2

[
S01u

(k+1)
0 ,v0

]
Γ01

+ 1
2

[
S02u

(k+1)
0 ,v0

]
Γ02
−

1
2

[
(I+S01)X u

(k)
1 ,v0

]
Γ01
− 1

2

[
(I+S02)X u

(k)
2 ,v0

]
Γ02

= 0 ,

[
A1u

(k+1)
1 ,v1

]
∂Ω1

+ 1
2

[
S10u

(k+1)
1 ,v1

]
Γ01

+ 1
2

[
S12u

(k+1)
1 ,v1

]
Γ12
−

1
2

[
(I+S10)X u

(k)
0 ,v1

]
Γ01
− 1

2

[
(I+S12)X u

(k+1)
2 ,v1

]
Γ12

= 0 ,

[
A2u

(k+1)
2 ,v2

]
∂Ω2

+ 1
2

[
S20u

(k+1)
2 ,v2

]
Γ02

+ 1
2

[
S21u

(k+1)
2 ,v2

]
Γ12
−

1
2

[
(I+S20)X u

(k)
0 ,v2

]
Γ02
− 1

2

[
(I+S21)X u

(k)
1 ,v2

]
Γ12

= 0 ,

(43)

for all (v1,v2,v3) ∈ M̃T (Σ), where a superscript(k) indicates the use of approx-
imations from the previous iteration. As is clear from the considerations of Section
4.1 the choice ofBi , B j will directly affect the convergence of the Schwarz itera-
tion applied to the multi-trace variational problem. A systematic study still has to be
conducted.

Remark 4.So far, the development and analysis of multi-trace methodshave focused
on acoustic and electromagneticwave propagation problems, see [3, Sect. 1.2].
There the simplest choice for approximate local Dirichlet-to-Neumann operators
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seems to be a first order complex Robin transmission condition (TC), introduced in
[4], where the operators are chosen in the form

Bi j = B ji =−ηi j ıκ , ηi j ∈ R . (44)

This choice makes the Schwarz iteration converge quickly for propagating eigen-
modes, though the evanescent modes fail to converge. Further work has sought to
improve the Robin TCs to ensure convergence of both propagating and evanescent
modes [2, 1]. Of particular interest are the so-called optimized Schwarz methods,
where the coefficients used in the transmission conditions are obtained by solving
min-max optimization problems for half-space model problems. These include the
optimized Schwarz method with two-sided Robin TCs [7] and optimized second
order transmission conditions [6]. Schwarz methods with high order transmission
conditions have also been developed for high frequency time-harmonic Maxwell’s
Equations. We mention recent works [5] and [12]. The former one is based on the
optimized Schwarz methods. The latter develops a true second order TC together
with a global plane wave deflation technique to further improve the convergence for
electrically large problems.
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Recent advances in domain decomposition
methods for the Stokes problem

Hyea Hyun Kim1, Chang-Ock Lee2, and Eun-Hee Park3

1 Introduction

We consider the following incompressible Stokes problem: Find (−→u , p)∈ [H1
0(Ω)]d×

L2
0(Ω) such that

−△−→u +∇p =
−→
f ,

∇ ·−→u = 0,
(1)

where
−→
f ∈ [L2(Ω)]d andd is the dimension of the problem domainΩ , i.e.,d = 2

or 3. The domainΩ is assumed to be polygonal/polyhedral. The spaceH1
0(Ω) is the

set of square integrable functions up to first weak derivatives with zero trace on the
boundary ofΩ andL2

0(Ω) is the set of square integrable functions with zero average
over the domainΩ .

To find an approximate solution, a pair of inf-sup stable finite element spaces,
(V̂, P̂0), is introduced such that̂V ⊂ [H1

0(Ω)]d and P̂0 ⊂ L2
0(Ω). In this work, we

assume that functions in the velocity spaceV̂ are continuous. On the other hand,
we can choosêP0 as discontinuous functions or as continuous functions across el-
ement boundaries. A general framework of domain decomposition algorithms will
be considered for both cases of pressure functions.

There have been considerable researches on domain decomposition methods for
the Stokes problem. Algorithms based on iterative substructuring methods have been
developed in Marini and Quarteroni [15], Bramble and Pasciak [1], Ronquist [17],
and Le Tallec and Patra [10]. Balancing Neumann-Neumann algorithms were stud-
ied by Pavarino and Widlund [16] and Goldfeld [5]. Later FETI-DP and BDDC
methods were developed in the works by Li [11] and by Li and Widlund [13].
What’s common in all these previous studies is that the indefinite Stokes problem
is reduced to a positive definite system using the benign subspace approach. The
benign subspace approach requires a compatibility condition of the velocity on the
subdomain boundary as well as some primal pressure unknowns. Compared to el-
liptic problems, nonoverlapping domain decomposition algorithms for the Stokes
problem needed careful and quite complicated constructionof the coarse problem.

In recent works, more advanced algorithms were developed toaddress smaller
and more practical coarse problems. In the works by Kim, Lee,and Park [8, 7],
a coarse problem with only primal velocity unknowns was applied to the Stokes
problem with a scalable condition number bound for both dualand primal forms

1 Department of Applied Mathematics, Kyung Hee University, Yongin, Korea, e-mail:hhkim@
khu.ac.kr ·2 Department of Mathematical Sciences, KAIST, Daejeon, Korea, e-mail:
colee@kaist.edu ·3 National Institute of Mathematical Sciences, Daejeon, Korea,e-mail:
eunheepark@nims.re.kr
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of domain decomposition methods. In that approach a lumped preconditioner is
employed. In the work by Sistek et. al. [18], extensive numerical experiments were
carried out for the primal form of the Stokes problem with continuous pressure finite
element functions. Similarly to [8, 7], only primal velocity unknowns are employed
in their approaches. The dual form was further extended to the continuous pressure
functions with a scalable condition number bound in the workby Tu and Li [12].

In the following, we introduce a general framework of domaindecomposition
methods for the Stokes problem and present both primal and dual domain decom-
position algorithms along with estimate of their conditionnumbers. Throughout the
paper,C is a generic positive constant independent of any mesh parameters and the
number of subdomains.

2 Domain decomposition algorithms

We consider the pair of finite element spaces(V̂, P̂0). Before we proceed the con-
struction of domain decomposition algorithms, we relax theaverage free condition
on the pressure functions and consider the pair(V̂, P̂), where the pressure functions
in P̂ are not necessarily average-free over the domainΩ . By relaxing the average-
free condition on the pressure functions, the functions inP̂ are fully decoupled
across element boundaries when discontinuous pressure functions are considered.
For that case, we thus have no global pressure component but have one null compo-
nent on the resulting algebraic system.

We introduce a non-overlapping subdomain partition{Ωi} and decompose the
function spaces into

V =
N

∏
i=1

Vi , P=
N

∏
i=1

Pi ,

whereVi andPi are restrictions of̂V andP̂ into Ωi , respectively. We note that when
the pressure functions in̂P are discontinuousP is identical toP̂. In the following,
we assume that the pressure functions inP̂ are discontinuous and we later consider
the case of continuous pressure functions.

2.1 Dual formulation

In this subsection, we will present dual formulation of the Stokes problem following
FETI-DP methods [3, 4] After we decouple the functions inV̂, we select some
primal unknowns among the velocity unknowns on the subdomain boundary and
enforce strong continuity on them. We use the notation−→u Π for the primal unknowns
and use the notation−→u ∆ for the remaining decoupled unknowns on the subdomain
interface. We call−→u ∆ dual unknowns. We denote by−→u I the velocity unknowns
interior to each subdomains. We denote the subspaces with unknowns−→u I ,

−→u ∆ ,
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and−→u Π by VI , V∆ , andVΠ , respectively and denote the subspace with unknowns
(−→u I ,

−→u ∆ ,
−→u Π ) by Ṽ, which has velocity unknowns that are partially coupled across

the subdomain interfaces. In the dual formulation, continuity on the decoupled dual

unknowns−→u ∆ is enforced weakly using Lagrange multipliers
−→
λ and the following

algebraic system will be solved:

Find (−→u I ,
−→u ∆ , p,

−→u Π ,
−→
λ ) ∈ (VI ,V∆ ,VΠ ,P,Λ) such that




KII KI∆ BT
I KIΠ 0

KT
I∆ K∆∆ BT

∆ K∆Π JT
∆

BI B∆ 0 BΠ 0
KT

IΠ KT
I∆ BT

Π KΠΠ 0
0 J∆ 0 0 0







−→u I−→u ∆
p−→u Π
λ




=




−→
f I−→
f ∆
0−→
f Π
0




(2)

HereΛ is the space of Lagrange multipliersλ andJ∆ is the Boolean matrix which
implements weak continuity on the dual velocity unknowns−→u ∆ . In the above al-
gebraic system, the unknowns(−→u I ,

−→u ∆ , p) are fully decoupled across subdomain
interfaces and can be eliminated by solving local Stokes problems and the unknowns−→u Π then can be eliminated by solving a global coarse problem. After the elimina-
tion process, we obtain the resulting equation onλ :

Fdλ = d. (3)

Here we stress that our formulation uses only primal velocity unknowns in contrast
to the previous approaches [11, 13] which required both velocity and pressure primal
unknowns satisfying a certain inf-sup stability.

The matrixFd is symmetric and semi-positive definite onΛ . We note thatFd has
null components due to fully redundant Lagrange multipliers λ f ull

JT
∆ λ f ull = 0

and relaxing the average-free condition on the pressure unknowns. The null compo-
nentλnull caused by relaxing average-free condition can be calculated by substitut-
ing (−→u I ,

−→u ∆ , p,
−→u Π ,λ ) = (0,0,1p,0,λnull) into (2) to obtain

BT
∆ 1p+JT

∆ λnull = 0

and by usingJ∆ D∆ JT
∆ = I , λnull is given by

λnull =−J∆ D∆ BT
∆ 1p.

Here we note thatD∆ is the diagonal matrix with its entries determined by

D∆ (x) =
1

Nx
,

whereNx is the number of subdomains sharing the nodex.
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We introduce the subspace

Λc = {λ ∈Λ : λ ⊥ null(JT
∆ ), λ Tλnull = 0},

whereFd is positive definite. In our dual formulation, the equation (3) is solved on
the subspaceΛc by the preconditioned conjugate gradient method with the following
lumped preconditioner

M−1
d = J∆ D∆ K∆∆ D∆ JT

∆ .

About the performance of the proposed preconditioner, we obtain the following
condition number estimate [8, 9, 6]:

Theorem 1. In 2D when−→u Π are selected as edge averages and in3D when−→u Π
are selected as face averages, we obtain that

κ(M−1
d Fd)≤C

H
h

and in2D when−→u Π are selected as values at corners we obtain that

κ(M−1
d Fd)≤C

H
h

log(1+
H
h
),

where H/h is the number of elements across each subdomain.

We note that the same bound was obtained for the elliptic problems with the lumped
preconditioner and the same set of primal unknowns, see [14].

2.2 Primal formulation

We will now develop the primal counterpart to the dual formulation. We recall the
pair of finite element spaces in the dual formulation,(Ṽ,P), where the velocity
functions inṼ are partially coupled across the subdomain interfaces and the pres-
sure functions inP are fully decoupled across the subdomain interfaces. We usethe
notations

Ã :=

(
K̃ B̃
B̃T 0

)
, J̃ :=

(
J∆ 0

)
,

whereÃ is the matrix obtained from the Galerkin approximation of the Stokes prob-
lem for the pair of finite element spaces(Ṽ,P) and J̃ is the zero extension of the
operatorJ∆ on the pair(Ṽ,P). Using these notations, the dual algebraic system in
(3) is written into

J̃Ã−1J̃Tλ = d.

For the primal counterpart to the dual formulation, we introduce the pair(V̂,P)
and obtain the algebraic equation in the primal form:

Find (−̂→u , p) ∈ (V̂,P) such that
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(
K̂ B̂
B̂T 0

)( −̂→u
p

)
=

( −̂→
f
0

)
. (4)

By using the extension
R̃ : V̂→ Ṽ,

we can express the primal form in terms of block matrices appeared in the dual
form, (

R̃T 0
0 I

)(
K̃ B̃
B̃T 0

)(
R̃ 0
0 I

)( −̂→u
p

)
=

( −̂→
f
0

)
. (5)

We use the notation̂A for the matrix in the primal form,

Â=

(
K̂ B̂
B̂T 0

)
.

For the primal form, using the expression in (5) we design itspreconditionerM−1
p

so thatM−1
p Â andM−1

d Fd have the same set of eigenvalues except zero and one. The
form of the preconditionerM−1

p is obtained as

M−1
p =

(
R̃TD 0

0 I

)(
K̃ B̃
B̃T 0

)−1(
DR̃ 0
0 I

)
,

whereD is a diagonal matrix given by

D =

(
D∆ 0
0 0

)
.

We note that the null component in the primal form is(−̂→u , p) = (0,1) and the ma-
trix Â is indefinite. The matrix equation (4) of the primal form is solved by GMRES
methods combined with the preconditionerM−1

p on the subspace which is orthog-

onal to the null component(−̂→u , p) = (0,1). About the convergence of the GMRES
iteration, we proved the following results:

Theorem 2.The eigenvalues of M−1
p Â and M−1

d Fd are the same except zero and
one.

Theorem 3.The GMRES iteration applied to the primal form converges andits
convergence is determined byε and d, where

ε =

√
λmax/λmin−1√
λmax/λmin+1

and d is purple the dimension of invariant subspaces of eigenvalues of M−1
p Â.
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By Theorem 2 and Theorem 1, all nonzero eigenvalues ofM−1
p Â is real and pos-

itive. Application ofM−1
p to the primal form results in a two-level nonoverlapping

Schwarz method, which applies an indefinite preconditionerto an indefinite prob-
lem in contrast to the dual form where a positive definite matrix is solved with the
preconditioned conjugate gradient method. Under the assumption thatM−1

p Â is di-
agonalizable, the error reduction factor in the GMRES iteration is determined by

‖ek‖2≤Cεk‖e0‖2,

whereε is defined in Theorem 3 andek is the error in thek-th iterate.

3 Application to continuous pressure functions

Algorithms in the previous section were developed for the pair (V̂, P̂), where pres-
sure functions inP are discontinuous across element boundaries. We will apply
the algorithms to the case with continuous pressure functions. In contrast to the
case with discontinuous pressure functions, we have not yetobtained the bound of
eigenvalues. Instead we perform numerical experiments under various settings to see
promising features of our algorithms applied to the case with continuous pressure
functions.

We consider the pair(V̂, P̂) where both velocity and pressure functions are con-
tinuous. Here we again relax the average free condition on the pressure functions
as in the previous section. After we decompose the domainΩ into nonoverlap-
ping subdomains{Ωi}, we obtain the decoupled velocity and pressure spaces and
denote themV andP. Among those decoupled velocity unknowns on the subdo-
main interfaces we select some primal unknowns and enforce strong continuity on
them. We denote the resulting partially coupled velocity space byṼ. For the pres-
sure functions, we can do similarly and denote the partiallycoupled pressure space
by P̃. About the pressure functions, we may not select the primal unknowns. For
that case, we still use the same notationP̃, which is identical toP.

After introducing these functions spaces, we obtain algebraic system in the pri-
mal form as (

K̂ B̂T

B̂ 0

)( −̂→u
p̂

)
=

( −̂→
f
0

)

and in the dual form as




K̃ B̃T J̃T
u 0

B̃ 0 0 J̃T
p

J̃u 0 0 0
0 J̃p 0 0







−̃→u
p̃

λu

λp


=




−̃→
f
0
0
0


 ,

whereλu and λp are Lagrange multipliers for implementing weak continuityon
decoupled velocity unknowns and decoupled pressure unknowns, respectively,



Recent advances in domain decomposition methods for the Stokes problem 59

J̃u
−̃→u = 0, J̃p p̃= 0.

We introduce the following notations:

Ã=

(
K̃ B̃T

B̃ 0

)
, J̃T =

(
J̃T

u 0
0 J̃T

p

)
,

x̃=

(
ũ
p̃

)
, x̂=

(
û
p̂

)
, λ =

(
λu

λp

)
.

In addition, We introduce an extension operator

R̃T : V̂× P̂→ Ṽ× P̃.

The algebraic system in the primal form is then written as

R̃ÃR̃T x̂= f̂

and the algebraic system in the dual form after elimination process is written as

J̃Ã−1J̃Tλ = g.

For each algebraic system, we introduce preconditioners

M−1
p = R̃DÃ−1DR̃T , M−1

d = J̃DÃDJ̃T ,

whereD is a diagonal matrix with its entries defined similarly as before.
For the preconditioned matrices,M−1

p R̃ÃR̃T andM−1
d J̃Ã−1J̃T , we can prove the

same result in Theorem 2. On the other hand, when the pressurefunctions are dis-
continuous the resulting matrix̃JÃ−1J̃T of the dual form is indefinite. Analysis of
the condition number bound can not be done as in the previous section.

For the case with the continuous pressure functions, we can present the discrete
problem with the following block matrices




KII BT
II KIΓ BT

Γ I
BII 0 BIΓ 0
KΓ I BT

IΓ KΓ Γ BT
Γ Γ

BΓ I 0 BΓ Γ 0







uI

pI

uΓ
pΓ


=




fI
0
fΓ
0


 .

For that case, an improvement can be done by reducing the discrete problem into
the problem on the interface unknowns(−→u Γ , pΓ ) and then by applying the dual and
primal algorithms to the reduced interface problem. The reduction on the interface
problem is called static condensation. We then observe thatour dual form and primal
form applied to that interface problem are similar to a FETI-DP algorithm with
the Dirichlet preconditioner and a BDDC algorithm [2], respectively. Compared
to the work by Li and Tu [12], our formulation employs Lagrange multipliersλΓ
to enforce continuity on the decoupled pressurepΓ , while pΓ itself is treated as
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Lagrange multipliers in their work. Compared to [18], our primal formulation is
identical to that approach when only primal velocity unknowns are selected.

In numerical experiments, we present performance of the primal and dual forms
regarding to the selection of primal unknowns and the staticcondensation.

4 Numerical results

We present numerical results when the algorithm for the primal form is applied to
the Stokes problem discretized with(V̂, P̂), where both the velocity and pressure
functions are continuous. We refer [8, 9, 6, 7] for numericalexperiments of the
algorithms in Section 2, when discontinuous pressure functions are considered.

In the following numerical experiments, we considerP2(h)−P1(h) for 2D prob-
lems andQ2(h)−Q1(h) for 3D problems. The domainΩ is square/cubic and is
decomposed into uniform square/cubic subdomains. In the GMRES iteration, the
stop condition is when the relative residual norm is reducedby a factor of 106. For
primal unknowns, we denote byvc, ve, andv f the velocity unknowns at corners, ve-
locity averages over edges, velocity averages over faces, respectively, and we denote
by pc the pressure unknowns at corners.

In Tables 1 and 2, for the 2D Stokes problem we present iteration counts de-
pending on various sets of primal unknowns and the static condensation. As we
can see, the static condensation improves a lot the iteration counts with increasing
the local problem sizeH/h while adding more primal unknowns such asveandpc
does not give much improvement. With increasing the number of subdomains, we
can observe scalability for the cases with larger set of primal unknowns,vc+veor
vc+ve+ pc.

In Tables 3 and 4, for the 3D Stokes problem we present iteration counts depend-
ing on various sets of primal unknowns and the static condensation. We observe
similar behaviors as in the 2D case. The static condensation seems to be necessary
to obtain good performance increasing the local problem size. About the selection
of primal unknowns, in 3D case the additional primal unknownsv f improve the
scalability on the number of subdomains much better thanvein 2D case. Addingpc
does not give much improvement on the performance when increasing the number
of subdomains and when increasing the local problem size.

To analyze the performance of our method depending on the setof primal un-
knowns and the static condensation, we plot eigenvalue distribution of the precon-
ditioned system matrix. In Figure 1, the eigenvalue distributions in 2D case are
presented for various sets of primal unknowns and for the cases with and without
the static condensation. Among the cases without the staticcondensation, we ob-
serve that all eigenvalues are real and positive for the set of primal unknowns with
vc+ ve+ pc. Adding ve, the eigenvalues become more clustered near one while
adding pc does not show much improvement. About the effect ofthe static con-
densation, we see that the eigenvalues become less clustered near zero and more
clustered near one. For the cases with the static condensation, we stress that the real
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Table 1 2D Stokes problem: iteration counts depending on the set of primalunknowns and the
static condensation with increasingH/h and a fixed subdomain partitionNd = 3×3,WOS(without
static condensation),WS(with static condensation)

vc vc+ve vc+ve+ pc
H/h (WOS/WS) (WOS/WS) (WOS/WS)

2 45/27 40/25 14/14
3 58/24 46/24 22/15
4 69/25 59/21 28/16
5 78/24 66/23 35/16
6 85/25 71/23 41/17
7 93/27 88/23 47/17
8 94/26 90/22 48/18

Table 2 2D Stokes problem: iteration counts depending on the set of primalunknowns and the
static condensation with increasingNd and a fixed local problem sizeH/h = 4, WOS(without
static condensation),WS(with static condensation)

vc vc+ve vc+ve+ pc
Nd (WOS/WS) (WOS/WS) (WOS/WS)

32 69/25 59/21 28/16
42 92/30 71/24 29/16
52 108/34 70/26 30/16
62 117/37 69/24 30/15
82 138/44 67/26 30/16
102 146/44 69/27 30/16
122 147/48 67/26 30/15

Table 3 3D Stokes problem: iteration counts depending on the set of primalunknowns and the
static condensation with increasingH/h and a fixed subdomain partitionNd = 33, WOS(without
static condensation),WS(with static condensation)

vc vc+v f vc+v f + pc
H/h (WOS/WS) (WOS/WS) (WOS/WS)

2 16/73 56/55 40/35
3 79/75 70/55 60/40
4 98/76 77/51 73/43
5 118/74 97/52 94/43
6 134/73 120/53 117/44
7 143/75 146/54 142/45
8 149/77 171/55 167/47
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Table 4 3D Stokes problem: iteration counts depending on the set of primalunknowns and the
static condensation with increasingNd and a fixed local problem sizeH/h = 4, WOS(without
static condensation),WS(with static condensation)

vc vc+ve vc+ve+ pc
Nd (WOS/WS) (WOS/WS) (WOS/WS)

33 79/75 70/55 60/40
43 109/94 77/52 67/41
63 203/147 79/51 68/41
83 227/169 76/50 65/41
93 301/205 93/52 87/44
103 298/212 93/52 87/44
123 288/223 93/52 87/43

Fig. 1 2D Stokes problem:
Eigenvalue distribution de-
pending on the choice of pri-
mal unknowns and the static
condensation, left column
(without the static condensa-
tion) and right column (with
the static condensation).
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part of most nonzero eigenvalues are positive numbers and away from zero. In Fig-
ure 2, we plot the eigenvalue distributions for the 3D Stokes problem. We observe
similar behaviors as in the 2D case. To summarize, when pressure functions inP̂
are continuous our algorithm with the set of primal unknownsvc+v f and with the
static condensation gives good performance for the 3D case and addingpcseems to
be not necessary to improve the performance.
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On an Adaptive Coarse Space and on Nonlinear
Domain Decomposition

Axel Klawonn1, Martin Lanser1, Patrick Radtke1, and Oliver Rheinbach2

1 Introduction

We consider two different aspects of FETI-DP domain decomposition methods [8,
23]. In the first part, we describe an adaptive construction of coarse spaces from
local eigenvalue problems for the solution of heterogeneous, e.g., multiscale, prob-
lems. This strategy of constructing a coarse space is implemented using a deflation
approach. In the second part, we introduce new domain decomposition approaches
for nonlinear problems. These methods are based on a decomposition of the nonlin-
ear problem before linearization.

2 A Deflation Method

The coarse space of iterative substructuring methods such as FETI-DP or BDDC
methods [8, 1, 23] can be enhanced by additional constraintsusing projections; see,
e.g., [15]. The solution of a symmetric positive (semi-)definite systemFλ = d using
the deflation method [19] also known as projector preconditioning [6], consists of
the computation ofλ from

M−1(I −P)TFλ = M−1(I −P)Td

by the conjugate gradient method using a projection of the formP=U(UTFU)−1UTF
and a preconditionerM−1. It is equivalent to solvingFλ = d by conjugate gradients
using the symmetric preconditionerM−1

PP = (I −P)M−1(I −P)T . With λ := PF−1d
the solutionλ ∗ of the original problem is then computed asλ ∗ = λ + λ . If we
include the computation ofλ into the iteration, we obtain the balancing precondi-
tioner [17, 7]M−1

BP = (I −P)M−1(I −P)T +U(UTFU)−1UT . We then obtain the
solution directly without an additional correctionλ .

For details on the deflation method or the balancing preconditioner applied to the
FETI-DP or BDDC method, see [15].
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For a new coarse space for FETI-DP methods applied to almost incompressible
linear elasticity in 3D implemented by deflation, see [11].

3 Coarse Spaces from Local Eigenvalue Problems

Let Ω ⊂ R2, be a bounded polyhedral domain, let∂ΩD ⊂ ∂Ω be a closed subset
of positive measure, and∂ΩN := ∂Ω \∂ΩD be its complement. We impose homo-
geneous Dirichlet and general Neumann boundary conditionson these two subsets,
respectively, and introduce the Sobolev spaceH1

0(Ω ,∂ΩD) := {v ∈ H1(Ω) : v =
0 on∂ΩD}. We consider the piecewise linear conforming finite elementapproxi-
mation of the scalar diffusion problem:
Find u ∈ H1

0(Ω ,∂ΩD), such thata(u,v) = f (v) ∀v ∈ H1
0(Ω ,∂ΩD). Here, we use

a(u,v) :=
∫

Ω ρ(x)∇u ·∇v dx and f (v) :=
∫

Ω f v dx+
∫

∂ΩN
gNv ds, where gN is

the boundary data defined on∂ΩN. We assumeρ(x) > 0 for x ∈ Ω and thatρ is
piecewise constant onΩ . As a second model problem, we consider the problem of
linear elasticity. For the compressible case we use the standard variational formu-
lation to find a displacementu ∈ (H1

0(Ω ,∂ΩD))
2, such thata(u,v) = f (v) ∀v ∈

(H1
0(Ω ,∂ΩD))

2, where a(u,v) :=
∫

Ω G(x)ε(u) : ε(v) + G(x)β (x)div(u)div(v)dx.
The material parametersG and β will be expressed byG = E

1+ν andβ = ν
1−2ν ,

using Young’s modulusE and Poisson’s ratioν . The finite element space is de-
noted byVh. We decomposeΩ into N nonoverlapping subdomainsΩi , i = 1, . . . ,N,
where eachΩi is the union of shape-regular and triangular finite elementswith el-
ement nodes on the boundaries of neighboring subdomains matching across the in-
terfaceΓ := (∪N

i=1∂Ωi)\∂Ω . The diameter of a subdomainΩi is Hi or generically
H := maxi Hi .

Our goal is to solve multiscale, heterogenous problems withcoefficient distribu-
tions as shown in Fig. 1 efficiently using the FETI-DP or BDDC method. Here, we
have highly varying coefficients inside subdomains.

In the following, we will use a new approach to obtain independence of the
coefficient jumps by solving local eigenvalue problems and enriching the coarse
space with eigenvectors. For other approaches, designed for certain classes of coef-
ficients; see, e.g., [14, 22]. Similar approaches have been used for Schwarz meth-
ods in [9, 5, 4]. Another approach to create adaptive coarse spaces was introduced
in [18].
Let E i j be an edge between the subdomainsΩi andΩ j and letS(i)

E i j ,ρ be the Schur
complement that results after eliminating all variables except of the dual displace-

ment degrees of freedom on the edge. Lets(i)
E i j ,ρ(u,v) := uTS(i)Ei j ,ρv be the correspond-

ing bilinear form and letmE i j ,ρ(u,v) :=
∫
E i j ρu·v ds. In the case where the Poincaré

constant depends on a large jump in the coefficients, we solvethe following gener-
alized eigenvalue problem on the edge: Findu∈Vh(E i j ) such that

s(i)
E i j ,ρ(u,v) = µmE i j ,ρ(u,v) ∀v∈Vh(E i j ). (1)
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Fig. 1 Microstructures obtained from electron backscatter diffraction (EBSD/FIB). Courtesy of
Prof. Dr.-Ing. J̈org Schr̈oder, Essen, Germany, originating from a cooperation with ThyssenKrupp
Steel. We have set the coefficientE1 = 1 for white andE2 = 1e+06 for black. An interpolated
value is used for the different shades of gray. Left: gray scale image. Right: binary image. See
Tab. 6 for the numerical results.

We do not need to solve this problem for all but only for the smallest eigenvalues
and corresponding eigenvectors. Let the eigenvalues 0= µ1 ≤ . . .≤ µnEi j

be sorted

in ascending order. For a given natural numberL ≤ nEi j and for every subdomain,

we define the projectionI (l)L v := ∑L
k=1mE i j ,ρ(u

(l)
k ,v)u(l)k , l = i, j, whereu(l)k are the

eigenvectors of (1) corresponding to the eigenvaluesµk. In our FETI-DP algorithm
and the corresponding condition number estimate, we need toforce the projected

jumps across the interface to be zero to obtainI (i)L v(i) = I (i)L v( j) andI ( j)
L v(i) = I ( j)

L v( j).

Let v(i)
E i j be the restriction ofv(i) to the edgeE i j . To guarantee this equality, we

enforce the constraintmE i j ,ρ(u
(l)
k ,v(i)

E i j − v( j)
E i j ) = 0 for k = 1, . . . ,L and l = i, j. We

enrich our coarse space with the eigenvectors multiplied with the mass matrix cor-
responding tomE i j ,ρ and extended by zero on the remaining part of the interface
as columns ofU . We do this for each subdomain, for each edge of the subdomain,
and for each eigenvector of the generalized eigenvalue problem for that edge with
an eigenvalue smaller than a chosen toleranceToleig.

The next theorem is proven in [13] under certain technical assumptions.

Theorem 1.The condition number for our FETI-DP method satisfies

κ(M̂−1F)≤C
(

1+ log
(η

h

))2
(

1+
1

ηµL+1

)
,

whereM̂−1 = M−1
PP or M̂−1 = M−1

BP. Here, C> 0 is a constant independent of H, h,
andη .

Next, we present numerical results for certain exemplary coefficient distributions.
We useM−1

BP choosingM−1 as the Dirichlet preconditioner. We subdivide the unit
square into square subdomains and consider a coefficient distribution with different
numbers of channels cutting through subdomain edges; see Fig. 2. We first present
our results for the scalar case followed by the results for linear elasticity with discon-
tinuous coefficients. At the end of this section, we also present our results obtained
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for the linear elastic deformation of the microstructures shown in Fig. 1. In our ta-
bles, we denote the FETI-DP algorithm using only vertices asprimal constraints as
“Algorithm A”; see [23, p. 170]. When the coarse space is enhanced using eigen-
vectors obtained from local eigenvalue problems the corresponding columns are
denoted by “Adaptive”. The additional constraints are implemented using deflation
or balancing. They could also be implemented using a transformation of basis. Our
stopping criterion is the relative reduction of the preconditioned residual by 1e−10.

All experiments for the diffusion equation with heterogeneous coefficients inside
subdomains are carried out with homogeneous Dirichlet boundary conditions on
∂Ω and a constant right hand sidef = 1/10. For one channel for each subdomain,
we have a quasi-monotone coefficient; cf. [21]. In this case,which is depicted in
Fig. 2 (middle), on each interior edge, the eigenvector of the eigenvalue zero is
added to the coarse space. On interior edges which do not intersect a channel with a
high coefficient the resulting constraint is a standard edgeaverage. On interior edges
intersected by a channel the constraint is a weighted edge average, cf. also [14], up
to a multiplicative constant. This results in eight adaptive constraints; see Tab. 1.
The case of three channels results in 20 adaptive constraints.
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Fig. 2 Domain decomposition in nine subdomains (left). The coefficient distribution is depicted
for one channel (middle) and three channels (right). Here, black corresponds to a high coefficient
and white corresponds toρ = 1 (middle/right).

In Tab. 2, for three channels, we see that the condition number using the enriched
coarse space stays bounded if we change the contrastρ2 ∈ {1, . . . ,1e+06}. More-
over, the number of adaptive constraints approaches a limitfor growing contrast.

In Tab. 3 we see that for an increasing number of subdomains and channels
the condition number remains bounded. The number of adaptive constraints grows
roughly in proportion to the number of subdomains and channels. Note that the
adaptive algorithm withToleig = 1 chooses only constraints on subdomains, where
the Dirichlet boundary does not intersect the inclusions. On subdomains with
Dirichlet boundary conditions that do not intersect the channels, six constraints, and
on all inner subdomains, 8 constraints are chosen. Linearlydependent constraints
are detected using the modified Gram-Schmidt method and removed.

Next, we test our algorithm on linear elasticity problems with certain distribu-
tions of varying coefficients inside subdomains. We impose homogeneous Dirichlet
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Algorithm A Adaptive Method # Adaptive Size of
# Channels H/h condition # its condition # its constraints Γ
1 6 9.5532e+04 7 1.0412 3 8 84

12 1.1969e+05 7 1.1547 4 8 156
18 1.3335e+05 7 1.2519 4 8 228
24 1.4416e+05 8 1.3325 4 8 300
30 1.5197e+05 8 1.4011 5 8 372

3 14 39.2087 6 1.0387 2 20 180
28 1.3431e+05 10 1.1507 3 20 348
42 1.3884e+05 11 1.2471 3 20 516
56 1.8408e+05 14 1.3272 3 20 684
70 1.9298e+05 13 1.3954 3 20 852

Table 1 Scalar diffusion, one and three channels for each subdomain, seeFig. 2 (right). We have
ρ = 1e+06 in the channel, andρ = 1 elsewhere. The number of additional constraints is clearly de-
termined by the structure of the heterogeneity and independent of the mesh size. 1/H = 3.Toleig=1.

Algorithm A Adaptive Method # Adaptive Size of
ρ2/ρ1 condition # its condition # its constraints Γ

1 3.2068 5 1.6467 5 4 348
10 5.5781 7 1.5697 7 4 348

1e+02 19.9519 9 1.4604 7 8 348
1e+03 1.5891e+02 9 1.1506 4 20 348
1e+04 1.5476e+03 11 1.1507 3 20 348
1e+05 1.5434e+04 12 1.1507 3 20 348
1e+06 1.3431e+05 10 1.1507 3 20 348

Table 2 Scalar diffusion, three channels for each subdomain, see Fig. 2 (right). We haveρ = ρ2
in the channels, andρ = ρ1 = 1 elsewhere.H/h = 28. The number of additional constraints is
bounded for increasing contrastρ2/ρ1. 1/H = 3. Toleig=1.

Algorithm A Adaptive Method # Adaptive Size of
1/H condition # its condition # its constraints Γ

2 1.1507 4 1.1507 4 0 114
3 1.3431e+05 10 1.1507 3 20 348
4 2.3766e+05 16 1.1507 3 44 702
5 3.0209e+05 45 1.1507 3 78 1176
6 3.5451e+05 51 1.1507 3 122 1770

Table 3 Scalar diffusion, three channels for each subdomain; see Fig. 2 (right). Increasing number
of subdomains and channels. We haveρ = 1e+06 in the channel, andρ = 1 elsewhere.H/h= 28.
Toleig=1.

boundary conditions only on the lower edge, i.e.,y = 0, and a constant volume
force f = (1/10,1/10)T . First we consider the example above with three channels
and with jumps inE instead ofρ . Tab. 4 and 5 show the numerical results for a tol-
erance of one for the eigenvalues. Finally, we use a coefficient distribution obtained
from a steel microsection pattern with 150×150 pixels; see Fig. 1. We discretize the
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problem withH/h = 50 and 1/H = 3; see Tab. 6 for the numerical results, which
show the effectiveness of the adaptive algorithm.

Algorithm A Adaptive Method # Adaptive Size of
# Channels H/h condition # its condition # its constraints Γ
3 14 6.8833e+05 335 1.1517 8 123 372

28 9.3377e+05 348 1.3351 10 123 708
42 1.0821e+06 347 1.4993 10 123 1044

Table 4 Linear elasticity, three channels for each subdomain, see Fig. 2, with coefficientE =
1e+06, outside the channelsE = 1. Toleig= 1. The number of additional constraints is determined
by the structure of the heterogeneity and independent of the mesh size; 1/H = 3.

Algorithm A Adaptive Method # Adaptive Size of
E2/E1 condition # its condition # its constraints Γ

1 6.2497 22 1.9264 12 33 708
10 15.7940 27 1.8460 12 34 708

1e+02 1.0256e+02 39 1.9836 13 65 708
1e+03 9.4413e+02 61 1.3398 9 90 708
1e+04 9.3490e+03 117 1.3363 9 99 708
1e+05 9.3373e+04 191 1.3352 9 111 708
1e+06 9.3377e+05 348 1.3351 10 123 708

Table 5 Linear elasticity, three channels for each subdomain, see Fig. 2, H/h= 28. The number
of additional constraints is bounded for increasing contrastE2/E1. 1/H = 3, Toleig=1.

Problem Coarse spaceH/h condition # its # Adaptive constraints Size ofΓ
Fig. 1 (left) Adaptive 50 21.6171 24 114 1236

Algorithm A 50 > 3e+05 > 250 0 1236
Fig. 1 (right) Adaptive 50 10.2617 22 114 1236

Algorithm A 50 > 1e+06 > 250 0 1236

Table 6 Results for linear elasticity using the coefficient distribution for the heterogenous problem
from the gray scale image in Fig. 1.

4 Domain decomposition methods for nonlinear problems

The traditional domain decomposition approach to nonlinear problems can be char-
acterized by a geometric decomposition after linearization. Here, we solve a given
nonlinear, discretized problem
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A(u) = 0 (2)

by using a Newton-type methodu(k+1) = u(k)−α(k)δu(k) with a suitable step length
α(k). In each iteration we have to solve the linearized systemDA(u(k))δu(k) =
A(u(k)) which can be done by overlapping or nonoverlaping domain decomposition
methods, e.g., FETI-1, FETI-DP, BDDC, or overlapping Schwarz. Such approaches
are typically named NK-DD (Newton-Krylov-Domain-Decomposition), i.e., NK-
FETI-DP, NK-Schwarz, etc.

Alternative approaches to the traditional DD approach can be characterized by
linearization after a geometric decomposition (here denoted as DD-NK, i.e., FETI-
DP-NK). Such methods can be interpreted also in the context of nonlinear precon-
ditioning, as, e.g., performed in the ASPIN approach, see [2], which can be viewed
as solving a nonlinear equationG(A(u)) = 0 by a Newton method instead of (2).
The nonlinear preconditionerG is constructed from a nonlinear additive Schwarz
(AS) method. The ASPIN approach can be classified as an AS-NK method and has
been shown to be more robust and highly scalable, e.g., even for high Reynolds flow
problems. Recently, the ASPIN approach has successfully been applied in nonlinear
structural mechanics [12].

In this paper, we will present new approaches for nonoverlapping, nonlinear DD
methods, i.e., versions of nonlinear FETI-DP methods. We will discuss two differ-
ent strategies of nonlinear dual primal FETI methods, namedNonlinear-FETI-DP-1
(Linearization first) and Nonlinear-FETI-DP-2 (Elimination first).

Nonlinear, nonoverlapping domain decomposition methods have been used, in
the special case of two subdomains, in multiphysics coupling, e.g., in fluid-structrure
interaction; see [3]. Recently, a nonlinear FETI domain decomposition approach for
nonlinear problems from elasticity was suggested by Pebrel, Rey, and Gosselet [20].
A simple linear/nonlinear strategy was used in [16] for brittle materials with strongly
localized nonlinearities.

Let Ωi , i = 1, . . . ,N, be a decomposition of our domainΩ into nonoverlapping
subdomains. We denote the associated local finite element spaces byWi and the
product space byW =W1× . . .×WN. We defineŴ⊂W as the subspace of functions
from W which are continuous in all interface variables between subdomains. We
consider the minimization of a global nonlinear energy function Ĵ, operating on̂W,

û= argmin
v̂∈Ŵ

Ĵ(v̂).

Using our decomposition ofΩ we can build local nonlinear energy functionsJi , i =
1, . . . ,N, operating onWi , and equivalently solve

u= argmin
v∈W

∑N
i=1Ji(vi)

under the linear continuity constraintBu= 0. Here,B is a linear jump operator,
which enforces continuity in all interface variables. At this point using a variational
formulation and standard dualization technique, leads us to a nonlinear saddle point
problem
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K(u)+BTλ = f
Bu = 0,

whereK(u)T := (K1(u1)
T , . . . ,KN(uN)

T) and f T := ( f T
1 , . . . , f T

N ).
Using the standard FETI-DP operatorRT

Π , see [14] for the notation, to perform
the partial assembly in the primal variables, we formulate the nonlinear FETI-DP
master system

RT
Π K(RΠ ũ)+BTλ − f̃ = 0

Bũ = 0,
(3)

where f̃ := RT
Π f , ũ ∈ W̃, and the Lagrange multipliersλ ∈ V. Here,B enforces

continuity in the dual unknowns. We can proceed in two different ways in order to
solve (3). We may linearize first and then reduce the result toLagrange multipliers
(Nonlinear-FETI-DP-1), or, using the implicit function theorem, we can use nonlin-
ear elimination and then linearization of the reduced nonlinear system (Nonlinear-
FETI-DP-NK-2).

We now consider the first approachNonlinear-FETI-DP-1(Linearize first). With
given initial values ˜u(0) ∈ W̃ andλ (0) ∈V, we can formulate the following Newton
iteration to solve problem (3),

(
ũ(k+1)

λ (k+1)

)
=

(
ũ(k)

λ (k)

)
−α(k)

(
δ ũ(k)

δλ (k)

)
,

with a suitable step lengthα(k). In each iteration we need to solve

(
RT

Π DK(RΠ ũ(k))RΠ BT

B 0

)(
δ ũ(k)

δλ (k)

)
=

(
RT

Π K(RΠ ũ(k))+BTλ (k)− f̃
Bũ(k)

)
. (4)

This system can be treated as in a standard FETI-DP framework, i.e., we can re-
duce (4) to the Lagrange multipliers. The difference to the standard NK-FETI-
DP iteration can be found on the right hand side of (4). Note that, as a result of
Bδ ũ(k) = Bũ(k), jumps in the Newton update will be present only if the initialvalue
has jumps.

In this paper, we have choosen the initial valueλ (0) = 0 and computed the initial
valueũ(0) by solving the nonlinear problem

RT
Π K(RΠ ũ(0))+BTλ (0)− f̃ = 0,

by some Newton-type iteration. Note, that here we solve local nonlinear subdomain
problems which are only coupled in the primal unknows.

Let us now consider the second approachNonlinear-FETI-DP-2(Eliminate first).
Instead of linearizing the nonlinear saddle point problem (3), we may perform a
nonlinear elimination of the variable ˜u first. To simplify our notation, let us define
the nonlinear operator
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K̃(ũ) = RT
Π K(RΠ ũ).

Under sufficient assumptions the first equation of (3) can be written as

ũ= K̃−1( f̃ −BTλ ), (5)

whereK̃−1 is the inverse map of̃K. Inserting (5) into the continuity condition in (3)
we obtain

F(λ ) = BK̃−1( f̃ −BTλ ) = 0. (6)

Again we use a Newton-type iteration to solve (6), and obtainthe iteration

λ (k+1) = λ (k)−α(k)(Dλ F(λ (k)))−1F(λ (k)).

We can computeDλ F(λ ) using the chain rule, the inverse function theorem, and
(5),

Dλ F(λ ) = Dλ (BK̃−1( f̃ −BTλ )) =−B(DK̃−1( f̃ −BTλ ))BT

= −B(DK̃(ũ))−1BT =−B(RT
Π (DK(RΠ ũ)RΠ )−1BT .

In each Newton step, we have to solve a nonlinear system with aFETI-DP-type
matrix on the left hand side andF(λ (k)) = BK̃−1( f̃ −BTλ (k)) on the right hand
side. On the right hand side nonlinear local problems have tobe solved which are
only coupled in the primal variables.

In contrast to a standard Newton-Krylov-FETI-DP approach,in our nonlinear
FETI-DP methods weakly coupled nonlinear local problems are solved. We expect
to reduce communication and to obtain a significantly improved performance espe-
cially for problems with localized nonlinearities.

Next, we introduce our nonlinear model problem and present numerical results
for our two nonlinear FETI-DP approaches. Let us define thep-Laplacian forp= 4
as

∆4v= div(|∇v|2∇v).

We test our algorithms for nonlinear model problems with andwithout localized
nonlinearities. For our experiments, we consider the unit squareΩ := [0,1]× [0,1] in
2D decomposed into square subdomainsΩi , i = 1, ...,N. We have chosen piecewise
linear triangular elements to discretize the variational formulations of (7) and (8).

First we solve the following equation for thep-Laplacian withp = 4 on the
complete domain, i.e.,

∆4u = −1 in Ω
u = 0 on∂Ω .

(7)

In our second set of numerical experiments we consider the (linear) Laplace
equation with nonlinear inclusions inside subdomains; seeFig. 3. The inclusions
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are surrounded by hulls of widthη . This configuration can be seen as a nonlin-
ear analog to the problem of [10]. We denote the hull on subdomain Ωi by Ωi,η

Fig. 3 DomainΩi with an inclusionΩi,I andη = H
8 .

and the inclusion byΩi,I = Ωi \Ωi,η . Furthermore we defineΩI =
⋃N

i=1 Ωi,I and
Ωη =

⋃N
i=1 Ωi,η .

We then solve

∆4u = −1 in ΩI

∆u = −1 in Ωη
u = 0 on∂Ω .

(8)

In our tests all vertices are primal and, additionally, we use primal edge con-
straints in our linear and nonlinear FETI-DP methods. We compare the traditional
NK-FETI-DP with our nonlinear FETI-DP variants. To performa fair comparison of
the computational cost, we consider the number of Krylov space iterations and the
number of linearizations separately. Each linearization includes the assembly of the
local tangential matrices and their LU-decomposition. Theresults for problems (7)
and (8) can be found in Tab. 7. The computational costs for thenew methods are
significantly lower for both problems, especially for the problem with local nonlin-
earities (p-Laplace inclusions). The number of global Krylov iterations is reduced
radically and therefore, in a parallel setting, also communication.

5 Conclusion

We have presented an approach for the construction of an adaptive coarse space in
FETI-DP algorithms by computing certain generalized eigenvalue problems. The
method is motivated directly from the theory, i.e., a Poincaré inequality needed in
the condition number estimate is now replaced by a computational bound.



Nonlinear DD and an Adaptive Coarse Space 75

p-Laplace inclusions p-Laplace
# Krylov max. min. # Krylov max. min.

N Solver It. # Lin. cond. cond. It. # Lin. cond. cond.

NK-FETI-DP 33 14 1.0048 1.0001 72 18 1.1352 1.0608
4 Nonlinear-FETI-DP-2 5 14 1.2813 1.0000 8 19 1.0644 1.0604

Nonlinear-FETI-DP-1 5 15 1.2805 1.0001 12 20 1.0644 1.0604
NK-FETI-DP 105 15 1.4719 1.2914 164 20 1.4605 1.4107

16 Nonlinear-FETI-DP-2 21 18 1.4240 1.4233 32 29 1.4208 1.4012
Nonlinear-FETI-DP-1 28 18 1.4240 1.4233 40 24 1.4208 1.4108

NK-FETI-DP 164 17 1.5680 1.4264 226 22 1.5302 1.4895
64 Nonlinear-FETI-DP-2 30 20 1.5255 1.5197 52 33 2.1258 1.4878

Nonlinear-FETI-DP-1 40 20 1.5254 1.5197 52 26 2.1258 1.4850
NK-FETI-DP 190 19 1.5852 1.5281 268 24 1.6846 1.5394

256 Nonlinear-FETI-DP-2 31 22 1.5643 1.5412 44 34 2.1523 1.5237
Nonlinear-FETI-DP-1 42 22 1.5654 1.5406 55 28 2.1523 1.5375

NK-FETI-DP 209 21 1.5786 1.4939 293 26 1.9809 1.5642
1024 Nonlinear-FETI-DP-2 31 24 1.5827 1.5409 45 35 2.1669 1.4921

Nonlinear-FETI-DP-1 43 24 1.5852 1.5409 56 30 2.1669 1.5560
NK-FETI-DP 215 23 1.5784 1.4972 330 28 2.5309 1.5657

4096 Nonlinear-FETI-DP-2 19 25 1.5768 1.5451 45 37 2.1743 1.4890
Nonlinear-FETI-DP-1 41 26 1.5938 1.5451 45 31 2.1743 1.5588

Table 7 p-Laplaceis described in (7) andp-Laplace inclusionsis described in (8). Forp-Laplace
inclusions, see also Fig. 3. In both problems,H

h = 16; N is the number of subdomains;# Krylov
It. gives the sum of all Krylov-space iterations;# Lin. gives the sum of all linearizations (comput-
ing local tangential matrices and their LU-decomposition);min./max. condgive the maximal and
minimal condition number of the FETI-DP systems.

We have also presented approaches to construct nonlinear versions of the FETI-
DP method. In these methods, the coarse space takes an important role since it
can influence not only the convergence of the Krylov method but also that of the
Newton iteration. In the future, the use of an adaptive coarse space may therefore be
of special interest in this context.
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On Iterative Substructuring Methods for
Multiscale Problems

Clemens Pechstein1

1 Introduction

Model Problem Let Ω ⊂R2 orR3 be a Lipschitz polytope with boundary∂Ω =
ΓD∪ΓN, whereΓD∩ΓN = /0. We are interested in findinguh ∈Vh

D(Ω) such that
∫

Ω
α ∇uh ·∇vhdx = 〈 f , vh〉 ∀uh ∈Vh

D(Ω). (1)

Above,Vh
D(Ω) denotes the finite element space of continuous and piecewiselinear

functions with respect to a meshT h(Ω) that vanish on the Dirichlet boundaryΓD.
The functionalf ∈Vh

D(Ω)∗ is assumed to be composed of a volume integral overΩ
and a surface integral overΓN.

The diffusion coefficientα ∈ L∞(Ω) is assumed to be uniformly positive, i.e.,
ess.infx∈Ω α(x) > 0. We allow α to vary by several orders of magnitude in an
unstructured way throughout the domainΩ . In particular, we allowα to be dis-
continuous and exhibit large jumps (high contrast). If the jumps occur at a scale
η ≪ diam(Ω), one speaks of amultiscale problem(cf. e.g., [1]).

Problem (1) is equivalent to the linear system

Kh,α uh = fh , (2)

where the stiffness matrixKh,α and load vectorfh are defined with respect to the
standard nodal basis ofVh

D(Ω). For a quasi-uniform mesh, one easily shows that

κ(Kh,α)≤C
ess.supx∈Ω α(x)
ess.infx∈Ω α(x)

h−2 .

Although in many cases, this might be a pessimistic bound, itis sharp in general.
Consequently, an ideal preconditioner forKh,α should be robust in (i) the contrast in
α, (ii) the mesh sizeh, (iii) the scaleη at which the coefficient varies, where here
we may assume thath≤ η ≤ diam(Ω).

Spectral Properties and the Weighted Poincaŕe Inequality To get an idea, how
difficult it is to precondition System (2), we display the entire spectrumof Kh,α for
the pure Neumann problem (ΓD = /0) on the unit squareΩ = (0, 1)2 and for three
coefficient distributionsα (see the top row of Fig. 1). The smallest eigenvalue of
Kh,α is always zero and not shown in the following plots.

1Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sci-
ences, Altenberger Str. 69, 4040 Linz, Austria e-mail:clemens.pechstein@oeaw.ac.at
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Fig. 1 Top row: three coefficient distributionsα. Second row: spectraσ(Kh,α ) corresponding to
the three distributions. Third row:σ(diag(Kh,α )

−1Kh,α ). Bottom row:σ(M−1
h,α Kh,α ). In each case

structured mesh with mesh sizeh= 1/32. The contrast forαH = α−1
L is 108.

The second row of Fig. 1 displaysσ(Kh,α). We see that compared to the reference
coefficientα = 1, the spectrum is distorted in the two other casesαH , αL.

In the third and fourth row, we change the point of view, and display the spectrum
of diag(Kh,α)

−1Kh,α and ofM−1
h,αKh,α , whereMh,α denotes the weighted mass matrix

corresponding to the inner product(v, w)L2(Ω),α :=
∫

Ω α vwdx. On a quasi-uniform

mesh, one can easily show that diag(Kh,α) andh−2Mh,α are spectrally equivalent
with uniform constants. For this reason, the spectra in the third and fourth row differ
mainly by a simple shift. For coefficientαH , with 8 inclusions of large values (plot-
ted in black), we obtain 7 additional small eigenvalues compared to the reference
coefficient. This fact has been theoretically shown by Graham & Hagger [10].

For coefficientαL, with 8 inclusions of small values (plotted in light grey), the
spectra are essentially the same as for the reference coefficient. The theoretical ex-
planation of this fact is the so-calledweighted Poincaŕe inequality[17].

Definition 1. Let {Di} be a finite partition ofΩ into polytopes, letα be piecewise
constant w.r.t.{Di} with value αi on Di , and letℓ∗ be an index such thatαℓ∗ =
maxi αi . Thenα is calledquasi-monotoneon Ω iff for each i we can find a path
Dℓ1∪Dℓ2∪ . . .∪Dℓn of subregions connected through proper faces withℓ1 = i, ℓn =
ℓ∗ such thatαℓ1 ≤ αℓ2 ≤ . . .≤ αℓn.
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Def. 1 is independent of the choice ofℓ∗: if α attains its maximum in more than one
subregion, thenα is either not quasi-monotone, or all the maximum subregionsare
connected. In our example,αL is quasi-monotone, whereasαH is not.

Theorem 1. If α (as in Def. 1) is quasi-monotone onΩ , then there exists a constant
CP,α(Ω) independent of thevaluesαi and ofdiam(Ω) such that

inf
c∈R
‖u−c‖L2(Ω),α ≤CP,α(Ω)diam(Ω) |u|H1(Ω),α ∀u∈ H1(Ω),

where‖v‖2
L2(Ω),α :=

∫
Ω α v2dx and|v|H1(Ω),α :=

∫
Ω α |∇v|2dx.

For thegeometricaldependence ofCP,α(Ω) on the partition{Di} (in our previous
example, the scaleη), we refer to [17]. The infimum on the left hand side is attained
at the weighted averagec = uΩ ,α :=

∫
Ω α udx/

∫
Ω α dx. Due to the fact that the

coefficientαL in Fig. 1 isquasi-monotone, λ2(M
−1
h,αKh,α) ≥CP,α(Ω)−2diam(Ω)−2

and thus bounded from below independently of the contrast inαL.

Related Preconditioners The simple examples in Fig. 1 show that it is not nec-
essarily contrast alone, which makes preconditioning difficult, but a specialkind of
contrast. The fact that asmallnumber of large inclusions leads to essentially well-
conditioned problems has, e.g., been exploited in [22]. Overlapping Schwarz theory
is given in [11] for coefficients of typeαH , and in [7, 18] forlocally quasi-monotone
coefficients. Robustness theory of FETI methods for locallyquasi-monotone coef-
ficients has been developed in [15, 16, 14, 13]. Achievingrobustnessin the general
case requires a good coarse space (either for overlapping Schwarz or FETI). Spectral
techniques, in particular solving local generalized eigenvalue problems tocompute
coarse basis functions, have come up in [8, 5, 19] (see also the references therein).
Very recently, this approach has been even carried over to FETI methods by Spillane
and Rixen [20]; see also Axel Klawonn’s DD21 talk and proceedings contribution.
Although the spectral approaches above guaranteerobust preconditioners, the di-
mension of the coarse space may be large, therefore making the preconditioner in-
efficient. For analyzing the coarse space dimension, tools like the weighted Poincaré
inequality are quite useful, cf. [5].

Outline In this paper, we shall

(i) review the available theoretical results of FETI methods for coefficients that
are—on each subdomain (or a part of it)—quasi-monotone (i.e.,of typeαL),

(ii) present novel theoretical robustness results of FETI methods for coefficients
which result from a large number of inclusions withlarge values (i.e., of type
αH far from quasi-monotone). In particular, we allow the inclusions to cut
through or touch certain interfaces of the (non-overlapping) domain decom-
position.

In both cases, the coarse space is the usual space of constants in each subdomain.
After fixing some notation in Sect. 2, we present our review (i) in Sect. 3. Sect. 4
deals with technical tools needed for the novel theory of (ii), which is contained in
Sect. 5. In the end, we draw some conclusions.
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2 FETI and TFETI

FETI Basics We briefly introduce classical and total FETI; for details see e.g.,
[21, 13]. The domainΩ is decomposed into non-overlapping subdomains{Ωi}si=1,
resolved by the fine meshT h(Ω). The interfaceis defined byΓ :=

⋃s
i 6= j=1(∂Ωi ∩

∂Ω j)\ΓD. Let Ki denote the “Neumann” stiffness matrix corresponding to thelocal
bilinear form

∫
Ωi

α ∇u ·∇vdx, and letSi be the Schur complement ofKi after elim-
inating the interior degrees of freedom and those corresponding to non-coupling
nodes on the Neumann boundary. In theclassicalvariant of FETI [6], the corre-
sponding local spaces are chosen to be

Wi := {v∈Vh(∂Ωi \ΓN) : v|ΓD
= 0}.

In the case of thetotal FETI (TFETI) method [4], the Dirichlet boundary conditions
are not included intoKi , and correspondinglyWi := Vh(∂Ωi \ΓN). We setW :=
∏s

i=1Wi andS := diag(Si)
s
i=1. Let R be a block-diagonal full-rank matrix such that

ker(S) = range(R), and letB : W→U be a jump operator such that ker(B) = Ŵ,
whereŴ⊂W is the space of functions being continuous acrossΓ and fulfilling the
homogeneous Dirichlet boundary conditions. The rows ofBu= 0 are formed by all
(fully redundant) constraintsui(xh)−u j(xh) = 0 for xh ∈ ∂Ωi ∩∂Ω j \ΓD. In TFETI,
there are further local constraints of the formui(xh) = 0 for xh ∈ ∂Ωi ∩ΓD. Finally,

System (2) is reformulated as

[
S B⊤

B 0

][
u
λ

]
=

[
f
0

]
, where f contains the reduced

local load vectors, and further reformulated by

find λ̃ ∈ range(P) : P⊤F λ̃ = d̃ := P⊤BS†( f −B⊤λ0), (3)

whereS† is a pseudo-inverse ofS, F := BS†B⊤, P := I −QG(G⊤QG)−1G⊤, G :=
BR, λ0 = QG(G⊤QG)−1R⊤ f , andQ is yet to be specified. The solutionu can be
recovered easily fromλ = λ0+ λ̃ by usingS† and(G⊤QG)−1.

Scaled Dirichlet Preconditioner For each subdomain indexj and each degree
of freedom (i.e., node)xh ∈ ∂Ω j ∩Γ , we fix a weightρ j(xh)> 0 and define

δ †
j (x

h) :=
ρ j(xh)γ

∑k∈N
xh

ρk(xh)γ ∈ [0, 1], ∑
j∈N

xh

δ †
j (x

h) = 1.

Above,Nxh is the set of subdomain indices sharing nodexh andγ ∈ [1/2, ∞] (the
limit γ → ∞ has to be carried out properly, cf. [13, Rem. 2.27]). We stress that
in the presence of jumps inα, the choice of the weightsρ j(xh) (or the scalings
δ †

j (x
h)) is highly important for the robustness of the Dirichlet preconditioner and

will be discussed further below. Let us note that for any choice ρ j(xh) above and
any exponentγ ∈ [1/2,∞], we have the elementary inequality

ρi(x
h)δ †

j (x
h)2 ≤ min(ρi(x

h), ρ j(x
h)) ∀i, j ∈Nxh. (4)
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The weighted jump operatorBD is defined similarly toB, but each row ofBD w= 0
is of the formδ †

j (x
h)wi(xh)−δ †

i (x
h)w j(xh) = 0 for xh ∈ ∂Ωi ∩∂Ω j \ΓD. In TFETI,

there are further rows of the formwi(xh) = 0 for xh ∈ ∂Ωi ∩ΓD. The preconditioned
FETI system now reads

find λ̃ ∈ range(P) : PM−1P⊤F λ̃ = PM−1 d̃, (5)

whereM−1 := BD SB⊤D . SinceP⊤F is SPD on range(P) up to ker(B⊤), this system
can be solved by CG. Hence, one is interested in a bound on the condition number
κFETI := κ(PM−1P⊤F|range(P)/ker(B⊤)). In the sequel, we setQ = M−1. To avoid
complications, we exclude the case of TFETI withΓD = ∂Ω , and the caseγ = ∞;
otherwiseGM−1G⊤ may be singular. As the analysis in [21], [13, Chap. 2] shows,
the estimate

|PD w|2S ≤ µ |w|2S ∀w∈W⊥ , (6)

impliesκFETI≤ 4µ . Above,PD := B⊤DB is aprojection(due to the partition of unity
property ofδ †

j ),W⊥=∏s
i=1W⊥i , and eachW⊥i ⊂Wi is any complementary subspace

such that the sumWi = ker(Si)+W⊥i is direct. Note that the same estimate implies
a bound of the related balancing Neumann-Neumann (BDD) method.

Choice of Weights Table 1 shows several choices for the weightsρ j(xh). In each
row, we display atheoreticalchoice, which has been used in certain analyses, and
then apractical choice, which tries to mimic the theoretical one. Choices (a)–(c) in
Table 1 are not suitable for coefficients with jumps (see columnproblems). The the-
oretical choice (d) will be used in the analyses below and leads to “good” condition
number bounds under suitable assumptions; however, it is practically infeasible. Un-
der suitable assumptions on the variation ofα, the practical choice (d) can be shown
to be essentially equivalent to the theoretical one, if one setsγ = ∞. “Good” means
that the bounds are robust with respect to contrast inα. However, they depend on
the spatial scaleη of the coefficient variation.

ρ j (xh) theoretical practical problems

(a) 1 1 (multiplicity scaling) jumps across interfaces

(b) αmax
Ω j

‖Kdiag
j ‖ℓ∞ jumps within subdomains

(c) max
τ⊂Ω j :xh∈τ

α|τ Kdiag
j (xh) (stiffness scaling)

oscillating coefficients,
unstructured meshes

(d) max
Y(k)

j :xh∈Y(k)
j

αmax
Y(k)

j

{
1 if Kdiag

j (xh)≃maxk∈N
xh

Kdiag
k (xh)

0 else
small geometric scaleη

Table 1 Various choices for the weightsρ j (xh). Here,Kdiag
j denotes the diagonal ofK j , ‖ · ‖ℓ∞

the maximum norm,Kdiag
j (xh) the diagonal entry ofK j corresponding to nodexh, and{Y(k)

j }k is
a partition of a neighborhood of∂Ω j ∩Γ , as coarse as possible, such thatα is constant or only

mildly varying in each subregionY(k)
j , cf. [13, Sect. 3.3].
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Remark 1.A further choice, namedSchur scaling, has been suggested in [3], see
also [2]. There, for each subdomain vertex/edge/faceG , the scalar valuesδ †

j (x
h)

for xh ∈ G are replaced by thematrix (∑k∈NG
Sk,G G )

−1Sj,G G , whereSk,G G denotes
the restriction ofSk to the nodes on the subdomain vertex/edge/faceG . This choice
is the only known (practical) candidate that could allow forrobustness also with
respect to the spatial scaleη , but its analysis is still under development, cf. [2].
Nevertheless, it has been successfully analyzed in the context of BDDC methods for
the eddy current problem

−−→
curl(α

−−→
curl−→u )+β−→u =

−→
f , whereα,β > 0 are constant

in each subdomain [3].

3 Robustness Results for Locally Quasi-monotone Coefficients

In this section, we review robustness results of TFETI, developed originally in [15,
16] and further refined in [13, Chap. 3]. Because of space limitation, we do not list
the full set of assumptions, but refer to [13, Sect. 3.3.1, Sect. 3.5]. The essential
assumption is thatα is piecewise constant with respect to a shape-regular mesh
T η(Ω), at least in the neighborhood of the interfaceΓ and the Dirichlet boundary
ΓD, and that this mesh resolvesΓ ∪ΓD. For simplicity of the presentation, we assume
further that each subdomainΩi is the union of a few elements of a coarse mesh
T H(Ω), and that the three meshesT h(Ω), T η(Ω), andT H(Ω) are nested, shape-
regular, and globally quasi-uniform with mesh parametersh≤ η ≤ H.

All the following results hold for the TFETI method as definedin Sect. 2 with

the theoretical choice (d) forρ j(xh) and withQ= M−1, where the regionsY(k)
j are

unions of a few elements fromT η(Ω). The general bound reads

κFETI ≤ C
(H

η

)β
(1+ log(η/h))2 , (7)

whereC is independent ofH, η , h, andα. The exponentβ is specified below in
each particular case.

Definition 2. For each subdomain indexi, theboundary layerΩi,η is the union of
those elements fromT η(Ω) that lie inΩi and touchΓ ∪ΓD.

The following theorem is essentially [13, Thm. 3.64] and shows that contrast in
the interior of subdomains is taken care of by TFETI (in form of the subdomain
solves), except that the geometrical scale shows up in the condition number bound.
The original result on classical FETI can be found in [15, Thm. 3.3].

Theorem 2 (Constant Coefficients in the Boundary Layers).If α is constant in
each boundary layerΩi,η , i = 1, . . . ,s, then (7) holds withβ = 2. The exponent
β = 2 is sharp in general. If the values ofα in Ωi \Ωi,η do not fall below the
constant value inΩi,η for each i= 1, . . . ,s, then (7) holds withβ = 1.
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The next theorem (cf. [13, Sect. 3.5.2]) extends the above result to coefficients
that are quasi-monotone in each boundary layer.

Theorem 3 (Quasi-monotone coefficients in the Boundary Layers). If α is
quasi-monotone in each boundary layerΩi,η , i = 1, . . . ,s, then (7) holds withβ = 2
if d = 2 and β = 4 if d = 3. Under suitable additional assumptions onα in Ωi,η ,
one can achieveβ = 2 for d = 3 as well.

In many cases, quasi-monotonicity may not hold in each boundary layer, but in
a certain sense on a larger domain. The following theorem summarizes essentially
[13, Sect. 3.5.3]. We note that the concept of anartificial coefficientin the context
of FETI goes back to [16].

Theorem 4 (Quasi-monotone Artificial Coefficients).If for each i= 1, . . . ,s there
exists an auxiliary domainΛi with Ωi,η ⊂ Λi ⊂ Ωi and anartificial coefficientαart

such that

αart = α in Ωi,η ,

αart≤ α in Λi \Ωi,η ,

αart quasi-monotone onΛi ,

then (7) holds with C independent ofα and αart. The exponentβ depends onΛi

and αart. If Λi = Ωi thenβ ≤ 2d. Under additional assumptions onαart, one can
achieve, e.g.,β ≤ d+1.

Remark 2.The proofs of Thm. 3 and Thm. 4 make heavy use of the weighted
Poincaŕe inequality (Thm. 1). We note that Thm. 3 and Thm. 4 can be generalized to
so-called type-m quasi-monotonicity (see [17]). Also, all the results of this section
can be generalized to (i) coefficients that vary mildly in each element ofT η(Ω)
in the neighborhood ofΓ ∪ΓD, (ii) to a certain extent to suitable diagonal choices
of the matrixQ, and (iii) under suitable conditions to classical FETI. However, we
do not present these results here but refer to [13, Chap. 3] and [15, 16] for the full
theory.

4 Technical Tools

In this section, we present two technical tools needed for Sect. 5. The first tools is
an extension operator on so-calledquasi-mirrors.

Definition 3. Let D1, D2⊂Rd be two disjoint Lipschitz domains sharing a(d−1)-
dimensional manifoldΓ . For i = 1,2 let Dia and Dib be open and disjoint Lip-
schitz domains such thatDi = Dia∪Dib. We say that(D2a,D2b) is aquasi-mirrorof
(D1a,D1b) iff there exists a continuous and piecewiseC1 bijectionφ with ‖∇φ‖L∞

and‖∇φ−1‖L∞ bounded, such thatDia, Dib, Γ are mapped tôDia, D̂ib, Γ̂ , respec-
tively, whereΓ̂ lies in the hyperplanexd = 0 andD̂2a, D̂2b are the reflections through
that hyperplane of̂D1a, D̂1b, respectively (for an illustration see Fig. 2).
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Fig. 2 Illustration of Def. 3: a
quasi-mirror in 2D. Γ

φ
D1a D2a

D2b

D1b

1aD
^

D1b 2bD

D2a
Γ

^

^

^

^

Lemma 1. Let (D2a,D2b) be a quasi-mirror of(D1a,D1b) as in Def. 3. Then there
exists a linear operator E: H1(D1)→H1(D2) such that for all v∈H1(D1), we have
(Ev)|Γ = v|Γ and

|E v|H1(D2a)
≤C|v|H1(D1a)

, |E v|H1(D2b)
≤C|v|H1(D1b)

,

‖E v‖L2(D2a)
≤C‖v‖L2(D1a)

, ‖E v‖L2(D2b)
≤C‖v‖L2(D1b)

.

The constant C is dimensionless, but depends on the transformationφ from Def. 3.

The proof of the above and the next lemma can be found in [12, Sect. 4]. Our
second tool is a special Scott-Zhang quasi-interpolation operator.

Lemma 2. Let the domain D be composed from two disjoint Lipschitz regionsD =
D1∪D2 with interfaceΓ = ∂D1∩∂D2, and letΣ ⊂ ∂D be non-trivial. LetT h(D)
be a shape-regular mesh resolvingΓ andΣ , and let Vh(D) denote the corresponding
space of continuous and piecewise linear finite element functions. Then there exists
a projection operatorΠh : H1(D)→Vh(D) such that (i) for any v∈ H1(D) that is
piecewise linear onΓ andΣ , (Πhv)Γ∪Σ = v|Γ∪Σ and (ii) for all v∈ H1(D),

|Πhv|H1(Di)
≤C|v|H1(Di)

, ‖Πhv‖L2(Di)
≤C‖v‖L2(Di)

, for i = 1, 2,

where the constant C only depends on the shape-regularity ofthe mesh.

5 Novel Robustness Results for Inclusions

For this section, we adopt again the notations of Sect. 2 and 3. However, we restrict
ourselves to coefficientsα ∈ L∞(Ω), given by

α(x) =

{
αk if x∈ Dk for somek= 1, . . . ,nH ,
αL else,

(8)

whereαk ≥ αL are constants and the regionsDk ⊂Ω are pairwise disjoint (discon-
nected) Lipschitz polytopes that are contractible (i.e., topologically isomorphic to
the ball). Furthermore, we assume that the subdomainsΩi as well as the inclusion
regionsDk are resolved by a global meshT η(Ω). For the sake of simplicity let
T h(Ω) andT η(Ω) be nested, shape-regular, and quasi-uniform with mesh sizes
h andη , respectively (h≤ η). Our main assumption concerns the location of the
inclusion regionsDk relative to the interface.
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Assumption A1.Each regionDk, k= 1, . . . ,nH , is either
(a) aninterior inclusion: Dk ⊂⊂Ωi for some indexi,
(b) adocking inclusion: there is a unique indexi with Dk⊂Ωi andDk∩∂Ωi 6= /0, or
(c) a(proper) face inclusion: there exists a subdomain faceFi j (shared by only two
subdomainsΩi , Ω j ) such that

• Dk∩Γ ⊂⊂Fi j ,
• ∂ (Dk∩Ωi)∩Fi j = ∂ (Dk∩Ω j)∩Fi j ,
• Dk∩Γ is simply connected,
• the neighborhoodUk constructed fromDk by adding one layer of elements from

T η(Ω) fulfills Dk ⊂⊂Uk ⊂Ωi ∪Ω j .

Above,⊂⊂ means compactly contained. Note that since the regionsDk are dis-
joint and resolved byT η(Ω), in Case (c) above, it follows thatα = αL in Uk \Dk.
The second condition in (c) avoids that a part ofDk is only “docking”. The third
condition ensures thatDk passes through the faceFi j only once.

Theorem 5.Let the above assumptions, in particular Assumption A1, be fulfilled.
For the case of classical FETI, assume that for d= 3 the intersection of a subdomain
with ΓD is either empty, or contains at least an edge ofT η(Ω). For the case of
TFETI, assume that none of the docking inclusions in Assumption A1(b) intersects
the Dirichlet boundary. Then

κFETI≤C(η)(1+ log(η/h))2 ,

where C(η) is independent of h, the number of subdomains, andαk, αL.

The dependence ofC(η) onη can theoretically be made explicit but is ignored here.
In general, it is at least(H/η)2. Due to space limitations, we can only give a sketch
of the proof for the case of classical FETI; the detailed proof can be found in [12].
To get the condition number bound, we show estimate (6). If ker(Si) = span{1},
we chooseW⊥i := {w∈Wi : w∂Ωi = 0}, andW⊥i =Wi otherwise. Letw∈W⊥ be
arbitrary but fixed. To estimate|PDw|S, we decompose the interfaceΓ into globs
g. These are vertices, edges, or faces of the meshT η(Ω), with one exception: for
a face inclusionDk, we combine all vertices/edges/faces ofT η(Ω) contained in
Dk∩Γ into a single globg. Following [13, Lem. 3.21, Lem. 3.27], we get

|(PD w)i |2Si
≤ C ∑

g⊂∂Ωi∩Γ
∑

j∈Ng\{i}
(δ †

j|g)
2 |Ih(ϑg(w̃

g
ii − w̃g

i j ))|2H1(Ui,g),α

︸ ︷︷ ︸
=:ϒi,g

, (9)

whereϑg ∈Vh(Ω) is a cut-off function (yet to be specified) that equals one on all
the nodes ong and vanishes on all other nodes onΓ , Ih is the nodal interpolation
operator, andUi,g = supp(ϑg)∩Ωi . The (generic) constantC above only depends
the shape regularity constant ofT η(Ω) and is thus uniformly bounded. Forj ∈Ng,
the functionw̃g

i j ∈ Vh(Ui,g) is an extension ofw j (yet to be specified) in the sense

thatw̃g
i j (x

h) = w j(xh) for all nodesxh ong. We treat two cases.
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Case 1:g is not part of a face inclusion, i.e., for allk∈ {1, . . . ,nH} with Dk being a
face inclusion,Dk∩g = /0. We choose the cut-off functionϑg like in [21, Sect. 4.6]
(where the subdomains there are the elements ofT η(Ω)). Using that

(δ †
j|g)

2 ρi|g ≤min(ρi|g, ρ j|g) = αL ∀ j ∈Ng \{i}, (10)

and the available techniques from [16, 13], one can show that

ϒi,g ≤C ∑
j∈Ng

αL

(
ω2 |w̃g

i j |2H1(Ui,g)
+

ω
η2‖w̃

g
i j ‖2L2(Ui,g)

)
, (11)

where above and in the following,ω := (1+ log(η/h)).
Case 2:g is part of a face inclusion (see Assumption A1), i.e., there existsk with
g= Dk∩Γ . Recall that in this caseg can be the union of many vertices/edges/faces
of T η(Ω). We choose a special cut-off functionϑg supported inUi,g := Uk∩Ωi :

• ϑg(xh) = 1 for all nodesxh ∈ Dk,
• ϑg(xh) = 0 for all nodesxh ∈ ∂Uk∪ (Uk∩ (Γ \g)),
• on the elements of the layer, i.e., those elementsT ∈T η(Ω) with T ⊂Uk\Dk,

we setϑg to the sum of local cut-off functions (similar to Case 1).

By construction,ϑg = 1 onDk, whereα = αk. On the remainder,Uk \Dk, by the
assumptions on the coefficient,α = αL. A careful analysis shows that

ϒi,g ≤C ∑
j∈Ng

(
ω2 |w̃g

i j |2H1(Ui,g),α
+αL

ω
η2 ‖w̃

g
i j ‖2L2(Ωi∩(Uk\Dk))

)
. (12)

Choice ofw̃g
i j in Case 1:We setw̃g

i j := Eh
j,gH

α ,h
j w j , whereH α ,h

j : Wj →Vh(Ω j)

denotes the discrete extension operator such that|w j |Sj = |H
α ,h
j w j |H1(Ω j ),α and

Eh
j,g is a suitable transfer operator (see [13, Sect. 2.5.7] or [16, Lem. 5.5]). This

results in the estimates

|w̃g
i j |H1(Ui,g)

≤C|H α ,h
j w j |H1(U′j,g)

, ‖w̃g
i j ‖L2(Ui,g)

≤C‖H α ,h
j w j‖L2(U′j,g)

. (13)

whereU′j,g ⊂Ω j is an element ofT η(Ω) with g ⊂ U
′
j,g.

Choice ofw̃g
i j in Case 2:Recall that in this case we are dealing with a face inclusion

such thatg is part of the face shared byΩi and Ω j and we chooseUi,g = Uk ∩
Ω j . To define the extensioñwg

i j ∈ Vh(Ui,g), we shall combine the technical tools
from Sect. 4. LetU′j,g := Uk∩Ω j . It can be seen from Assumption A1 that(Ui,g \
Dk, Ui,g∩Dk) is a quasi-mirror of(U′j,g \Dk, U

′
j,g∩Dk). We can therefore set

w̃g
i j := Πh,α

j,g E α
j,gH

α ,h
j w j ,

whereΠh,α
j,g is the Scott-Zhang interpolator from Lem. 2,E α

j,g the extension operator

from Lem. 1, andH α ,h
j is defined as above. It has now to be argued that the trans-
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formationφ in Def. 3 can be chosen such thatE α
j,gH

α ,h
j w j is still piecewise linear

on the interfaceU ′
j,g∩∂Dk. This implies that̃wg

i j is indeed an extension ofw j . Due
to the properties of the above operators, we obtain the totalstability estimates

|w̃g
i j |H1(Ui,g),α ≤C|H α

j w j |H1(U′j,g),α
, ‖w̃g

i j ‖L2(Ui,g)
≤C‖H α

j w j‖L2(U′j,g)
(14)

for all w j ∈Vh(∂Ω j), with C independent ofαL andαk. Combining the local esti-
mates (11), (12), (13), and (14), using a finite overlap argument, as well as acon-
ventionalPoincaŕe or Friedrichs inequality, one arrives at (6) withµ =Cω2.

6 Conclusions

Section 3 shows robustness of TFETI for (artificial) coefficients that are quasi-
monotone in boundary layers. Sect. 5 shows that these conditions are far from nec-
essary for the robustness of FETI or TFETI. Note that the assumptions and robust-
ness properties of Sect. 5 are similar to the theory in [11] for overlapping Schwarz.
Actually, several ideas from the latter theory have been reused in the analysis of
Sect. 5. However, the robustness for overlapping Schwarz requires a sophisticated
coarse space, whereas for FETI/TFETI, the usual coarse space can be used, which
simplifies the implementation a lot.

A combination of the two theories (Sect. 3 and Sect. 5) is of course desirable.
However, the general case ofα remains open. The problematic cases in FETI/TFETI
are certainly (a) a multiple number of inclusions on vertices (or edges in 3D), and
(b) long channels that traverse through more than one face, or traverse a face more
than once; this is seen in numerical examples; see [12, Sect.6].

Item (a) might be fixed using suitable FETI-DP/BDDC methods,and we hope
that novel analysis of Sect. 5 will have a positive impact here (the known theory of
FETI-DP/BDDC for multiscale coefficients is yet limited, cf. [13, 14, 9]). Item (b)
can only be addressed by a larger coarse space: either by FETI-DP/BDDC with
more sophisticated primal DOFs and/or by spectral techniques as suggested in [20].
Robustness in the spatial scaleη is achieved neither in Sect. 3 nor Sect. 5. We
believe that the only possibility to gain robustness is a more sophisticated weight
selection (cf. Rem. 1) and probably again a larger coarse space.

Acknowledgements The author would like to thank Robert Scheichl, Marcus Sarkis, and Clark
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A Mortar BDD method for solving flow in
stochastic discrete fracture networks

Géraldine Pichot1, Baptiste Poirriez2, Jocelyne Erhel1, and Jean-Raynald de
Dreuzy3

1 Introduction

In geological media, the large variety and complex configurations of fractured net-
works make it difficult to describe them precisely. A relevant approach is to model
them as Discrete Fracture Networks (DFN)[10, 19], with statistical properties in
agreement with in situ experiments [15, 13, 14]. A DFN is a 3D domain made of 2D
fractures intersecting each other. Steady state flow in DFN is considered, the rock
matrix is assumed impervious. Following a Monte-Carlo approach, a large number
of DFN has to be generated and for each, a flow problem has to be solved what-
ever the complexity of the generated networks. Moreover time and memory costs
for each simulation should be as lower as possible.

A nonconforming discretization of DFN allows to reduce the number of un-
knowns and facilitate mesh refinement. Sharp angles are managed by a staircase-
like discretizations of the fractures’ contours [34]. The non-matching feature at the
fractures’ intersections is handled via a Mortar method [4,5, 1] developed for DFN
in [33, 34] for a mixed hybrid finite element formulation. It consists in defining, for
each intersection between fractures, master and slave sides. Due to the staircase-
like discretizations, a shared edge may be labeled several times with master and/or
slave properties, it is called in the paper a multi-labeled edge. Continuity conditions
are enforced between the unknowns on both sides. The derivedlinear system has
only inner and master traces of hydraulic head as unknowns. The matrixA of this
system is a symmetric definite positive (SPD) arrow matrix inpresence of Dirichlet
boundary conditions [34].

The challenge is to solve such linear systems with millions of unknowns [17]. Di-
rect solvers (like Cholmod [11]) are very efficient for smallsystems but suffer from
a high need of RAM memory when the system size becomes too large. Among itera-
tive solvers, multigrid methods are very efficient for most networks but for some, the
convergence rate is very slow [35, 17]. Preconditioned Conjugate Gradient (PCG)
is efficient and robust for every network tested [35]. The natural decomposition of
the matrixA in subdomains encourages the use of domain decomposition methods
[7, 36, 31, 24]. The Schur complement of the matrixA is SPD and yields an interface
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Rennes, Campus de Beaulieu, 35042 Rennes Cedex, e-mail:Jean-Raynald.de-Dreuzy@
univ-rennes1.fr
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system with only master unknowns. This interface system canbe solved iteratively
with PCG. The unknowns on inner edges are then derived locally in each fracture
plane by solving small local linear systems, with a direct solver for example.

Among possible preconditioners, the balancing domain decomposition (BDD)
method is based on a Neumann-Neumann preconditioner coupled with a coarse
level solver, to improve the preconditioner as the number ofsubdomains increases
[29, 30, 27]. BDD method applied to mixed finite element is done in [12]. The ap-
plication to a nonconforming discretization is proposed in[18, 32]. Meanwhile, an
alternative method has been developed, the Balancing Domain Decomposition by
Constraints (BDDC) [16], later applied to mortar discretization for geometrically
nonconforming partitions in [26].

In this paper, we use the BDD algorithm proposed in [32, 35] tosolve the linear
system arising from a nonconforming discretization of DFN.The coarse level is
defined following [37] and balancing is implemented as a preconditioning matrix
[21]. The algorithm is implemented in C++ in the parallel software SIDNUR [35].
For DFN, choosing one subdomain given by one fracture, instead of a set of fractures
has shown to be the most time saving decomposition [35].

The paper is organized in four sections. Section 2 describesthe flow model. Sec-
tion 3 recalls the linear system derived from a nonconforming discretization of the
DFN. Section 4 is the main contribution of this paper and presents the decomposi-
tion in local matrices. We apply the BDD method proposed in [32, 35] for networks
satisfying some hypotheses on the mesh. The last section illustrates the application
of the solver SIDNUR [35] on three stochastically generatedDFN.

2 Flow model

We consider flow in DFN assuming the rock matrix is impervious. In the entire
paper, an intersection is uniquely defined as the segment shared by two fractures.
We denoteΣk the kth intersection,k= 1, ...,Ni .

Poiseuille’s law and mass conservation apply in each fracture plane, denotedΩ f ,
f = 1, ...,Nf . We assume there is no longitudinal flux at the fracture intersections.

The DFN is embedded in a cube of sizeL. Some fractures are truncated by the
cube faces. Classical permeameter boundary conditions apply on the cube faces.
The two opposite faces of the cube with Dirichlet boundary conditions (prescribed
valuepD) are calledΓD (ΓD 6= /0) and the lateral faces with homogeneous Neumann
boundary conditions are calledΓN. The boundary of the fracturef is calledΓf . In
the following, we assume there is only one cluster of fractures connected to the
Dirichlet boundary conditions and we consider only this cluster.

In each fracture plane, withx ∈ R2, the following equations link the unknown
hydraulic head scalar functionp(x) and the flux per unit length functionu(x):

∇ ·u(x) = f (x) for x∈ Ω f , (1)

u(x) =−T (x)∇p(x) for x∈ Ω f , (2)
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p(x) = pD(x) onΓD∩Γf , (3)

u(x).ν = 0 onΓN∩Γf , (4)

u(x).µ = 0 onΓf \{(Γf ∩ΓD)∪ (Γf ∩ΓN)}, (5)

whereν (respectivelyµ) denotes the outward normal unit vector of the borders with
respect to the fractureΩ f . The parameterT (x) is a given SPD transmissivity field
(unit [m2.s−1]). The functionf (x) ∈ L2(Ω f ) represents the sources/sinks.

Let Il be a segment shared by several incident fractures,l = 1, ...,Nl . It can be
the intersection itself or only a part of it if intersectionsoverlap. LetFl be the set of
fractures which containsIl . On each segment, continuity conditions are imposed to
ensure the continuity of hydraulic heads and the conservation of fluxes [20], [38]:

pf ,l = pl onIl , ∀ f ∈ Fl , (6)

∑
f∈Fl

uf ,l .nf ,l = 0 onIl , (7)

wherepf ,l is the trace of hydraulic head onIl in the fractureΩ f , pk is the unknown
hydraulic head on the segmentIl anduf ,l .nf ,l is the normal flux throughIl coming
from the fractureΩ f , with nf ,l the outward normal unit vector of the segmentIl

with respect to the fractureΩ f .

3 A Mortar method applied to DFN

3.1 Mesh generation

With a stochastic generation, fractures can cross in a very intricate way. We define
the contour of a fracturef as its border and all segmentsIl which belong tof . To
preserve a good mesh quality whatever the generated fractured networks, staircase
like discretizations of the contour are performed in each fracture plane.

Each fracture is meshed with its own mesh step:

(i) A temporary uniform grid is built that encompasses the fracture, with a grid step
chosen as input;

(ii) 1D staircase-like meshes of the contour are built usingthe centers of the grid
elements as discretization points;

(iii) From these 1D discretizations, a 2D triangle mesh of the fracture is built.

We call shared edges the edges of the triangles that discretize the segmentsIl ,
l = 1, ...,Nl within the different fractures inFl . All other edges are called inner
edges. Notice a given segmentIl may have different discretizations in the different
fractures inFl as shown on figure 1. The total mesh is made ofNin inner edges and
of NΣ shared edges. In the following, we will use the subscriptin to refer to the
inner edges andΣ to shared edges.
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Fig. 1 Mesh generation - Simple example with two fractures

3.2 Derivation of the linear system

The Mortar method applied to DFN is presented in [34]. It consists, for each in-
tersectionΣk, of choosing a master fracturem and a slave fractures. We denote

Nm =
Ni

∑
k=1

Nk,m, Ns =
Ni

∑
k=1

Nk,s, with Nk,{m,s} the number of edges that discretize the

master (respectively slave) side of the intersectionΣk.
The traces of hydraulic head unknowns areΛin on inner edges,Λm andΛs on

master and slave edges. Additionnally, each shared edge hasan unknown calledΛΣ .
The additional unknownsΛΣ allow to deal with multi-labeled edges which belong
to several intersections. The unknownsΛs andΛΣ are derived fromΛm following
the relations (see [34]):

Λs =CΛm, (8)

ΛΣ = PmΛm+PsΛs = (Pm+PsC)Λm. (9)

The matrixC is an intersection block matrix of dimensionNsxNm, with the blockCk

a matrix of sizeNk,sxNk,m for the intersectionΣk that represents theL2-projection
from the master side to the slave side.

Let denotemE (respectivelysE) the number of times a shared edgeE is labeled
with a master (respectively slave) property. LetnE = sE +mE. The values(i, j) of

the matricesPm (respectivelyPs) of sizeNΣ xNm (respectivelyNΣ xNs) is
1

nE
if the

unknownΛm( j) (respectivelyΛs( j)) is associated to an edge withΛΣ (i) as shared
unknown, and 0 otherwise.

At the network scale, the linear system reduces to a system with unknownsΛin

andΛm [34]:
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A

(
Λin

Λm

)
=

(
Fin

Fm

)
. (10)

The second member is a vector of dimensionNin +Nm, which corresponds to the
source/sink function, to the imposed Dirichlet and Neumannboundary conditions.

The matrixA is SPD in presence of Dirichlet boundary conditions [34] andwrites
as: 




A =

(
Ain,in Ain,m

AT
in,m Am,m

)
,

Ain,m = Ain,Σ (Pm+PsC),
Am,m = (Pm+PsC)

TAΣ ,Σ (Pm+PsC).

(11)

The matrixAin,in is a block diagonal matrix of orderNin made of blocksAf ,in,in

associated to the inner edges in the fractureΩ f .

4 A Mortar BDD method for DFN system

The arrow shape of the matrixA allows to reduce the linear system(10) to an inter-
face problem with onlyΛm as unknowns:

SΛm = Bm, (12)

S= Am,m−AT
in,mA−1

in,inAin,m, (13)

Bm = Fm− (PT
m +CTPT

s )AT
in,Σ A−1

in,inFin. (14)

with S the Schur complement of sizeNmxNm.
Since S is SPD, the linear system(12) can be solved iteratively via a PCG

method. To apply a balancing preconditioner, we need the local Schur complements
Sf , f = 1, ...,Nf .

4.1 Local Schur complements

Let Nf ,m (respectivelyNf ,s) be the number of master (respectively slave) unknowns
associated with master (respectively slave) edges in the fracture f . Let Nf ,o be the
number of master unknowns associated with the slave edges inthe fracturef fol-
lowing the relations(8). Let Nf ,Σ be the number of shared edges in the fracturef .
We define the local matrices(Pm+PsC) f as:

(Pm+PsC) f =
(

Pf ,m Pf ,sCf
)

(15)

with Pf ,m of size Nf ,Σ xNf ,m and Pf ,s of size Nf ,Σ xNf ,s. The matrixCf of size
Nf ,sxNf ,o is a block matrix whose blocksCk are extracted from the matrixC for
the intersectionsΣk in the fracturef .
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The local problem in the fracturef writes as:

Af ,Σ =

(
Af ,in,in Af ,in,Σ
AT

f ,in,Σ Af ,Σ ,Σ

)
(16)

Its associated Schur complement writes as:Sf ,Σ = Af ,Σ ,Σ −AT
f ,in,Σ A−1

f ,in,inAf ,in,Σ .

At the fracture scale, local matricesAf , of order(Nf ,in +Nf ,m+Nf ,o) are built
from Af ,Σ :





Af =

(
Af ,in,in Af ,in,m

AT
f ,in,m Af ,m,m

)
,

Af ,in,m =
(

Af ,in,Σ Pf ,m Af ,in,Σ Pf ,sCf
)
,

Af ,m,m =

(
PT

f ,mAΣ ,Σ Pf ,m PT
f ,mAΣ ,Σ Pf ,sCf

(PT
f ,mAΣ ,Σ Pf ,sCf )

T (Pf ,sCf )
T AΣ ,Σ Pf ,sCf

)
.

(17)

The blockAf ,in,m is of sizeNf ,inx(Nf ,m+Nf ,o) and the blockAf ,m,m is of size
(Nf ,m+Nf ,o)x(Nf ,m+Nf ,o).

The local Schur complementSf associated to the matrixAf (17) of the fracture
Ω f writes:

Sf = Af ,mm−AT
f ,in,mA−1

f ,in,in Af ,in,m = (Pm+PsC)T
f Sf ,Σ (Pm+PsC) f . (18)

As each intersection involves two fractures, one slave and one master, the Schur
complementSof sizeNmxNm is the sum of the local Schur complements:

S=

Nf

∑
f=1

RT
f Sf Rf , (19)

whereRf is the rectriction matrix from the network to the fracturef .

4.2 Neumann-Neumann preconditioner

In the following, a subdomainΩ f is said to be floating if it does not contain any
Dirichlet boundary conditions, non floating otherwise.

The Neumann-Neumann preconditioner [25, 9, 28] writes as:

M−1
NN = D∑

f

RT
f S†

f Rf D, (20)

where

S†
f =

{
S−1

f if Sf is non singular,
S̃−1

f otherwise, withS̃f a non singular approximation ofSf .
(21)
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The matrixD is a diagonal matrix of orderNm. With a nonconforming discretiza-
tion, a definition of one fracture as one subdomain and an homogeneous transmis-
sivity, D = 1

2Id since each master unknown is defined for an intersection between
two subdomains.

From the definition ofM−1
NN, one needs to solve local subdomain problems with

the matrixSf , like Sf zf = r f . However the kernel ofSf may not be trivial. If the
matrix (Pm+PsC) f is of full rank, the kernel ofSf is that ofSf ,Σ : {0} for a non
floating subdomain, else{const}. We assume that(Pm+PsC) f is of full rank if the
following conditions are satisfied:

(H1) the master side of an intersection must have the smallest number of
discretization edges:Nk,m≤ Nk,s,∀k∈ 1, ...,Ni ;

(H2) There are no multi-labeled edges:nE = 1 for each shared edgeE yield-
ing: NΣ = Nm+Ns.

If the subdomain is floating, in order to get a SPD approximation S̃f , we add one
arbitrary Dirichlet condition, since the kernel is of dimension 1 [35].

4.3 Balancing preconditioner

As the number of subdomains increases, the efficiency of the Neumann-Neumann
preconditioner decreases [27] and one has to couple it with acoarse level solver
[29, 30]. We use the following balancing preconditioner:

M−1
b = PT M−1

NN, (22)

as in [37, 21, 35] where the projection matrixP, of orderNm, is defined as:

P= I −SZ S−1
c ZT . (23)

The matrixZ is a Nmx Nc subspace matrix with full rank,Nc < Nm, andSc =
ZT SZ is the invertible matrix corresponding to the coarse problem.

This formulation is based on the PCG initial value:

Λm,0 = Z S−1
c ZT Bm, (24)

such that, for all iterationsit of PCG, the residualsr it =SΛm,it −Bm satisfyZT r it = 0
andPrit = r it [35]. Thus applying(22) is equivalent to applyPT M−1

NN P+Z S−1
c ZT

[37, 35].

A possible choice for the full rank matrixZ is to use a subdomain deflation as
defined in [22, 35]. HereNc≤ Nf andZ is sparse.
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5 Numerical experiments

We present preliminary numerical experiments on three random DFN that satisfy
hypotheses(H1)− (H2), generated with the software MPFRAC of the H2OLab
platform http://h2olab.inria.fr/ . We checked there is only one con-
nected cluster. We build the local matricesAf and use the software SIDNUR which
implements the BDD method [35].

5.1 Geometry and boundary conditions

The position of the fractures is taken as uniform in the domain. Their orientation
is uniform and their length follows a power law distributionof exponent 2.7 [8].
We takepD = 1m on the cube face aty = L/2 andpD = 20m on the cube face at
y= −L/2. The transmissivity tensor is homogeneous and equal toT = T Id, with
T = 8.2e−7 m2.s−1. We consider 3 networks:

• L6 NF28:L=6 andNf =28;
• L10 NF18:L=10 andNf =18;
• L10 NF24:L=10 andNf =24.

5.2 Mesh procedure and basic optimization

The nonconforming mesh is generated according to the mesh procedure described
in subsection 3.1. With this approach, adaptative mesh refinement can be done at
the fracture level [2, 3, 39, 6].

A basic mesh coarsening consists in meshing finely only the fractures that take
part significantly in the flow. Let us run a first simulation with a coarse mesh step
2∗∆ . The output flux for each fracture is computed, as well as the total output flux
on the output cubic face. We choose to refine, with a mesh step∆ , the fractures that
have an output flux above 5 % of the total output flux. The simulation is performed
again on this refined mesh.

In table 1, we compare the mesh obtained with this basic mesh coarsening, so-
called coarser mesh, with a mesh where the step is∆ for all fractures, so-called fine
mesh. The min and mean of the quality mesh criterionQK ∈ [0;1] is also given,
whereQK is defined for each triangleK as [23]:

QK = 4
√

3
SK

h2
s
, (25)

with SK the surface of the triangleK andhs =
√

∑3
i=1h2

i , with hi the length of the
edgei of the triangleK. The closerQK is to 1, the better the triangle quality is.
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Table 1 Comparison between a mesh with step∆ for all fractures and a mesh with step∆ for
fractures with an output flux above 5 % of the total output flux and 2∗∆ otherwise

Simulation name ∆ Fine mesh - step∆ Coarser mesh - step∆ or 2∆
Number of edges Min(QK ) Mean(QK ) Number of edges Min(QK ) Mean(QK )

L6 NF28 0.05 122306 0.43 0.95 90533 0.23 0.95
L10 NF18 0.1 62409 0.45 0.95 57462 0.19 0.95
L10 NF24 0.1 78652 0.51 0.95 67765 0.25 0.95

Table 1 shows that this basic mesh coarsening reduces the number of edges from
7.93 % to 25.96 % at the price of somehow lower mesh quality. Indeed the length
of some fractures is too small compared with 2∆ , yielding too few discretization
points. As future work, we could define a minimal mesh step perfracture according
to its length.

5.3 Solution with SIDNUR

Using the coarser mesh, we solve the linear system(12) with the BDD method. We
checked these networks satisfy hypotheses(H1)− (H2). From the computed val-
ues ofΛm, we derive the unknownsΛs andΛΣ according to(8)− (9). The inner
unknownsΛin are derived locally in each fracture plane by solving small linear sys-
tems (see(10)). From these traces of hydraulic head unknowns, one can derive the
mean head values and the fluxes [34]. Figures 2, 3 and 4 give themean head values
on the three DFN. Figure 5 displays the mean head values for the DFNL10 NF24
obtained by solving the linear system(12) with CHOLMOD to illustrate the good
agreement of the results obtained with the two methods.

Table 2 gives the numbersNin, Nm andNs with NΣ = Nm+Ns (hypothesis(H2)).
This table also provides the number of PCG iterations, the final L2-norm of the

residual and theL2-norm of the relative difference between the solutions

(
Λin

Λm

)

computed with SIDNUR and with the direct solver CHOLMOD [11].

Table 2 Solution with SIDNUR. Comparison with CHOLMOD

Simulation name Nin Nm Ns # PCG it. PCG final residual Comparison with CHOLMOD
L6 NF28 89732 365 436 13 6.02e-17 4.15e-12
L10 NF18 56939 247 276 15 2.47e-18 9.56e-13
L10 NF24 66899 412 454 18 8.71e-19 1.47e-12

On such small linear systems with very small CPU times, the solver SIDNUR is
not competitive with respect to a direct solver. However this preliminary test phase
demonstrates the possibility of solving linear system arising from a nonconform-
ing discretization of networks satisfying hypotheses(H1)− (H2) with the BDD
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Fig. 2 L6 NF28 - Mean head - SIDNUR Fig. 3 L10 NF18 - Mean head - SIDNUR

Fig. 4 L10 NF24 - Mean head - SIDNUR Fig. 5 L10 NF24 - Mean head - CHOLMOD

method. Using SIDNUR relies on a suitable decomposition of the local matrices.
Moreover SIDNUR requires less RAM memory than a direct solver and is parallel.

6 Conclusion

This paper describes a Balancing Domain Decomposition method, implemented in
the so-called SIDNUR solver, to simulate flow in DFN with a nonconforming mesh.
DFN and local matrices are generated with the so-called MPFRAC software. Our
current work is to extend the method to more general discretizations, which do not
satisfy hypotheses(H1)− (H2), in the perspective of solving linear systems with
several millions of unknowns. The parallelism of SIDNUR will be very helpful
to reduce the time and memory costs. Moreover the very basic technic we use to
coarsen the mesh could be improved by defining suitablea posterioriestimators.
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A Domain-Based Multinumeric Method for the
Steady-State Convection-Diffusion Equation

Beatrice Riviere1 and Xin Yang1

1 Introduction

In the simulation of flow and transport of hydrocarbons in reservoirs, locally mass
conservative methods are preferred. Methods that do not satisfy this property, will
produce numerical mass errors that accumulate and will yield an unstable solution.
Currently, finite volume methods are popular numerical methods in the oil industry.
While they are computationally efficient, they are only of first order. Convergence
of cell-centered finite volume solutions is theoretically obtained on specially con-
structed grids (such as Voronoi meshes) and for problems with no mixed second
derivatives [3, 4, 8, 12, 6]. Discontinuous Galerkin methods also belong to the class
of locally mass conservative methods. In addition, their flexibility allows for the use
of complicated geometries, unstructured meshes, varying polynomial degrees and
discontinuous coefficients. Discontinuous Galerkin solutions are accurate but their
cost can be large as it is proportional to the the number of mesh elements (also called
cells). In this paper, discontinuous Galerkin methods are used in certain parts of the
domain whereas the cell-centered finite volume method is used in other parts. The
model problem is a convection-diffusion problem in a bounded domainΩ ⊂ Rd,
d = 2,3.

−∇ · (K∇u−βu) = f , in Ω , (1)

u= g, on ∂Ω . (2)

The spatially dependent coefficientK is bounded below and above by positive con-
stantsk0 andk1 respectively. The convective vectorβ is assumed to be divergence-
free:∇ ·β = 0.

The computational domain is partitioned into several subdomains. On each sub-
domain, either a discontinuous Galerkin method is used or a cell-centered finite vol-
ume is used. The advantage of a multinumeric approach lies inthe ability of choos-
ing a particular scheme for a particular subdomain. The discontinuous Galerkin
method can yield accurate solutions in parts of the domain where the permeability of
the porous medium varies over several orders of magnitude orin parts of the domain
where anisotropy is important. In this work, the coupling ofthe two discretizations
is done weakly by interface conditions. Two equivalent formulations are presented:
a monolithic approach and an hybridized approach with Lagrange multipliers. This
paper extends the result of [2] where the elliptic problem isanalyzed. In [11], we
apply the method to a transport equation. The idea of using different discretizations

1 Rice University, 6100 Main Street, Houston, Texas 77005, USA,e-mail: riviere@caam.
rice.edu e-mail:xin.yang@rice.edu .
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in different subdomains is well studied in the literature. For instance, the reader can
refer to [1, 5, 10, 7].

An outline of the paper is the following. Section 2 defines first the discontinuous
Galerkin and finite volume discretizations in each subdomain, then the coupling
of the subdomains. Section 3 states the convergence of the method. Conclusions
follow.

2 A multinumeric approach

The domainΩ is subdivided into non-overlapping subdomainsΩ i
FV andΩ i

DG. Our
proposed multinumerics scheme uses a finite volume method (FV) on the union of
Ω i

FV , denoted byΩF , and a discontinuous Galerkin (DG) method on the union of
Ω i

DG, denoted byΩD. Let E h
D (resp.E h

F ) be a subdivision ofΩD (resp.ΩF ) made
of cellsV (Voronoi cells inΩF and either triangles/tetrahedra/hexaedra or Voronoi
cells inΩD). We also denote byhF (resp.hD) the maximum diameter over all cells
in ΩF (resp.ΩD) and we leth= max(hF ,hD). We assume that the meshes match at
the interfaceΓDF defined as:

ΓDF = ∪i(∂Ω i
DG∩∂Ω i

FV)

The definition of the meshE h
F requires further notation. It is assumed thatE h

F is an
admissible finite volume mesh, in the following sense:
(i) There is a family of nodes{xV : V ∈ E h

F } such thatxV belongs toV and if a
faceγ is shared by two neighboring cellsV andW, it is assumed thatxW andxV are
distinct, and that the straight line going throughxV andxW is orthogonal toγ.
(ii) For any boundary faceγ = ∂V ∩ ∂Ω for someV in E h

F , it is assumed thatxV

does not lie onγ. However this condition can be relaxed.
We denote byΓ h,I

F the set of faces that belong to the interior ofΩF and byΓ h,∂
F the

set of boundary faces that belong to∪i(∂Ω i
FV ∩∂Ω). Similarly, the sets of interior

and boundary faces ofΩD are denoted byΓ h,I
D and Γ h,∂

D respectively. We also

defineΓ h
F = Γ h,I

F ∪Γ h,∂
F andΓ h

D = Γ h,I
D ∪Γ h,∂

D . There remains the set of faces that
belong to the interfaceΓDF; this particular set will be denoted byΓ h

DF. We further
decompose the boundary ofΩ into inflow and outflow boundaries. The unit normal
vector outward ofΩ is denoted byn.

Γ h,∂−
D = {x∈ Γ h,∂

D , β ·n≤ 0}, Γ h,∂+
D = Γ h,∂

D \Γ h,∂−
D .

Γ h,∂−
F = {x∈ Γ h,∂

F , β ·n≤ 0}, Γ h,∂+
F = Γ h,∂

F \Γ h,∂−
F .

We now define a parameterdγ that is associated to each faceγ in Γ h
F ∪Γ h

DF. If the
faceγ is an interior face shared by two cellsV andW in E h

F , the parameterdγ is the
Euclidean distance between the nodesxV andxW: dγ = d(xV ,xW). If the faceγ is a
boundary face (γ ⊂ ∂V ∩ ∂Ω ), the parameterdγ is the distance between the node
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xV and the faceγ, in other wordsdγ = d(xV ,yγ), whereyγ denotes the non-empty
intersection between the straight line going throughxV and orthogonal toγ. Finally,
if the faceγ lies on the interfaceΓDF and is shared by a cellV in E h

F and a cellW
in E h

D, the parameterdγ is defined to be the distance between the nodexV and the
edgeγ. As in the boundary case, we can denote byyγ the intersection between the
straight line going throughxV and perpendicular toγ. Then, we havedγ = d(xV ,yγ).

An admissible mesh in the finite volume regions is such that there is some posi-
tive numberθ > 0 such that

dγ ≥ θ max(hV ,hW), ∀γ ∈ Γ h,I
F , γ = ∂V ∩∂W,

dγ ≥ θhV , ∀γ ∈ Γ h,∂
F , γ = ∂V ∩∂Ω ,

dγ ≥ θhV , ∀γ ∈ Γ h
DF, γ = ∂V ∩∂W, V ∈ E h

F ,W ∈ E h
D.

A standard harmonic average of the diffusion coefficientK is now defined:

Kγ = dγ

∣∣∣∣
∫ xW

xV

ds
K(s)

∣∣∣∣
−1

, ∀γ ∈ Γ h,I
F , γ = ∂V ∩∂W,

Kγ = dγ

∣∣∣∣
∫ yγ

xV

ds
K(s)

∣∣∣∣
−1

, ∀γ ∈ Γ h,∂
F , γ = ∂V ∩∂Ω ,

Kγ = dγ

∣∣∣∣
∫ yγ

xV

ds
K(s)

∣∣∣∣
−1

, ∀γ ∈ Γ h
DF, γ = ∂V ∩∂W, V ∈ E h

F ,W ∈ E h
D.

It is easy to see thatKγ is bounded above and below byk1 andk0 respectively. We
denote by|γ | the measure of the faceγ.

Let XDG be the space of discontinuous piecewise polynomials of degree r ≥
1 in the DG subdomains. LetXFV be the space of piecewise constants in the FV
subdomains. The restriction of the numerical solution to the DG subdomains (resp.
FV subdomains) is denoted byuDG (resp.uFV ).

2.1 Bilinear Forms

The differential operators are discretized by an interior penalty discontinuous Galerkin
method in some subdomains and by a cell-centered finite volume method in other
subdomains.

First, we define the jump of any discontinuous piecewise polynomial function.
For any faceγ, we fix a unit normal vectornγ to γ. If γ is a boundary face, thennγ
is the outward normal toΩ . If γ belongs to the interfaceΓ h

DF, then the vectornγ is
chosen to point from the DG region into the FV region. In the definition of the jump
[v] of a functionv given below, we assume that the faceγ is shared by two cellsV
andW, and that the normal vectornγ points fromV into W. For the interior faces,
we define
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[v]|γ = v|V −v|W, γ ∈ Γ h,I
F ∪Γ h,I

D , γ = ∂V ∩∂W

For the boundary faces, we define

[v]|γ = v|V , γ ∈ Γ h,∂
F ∪Γ h,∂

D , γ = ∂V ∩∂Ω .

In the definitions above, it is understood thatv|W = v(xW) if W is a cell in the FV
subdomains.

The average of a discontinuous functionv on a face is denoted by{v} and defined
below:

{v}|γ =
1
2
(v|V +v|W), ∀γ = ∂V ∩∂W,

{v}|γ = v|V , ∀γ = ∂V ∩∂Ω .

Finally we define the upwindv↑ on the faces. For a given faceγ in Γ h
D ∪Γ h

F ∪Γ h
DF

shared by cellsV andW such thatnγ points fromV into W, we have

v↑ =
{

v|V if β ·nγ ≥ 0,
v|W if β ·nγ < 0.

In what follows, we derive the bilinear forms correspondingto each subdomain.
First, we multiply (1) by a functionv∈ XDG, integrate over one DG cellV:

∫

V
(K∇u−βu) ·∇v−

∫

∂V
(K∇u−βu) ·nVv=

∫

V
f v

We sum over all the cells in all the DG subdomains, use the definition of the normal
vectornγ and the regularity of the exact solution to obtain:

∑
V∈E h

D

∫

V
(K∇u−βu) ·∇v− ∑

γ∈Γ h,I
D

∫

γ
({K∇u}−βu↑) ·nγ [v]

− ∑
γ∈Γ h,∂

D ∪Γ h
DF

∫

γ
(K∇u−βu) ·nγv= ∑

V∈E h
D

∫

V
f v

Stabilization terms are added for the interior penalty discontinuous Galerkin method.
The penalty parameter is denoted byσ > 0 and the symmetrization parameter by
ε ∈ {−1,+1}. The penalty parameter is assumed to be large enough ifε =−1 and
is taken equal to 1 ifε = +1. The parameterhγ denotes the maximum diameter of
the neighboring cellsV andW, that share the faceγ.

∑
V∈E h

D

∫

V
(K∇u−βu) ·∇v− ∑

γ∈Γ h
D

∫

γ

(
{K∇u·nγ}[v]− ε{K∇v·nγ}[u]

)

+ ∑
γ∈Γ h

D

σh−1
γ

∫

γ
[u][v]+ ∑

γ∈Γ h,I
D

∫

γ
β ·nγu↑[v]+ ∑

γ∈Γ h,∂
D

∫

γ
β ·nγuv
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− ∑
γ∈Γ h

DF

∫

γ
(K∇u−βu) ·nγv= ∑

V∈E h
D

∫

V
f v+ ε ∑

γ∈Γ h,∂
D

∫

γ
{K∇v·nγ}g

+ ∑
γ∈Γ h,∂

D

σh−1
γ

∫

γ
gv

From this derivation, we define the bilinear form for the DG subdomains as:

aDG(u,v) = ∑
V∈E h

D

∫

V
(K∇u−βu) ·∇v− ∑

γ∈Γ h
D

∫

γ

(
{K∇u·nγ}[v]− ε{K∇v·nγ}[u]

)

+ ∑
γ∈Γ h

D

σh−1
γ

∫

γ
[u][v]+ ∑

γ∈Γ h,I
D

∫

γ
β ·nγu↑[v]+ ∑

γ∈Γ h,∂+
D

∫

γ
β ·nγuv

+ ∑
γ∈Γ h

DF

|γ |
dγ

Kγu(yγ)v(yγ)+ ∑
γ∈Γ h

DF

∫

γ+
β ·nγuv

In the last term, the subset of a faceγ on whichβ ·nγ is non-negative is denoted by
γ+. This corresponds to the outflow part of the face. The inflow part is denoted by
γ−.

Second, we multiply (1) by a functionv∈ XFV , that is piecewise constant, inte-
grate over one FV cellV:

−
∫

∂V
(K∇u−βu) ·nVv=

∫

V
f v

We sum over all the FV cells and use the regularity of the exactsolution:

∑
γ∈Γ h,I

F

∫

γ
(−K∇u·nγ +β ·nγu↑)[v]+ ∑

γ∈Γ h,∂
F

∫

γ
(−K∇u·nγ +β ·nγu)v

+ ∑
γ∈Γ h

DF

∫

γ
(K∇u−βu) ·nγv= ∑

V∈E h
F

∫

V
f v

A cell-centered finite difference approximation is used to approximate the flux
across the faces. Therefore we define the bilinear form in theFV regions as:

aFV(u,v) = ∑
γ∈Γ h

F

|γ |
dγ

Kγ [u][v]+ ∑
γ∈Γ h,I

F

∫

γ
β ·nγu↑[v]+ ∑

γ∈Γ h,∂+
F

∫

γ
β ·nγuv

+ ∑
γ∈Γ h

DF

|γ |
dγ

Kγuv− ∑
γ∈Γ h

DF

∫

γ−
β ·nγuv

Finally the source functionf and the boundary conditions are handled by the fol-
lowing bilinear forms:
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ℓDG(v) =
∫

ΩD

f v+ ε ∑
γ∈Γ h,∂

D

∫

γ
K∇v·nγg+ ∑

γ∈Γ h,∂
D

σh−1
γ

∫

γ
gv− ∑

γ∈Γ h,∂−
D

∫

γ
β ·nγgv

ℓFV(v) =
∫

ΩF

f v+ ∑
γ∈Γ h,∂

F

|γ |
dγ

Kγg(yγ)v− ∑
γ∈Γ h,∂−

F

∫

γ
β ·nγgv.

2.2 A monolithic formulation

The definition of the multinumeric scheme, without Lagrangemultipliers, is given
in this section. Existence and uniqueness of the solution isshown.

The numerical method is as follows: finduDG ∈ XDG, uFV ∈ XFV such that

aDG(uDG,vDG) = ℓDG(vDG)+ ∑
γ∈Γ h

DF

|γ |
dγ

KγuFVvDG(yγ)− ∑
γ∈Γ h

DF

∫

γ−
β ·nγuFVvDG,(3)

aFV(uFV ,vFV) = ℓFV(vFV)+ ∑
γ∈Γ h

DF

|γ |
dγ

KγuDG(yγ)vFV + ∑
γ∈Γ h

DF

∫

γ+
β ·nγuDGvFV ,(4)

for all vDG ∈ XDG and allvFV ∈ XFV .

Lemma 1. There exists a unique solution(uDG,uFV), satisfying (3)-(4).

Proof. Let us assume thatf = g= 0 and takevDG = uDG andvFV = uFV in (3)-(4).
We have

aDG(uDG,uDG)+aFV(uFV ,uFV) = 2 ∑
γ∈Γ h

DF

|γ |
dγ

KγuFVuDG(yγ)+ ∑
γ∈Γ h

DF

∫

γ
|β ·nγ |uDGuFV .

We expand the DG form:

aDG(uDG,uDG) = ∑
V∈E h

D

‖K1/2∇uDG‖2L2(V)+ ∑
γ∈Γ h

D

σh−1
γ ‖[uDG]‖2L2(γ)

+ ∑
γ∈Γ h

DF

|γ |
dγ

KγuDG(yγ)
2− (1− ε) ∑

γ∈Γ h
D

∫

γ
{K∇uDG ·nγ}[uDG]− ∑

V∈E h
D

∫

V
βuDG ·∇uDG

+ ∑
γ∈Γ h,I

D

∫

γ
β ·nγu↑DG[uDG]+ ∑

γ∈Γ h,∂+
D

∫

γ
β ·nγu2

DG+ ∑
γ∈Γ h

DF

∫

γ+
β ·nγu2

DG

Using standard techniques to DG methods [9], one can show that

− ∑
V∈E h

D

∫

V
βuDG ·∇uDG+ ∑

γ∈Γ h,I
D

∫

γ
β ·nγu↑DG[uDG]+ ∑

γ∈Γ h,∂+
D

∫

γ
β ·nγu2

DG
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=
1
2 ∑

γ∈Γ h
D

‖|β ·nγ |1/2[uDG]‖2L2(γ)−
1
2 ∑

γ∈Γ h
DF

∫

γ
β ·nγu2

DG

In addition, we can show that there is a constantM > 0 independent ofh such that

∑
V∈E h

D

‖K1/2∇uDG‖2L2(V)+ ∑
γ∈Γ h

D

σh−1
γ ‖[uDG]‖2L2(γ)− (1− ε) ∑

γ∈Γ h
D

∫

γ
{K∇uDG ·nγ}[uDG]

≥M


 ∑

V∈E h
D

‖K1/2∇uDG‖2L2(V)+ ∑
γ∈Γ h

D

σh−1
γ ‖[uDG]‖2L2(γ)




For the FV bilinear form, we have

aFV(uFV ,uFV) = ∑
γ∈Γ h

F

|γ |
dγ

Kγ [uFV ]
2+ ∑

γ∈Γ h,I
F

∫

γ
β ·nγu↑FV [uFV ]+ ∑

γ∈Γ h,∂+
F

∫

γ
β ·nγu2

FV

+ ∑
γ∈Γ h

DF

|γ |
dγ

Kγu2
FV − ∑

γ∈Γ h
DF

∫

γ−
β ·nγu2

FV

We observe that, ifu↓FV denotes the downwind value ofuFV , we have

∑
γ∈Γ h,I

F

∫

γ
β ·nγu↑FV [uFV ] =

1
2 ∑

γ∈Γ h,I
F

‖|β ·nγ |1/2[uFV ]‖2L2(γ)

+
1
2 ∑

γ∈Γ h,I
F

∫

γ
|β ·nγ |((u↑FV)

2− (u↓FV)
2)

Sinceβ is divergence-free, we obtain

∑
γ∈Γ h,I

F

∫

γ
β ·nγu↑FV [uFV ] =

1
2 ∑

γ∈Γ h,I
F

‖|β ·nγ |1/2[uFV ]‖2L2(γ)

−1
2 ∑

γ∈Γ h,∂
F

∫

γ
β ·nγu2

FV +
1
2 ∑

γ∈Γ h
DF

∫

γ
β ·nγu2

FV

Combining the results above yields

M ∑
V∈E h

D

‖K1/2∇uDG‖2L2(V)+M ∑
γ∈Γ h

D

σh−1
γ ‖[uDG]‖2L2(γ)+

1
2 ∑

γ∈Γ h
D

‖|β ·nγ |1/2[uDG]‖L2(γ)

+ ∑
γ∈Γ h

F

|γ |
dγ

Kγ [uFV ]
2+

1
2 ∑

γ∈Γ h,I
F

‖|β ·nγ |1/2[uFV ]‖2L2(γ)+
1
2 ∑

γ∈Γ h,∂
F

∫

γ
|β ·nγ |u2

FV
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+ ∑
γ∈Γ h

DF

|γ |
dγ

Kγ(uDG(yγ)−uFV)
2+

1
2 ∑

γ∈Γ h
DF

∫

γ
|β ·nγ |(uDG−uFV)

2≤ 0

The inequality above immediately implies thatuDG anduFV are zero everywhere.
Thus, we have proved uniqueness of the solution. Since the finite-dimensional prob-
lem is linear, this is equivalent to showing existence of thesolution.

2.3 Formulation with Lagrange multipliers

In this section, we rewrite the method (3)-(4) in a hybridized form for the elliptic
problem. Lagrange multipliers are defined on the interface between the subdomains.

Let Λ0
h ⊂ L2(Γ12) be the finite dimensional space of piecewise constants on the

partition ofΓ12. Assume that the convection vectorβ is zero. The hybridized DG-FV
scheme becomes: solve foruDG ∈ XDG, uFV ∈ XFV, λDG ∈Λ0

h , λFV ∈Λ0
h satisfying

aDG(uDG,vDG) = ℓDG(vDG)+ ∑
γ∈Γ h

DF

|γ |
dγ

Kγ λFVvDG(yγ), ∀v∈ XDG (5)

aFV(uFV ,vFV) = ℓFV(vFV)+ ∑
γ∈Γ h

DF

|γ |
dγ

Kγ λDGvFV , ∀v∈ XFV (6)

∑
γ∈Γ h

DF

∫

γ
(λDG−uDG(yγ))µ = 0, ∀µ ∈Λ0

h (7)

∑
γ∈Γ h

DF

∫

γ
(λFV −uFV)µ = 0, ∀µ ∈Λ0

h (8)

Lemma 2. There exists a unique solution to (5)-(8)

Proof. To show uniqueness of the solution, we assume thatf = g = 0 and take
vDG = uDG andvFV = uFV in (5) and (6). We observe that (7) and (8) imply that

λDG|γ = uDG(yγ), λFV |γ = uFV , ∀γ ∈ Γ h
DF

The rest of the proof follows the proof of Lemma 1.

3 Error analysis

In this section, convergence of the multinumeric approach is shown under some
regularity assumptions of the exact solution.

Assume that the relative gradient of the exact solution nearthe interfaces with
respect to the gradient in the DG subdomains is small. In particular, given a face
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γ ∈ Γ h
DF that belongs to a DG cell denoted byVγ , assume that there is a constantC

independent ofhD such that

( ∑
γ ∈ Γ h

DF

‖∇u‖2L2(Vγ )
)1/2≤ChD( ∑

V∈E h
D

‖∇u‖2L2(V))
1/2 (9)

This assumption is an indicator on how to choose the interface. We want to place
the interface where the exact solution does not vary as much as it does in the interior
of the discontinuous Galerkin domain. In the simple case where the exact solution
is linear and its gradient is uniformly constant, this assumption is not satisfied (see
remark 1).

We recall that by convention, the jump[u−uFV ] on an edge that belongs toΓ h
F is

the difference betweenu(xV)−uFV(xV) andu(xW)−uFV(xW) if the edge is shared
by the Voronoi cellsV andW.

Theorem 1.Assume that u belongs to H2(Ω) and that u|ΩD belongs to Hr+1(E h
D),

for r ≥ 1. Under the assumption (9), there exists a constant C independent of h such
that

∑
V∈E h

D

‖K1/2∇(u−uDG)‖2L2(V)+ ∑
γ∈Γ h

D

σh−1
γ ‖[u−uDG]‖2L2(γ)+ ∑

γ∈Γ h
F

γ
dγ

Kγ [u−uFV ]
2

+ ∑
γ∈Γ h

D

‖|β ·nγ |1/2[u−uDG]‖2L2(γ)+ ∑
γ∈Γ h

F

‖|β ·nγ |1/2[u−uDG]‖2L2(γ)

+ ∑
γ∈Γ h

DF

|γ |
dγ

Kγ(uDG(yγ)−uFV)
2≤C(h2

D +h2
F)

Proof. An outline of the proof is given. First we observe that the scheme (3)-(4)
is not consistent because of the use of finite difference approximations in the FV
subdomains and on the interfaces between the subdomains. Weintroduce an optimal
approximation, ˜u, of the exact solution such that ˜u|ΩD (resp.ũ|ΩF ) belongs toXDG

(resp.XFV ). We define

χDG = uDG− ũ|ΩD , χFV = uFV − ũ|ΩF , ξ = u− ũ

An error equation can be obtained:

aDG(χDG,vDG)+aFV(χFV ,vFV)+ ∑
γ∈Γ h

DF

∫

γ−
β ·nγ χFVvDG− ∑

γ∈Γ h
DF

|γ |
dγ

Kγ χFVvDG(yγ)

− ∑
γ∈Γ h

DF

∫

γ+
β ·nγ χDGvFV − ∑

γ∈Γ h
DF

|γ |
dγ

Kγ χDG(yγ)vFV = aDG(ξDG,vDG)+aFV(ξFV ,vFV)

+ ∑
γ∈Γ h

DF

∫

γ−
β ·nγ ξ |ΩF vDG− ∑

γ∈Γ h
DF

|γ |
dγ

Kγ ξ |ΩF vDG(yγ)− ∑
γ∈Γ h

DF

∫

γ+
β ·nγ ξ |ΩDvFV
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− ∑
γ∈Γ h

DF

|γ |
dγ

Kγ ξ |ΩD(yγ)vFV +R,

whereR is a residual term resulting from the consistency error. An expression forR
is:

R= ∑
γ∈Γ h

F

Rγ(u)[vFV ]+ ∑
γ∈Γ h

DF

∫

γ
K∇u·nγ(vDG−vDG(yγ))

+ ∑
γ∈Γ h

DF

∫

γ
Rγ(u)(vDG(yγ)−vFV) (10)

The residual quantitiesRγ(u) are defined on the interior faces of the FV subdomains
as

Rγ(u) =−
∫

γ
K∇u·nγ −

|γ |
dγ

Kγ(u(xV)−u(xW)), ∀γ = ∂V ∩∂W ∀γ ∈ Γ h,I
F

This expression is slightly modified for the exterior boundary faces of the FV sub-
domains:

Rγ(u) =−
∫

γ
K∇u·nγ −

|γ |
dγ

Kγ(u(xV)−g(yγ)), ∀γ = ∂V, ∀γ ∈ Γ h,∂
F

For the interfaces between the FV and DG subdomains, the residual term is defined
as

Rγ(u) =−K∇u·nγ −
Kγ

dγ
(u(yγ)−u(xW)), ∀γ ∈ ∂W,W ∈ E h

F , ∀γ ∈ Γ h
DF

Next, we choosevDG = χDG andvFV = χFV in the error equation. The error estimate
follows by using trace inequalities, approximation results, and the following bounds
on the residuals, that involve the Hessian matrixH(u) (see [3]):

|Rγ(u)|2≤C
h2

F |γ |
dγ

∫

Vγ
|H(u)|2, ∀γ ∈ Γ h

F

(∫

γ
|Rγ(u)|

)2

≤C
h2

F |γ |
dγ

∫

Vγ
|H(u)|2, ∀γ ∈ Γ h

DF

The Hessian is integrated over the regionVγ defined by

Vγ = VW,γ ∪VV,γ , ∀γ = ∂V ∩∂W

with
VW,γ = {txW +(1− t)x : x∈ γ , t ∈ [0,1]}
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Remark 1.If the assumption (9) is removed, the multinumeric approachconverges

suboptimally. Indeed, there is a loss ofh1/2
D in the bound of the last term in the

definition of the residual in (10).

4 Conclusions

Cell-centered finite volume methods use Voronoi cells for unstructured meshes. Dis-
continuous Galerkin methods converge on general mesh elements including Voronoi
grids. In addition, for two-dimensional problems, Voronoicells can naturally and
easily be partitioned into triangles by using the underlying Delaunay triangulation.
In this work, we formulate and analyze a method that couples DG and FV methods
via mesh interfaces. One appealing feature of the method is that, once a Voronoi
grid is built, the decomposition of the domain into DG regions and FV regions is
done easily and this decomposition can vary with each simulation.

Acknowledgements This work was partially funded by NSF-DMS and NHARP.
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3-D FETI-DP preconditioners for composite
finite element-discontinuous Galerkin methods

Maksymilian Dryja1 and Marcus Sarkis2

1 Introduction

In this paper a Nitsche-type discretization based on discontinuous Galerkin (DG)
method for an elliptic three-dimensional problem with discontinuous coefficients is
considered. The problem is posed on a polyhedral regionΩ which is a union of
N disjoint polyhedral subdomainsΩi of diameterO(Hi) and we assume that this
partition is geometrically conforming. Inside each subdomain, a conforming finite
element space on a quasiuniform triangulation with mesh size O(hi) is introduced.
Large discontinuities on the coefficients and nonmatching meshes are allowed to
occur only across∂Ωi . In order to deal with the nonconformity of the FE spaces
across subdomain interfaces, a discrete problem is formulated using the symmetric
interior penalty DG method only on the subdomain interfaces. For solving the re-
sulting discrete system, FETI-DP type of methods are designed and fully analyzed.
This paper extends the 2-D results in [2] to 3-D problems.

2 Differential and discrete problems

Consider the following problem:Find u∗ex∈ H1
0(Ω) such that

a(u∗ex,v) = f (v) for all v∈ H1
0(Ω), (1)

where

a(u,v) :=
N

∑
i=1

∫

Ωi

ρi(x)∇u·∇vdx and f (v) :=
∫

Ω
f vdx.

To simplify the presentation, we assume thatρi(x) is equal to positive constantρi .
We now consider the discrete problem associated to (1). LetXi(Ωi) be the regular

finite element (FE) space of piecewise linear and continuousfunctions inΩi and
define

X(Ω) =
N

∏
i=1

Xi(Ωi)≡ X1(Ω1)×X2(Ω2)×·· ·×XN(ΩN).

1Department of Mathematics, Warsaw University, Banacha 2, 02-097Warsaw, Poland, e-mail:
dryja@mimuw.edu.pl ·2 Mathematical Sciences Department, Worcester Polytechnic Institute,
100 Institute Road, Worcester, MA 01609, USA, and and Institutode Mateḿatica Pura e Aplicada
- IMPA, Estrada Dona Castorina 110, CEP 22460-320, Rio de Janeiro, Brazil, e-mail:msarkis@
wpi.edu
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We note that we do not assume that the functions inXi(Ωi) vanish on∂Ωi ∩∂Ω .
Let us denotēFi j := ∂Ωi ∩∂Ω j as a face of∂Ωi andF̄ji := ∂Ω j ∩∂Ωi as a face

of ∂Ω j . In spite of the common faceFi j andFji being geometrically the same, they
will be treated separately since we consider different triangulations onF̄i j ⊂ ∂Ωi

with a mesh parameterhi and onF̄ji ⊂ ∂Ω j with a mesh parameterh j . We denote
the interiorhi-nodes ofFi j and theh j -nodes ofFji by Fi jh andFjih , respectively.

Let us denote byF 0
i the set of indicesj of Ω j which has a common faceFji with

Ωi . To take into account also of these faces ofΩi which belong to∂Ω , we introduce
a set of indicesF ∂

i to refer theses faces. The set of indices of all faces ofΩi is
denoted byFi := F 0

i ∪F ∂
i . A discrete problem is obtained by a composite FE/DG

method, see [1], is of the form:Find u∗ = {u∗i }Ni=1 ∈ X(Ω) where ui ∈ Xi(Ωi), such
that

ah(u
∗,v) = f (v) for all v= {vi}Ni=1 ∈ X(Ω), (2)

where

ah(u,v) :=
N

∑
i=1

a′i(u,v), f (v) :=
N

∑
i=1

∫

Ωi

f vi dx,

a′i(u,v) := {ai(u,v)+ pi(u,v)}+si(u,v)≡ {di(u,v)}+si(u,v), (3)

where
ai(u,v) :=

∫

Ωi

ρi∇ui ·∇vi dx,

pi(u,v) := ∑
j∈Fi

∫

Fi j

δ
l i j

ρi

hi j
(u j −ui)(v j −vi)ds,

and

si(u,v) := ∑
j∈Fi

∫

Fi j

1
l i j

(
ρi

∂ui

∂n
(v j −vi)+ρi

∂vi

∂n
(u j −ui)

)
ds.

Here, whenj ∈F 0
i , we setl i j = 2 and lethi j := 2hih j/(hi +h j), i.e., the harmonic

average ofhi andh j . When j ∈F ∂
i , we denote the boundary facesFi j ⊂ ∂Ωi by

Fi∂ and setl i∂ = 1 andhi∂ = hi , and on the artificial faceFji ≡ F∂ i , we setu∂ = 0
and v∂ = 0. The partial derivative∂

∂n denotes the outward normal derivative on
∂Ωi andδ is the sufficiently large penalty parameter. For details on accuracy and
well-posedness, see [2, 1] and references there in. In particular, we show that exists
positive constantsγ0 andγ1, which do not depend on theρi , hi andHi , such that

γ0ah(u,u)≤
N

∑
i=1

di(u,u)≤ γ1ah(u,u) for all u∈ X(Ω).
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3 Schur complement systems and discrete harmonic extensions

This section is similar to Section 3 in [2] with a few natural changes when passing
from the 2-D to the 3-D case, and we refer to that for more details.

• Define the setsΩ ′i , Γi , Γ ′i , Ii , Γ , Γ ′, I andΩ ′ by

Ω ′i = Ω i

⋃
{∪ j∈F 0

i
F̄ji}, Γi = ∂Ωi\∂Ω , Γ ′i = Γi

⋃
{∪ j∈F 0

i
F̄ji},

Γ =
N⋃

i=1

Γi , Γ ′ =
N

∏
i=1

Γ ′i , Ii = Ω ′i \Γ ′i , I =
N

∏
i=1

Ii and Ω ′ =
N

∏
i=1

Ω ′i .

• Define the spaceWi(Ω ′i ) by

Wi(Ω ′i ) = Xi(Ωi)× ∏
j∈F 0

i

Xi(F̄ji ), where Xi(F̄ji ) = Xj(Ω j)|F̄ji
.

A functionui ∈Wi(Ω ′i ) will be represented as

ui = {(ui)i ,{(ui) j} j∈F 0
i
},

where(ui)i := ui |Ω i
(ui restricted toΩ i) and(ui) j := ui |F̄ji

(ui restricted toF̄ji ).
• For the definition of the discrete harmonic extension operators H ′

i and Hi

(elimination of Ii variables) with respect to the bilinear formsa′i and ai , see
[2].

• The matricesA′i andS′i are defined by

a′i(ui ,vi) = 〈A′iui ,vi〉 ui ,vi ∈Wi(Ω ′i ), a′i(ui ,vi) = 〈S′iui ,vi〉 ui ,vi ∈Wi(Γ ′i ).

• Wi(Γ ′i )⊂Wi(Ω ′i ) denotes theH ′
i -discrete harmonic functions.

• DefineW(Ω ′) = ∏N
i=1Wi(Ω ′i ) andW(Γ ′) = ∏N

i=1Wi(Γ ′i ).
• Let the subspacêW(Ω ′) ⊂W(Ω ′) consist of functionsu = {ui}Ni=1 ∈W(Ω ′)

which are continuous onΓ , that is, for all 1≤ i ≤ N satisfy

(ui)i(x) = (u j)i(x) for all x∈ F̄i j for all j ∈ F 0
i

and
(ui) j(x) = (u j) j(x) for all x∈ F̄ji for all j ∈ F 0

i .

We note thatŴ(Ω ′) can be identified toX(Ω).
• Ŵ(Γ ′) denotes the subspace ofŴ(Ω ′) of H ′

i -discrete harmonic functions.
• The rest of Section 3 in [2] remains the same for 3-D problems.In particular,

by eliminating the interior variablesI from the system (2), we obtain

Ŝu∗Γ = gΓ . (4)
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We note that̂Scan be assembled fromS′i , i.e.,Ŝ= ∑N
i=1RT

Γ ′i
S′iRΓ ′i

, whereRΓ ′i
is

the restriction operator fromΓ to Γ ′i .

4 FETI-DP with corners, average edges and faces constraints

We now design a FETI-DP method for solving (4). We follow to the abstract ap-
proach described in pages 160-167 in [3].

Let us define the set of indicesE 0
i of pairs( j,k) of Ω j andΩk, j 6= k, for which

Ēi jk := ∂Fi j ∩∂Fik, for j,k∈F 0
i , is an edge of∂Ωi . In spite of the common edges

Ei jk , E jik , andEki j being geometrically the same, we treat them separately since
we consider different triangulations onEi jk ⊂ ∂Ωi with a mesh parameterhi , E jik ⊂
∂Ω j with a mesh parameterh j andEki j ⊂ ∂Ωk with a mesh parameterhk. We denote
the interior edge nodes of these triangulations byEi jkh, E jikh andEki jh, respectively.

Let us introduce the nodal points associated to the corner unknowns by

Vi := {∪( j,k)∈E 0
i

∂Ei jk} and V ′i := {Vi

⋃
{∪( j,k)∈E 0

i
∂E jik ∪∂Eki j}}.

We say thatu= {ui}Ni=1 ∈W(Ω ′) is continuous at the cornersVi if

(ui)i(x) = (u j)i(x) = (uk)i(x) at all x∈ Vi .

Definition 1. (Subspaces̃W(Ω ′) andW̃(Γ ′)). TheW̃(Ω ′) consists of functionsu=
{ui}Ni=1 ∈W(Ω ′) for which, for all 1≤ i ≤N, the following conditions are satisfied:

• At all cornersVi , u is continuous.
• On all edgesEi jk for ( j,k) ∈ E 0

i

(ūi)i,Ei jk = (ū j)i,Ei jk = (ūk)i,Ei jk .

• On all facesFi j for j ∈F 0
i

(ūi)i,Fi j = (ū j)i,Fi j ,

where

(ūi)i,Ei jk =
1
|Ei jk |

∫

Ei jk

(ui)ids, (ū j)i,Fi j =
1
|Fi j |

∫

Fi j

(u j)ids.

TheW̃(Γ ′) denotes the subspace ofW̃(Ω ′) of functions which are discrete harmonic
in the sense ofH ′

i . It is easy to see that̂W(Γ ′)⊂ W̃(Γ ′)⊂W(Γ ′).

Let Ã be the stiffness matrix which is obtained by assembling the matricesA′i
for 1≤ i ≤ N, fromW(Ω ′) to W̃(Ω ′). We representu∈ W̃(Ω ′) asu= (uI ,uΠ ,u△)
where the subscriptI refers to the interior degrees of freedom at the nodal points
on I , theΠ refers to the degrees of freedom at the corners{Vi}Ni=1 and edges and
faces averages, and the△ refers to the remaining degrees of freedom, i.e., the nodal
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values on{Γ ′i \V ′i }Ni=1 with edges and faces average equal to zero. For details onÃ,
see (4.5) in [2], and its Schur complementS̃ (after eliminating theI andΠ degrees
of freedom fromÃ), see (4.6) in [2].

A vectoru∈ W̃(Γ ′) can uniquely be represented byu= (uΠ ,u△), therefore, we
can represent

W̃(Γ ′) = ŴΠ (Γ ′)×W△(Γ ′),

whereŴΠ (Γ ′) refers to theΠ -degrees of freedom of̃W(Γ ′) while W△(Γ ′) to the
△-degrees of freedom of̃W(Γ ′). The vector spaceW△(Γ ′) can be decomposed as

W△(Γ ′) =
N

∏
i=1

Wi,△(Γ ′i ),

where the local spaceWi,△(Γ ′i ) refers to the degrees of freedom associated to the
nodes ofΓ ′i \V ′i for 1≤ i ≤ N with zero averages onFi j andFji , for i ∈F 0

i , and on
Ei jk , E jik andEki j , for ( j,k) ∈ E 0

i .
The jump operatorB△ : W△(Γ ′)→Ur

B△ = (B(1)
△ ,B(2)

△ , · · · ,B(N)
△ )

is defined as follows. EachB(i)
△ mapsW△(Γ ′) to Ui,r (jumps on edges and faces),

wherevi = B(i)u△ is defined by:

• For each faceFi j for j ∈F 0
i , let

vi(x) = (ui,△)i(x)− (u j,△)i(x) for all x∈ Fi jh .

• For each edgeEi jk for ( j,k) ∈ E 0
i , let vi = {vi,1,vi,2}, where

vi,1(x) = (ui,△)i(x)− (u j,△)i(x) for all x∈ Ei jkh,

vi,2(x) = (ui,△)i(x)− (uk,△)i(x) for all x∈ Ei jkh.

Let Ur = (U1,r , · · · ,UN,r) whereUi,r is the range ofB(i)
△ , and note that theUi,r also

has zero average on edges and faces. The spaceUr will also be denoted as the space

of Lagrange multipliers. We note that by settingB(i)
△ u△ = 0, we have one constraint

for each node onFi jh and two constraints for each node onEi jkh. The saddle point
problem is defined as in [2], except that here we replaceŴ△ byUr , and the problem
(4) is reduced to:Find u∗△ ∈W△(Γ ′) andλ ∗ ∈Ur such that

{
S̃u∗△ + BT

△λ ∗ = g̃△
B△u∗△ = 0.

Hence, it reduces to
Fλ ∗ = g, (5)

where
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F := B△S̃−1BT
△, g := B△S̃−1g̃△.

4.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner forF , see (5). LetS′i,△ be the Schur

complement ofS′i restricted toWi,△(Γ ′i )⊂Wi(Γ ′i ), and defineS′△ = diag{S′i,△}Ni=1.
Let us introduce diagonal scaling matricesDi : Ui,r → Ui,r , for 1≤ i ≤ N as

follows. Forβ ∈ [1/2,∞), define the diagonal entry ofDi by:

• For each faceFi j for j ∈F 0
i , let

Di(x) = ρβ
j (ρ

β
i +ρβ

j )
−1 =: γ ji for all x∈ Fi jh .

• For each edgeEi jk for ( j,k) ∈ E 0
i , let Di = {Di,1,Di,2}, where

Di,1(x) = ρβ
j (ρ

β
i +ρβ

j +ρβ
k )
−1 =: γ jik for all x∈ Ei jkh,

Di,2(x) = ρβ
k (ρ

β
i +ρβ

j +ρβ
k )
−1 =: γki j for all x∈ Ei jkh.

We now introduceBD,△ : Ur →Ur by BD,△ = (D1B(1)
△ , · · · ,DNB(N)

△ ) and the op-

eratorP△ : W△(Γ ′)→W△(Γ ′) by P△ := BT
D,△B△. We can check that foru△ =

{ui,△}Ni=1 ∈W△(Γ ′), thatv△ := P△u△ satisfies:

(vi,△)i = γ ji [(ui,△)i− (u j,△)i ] on Fi jh , (6)

(v j,△)i = γi j [(u j,△)i− (ui,△)i ] on Fi jh , (7)

(vi,△)i = γ jik [(ui,△)i− (u j,△)i ]+ γki j [(ui,△)i− (uk,△)i ] on Ei jkh, (8)

(v j,△)i = γi jk [(u j,△)i− (ui,△)i ]+ γki j [(u j,△)i− (uk,△)i ] on Ei jkh, (9)

(vk,△)i = γi jk [(uk,△)i− (ui,△)i ]+ γ jik [(uk,△)i− (u j,△)i ] on Ei jkh. (10)

We note from [(6) - (7)] that onFi jh it holds

[(vi,△)i− (v j,△)i ] = [(ui,△)i− (u j,△)i ],

and from [(8) - (9)] + [(8) - (10)] that onEi jkh it holds

[(vi,△)i− (v j,△)i ]+ [(vi,△)i− (vk,△)i ] = [(ui,△)i− (u j,△)i ]+ [(ui,△)i− (uk,△)i ],

and it follows thatB△P△ = B△ andP2
△ = P△.
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In the FETI-DP method, the preconditionerM−1 is defined as follows:

M−1 = BDS′△BT
D =

N

∑
i=1

DiB
(i)
△S′i,△(B

(i)
△ )TDi .

The main result of this paper is the following:

Theorem 1.For anyλ ∈Ur , it holds that

〈Mλ ,λ 〉 ≤ 〈Fλ ,λ 〉 ≤ C(1+ log
H
h
)2〈Mλ ,λ 〉,

where C is a positive constant independent of hi , Hi , λ and the jumps ofρi . Here
and below,log(H

h ) := maxN
i=1 log(Hi

hi
).

Proof. Using the same algebraic arguments as in [2], it reduces to Lemma 1. The
proof of Lemma 1 for the 3-D case is new and given with details below.

Lemma 1. For any u△ ∈W△(Γ ′), it holds that

‖P△u△‖2S′△ ≤C(1+ log
H
h
)2‖u△‖2S̃, (11)

where C is a positive constant independent of hi , Hi , u△ and the jumps ofρi .

Proof. Givenu△ ∈W△(Γ ′), let u= (uΠ ,u△) ∈ W̃(Γ ′) be the solution of

〈S̃u△,u△〉= min〈S′w,w〉=: 〈S′u,u〉, (12)

where the minimum is taken overw= (wΠ ,w△) ∈ W̃(Γ ′) such thatwΠ ∈ ŴΠ (Γ ′)
andw△ = u△. Hence, we can replace‖u△‖S̃ in (11) by‖u‖S′ .

Let us represent theu defined above as{ui}Ni=1 ∈W(Γ ′) whereui ∈Wi(Γ ′i ). Let
v∈ W̃(Γ ′) be equal toP△u△ at the△-nodes and equal to zero at theΠ -nodes, i.e.,
v= 0 onV ′i for 1≤ i ≤ N and zero average on faces and edges. Let us representv
as{vi}Ni=1 ∈W(Γ ′), wherevi ∈Wi(Γ ′i ). We have

‖P△u△‖2S′△ = ‖v‖2S′ =
N

∑
i=1
‖vi‖2S′i

in view of the definition ofS′i,△ andS△, see (4.18), (3.5) and (4.6) in [2]. Hence, to
prove the lemma it remains to show that

N

∑
i=1
‖vi‖2S′i ≤C(1+ log

H
h
)2‖u‖2S′

since by (12) we obtain (11). By Corollary 3.2 in [2] we need toshow

N

∑
i=1

d̃i(vi ,vi)≤C(1+ log
H
h
)2

N

∑
i=1

d̃i(ui ,ui),
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where, see (2.9) in [2],̃di(vi ,vi) = di(Hivi ,Hivi) and

d̃i(vi ,vi) = ρi ‖ ∇(Hivi)i ‖2L2(Ωi)
+ ∑

j∈Fi

ρiδ
l i j hi j

‖ (vi)i− (vi) j ‖2L2(Fi j )
. (13)

Here,(vi)i = (Hivi)i and(ui)i = (Hiui)i inside of the subdomainsΩi .
To estimate the terms of the right-hand side (RHS) of (13) we represent(vi)i as

(vi)i = ∑
Fi j⊂(∂Ωi\∂Ω)

θFi j (vi)i + ∑
Ei jk⊂∂Ωi

θEi jk (vi)i (14)

andHi is discrete harmonic onΩi . Here,θFi j (vi)i := Ihi (ϑFi j (vi)i) andθEi jk (vi)i :=

Ihi (ϑEi jk (vi)i), whereϑFi j andϑEi jk are the standard face and edge cutoff functions

andIhi the finite element interpolator. We note that we do not have any vertex terms
in (14) since(vi)i = 0 on Vi . From now on, we denote∇(Hℓwℓ)ℓ by ∇(wℓ)ℓ for
ℓ= i, j,k andw= v,u. Hence, using (14), we have

‖∇(vi)i‖2L2(Ωi)
≤C{ ∑

j∈F 0
i

‖θFi j (vi)i‖2
H1/2

00 (Fi j )
+ ∑

( j,k)∈E 0
i

‖θEi jk (vi)i‖2L2(Ei jk )
} (15)

by well-known estimates, see [3]. Note that (15) is also valid for substructuresΩi

which intersect∂Ω by using the same arguments as for the 2-D case; see [2]. Using
(6), (ūi)i,Fi j = (ū j)i,Fi j and Lemma 4.26 in [3], we obtain

ρi ‖ θFi j (vi)i ‖2
H1/2

00 (Fi j )
= ρiγ2

ji ‖ θFi j [(ui)i− (u j)i ] ‖2
H1/2

00 (Fi j )
(16)

≤ Cρiγ2
ji (1+ log

Hi

hi
)2|(ui)i− (u j)i |2H1/2(Fi j )

.

Let Qi,Fi j be theL2-projection ontoXi(Fi j ), the restriction ofXi(Ωi) on F̄i j . Using

the triangle and inverse inequalities, and theH1/2- andL2-stability of theQi,Fi j pro-
jection, we have

|(ui)i− (u j)i |2H1/2(Fi j )
(17)

≤ C{|Qi,Fi j [(ui)i− (u j) j ]|2H1/2(Fi j )
+ |Qi,Fi j [(u j) j − (u j)i ]|2H1/2(Fi j )

≤ C {|(ui)i |2H1(Ωi)
+ |(u j) j |2H1(Ω j )

+
1
hi
‖(u j) j − (u j)i‖2L2(Fi j )

}.

Substituting (17) into (16) and usingρiγ2
ji ≤min{ρi ,ρ j} if β ∈ [1/2,∞), we obtain

ρi‖θFi j (vi)i‖2
H1/2

00 (Fi j )
≤ (18)

≤C(1+ log
Hi

hi
)2 {ρi |(ui)i |2H1(Ωi)

+ρ j |(u j) j |2H1(Ω j )
+

ρ j

hi
‖(u j) j − (u j)i‖2L2(Fi j )

}
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≤ C(1+ log
Hi

hi
)2{d̃i(ui ,ui)+ d̃ j(u j ,u j)}.

We now estimate the second term of (15). Using (8), we have

ρi‖θEi jk (vi)i‖2L2(Ei jk )
≤ 2ρi{γ2

jik‖(ui)i− (u j)i‖2L2(Ei jk )
+ γ2

ki j‖(ui)i− (uk)i‖2L2(Ei jk )
}.

Using(ūi)i,Ei jk = (ū j)i,Ei jk and Lemma 4.17 in [3], and the same arguments given in
(17), andρiγ2

jik ≤min{ρi ,ρ j} for β ∈ [1/2,∞), we obtain

ρiγ2
jik‖(ui)i− (u j)i‖2L2(Ei jk )

≤C(1+ log
Hi

hi
)ρiγ2

jik |(ui)i− (u j)i |2H1/2(Fi j )
(19)

≤ C(1+ log
Hi

hi
){ρi |(ui)i |2H1(Ωi)

+ρ j |(u j) j |2H1(Ωi)
+

ρ j

hi
‖(u j) j − (u j)i‖2L2(Fi j )

}

≤ C(1+ log
Hi

hi
){d̃i(ui ,ui)+ d̃ j(u j ,u j)}

and similarly

ρiγ2
ki j‖(ui)i− (uk)i‖2L2(Ei jk )

≤C(1+ log
Hi

hi
){d̃i(ui ,ui)+ d̃k(uk,uk)}. (20)

Hence, by adding (19) and (20), we obtain

ρi‖θEi jk (vi)i‖2L2(Ei jk )
≤C(1+ log

Hi

hi
){d̃i(ui ,ui)+ d̃ j(u j ,u j)+ d̃k(uk,uk)}. (21)

Substituting (18) and (21) into (15), we get

ρi‖∇(vi)i‖2L2(Ωi)
≤C(1+ log

Hi

hi
)2{d̃i(ui ,ui)+ d̃ j(u j ,u j)+ d̃k(uk,uk)}. (22)

We now estimate the second term of the RHS of (13). Note that(vi)i and(vi) j are
defined on different meshes. In addition, the nodal values of(vi)i(x), are defined by
different formulas if a nodex belongs toFi jh or toEi jkh ⊂ ∂Fi j , see (6) and (8). The
same holds for(vi) j(x). These issues must be taken into account when estimating
the second terms of the RHS of (13). We have

‖(vi)i− (vi) j‖2L2(Fi j )
≤ 2{‖(vi)i−Qi,Fi j (vi) j‖2L2(Fi j )

+‖(vi) j −Qi,Fi j (vi) j‖2L2(Fi j )
}

≡ 2{I + II }. (23)

Using (14) and thatwi = θFi j wi +θ∂Fi j
wi for wi ∈ Xi(Ωi)|F̄i j

, we have

I ≤ C{‖θFi j [(vi)i−Qi,Fi j (vi) j ]‖2L2(Fi j )
+‖θ∂Fi j

[(vi)i−Qi,Fi j (vi) j ]‖2L2(Fi j )
}

≡ C{IFi j + I∂Fi j
}. (24)

To estimateIFi j , we first represent(vi) j = θFji (vi) j +θ∂Fji
(vi) j to obtain
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IFi j ≤ 2{‖θFi j {(vi)i−Qi,Fi j θFji (vi) j})‖2L2(Fi j )
+‖θFi j Qi,Fi j θ∂Fji

(vi) j)‖2L2(Fi j )
}

≡ 2{I (1)Fi j + I (2)Fi j }. (25)

Using (6) and (7), we have

I (1)Fi j ≤Cγ2
ji‖θFi j {[(ui)i− (u j)i ]−Qi,Fi j θFji [(ui) j − (u j) j ]}‖2L2(Fi j )

and by adding and subtractingθFi j Qi,Fi j θ∂Fji
[(ui) j − (u j) j ], we obtain

I (1)Fi j ≤ Cγ2
ji{‖θFi j {[(ui)i− (u j)i ]−Qi,Fi j [(ui) j − (u j) j ])}‖2L2(Fi j )

+

+ ‖θFi j Qi,Fi j θ∂Fji
[(ui) j − (u j) j ])}‖2L2(Fi j )

}

≤ Cγ2
ji{‖(ui)i−Qi,Fi j (ui) j‖2L2(Fi j )

+‖(u j)i−Qi,Fi j (u j) j‖2L2(Fi j )
+

+ ∑
E jik⊂∂Fji

h j‖(ui) j − (u j) j‖2L2(E jik )
} ≤Cγ2

ji{‖(ui)i− (ui) j‖2L2(Fi j )
+

+ ‖(u j)i− (u j) j‖2L2(Fi j )
+h j(1+ log

H j

h j
)|(ui) j − (u j) j |2H1/2(Fji )

}

≤ Cγ2
ji{‖(ui)i− (ui) j‖2L2(Fi j )

+‖(u j)i− (u j) j‖2L2(Fi j )
+ (26)

+ (1+ log
H j

h j
)(h j |(ui)i |2H1(Ωi)

+h j |(u j) j |2H1(Ω j )
+‖(ui)i− (ui) j‖2L2(Fi j )

},

where we have used theL2-stability of Qi,Fi j and θFji , the constraint(ūi) j,E jik =
(ū j) j,E jik and Lemma 4.17 in [3]. For the last inequality of (26), we haveused a
similar argument as in (17).

To estimateI (2)Fi j
, first note that

I (2)Fi j
≤Chj‖(vi) j‖2L2(∂Fji )

≤Chj ∑
E jik⊂∂Fji

‖(vi) j‖2L2(E jik )
(27)

and using the definition of(v j)i , see (9), we have

‖(vi) j‖2L2(E jik )
≤ 2{γ2

jik‖(ui) j − (u j) j‖2L2(E jik )
+ γ2

ki j‖(ui) j − (uk) j‖2L2(E jik )
}. (28)

The first term of the RHS of (28) is estimated as in (19) while the second term as

h j‖(ui) j − (uk) j‖2L2(E jik )
≤ 2h j{‖(ui) j − (u j) j‖2L2(E jik )

+‖(u j) j − (uk) j‖2L2(E jik )
}

≤ C(1+ log
H j

h j
){h j |(ui)i |2H1(Ωi)

+h j |(u j) j |2H1(Ω j )
+‖(ui) j − (ui)i‖2L2(Fji )

+h j |(uk)k|2H1(Ω j )
+‖(uk) j − (uk)k‖2L2(Fjk)

}. (29)

Substituting (28) and (29) into (27) and adding with (26), see (25), we obtain
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ρiδ
l i j hi j

IFi j ≤C(1+ log
H
h
){ h j

hi j
d̃i(ui ,ui)+

h j

hi j
d̃ j(u j ,u j)+ ∑

Ei jk⊂∂Fi j

h j

hi j
d̃k(uk,uk)}.

We now estimateI∂Fi j
, see (24). Note that(v̄i) j,Fji = 0 implies a zero average of

Qi,Fi j (vi) j onFi j . We also have(v̄ j)i,Fi j = 0. Using previous arguments, we obtain

I∂Fi j
≤Chi‖(vi)i−Qi,Fi j (vi) j‖2L2(∂Fi j )

≤ Chi{‖(vi)i‖2L2(∂Fi j )
+‖Qi,Fi j θFji (vi) j‖2L2(∂Fi j )

+‖Qi,Fi j θ∂Fji
(vi) j‖2L2(∂Fi j )

}

≤ C ∑
Ei jk⊂∂Fi j

{hi‖(vi)i‖2L2(Ei jk )
+hi‖Qi,Fi j θFji (vi) j‖2L2(Ei jk )

+h j‖(vi) j‖2L2(E jik )
}

≡ C ∑
Ei jk⊂∂Fi j

{I (1)Ei jk
+ I (2)Ei jk

+ I (3)Ei jk
}. (30)

It is not hard to see, using the same argument as priviously, that

I (1)Ei jk
= hi‖γ jik [(ui)i− (u j)i ]+ γki j [(ui)i− (uk)i ]‖2L2(Ei jk )

(31)

≤ C(1+ log
Hi

hi
){γ2

jik(hi |(ui)i |2H1(Ωi)
+hi |(u j) j |2H1(Ω j )

+‖(u j) j − (u j)i‖2L2(Fi j )
)

+ γ2
ki j(hi |(ui)i |2H1(Ωi)

+hi |(uk)k|2H1(Ωk)
+‖(uk)k− (uk)i‖2L2(Fik)

)},

I (2)Ei jk
≤Chiγ2

ji‖Qi,Fi j θFji [(u j) j − (ui) j ]‖2L2(Ei jk )
(32)

≤ Chiγ2
ji{‖Qi,Fi j [(u j) j − (ui) j ]‖2L2(Ei jk )

+‖Qi,Fi j θ∂Fji
[(u j) j − (ui) j ]‖2L2(Ei jk )

}

≤ Cγ2
ji{hi(1+ log

Hi

hi
)|(u j) j − (ui) j‖2H1/2(Fji )

+h j‖(u j) j − (ui) j‖2L2(Ei jk )
}

≤ Cγ2
ji (hi +h j)(1+ log

H
h
)|(u j) j − (ui) j |2H1/2(Fji )

≤ Cγ2
ji (hi +h j)(1+ log

H
h
){|(ui)i |2H1(Ωi)

+ |(u j) j |2H1(Ω j )
+

1
hi
‖(ui)i− (ui) j‖2L2(Fi j )

},

I (3)Ei jk
≤Chj‖(γ jik [(ui) j − (u j) j ]+ γki j [(ui) j − (uk) j ])‖2L2(E jik )

≤C(1+ log
H j

h j
)∗

{(γ2
jik + γ2

jik)(h j |(ui)i |2H1(Ωi)
+h j |(u j) j |2H1(Ω j )

+‖(ui)i− (ui) j‖2L2(Fi j )
)

+γ2
ki j(h j |(ui)i |2H1(Ωi)

+h j |(uk)k|2H1(Ωk)
+‖(uk)k− (uk) j‖2L2(Fjk)

)}. (33)

Substituting (31), (32) and (33) into (30), we obtain

ρiδ
l i j hi j

I∂Fi j
≤C(1+ log

H
h
){hi +hi

hi j
(d̃i(ui ,ui)+ d̃ j(u j ,u j))+ ∑

Ei jk⊂∂Fi j

h jk

hi j
d̃k(uk,uk)}.
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It remains to estimateII in (23). Using aL2-projection property, we have

II ≤ Chi |(vi) j |2H1/2(Fji )
≤C{hi |θFji (vi) j |2H1/2(Fji )

+hi |θ∂Fji
(vi) j |2H1/2(Fji )

}
≡ C{II Fji + II ∂Fji

}. (34)

Using similar arguments as above, we obtain

IIFji ≤Chi(1+ log
H j

h j
)2γ2

ji |(ui) j − (u j) j |2H1/2(Fji )
(35)

≤ C(1+ log
H j

h j
)2γ2

ji{hi |(ui)i |2H1(Ωi)
+hi |(u j) j |2H1(Ω j )

+
hi

h j
‖(ui)i− (ui) j‖2L2(Fi j )

},

II∂Fji
≤C

hi

h j
‖θ∂Fji

(vi) j‖2L2(Fji )
≤Chi ∑

E jik⊂∂Fji

‖(vi) j‖2L2(E jik )
, (36)

and

hi‖(vi) j‖2L2(E jik )
≤C(1+ log

H j

h j
){(γ jik + γki j)∗ (37)

(hi |(ui)i |2H1(Ωi)
+hi |(u j) j |2H1(Ω j )

+
hi

h j
‖(ui) j − (ui)i‖2L2(Fji )

)

+γki j(hi |(uk)k|2H1(Ωk)
+hi |(u j) j |2H1(Ω j )

+
hi

h j
‖(uk) j − (uk)k‖2L2(Fjk)

)}.

Substituting (37) into (36) and adding (35), see (34), we obtain

ρiδ
l i j hi j

II ≤C(1+ log
H j

h j
)(

hi

hi j
d̃i(ui ,ui)+

hi

hi j
d̃ j(u j ,u j)+ ∑

Ei jk⊂∂Fi j

h jk

hi j

hi

h j
d̃k(uk,uk)}.

The proof is complete.

Remark 1.The proof of Lemma 1 also works with minor modifications whenF̄i j =
∂Ωi ∩ ∂Ω j is an union of faces, also, for FETI-DP with corner and average face
constraints only, or with corner and edge constraints only.

Acknowledgements The first author has been partially supported by the Polish NSC grant
2011/01/B/ST1/01179.

References

1. Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coef-
ficients. Comput. Methods Appl. Math.3(1), 76–85 (electronic) (2003). Dedicated to Raytcho
Lazarov



3D FETI-DP DG 125

2. Dryja, M., Galvis, J., Sarkis, M.: A FETI-DP preconditioner for a composite finite element
and discontinuous Galerkin method. SIAM J. Numer. Anal.51(1), 400–422 (2013). DOI
10.1137/100796571. URLhttp://dx.doi.org/10.1137/100796571

3. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory,Springer
Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin (2005)





A Multi-Stage Preconditioner for the Black Oil
Model and Its OpenMP Implementation

Chunsheng Feng1, Shi Shu1, Jinchao Xu2, and Chen-Song Zhang3

1 Introduction

A significant portion of our energy needs is met using oil and gas, and mathemati-
cal models of flow through porous media play an important rolein developing and
managing oil and gas reservoirs. Highly sophisticated mathematical and computa-
tional methods that describe compressible multi-phase multi-component fluid flow
in reservoirs are crucial for optimizing oil reservoir development. Numerical solu-
tions of these highly nonlinear coupled partial differential equations (PDEs) require
moderate to sophisticated algorithms and computing platforms.

When a reservoir’s pressure drops below bubble-point pressure, the hydrocarbon
phase splits into a liquid (oil) phase and a gaseous (gas) phase at the thermodynami-
cal equilibrium. Under these conditions, the flow in the porous media is of the black
oil type: the water phase does not exchange mass with the other phases, and the
liquid and gaseous phases exchange mass with each other. This model is referred to
as the black oil model and is often applied in primary and secondary oil recovery.
In this paper, we will consider a numerical solution of the black oil model, although
the methods discussed here can be extended to other models.

We propose an algorithm for solving the Jacobian systemAx= b arising from the
fully implicit method, which is the most popular method for the black oil model (see
[8]). The proposed method constructs an efficient preconditioner using the frame-
work in [14]. We will focus on the multithread implementation of this method in
modern multicore computer environments. In order to facilitate the discussion and
emphasize the main points, we will use a simplified version ofthe algorithm.

Obtaining a solution of a large-scale reservoir simulationis challenging. The
Jacobian system resulting from the Newton linearization isusually large, sparse,
highly nonsymmetric, and ill-conditioned. However, the Krylov subspace methods,
such as BiCGstab and GMRes, are efficient iterative methods for these linear sys-
tems (see [21]). In order to solve a linear algebraic system of equations efficiently,
a preconditioner is often necessary to accelerate a Krylov subspace method. A pre-
conditioner is an approximation toA−1, and its action on a vector should be easy
to compute. The preconditioners used in reservoir simulators mainly fall into two
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categories: (i) purely algebraic preconditioners and (ii)preconditioners based on the
different properties of the variables.

Category (i) includes block incomplete lower-upper factorization (BILU) meth-
ods [17, 10], nest factorization [3, 4], and SVD-reduction methods [24]. Category
(ii), on the other hand, includes methods based on the understanding that pressure
variables and saturation variables differ from each other in regard to analytic proper-
ties; representative examples are the combinative method [6], the constrained pres-
sure residual (CPR) method [23], and several multi-stage methods [2, 16, 15, 22].
As a key component of these preconditioners, algebraic multigrid (AMG) meth-
ods [7, 20, 12] have also been applied.

There is a trend toward using multicore processors, which helps CPU design-
ers to avoid the high power-consumption problem that comes with increasing chip
frequency. As CPU speeds rise into the 3–4 GHz range, the amount of electrical
power required is prohibitive. Hence, the trend toward multicore processors started
and will continue into the foreseeable future. OpenMP is an application program in-
terface that can be used to explicitly direct multicore (shared memory) parallelism.
It is a specification for a set of compiler directives, library routines, and environ-
ment variables that can be used to specify shared memory parallelism in Fortran
and C/C++ programs.

Several difficulties can arise when using multithread implementation for precon-
ditioned Krylov subspace methods: (i) Some preconditioners use sequential algo-
rithms, like Gauss-Seidel; (ii) OpenMP programs sometimesrequire more memory
space than their corresponding sequential versions do. Whena numerical algorithm
is implemented in OpenMP or any other multithread computer language, it is im-
portant to maintain the convergence rate of the corresponding sequential algorithm.
However, this is not always possible as many numerical algorithms are sequential in
nature. When working with sparse matrices in compressed formats, like the Com-
pressed Sparse Row format, we sometimes need to introduce auxiliary memory
space. This becomes an increasingly heavy burden as the number of threads in-
creases. We will analyze the parallel interpolation and coarse-grid operators in the
setup phase of AMG based on the fact that the coefficient matricesA we consider
are banded. Our results will offer a basis for reducing memory costs.

The rest of the paper is organized as follows: In Section 2, wedescribe the widely
used black oil model and its fully implicit discretization.In Section 3, we introduce
a simplified version of the preconditioner studied in [14] for the black oil model
and show how this method relates to a few well-known methods such as the CPR
method. In Section 4, we give the implementation details of the proposed precondi-
tioner in the shared-memory architecture using OpenMP. Finally, in Section 5, we
report the results of some numerical experiments conductedin a typical multicore
computing environment.
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2 The black oil model

The black oil model is developed based on the assumptions that (i) the reservoir is
isothermal, (ii) the flow in porous media has three phases (liquid, gaseous, water)
and three components (oil, gas, water), (iii) mass transferoccurs between the oil
and gas phase, and (iv) no mass transfer occurs between the water phase and ei-
ther the gas or the oil phases. We use lower- and upper-case subscripts to indicate
three phases—water, oil (the liquid phase), and gas (the gaseous phase)—and the
component of each—water, oil, and gas, respectively.

Let φ and k denote the porosity and permeability, respectively, of theporous
mediumΩ ⊂R3. For theα-phase (α = w,o,g), let Sα , µα , pα , uα , Bα , ρα , andkrα
be the saturation, viscosity, pressure, volumetric velocity, formation volume factor
(FVF), density, and relative permeability, respectively.Moreover, we useRso to de-
note the gas solubility, and we useQWs, QOs, andQGs

1 to denote the volumetric
production rate of water, oil, and gas, respectively. The mass conservation equations
of the black oil model can be written as follows:

∂
∂ t

(
φ

Sw

Bw

)
+∇ ·

(
1
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uw
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Bw
, (1)
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=
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+
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, (3)

where

uα =−kkrα
µα

(
∇Pα −ραg∇z

)
, α = w,o,g (4)

Sw+So+Sg = 1. (5)

Equations (1)–(3) describe the mass conservation of the water, oil, and gas com-
ponents, respectively; (4) is the Darcy’s law for porous media; and (5) represents
the phase saturation balance. Throughout this paper, we assume that the capillary
pressure between each phase is zero, i.e.,Pw = Po = Pg = P.

Among the many possible discretization methods for the above model, we con-
sider only the Fully Implicit method (FIM) [11] in which the Newton linearization
is combined with first-order upstream-weighting finite difference spatial discretiza-
tion; for details, see [8, Chapter 8]. For the sake of simplicity and clarity, we make
two more assumptions:

• All three phases are present during the whole simulation period of the black oil
model; i.e., the transition between the two-phase and the three-phase regions is
ignored.

1 The subscripts indicates that these variables are at the standard conditionsinstead of reservoir
conditions.
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• The well flow rate constraints are modeled by the Peaceman model (see [19]),
and they are treated explicitly; i.e., the well constraintsdo not contribute to the
Jacobian system.

Remark 1 (Phase transition and implicit wells).We note that these two assumptions
are made only so that we can the main ideas of the method as clearly as possible.
In practical implementation, none of these assumptions is applicable: (i) When only
two phases are present in a reservoir grid-cell, we add another primary variable—the
gas solubilityRso or the bubble-point pressurePb—besides oil pressure and satura-
tion as many other simulators do. (ii) Treating well constraints implicitly is impor-
tant to obtain accurate simulation results in a more stable fashion. When implicit
well constraints are present, we get a bordered coefficient matrix; details on how to
treat them can be found in [14].

We eliminateSg from (1)–(4) using (5) and plug (4) into (1)–(3). Moreover, we
choose the incrementsδP, δSw, andδSo as the main solution variables2 and give
the rest of the variables in terms of these main solution variables. In each Newton
iteration, this discretization method gives a Jacobian system of the following type:

A=




A1P A1Sw

A2P A2Sw A2So

A3P A3Sw A3So


 , (6)

whereA1P is the pressure block of the water mass conservation equation; the block
matrix [

A2Sw A2So

A3Sw A3So

]

is the saturation block; andA1Sw, A2P, andA3P are the blocks that couple the pressure
with the non-pressure variables.

The coefficient matrixA of the Jacobian system is often large and sparse, and it is
stored in the block compressed sparse row (BCSR)3 format. From this point on,NP

is used to refer to the total number of pressure unknowns andNSw andNSo are the
numbers of the water and oil saturation unknowns, respectively. We further define
NS= NSw +NSo andN = NP+NS.

Remark 2 (Decoupling strategies).The decoupling technique is a preprocessing step
designed to weaken the coupling between different unknowns. There are many pos-
sible options for decoupling, such as Householder transformations, the IMPES-type
method, and the BSD method based on the least square method. Details regarding
the performance of each and a comparison between them can be found in [2, 16], for
example. For the present study, we apply the alternative block factorization (ABF)
strategy introduced by Bank et al. [5] due to its simplicity and reasonable decou-
pling effects. Investigating efficient and robust decoupling strategies is beyond the
scope of this paper.

2 We denote the solution variable asx := [δP,δSw,δSo]
T .

3 This data structure is similar to the compressed sparse row (CSR) format, but each nonzero entry
is a 3×3 sub-matrix in BCSR.
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3 A multi-stage preconditioner for FIM

It is natural to introduce auxiliary or fictitious problems for different physical un-
knowns and use them to construct a multi-stage (multiplicative) preconditioner. As-
sume that we have the transfer operatorsΠP andΠS from x to the pressure variable
P and the saturations, respectively. LetRbe a relaxation or smoother forA. A multi-
stage preconditioner can be defined in Algorithm 1.

Algorithm 1: A multiplicative preconditioner for the black oil model

Step 0. Given an initial guessx

Step 1.x← x+ΠSBSΠT
S (b−Ax)

Step 2.x← x+ΠPBPΠT
P (b−Ax)

Step 3.x← x+R(b−Ax)

It is easy to see that this algorithm defines a preconditionerB such that

I −BA= (I −RA)(I −ΠPBPΠT
P A)(I −ΠSBSΠT

S A). (7)

The choice of auxiliary problems and their corresponding solvers is crucial to the
overall performance of the preconditionerB. The auxiliary problems should pre-
serve the property of the governing equations of each unknown. We expectA1P to
preserve the ellipticity of the pressure equation, and we expect multilevel solvers
like AMG to solve this auxiliary problem efficiently.

To facilitate our discussion on OpenMP implementation in the next section, we
will use a simple version of Algorithm 1, in which we define

ΠP =

[
IP
0

]
∈ RN×NP and ΠS=

[
0
IS

]
∈ RN×NS,

whereIP ∈RNP×NP andIS∈RNS×NS are identity matrices corresponding to the pres-
sure variables and the saturation variables, respectively. We use one classical AMG
V-cycle [20] as the subspace solverBP, and we apply the block Gauss-Seidel (GS)
method as the subspace solverBS and the relaxationR. For the multithreaded ver-
sion, the usual GS method is replaced by the hybrid GS method.4 This precondi-
tioner is referred to asBMSP in the rest of this paper.

Remark 3 (CPR preconditioner).One well-known special case of Algorithm 1 is the
constrained pressure residual (CPR) preconditioner [23],which can be presented in
the following algebraic form:

BCPR= R(I −AM)+M, (8)

where

4 The standard GS sweep is applied in each thread, and parallel (simultaneous) updating is used
across multiple threads.
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M =

[
BP 0
0 0

]
∈ RN×N and BP≈ A−1

1P is constructed using AMG.

The smootherR is usually defined by the Line SOR smoother or the Incomplete
Factorization methods.BP can often be replaced by one or more AMG cycles. If we
chooseΠP = [IP,0,0]T , then we can rewrite the CPR preconditioner as

I −BCPRA= (I −RA)
(

I −ΠPBPΠT
P A
)
, (9)

which has the exact same form of (7) as forA.

Remark 4 (Block triangular preconditioner).Another simple way to construct an
efficient preconditioner is to chooseR= 0 in (7). In this case, the resulting precon-
ditionerBTRIG can be viewed as a block upper triangular preconditioned with BP as
an approximatedA−1

1P andBS as an approximation of[A2Sw,A2So;A3Sw,A3So]
−1. The

preconditioner, therefore, is an inexact version of the block GS method.

4 Implementation details in OpenMP

In this section, we discuss an OpenMP implementation of the proposed auxil-
iary space preconditioner in Algorithm 1. Using a shared-memory paradigm can
greatly simplify the programming task compared to message-passing implementa-
tions. OpenMP parallel programs are relatively easy to implement, as each proces-
sor has a global view of the entire memory. Parallelism can beachieved by inserting
compiler directives into the code to distribute loop iterations among the processors.
However, performance may suffer from the poor spatial locality of physically dis-
tributed shared data [18].

In this paper, we will not discuss general tasks such as sparse-matrix multiplica-
tions for OpenMP. Interested readers are referred to Olikeret al. [18] and references
therein for related discussions. We will focus on one part ofour algorithm, namely
the setup stage of the classical AMG method and propose a simple but efficient
algorithm for constructing standard prolongation and coarse-level operators using
OpenMP. We show that if the bandwidth of the sparse coefficient matrix A is rela-
tively small, then much less memory is needed.

SupposeA ∈ Rn×n is symmetric. LetGA(V,E) denote the graph of the matrix
A whereV is the set of vertices (i.e., unknowns), and letE be the set of edges
(i.e., connections that correspond to nonzero matrix entries). Suppose the index set
of verticesV is split into a setC of coarse-level vertices and a setF of fine-level
vertices, such that

V =C∪F and C∩F =∅,

and we denotenc as the cardinality ofC, i.e., the number ofC-vertices. Assume that
FC is the map from F-vertices to C-vertices.
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We defineNi := { j ∈V : Ai j 6= 0, j 6= i}, and forθ ∈ [0,1) we denote

Si(θ) :=

{
j ∈ Ni : −Ai j ≥ θ ·max

k6=i
(−Aik)

}
.

Let DF,s
i := Si(θ)∩F, DC,s

i := Si(θ)∩C andDw
i := Ni \

(
DC,s

i ∪DF,s
i

)
. We can now

define

Fi :=
{

j ∈ DF,s
i : i and j without the same dependedC-vertices

}
.

Let Âi j := 0 if Aii Ai j > 0, and letÂi j := Ai j otherwise. We denoteP= (Pi jc)∈Rn×nc

as the standard prolongation matrix where entry

Pi jc =





−1
Aii+ ∑

k∈Dw
i ∪Fi

Aik

(
Ai j + ∑

k∈DF,s
i \Fi

AikÂk j

∑
m∈DC,s

i

Âkm

)
, i ∈ F, j ∈ DC,s

i , jc = FC[ j],

1.0, i ∈C, jc = FC[i],

0.0, otherwise.

As the matrixP is sparse and stored in the CSR format, we need to use an auxil-
iary integer marker calledMP to quickly locate the column index of each non-zero
entry (see for example in BoomerAMG of hypre [1]). In fact, togenerate thei-th
row of P, we define that, for 0≤ j ≤ n−1,

MP[ j] :=





Jjc, j ∈ DC,s
i , jc = FC[ j],

−2− i, j ∈ DF,s
i \Fi ,

−1, otherwise,

(10)

whereJjc is the position ofPi jc entry in the column index array of the CSR storage
of P. In the OpenMP implementation, we have to allocate the marker MP for all
OpenMP threads. The length of eachMP is n, and the total length ofMP for all
threads is thenNT ×n whereNT is the total number of OpenMP threads. WhenNT

is large, the memory cost forMP is considerable.
Assume thatbn = bl + br is the bandwidth ofA, wherebl and br are the left

and right bandwidths for matrixA, respectively. When the parallel partition ofV
is continuously distributed in a balanced fashion to each OpenMP thread (i.e., the
size difference between each thread does not exceed one), wecan easily see that
the length ofMP that is actually used is much smaller thann (Fig. 1). Taking into
account that the matrix is banded, we can get the following estimates of the length
Lt

P and the minimal offsetMt
l (P)[13]:

Lt
P≤min(n,

n
NT

+2bn) and Mt
l (P)≥max

(
0,

n
NT

(t−1)−2bn
)
. (11)

The coarse grid operator for the multigrid method can be built using the Galerkin
relationAc = (Ac

i j )nc×nc := PTAP, where
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Ac
i j = ∑

k1

∑
l1

Pk1iAk1l1Pl1 j , i, j = 1, · · · ,nc. (12)

Similar to the implementation of the prolongation operator, we need to allocate two

 

P
T
l1l1

 

P
T
l1k1

 

P
T
l2l2

 

P
T
l2,k2

+

+ +

t-th

 

Ak1k1

 

Ak1m1

 

Ak2k2

 

Ak2m2

+ +MA

M
t
l (A) M

t
u(A)M̃A

 

Pm1m1

 

Pm1n1

 Pm2m2

 

Pm2n2

M
t
l (P ) M

t
u(P )M̃P

+ +MP

P
T
nc×n

An×n Pn×nc

Fig. 2 Construction of the Galerkin coarse-level operatorAc = PTAP. Here,Mt
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the lower and upper column indices of the non-zero entries inA of thet-th OpenMP thread.

auxiliary arrays calledMA andMP (Fig. 2). The length ofMA is n and the length of
MP is nc. By taking into account the characteristic of the banded sparse matrices of
the coarse operator, we can get the estimation formula forMA andMP. The actual
lengthLt

A and the offsetMt
l (A) can be calculated using

Lt
A≤min(n,

n
NT

+2bn) and Mt
l (A)≥

n
NT

t−bn. (13)
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Remark 5 (How much memory can we save?).If we do not consider the possibility
that the bandwidth ofA can be much smaller thann, then we will need two auxiliary
arrays with lengthnNT . However, as noted above, we only need two arrays of length
n+2bnNT . Whenn≫ bn andNT is relatively large, we can save a lot of memory
by using these improved estimates. In fact, this will reducenot only storage cost but
also the time needed to allocate and initialize memory.

5 Numerical experiments

In this section, we design several numerical experiments and analyze the perfor-
mance of OpenMP implementation of the preconditioner proposed in Section 3. We
use a HP desktop PC equipped with two Intel Xeon X5676 (3.07GHz, 12 cores) and
96GB RAM. The experimental environment is Cent OS 6.2 and GCC4.4.6 (with an
“–O2” optimization parameter).

Our example is adapted from the second data set of the Tenth SPE Comparative
Solution Project ([9]), which is designed to compare the ability of upscaling ap-
proaches used by various participants to predict the performance of water-flooding
in a simple but highly heterogeneous black oil reservoir described by a fine-scale
(60×220×85) regular Cartesian geological model. This model has a simple geom-
etry, with no top structure or faults. The model dimensions are 1200×2200×170
(ft). The top 70 ft (35 layers) represents the Tarbert formation, and the bottom 100 ft
(50 layers) represents the Upper Ness formation. There is one injector in the center
of the field and a producer located at each of the four corners.The total simula-
tion time is 2,000 days. The purpose of this benchmark is to compare the models in
regard to accuracy and computational cost.

For our purpose, we modify the SPE10 example as a three-phaseblack oil test by
changing the properties of the fluid. Hence, the total numberof unknowns of each
Jacobian system isN= 3.3M and the size of the pressure equation isn=NP = 1.1M.
We employ the GMRes method as our iterative solver for solving linear Jacobian
systems. The stopping criteria is that the relative residual in the Euclidian norm
is less than 10−4. In Table 1, we summarize the performance of our simulator, in
which #Timesteps is the total number of time steps, #Newton is the total number of
Newton iterations, #Linear is the total number of linear iterations, Solver Time is
the total wall-time for the linear solution steps, Aver. Newton is the average number
of Newton iterations in each time step, and Aver. Linear Iteris the average number
of linear iterations in each Newton iteration.

Table 1 Performance of preconditioned GMRES for solving the three-phase SPE10 problem.

Preconditioner #Timesteps #Newton #Linear Solver Time (hour)Aver. Newton Aver. Linear Iter
BMSP 736 997 32829 6.60 1.35 32.92
BCPR 796 1253 57723 20.15 1.57 41.50
BTRIG 805 2045 103249 17.47 2.54 46.34
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In order to further demonstrate the performance of the proposed preconditioner,
we select four typical Jacobian linear systems from different periods of the 2,000
days of simulation. They are all from the first Newton iteration in different time lev-
els and the time step sizes are the same (each is five days). Using these examples, we
test the performance of the three different preconditioners,BMSP, BCPR, andBTRIG,
given in Section 3. The proposed preconditioner in Algorithm 1 results in various
preconditioners depending on the different choices of auxiliary problem solvers/s-
moothers. In this section, we only compare the performance of these three simple
choices.

The total number of iterations and the wall-time in seconds for each of these
methods is reported in Tables 2–4, in whichNT is the total number of OpenMP
threads. Moreover, the respective OpenMP speedup for thesemethods are listed
along with the wall-times. We observe that these three methods are very robust for
the test problems and that their OpenMP versions can deliverabout three times
speedup compared with the corresponding serial versions. Furthermore, the numer-
ical tests show that each component,BS, BP, andR, plays a role such that dropping
any of them would result in at least 20% to 30% performance lost in CPU time.
And, for more difficult problems, this drop is expected to be more severe.

Table 2 Number of iterations, wall-times (seconds), and OpenMP speedups of BMSP.

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 32 31.34 — 34 32.79 — 34 32.77 — 32 31.49 —
2 32 17.72 1.77 34 18.48 1.77 34 18.46 1.78 32 17.68 1.78
4 32 13.44 2.33 34 13.19 2.49 34 13.14 2.49 32 12.60 2.50
8 33 11.02 2.84 34 11.20 2.93 34 11.18 2.93 32 10.80 2.91
12 33 10.99 2.85 34 11.27 2.91 34 10.84 3.02 32 10.77 2.92

Table 3 Number of iterations, wall-times (seconds), and OpenMP speedups of BCPR.

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 45 39.01 — 45 38.90 — 43 37.36 — 42 36.56 —
2 45 21.95 1.78 45 21.90 1.78 43 21.00 1.78 42 20.67 1.77
4 45 15.42 2.53 45 15.44 2.52 44 15.19 2.46 42 14.56 2.51
8 45 13.12 2.97 45 13.09 2.97 44 12.86 2.90 42 12.35 2.96
12 45 13.19 2.96 45 13.18 2.95 43 12.66 2.95 42 11.93 3.07

Finally, we test the memory cost for the AMG setup stage, which is crucial in
constructingBP. As discussed in Section 4, the auxiliary arrays introducedto assist
in assembling the sparse matrix could waste a lot of preciousmemory resources
during the AMG setup stage. And, by using the improved boundsgiven in (11) and
(13), we are able to use much shorter auxiliary arrays than the standard implemen-
tation in [1] and this can save a lot memory, especially when the bandwidth of the
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Table 4 Number of iterations, wall-times (seconds), and OpenMP speedups of BTRIG.

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 49 41.69 — 49 41.48 — 48 40.96 — 44 37.75 —
2 49 23.42 1.78 48 22.93 1.81 48 22.87 1.79 44 21.25 1.78
4 49 16.67 2.50 49 16.62 2.50 48 16.30 2.51 44 15.37 2.46
8 49 14.30 2.91 48 13.94 2.98 48 13.91 2.95 44 12.92 2.92
12 48 14.00 2.98 48 13.99 2.97 47 13.58 3.02 44 12.99 2.91

sparse matrixA is small or the number of OpenMP threads is large. Let Length(MP)
be the total length ofMP, and let Length(MA) be the total length ofMA. We compare
these two auxiliary arrays (MA andMP) on the finest level as an example in Table 5.
Numerical results show that this simple improvement can save about 87% storage
when 12 threads are used on the finest level.

Table 5 Auxiliary memory storage on the finest level of the AMG setup for thepressure equation.

Length(MP) Length(MA)
NT NT ×n LP Saving (%) NT ×n LA Saving (%)
2 2,188,844 1,200,022 45.1 2,188,844 1,147,222 47.6
4 4,377,688 1,305,622 70.2 4,377,688 1,252,822 71.3
6 6,566,532 1,411,222 78.5 6,566,532 1,358,422 79.3
8 8,755,376 1,516,822 82.7 6,566,532 1,464,022 83.3
12 13,133,064 1,728,022 86.8 13,133,064 1,675,222 87.2

Acknowledgements The authors appreciate the anonymous referee for his or her suggestions
which led to a better presentation of our method. The authors would like to thank RIPED,
PetroChina, for providing the modified SPE10 test. Feng is partially supported by NSFC Grant
11201398. Shu is partially supported by NSFC Grants 91130002and 11171281 and by the Sci-
entific Research Fund of the Hunan Provincial Education Department of China #12A138. Xu is
partially supported by NSFC Grant 91130011. Zhang is partially supported by the Dean’s Startup
Fund, Academy of Mathematics and System Sciences and by NSFC Grant 91130011.

References

1. hypre: A scalable linear solver library. URLhttps://computation.llnl.gov/
casc/linear_solvers/sls_hypre.html

2. Al-Shaalan, T., Klie, H., Dogru, A., Wheeler, M.: Studiesof Robust Two Stage Preconditioners
for the Solution of Fully Implicit Multiphase Flow Problems. In:SPE Reservoir Simulation
Symposium (2009)

3. Appleyard, J., Cheshire, I.: Nested factorization. In: SPE Reservoir Simulation Symposium
(1983)

4. Appleyard, J., Cheshire, I., Pollard, R.: Special techniques for fully implicit simulators. In:
Proceedings of the European Symposium on Enhanced Oil Recovery, Bournemouth, England,
pp. 395–408 (1981)



138 C. Feng, S. Shu, J. Xu and C.-S. Zhang

5. Bank, R.E., Chan, T.F., Coughran Jr., W.M., Smith, R.K.: Thealternate-block-factorization
procedure for systems of partial differential equations. BIT29(4), 938–954 (1989)

6. Behie, A., Vinsome, P.: Block iterative methods for fully implicit reservoir simulation. Old
SPE Journal22(5), 658–668 (1982)

7. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations.
In: Sparsity and its applications (Loughborough, 1983), pp.257–284. Cambridge Univ. Press,
Cambridge (1985)

8. Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media,
vol. 2. Society for Industrial Mathematics (2006)

9. Christie, M., Blunt, M.: Tenth SPE Comparative Solution Project: A Comparison of Upscaling
Techniques. SPE Reservoir Evaluation & Engineering4(4), 308–317 (2001)

10. Concus, P., Golub, G., Meurant, G.: Block preconditioning for the conjugate gradient method.
SIAM J. Sci. Statist. Comput6(1) (1985)

11. Douglas, Jr., J., Peaceman, D.W., Rachford, D.: A method for calculating multi-dimensional
displacement. Transaction of American Institute of Mining, Metallurgical, and Petroleum
Engineers216, 297–306 (1959)

12. Falgout, R.: An introduction to algebraic multigrid. Computing in Science and Engineering
8(6), 24 (2006)

13. Feng, C., Shu, S., Yue, X.: An Improvement for the OpenMP Version BoomerAMG. In:
Proceedings of CCF HPC CHINA 2012, Zhangjiajie, China, pp. 321–328 (2012)

14. Hu, X., Liu, W., Qin, G., Xu, J., Yan, Y., Zhang, C.: Development of a fast auxiliary subspace
pre-conditioner for numerical reservoir simulators. In: SPE Reservoir Characterization and
Simulation Conference (2011)

15. Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative solution methods for modeling
multiphase flow in porous media fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926
(electronic) (2003)

16. Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Decouplingpreconditioners in the implicit paral-
lel accurate reservoir simulator (IPARS). Numer. Linear Algebra Appl.8(8), 537–549 (2001).
Solution methods for large-scale non-linear problems (Pleasanton, CA, 2000)

17. Meyerink, J.: Iterative methods for the solution of linear equations based on incomplete block
factorization of the matrix. In: SPE Reservoir Simulation Symposium (1983)

18. Oliker, L., Li, X., Husbands, P., Biswas, R.: Effects of Ordering Strategies and Programming
Paradigms on Sparse Matrix Computations. SIAM Review44(3), 373–393 (2002)

19. Peaceman, D.W.: Presentation of a horizontal well in numerical reservoir simulation. In: The
11th SPE Symposium on Reservoir Simulation, SPE 21217 (1991)
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A FETI-DP algorithm for incompressible Stokes
equations with continuous pressures

Xuemin Tu1 and Jing Li2

1 Introduction

The FETI-DP algorithm was first extended to solving incompressible Stokes equa-
tions by Li [3], where a Dirichlet preconditioner was considered and the subdomain
average pressure degrees of freedoms were selected as a primal constraint, in addi-
tion to the coarse level primal velocity constraints. The resulting coarse problem is
a saddle point problem. The condition number bound is independent of the number
of subdomains and grows only polylogarithmically with the size of the individual
subdomain problems.

Recently, Kim, Lee, and Park [2] introduced a different FETI-DP formulation
for this problem, where no pressure variables are selected as coarse level primal
variables and the resulting coarse level problem is symmetric positive definite. Only
the lumped preconditioner is considered in their paper.

Both approaches mentioned above are valid only for discretizations with a dis-
continuous pressure. Discontinuous pressures have also been used in domain de-
composition algorithms for similar type saddle-point problems; see for example
[1, 5, 7].

In this paper, we propose a FETI-DP algorithm for incompressible Stokes using
either a lumped or a Dirichlet preconditioner with continuous pressure discretiza-
tion; see also [4, 8] for more details. Our coarse problem includes no pressure vari-
ables and is symmetric positive definite.

2 Discretization and domain decomposition

The weak solution of the incompressible Stokes problem, on abounded, two-
dimensional polygonal domainΩ with a zero Dirichlet boundary condition, is given
by: find u∗ ∈

(
H1

0(Ω)
)2

= {v ∈ (H1(Ω))2
∣∣ v = 0 on ∂Ω} and p∗ ∈ L2(Ω), such

that {
a(u∗,v)+b(v, p∗) = (f,v), ∀v ∈

(
H1

0(Ω)
)2
,

b(u∗,q) = 0, ∀q∈ L2(Ω) ,
(1)

where

1Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-
7594, U.S.A. e-mail:xtu@math.ku.edu ·2 Department of Mathematical Sciences, Kent State
University, Kent, OH 44242, U.S.A. e-mail:li@emath.kent.edu
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a(u∗,v) =
∫

Ω
∇u∗ ·∇v, b(u∗,q) =−

∫

Ω
(∇ ·u∗)q, (f,v) =

∫

Ω
f ·v.

We note that the solution of (1) is not unique, with the pressure p∗ determined only
up to an additive constant.

A Q2-Q1 Taylor-Hood mixed finite element is used in this paper to solve (1).
The domainΩ is partitioned into shape-regular rectangular elements ofcharacter-
istic sizeh. The pressure finite element space,Q⊂ L2(Ω), is taken as the space
of continuous piecewise bilinear functions while the velocity finite element space,
W ∈

(
H1

0(Ω)
)2

, is formed by the continuous piecewise biquadratic functions.
The finite element solution(u, p) ∈W

⊕
Q of (1) satisfies

[
A BT

B 0

][
u
p

]
=

[
f
0

]
, (2)

whereA, B, andf represent, respectively, the restrictions ofa(·, ·), b(·, ·) and(f, ·) to
the finite-dimensional spacesW andQ. We use the same notation in this paper to
represent both a finite element function and the vector of itsnodal values. The solu-
tion of (2) always exists and is uniquely determined when thepressure is considered
in the quotient spaceQ/Ker(BT), whereKer(BT) represents the kernel ofBT and is
the space of constant pressures inQ. In this paper, whenq∈Q/Ker(BT), q always
has a zero average.

The Taylor-Hood mixed finite element spaceW×Q is inf-sup stable in the sense
that there exists a positive constantβ , independent ofh, such that, in matrix/vector
form,

sup
w∈W

〈q,Bw〉2
〈w,Aw〉 ≥ β 2 〈q,Zq〉 , ∀q∈Q/Ker(BT). (3)

Here, as elsewhere in this paper,〈·, ·〉 represents the inner product of two vectors.
The matrixZ represents the mass matrix defined on the pressure finite element space
Q, i.e., for anyq∈ Q, ‖q‖2

L2 = 〈q,Zq〉. It is easy to see, cf. [6, Lemma B.31], that
Z is spectrally equivalent toh2I for two-dimensional problems, whereI represents
the identity matrix of the same dimension, i.e., there existpositive constantsc and
C, such that

ch2I ≤ Z≤Ch2I . (4)

Here, as in other places of this paper,c andC represent generic positive constants
which are independent of the mesh sizeh and the subdomain diameterH (discussed
below).

The domainΩ is decomposed intoN non-overlapping polygonal subdomains
Ωi , i = 1,2, ...,N. Each subdomain is the union of a bounded number of elements,
with the diameter of the subdomain on the order ofH. The nodes on the interface of
neighboring subdomains match across the subdomain boundariesΓ = (∪∂Ωi)\∂Ω .
Γ is composed of subdomain edges, which are regarded as open subsets ofΓ , and
of the subdomain vertices, which are end points of edges.

The velocity and pressure finite element spacesW andQ are decomposed into
W = WI

⊕
WΓ , Q = QI

⊕
QΓ , whereWI andQI are direct sums of independent
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subdomain interior velocity spacesW(i)
I , and interior pressure spacesQ(i)

I , respec-
tively. WΓ andQΓ are subdomain boundary velocity and pressure spaces, respec-
tively. All functions inWΓ andQΓ are continuous across the subdomain boundaries
Γ ; their degrees of freedom are shared by neighboring subdomains.

To formulate our algorithm, we introduce a partially sub-assembled subdomain
boundary velocity spacẽWΓ ,

W̃Γ = WΠ
⊕

W∆ = WΠ
⊕
(

N⊕

i=1

W(i)
∆

)
.

HereWΠ is the continuous primal velocity space which forms the coarse level prob-
lem of the proposed algorithm. In this paper, we consider twochoices ofWΠ . The
first choice is with thatWΠ is spanned by all the subdomain corner velocity nodal
basis functions. In the second choice,WΠ is spanned by both subdomain corner
velocity nodal basis functions and edge-average finite element basis functions. We
note that the appropriate choice ofWΠ depends on the preconditioner used in the
algorithm. The first choice is sufficient for using the lumpedpreconditioner, but for
the Dirichlet preconditioner the second one has to be used.

The spaceW∆ is the direct sum of subdomain dual interface velocity spacesW(i)
∆ .

The functionsw∆ in W∆ are in general not continuous acrossΓ . In order to enforce
their continuity, we construct a matrixB∆ from {0,1,−1} such that for anyw∆ in
W∆ , each row ofB∆ w∆ = 0 implies that the two independent degrees of freedom
from the neighboring subdomains be the same. The range ofB∆ applied onW∆ is
denoted byΛ , the vector space of the Lagrange multipliers. A positive scaling factor
δ †(x) for each nodex on the subdomain boundaryΓ is defined asδ †(x) = 1/Nx,
whereNx represents the number of subdomains sharingx. Multiplying the entries
on each row ofB∆ by the corresponding scaling factorδ †(x) gives usB∆ ,D.

The original linear system (2) is equivalent to: find(uI , pI , u∆ , uΠ , pΓ , λ ) ∈
WI

⊕
QI
⊕

W∆
⊕

WΠ
⊕

QΓ
⊕

Λ , such that



AII BT
II AI∆ AIΠ BT

Γ I 0

BII 0 BI∆ BIΠ 0 0

A∆ I BT
I∆ A∆∆ A∆Π BT

Γ ∆ BT
∆

AΠ I BT
IΠ AΠ∆ AΠΠ BT

Γ Π 0

BΓ I 0 BΓ ∆ BΓ Π 0 0

0 0 B∆ 0 0 0







uI

pI

u∆

uΠ

pΓ

λ




=




fI

0

f∆

fΠ

0

0




, (5)

where the sub-blocks in the coefficient matrix represent therestrictions ofA and
B of (2) to appropriate subspaces. The leading three-by-three block can be ordered
to become block diagonal with each diagonal block representing one independent
subdomain problem.

Corresponding to the one-dimensional null space of (2), a basis of the one-
dimensional null space of (5) has the form
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(
0, 1pI , 0, 0, 1pΓ , −B∆ ,D[BT

I∆ BT
Γ ∆ ]

[
1pI

1pΓ

])
, (6)

where 1pI ∈QI and 1pΓ ∈QΓ represent vectors with each entry equal to 1.

3 A reduced symmetric positive semi-definite system

The system (5) can be reduced to a Schur complement problem for the variables
(pΓ , λ ). The leading four-by-four block of the coefficient matrix in(5) is invertible
and the variables(uI , pI , u∆ , uΠ ) can be eliminated and we obtain

G

[
pΓ

λ

]
= g, (7)

where

G=

[
BΓ I 0 BΓ ∆ BΓ Π

0 0 B∆ 0

]



AII BT
II AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆ I BT
I∆ A∆∆ A∆Π

AΠ I BT
IΠ AΠ∆ AΠΠ




−1


BT
Γ I 0

0 0

BT
Γ ∆ BT

∆

BT
Γ Π 0


 , (8)

and

g=

[
BΓ I 0 BΓ ∆ BΓ Π

0 0 B∆ 0

]



AII BT
II AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆ I BT
I∆ A∆∆ A∆Π

AΠ I BT
IΠ AΠ∆ AΠΠ




−1


fI

0

f∆

fΠ


 . (9)

We denote

Ã=




AII BT
II AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆ I BT
I∆ A∆∆ A∆Π

AΠ I BT
IΠ AΠ∆ AΠΠ


 and BC =

[
BΓ I 0 BΓ ∆ BΓ Π

0 0 B∆ 0

]
. (10)

It is easy to see that−G is the Schur complement of the coefficient matrix of (5) with
respect to the last two row blocks. By the Sylvester law of inertia, G is symmetric
positive semi-definite. The null space ofG can be derived from the null space of the
original coefficient matrix of (5), and its basis has the form, cf. (6),

(
1pΓ , −B∆ ,D[BT

I∆ BT
Γ ∆ ]

[
1pI

1pΓ

])
.



FETI-DP for Stokes 145

Let X = QΓ
⊕

Λ . The range ofG, denoted byRG, is the subspace ofX, which is
orthogonal to the null space ofG and has the form

RG =

{[
gpΓ

gλ

]
∈ X

∣∣∣ gT
pΓ 1pΓ −gT

λ

(
B∆ ,D[B

T
I∆ BT

Γ ∆ ]

[
1pI

1pΓ

])
= 0

}
. (11)

The restriction ofG to its rangeRG is positive definite.
The main operation in the implementation of multiplyingG by a vector is the

product ofÃ−1 with a vector, cf. (8) and (9). We denote

Arr =




AII BT
II AI∆

BII 0 BI∆

A∆ I BT
I∆ A∆∆


 , AΠ r = AT

rΠ =
[
AΠ I BT

IΠ AΠ∆
]
, fr =




fI

0

f∆


 ,

and define the Schur complement

SΠ = AΠΠ −AΠ rA
−1
rr ArΠ .

By the Sylvester law of inertia,SΠ is symmetric positive definite and defines the
coarse level problem in the algorithm. The product




AII BT
II AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆ I BT
I∆ A∆∆ A∆Π

AΠ I BT
IΠ AΠ∆ AΠΠ




−1


fI

0

f∆

fΠ




can then be represented by
[

A−1
rr fr

0

]
+

[
−A−1

rr ArΠ

IΠ

]
S−1

Π
(
fΠ −AΠ rA

−1
rr fr

)
,

which requires solving the coarse level problem once and independent subdomain
Stokes problems with Neumann type boundary conditions twice.

4 Preconditioners and condition number bounds

Both the lumped and the Dirichlet preconditioners are proposed here for solving (7).
We define

Ṽ = WI

⊕
QI

⊕
W∆

⊕
WΠ ,

and its subspace

Ṽ0 =
{

w= (wI , pI , w∆ , wΠ ) ∈ Ṽ : BII wI +BI∆ w∆ +BIΠ wΠ = 0
}
.
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We note that〈·, ·〉Ã defines an inner product oñV0. We denote the restriction operator

from Ṽ ontoW∆ by R̃∆ such that for anyv= (wI , pI , w∆ , wΠ ) ∈ Ṽ, R̃∆ v= w∆ .
The lumped preconditioner is given by

M−1
L =

[
1
h2 IpΓ

M−1
L,λ

]
,

whereIpΓ is the identity matrix of the same length aspΓ andM−1
L,λ =B∆ ,DR̃∆ ÃR̃T

∆ BT
∆ ,D.

Let M−1
D,λ = B∆ ,DH∆ BT

∆ ,D. Then the Dirichlet preconditioner is defined as

M−1
D =

[
1
h2 IpΓ

M−1
D,λ

]
,

whereH∆ is the direct sum of the discrete subdomain harmonic extension operators.
The following lemma is used for obtaining the upper bound estimate in Theorem

1, and it is valid for both preconditioners, denoted here byM−1.

Lemma 1. For any v∈ Ṽ0,
〈
M−1BCv,BCv

〉
≤Φ(H,h)

〈
Ãv,v

〉
. Here, for the lumped

preconditioner,Φ(H,h) =C(H/h)(1+ log(H/h)) with only corner variables in the
coarse space;Φ(H/h) =C(H/h) with both corner and edge-average variables. For
the Dirichlet preconditioner,Φ(H,h) = C(1+ log(H/h))2 with both corner and
edge-average coarse variables.

The second lemma is used for the lower bound estimate. For thelumped pre-
conditioner, the corner primal constraints are sufficient for the coarse space to prove
this lemma. However, for the Dirichlet preconditioner, both corner and edge-average
constraints have to be included in the coarse space.

Lemma 2. For any given y= (gpΓ ,gλ ) ∈ RG, there exits v∈ Ṽ0, such that BCv= y,

and
〈

Ãv,v
〉
≤ C

β 2

〈
M−1y,y

〉
.

Theorem 1.For all x = (pΓ ,λ ) ∈ RM−1G,

cβ 2 〈Mx,x〉 ≤ 〈Gx,x〉 ≤Φ(H,h)〈Mx,x〉 ,

whereΦ(H,h) is as defined in Lemma 1 andβ is the inf-sup constant of (3).

5 Numerical experiments

We solve the incompressible Stokes problem in the square domain Ω = [0,1]×
[0,1]. Zero Dirichlet boundary conditions are used. The right-hand side functionf is
chosen such that the exact solution is
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Table 1 Performance with the lumped preconditionerM−1
L .

Vertex Vertex and edge
H/h #sub λmin λmax iter λmin λmax iter

8 4×4 0.31 32.28 31 0.31 4.30 19

8×8 0.31 37.25 46 0.31 4.50 20

16×16 0.31 38.40 51 0.31 4.53 21

24×24 0.31 38.62 51 0.31 4.55 21

32×32 0.31 38.68 51 0.31 4.55 21

#sub H/h λmin λmax iter λmin λmax iter

8×8 4 0.30 15.92 34 0.30 3.21 18

8 0.31 37.25 46 0.30 4.50 20

12 0.31 60.62 56 0.31 6.65 24

16 0.31 85.32 62 0.31 8.87 27

24 0.31 137.49 73 0.31 13.40 32

u =

[
sin3(πx)sin2(πy)cos(πy)

−sin2(πx)sin3(πy)cos(πx)

]
and p= x2−y2.

TheQ2-Q1 Taylor-Hood mixed finite element is used for the finite element solu-
tion. The preconditioned system is solved by a CG iteration;the iteration is stopped
when theL2−norm of the residual is reduced by a factor of 10−6.

Table 1 shows the minimum and maximum eigenvalues of the iteration matrix
M−1

L G, and the iteration counts. Two different coarse level spaces are tested in the
experiments: the coarse space spanned by only the subdomaincorner velocities, and
the coarse space spanned by both the subdomain corner and thesubdomain edge-
average velocities. The additional edge-average velocitycomponents in the coarse
level problem improve the convergence rate even though theyare not necessary for
the analysis.

Table 2 shows the performance of our algorithm for solving the same problem
with the Dirichlet preconditioner. For this case, the additional edge-average velocity
components included in the coarse level space are necessary, which is consistent
with our theory.

Acknowledgements This work was supported in part by National Science Foundation Contract
No. DMS-1115759.
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Table 2 Performance with the Dirichlet preconditionerM−1
D .

Vertex Vertex and edge
H/h #sub λmin λmax iter λmin λmax iter

8 4×4 0.30 4.40 18 0.30 3.04 17

8×8 0.29 5.03 24 0.30 3.50 18

16×16 0.26 5.28 25 0.30 3.92 19

24×24 0.24 5.33 25 0.30 4.10 19

32×32 0.23 5.36 25 0.30 4.18 19

#sub H/h λmin λmax iter λmin λmax iter

8×8 4 0.27 4.15 21 0.30 3.15 17

8 0.29 5.03 24 0.30 3.50 18

12 0.29 5.60 25 0.30 3.92 18

16 0.30 6.04 25 0.30 4.24 18

24 0.30 6.70 26 0.30 4.71 19
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Generating Equidistributed Meshes in 2D via
Domain Decomposition

Ronald D. Haynes1 and Alexander J. M. Howse1

1 Introduction

There are many occasions when the use of a uniform spatial grid would be pro-
hibitively expensive for the numerical solution of partialdifferential equations
(PDEs). In such situations, a popular strategy is to generate an adaptive mesh by
either varying the number of mesh points, the order of the numerical method, or the
location of mesh points throughout the domain, in order to best resolve the solution.
It is the latter of these options, known asmoving mesh methods, which is our focus.
In this case the physical PDE of interest is coupled with equations which adjust the
position of mesh points to best “equidistribute” a particular measure of numerical
error. This coupled system of equations is solved to generate the solution and the
corresponding mesh simultaneously, see [7] for a recent overview.

A simple method for adaptive grid generation in two spatial dimensions is out-
lined in [8] by Huang and Sloan, in which a finite difference two dimensional adap-
tive mesh method is developed by applying a variation of de Boor’s equidistribution
principle (EP) [1, 2]. The equidistribution principle states that an appropriately cho-
sen mesh should equally distribute some measure of the solution variation or com-
putational error over the entire domain. Mackenzie [9] extends upon the work of
[8] by presenting a finite volume discretization of the mesh equations, as well as an
efficient iterative approach for solving these equations, referred to as “an alternating
line Gauss-Seidel relaxation approach”.

In this paper, we propose a parallel domain decomposition (DD) solution of the
2D adaptive method of [8]. In Section 2 we review the derivation of the mesh PDEs
of [8] and discuss possible boundary conditions. In Sections 3 and 4 we present
classical and optimized Schwarz methods for the generationof 2D equidistributed
meshes, and in Section 5 we describe the numerical implementation of this approach
and provide numerical results.

2 2D Mesh Generation

To begin, we review the derivation of the equations which govern mesh equidistri-
bution in two spatial dimensions from [8], defining a mesh in the physical variables
(x,y) whichbestresolves a given functionu(x,y). Letx = [x,y]T be the spatial coor-

1Memorial University of Newfoundland, Department of Mathematics & Statistics, St. John’s, NL,
Canada A1C 5S7 e-mail:{rhaynes}{z37ajmh}@mun.ca
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dinates of a mesh in a 2D physical domain,Ωp. We introduce the coordinate trans-
formationx = x(ξξξ ), whereξξξ = [ξ ,η ]T denotes the spatial coordinates on the com-
putational domain,Ωc = [0,1]× [0,1]. Here we determine a mesh which equidis-
tributes the arc-length ofu(x,y) overΩp. The scaled arc-length variation ofu along
the arc element fromx to x+dx can be expressed as

ds= [a2(du)2+dxTdx]1/2 = [dxTMMMdx]1/2, (1)

whereMMM = a2∇∇∇u ·∇∇∇uT + III anda ∈ [0,1] is a user specified relaxation parameter.
The extreme cases area = 0, which produces a uniform mesh, anda = 1, which
produces a mesh equidistributing the arc-length monitor function. Making use of
the mesh transformationx = x(ξξξ ), (1) can be expressed as

ds= [dξξξ T JJJT MMMJJJ dξξξ ]1/2, (2)

whereJJJ is the Jacobian of the transformation.
The equidistribution principle follows from (2): ifu(x(ξξξ )) is to have the same

value ds along any arc element in the computational domain with fixed length
[dξξξ Tdξξξ ]1/2, then (2) must be independent of the coordinateξξξ . This implies that
JJJTMMMJJJ should be independent ofξξξ , or

[dξξξ T JJJT MMMJJJ dξξξ ]1/2 = [dξξξ T M̃̃M̃M dξξξ ]1/2, (3)

whereM̃̃M̃M is a constant and henceξξξ -independent matrix. If a coordinate transforma-
tion can be found which satisfies (3),u will have the same variation at any point in
Ωp along any arc of length

[(
∂x
∂ξ dξ + ∂x

∂η dη
)T ( ∂x

∂ξ dξ + ∂x
∂η dη

)]1/2

.

A transformation satisfying (3) for some matrix̃M̃M̃M will be called anequidistribution,
and (3) anequidistribution principle.

Usually (3) cannot be satisfied by the coordinate transformation on the whole
computational domain. However, if (3) is weakened so that the transformation is
only required to satisfy (3) locally; that is, we only require M̃̃M̃M to be constant along a
given coordinate line, it is possible to find a local equidistribution onΩp. In 2D this
leads to the system:



(

∂x
∂ξ
∂y
∂ξ

)T

MMM

(
∂x
∂ξ
∂y
∂ξ

)


1/2

= c1(η),



(

∂x
∂η
∂y
∂η

)T

MMM

(
∂x
∂η
∂y
∂η

)


1/2

= c2(ξ ), (4)

wherec1(η) andc2(ξ ) are constant in theξ andη directions respectively. These
constants are eliminated by numerical differencing.

Instead of using the scaled arc-length matrixMMM, in practice we modifyMMM as
MMM = k∇∇∇u ·∇∇∇uT + III , wherek = a2/(1+ b∇∇∇uT∇∇∇u). The parameterb ≥ 0 is used
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to prevent problems where extremely small mesh spacing or mesh tangling could
occur, that is when|∇∇∇u| is very large.

System (4) will determine the internal mesh points. In [8] a combination of
Dirichlet and Neumann conditions are used along∂Ωc:

x(0,η) = y(ξ ,0) = 0, x(1,η) = y(ξ ,1) = 1, (5)
∂x
∂η

(ξ ,0) =
∂x
∂η

(ξ ,1) =
∂y
∂ξ

(0,η) =
∂y
∂ξ

(1,η) = 0, (6)

whereξ ,η ∈ [0,1]. The Dirichlet conditions are consistent with the requirement that
there are mesh points on the boundary of the domain. The Neumann orthogonality
conditions are arbitrary, and in fact can cause smoothness issues near the domain
boundaries. As an alternative, we follow [9] and apply the 1DEP,

(M(x)xξ )ξ = 0, x(0) = 0, x(1) = 1, (7)

to determinex(ξ ,0), x(ξ ,1), y(0,η) andy(1,η). The 1D analog of the system (4),
given in (7), has previously been solved by DD methods in [3, 5, 6].

3 Classical Schwarz Domain Decomposition

ξ

η

α β0 1

1

Ω1 Ω2

Fig. 1 DD in ξ using in 2 subdomains.

For the two dimensional mesh adap-
tation problem, the computational do-
main Ωc = [0,1]× [0,1], can either be
decomposed in just theξ or just theη
directions, or in both directions. This
results in “strip” or “block” configura-
tions of subdomains respectively. Here
we discuss DD applied in theξ direc-
tion only. That is, we decompose theξ
interval[0,1] into subintervals[α i

ξ ,β
i
ξ ],

i = 1, . . . ,S, whereα1
ξ = 0, β S

ξ = 1, and
we assume the subintervals satisfy the
overlap conditions:

α i
ξ < α i+1

ξ < β i
ξ < β i+1

ξ .

The resulting decomposition hasSsubdomains, denoted byΩi = [α i
ξ ,β

i
ξ ]× [0,1] for

i = 1, . . . ,S. The boundary conditions (5–6) or (7) are used along the endsof each
strip and transmission conditions are specified along the newly created interfaces.

Consider the 2D adaptive mesh system, (4), for theS= 2 case. We splitΩc into
subdomainsΩ1 andΩ2 as in Figure 1. Letxn

i denote the subdomain solution onΩi ,
for i = 1,2. We consider the following DD iteration: forn= 1,2, . . ., solve
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∂xn
i

∂ξ
∂yn

i
∂ξ




T

MMM(xn
i ,y

n
i )




∂xn
i

∂ξ
∂yn

i
∂ξ






1/2

= c1(η), (8)






∂xn
i

∂η
∂yn

i
∂η




T

MMM(xn
i ,y

n
i )




∂xn
i

∂η
∂yn

i
∂η






1/2

= c2(ξ ), (9)

for i = 1,2 andξξξ ∈Ωi . The classical Schwarz method uses the transmission condi-
tions

xn
1(β ,η) = xn−1

2 (β ,η), yn
1(β ,η) = yn−1

2 (β ,η), (10)

xn
2(α,η) = xn−1

1 (α,η), yn
2(α,η) = yn−1

1 (α,η). (11)

On ∂ (Ωc∩Ωi) the boundary conditions (5) are used, along with the 1D EP to de-
terminex(ξ ,0), x(ξ ,1), y(0,η) andy(1,η).

Each DD iteration requires a pair of PDEs to be solved, each a “smaller” ver-
sion of the local EP (4). These problems are solved in an iterative manner: given
initial approximations to be used along interfaces, the PDEs (8–9) are solved, and
then solution information along the interfaces is exchanged between subdomains.
The PDEs are then solved again, now with updated boundary data, and the process
repeats. By iterating, the subdomain solutions converge tothe desired solutionx
on their respective subdomains. As is well known, classicalSchwarz requires the
subdomains to overlap [4].

4 Optimized Boundary Conditions

Classical Schwarz is known to converge slowly. As a way to remedy this, we pro-
pose the use of higher order, Robin type, transmission conditions along the ar-
tificial interfaces. As before, we decomposeΩc = [0,1]× [0,1] into subdomains
Ω1 = [0,β ]× [0,1] andΩ2 = [α,1]× [0,1], whereα ≤ β .

We define, for any differentiable functionsx(ξ ,η) andy(ξ ,η), the operators

B1(x) = xξ + px, B2(x) = xξ − px,

B3(x,y) = S1(x,y)+ px, B4(x,y) = S1(x,y)− px,

where

S1(x,y) =

√(
xξ
yξ

)T

M

(
xξ
yξ

)
, M =

a2w ·wT

1+bwT ·w + I

and

w=
1

xξ yη −xηyξ

[
uξ yη −uηyξ ,−uξ xη +uηxξ

]T
.
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We propose two possible sets of transmission conditions. The first are simple linear
Robin conditions using the derivative normal to the artificial boundaries:

B1(x
n
1(β ,η)) = B1(x

n−1
2 (β ,η)), B1(y

n
1(β ,η)) = B1(y

n−1
2 (β ,η))

B2(x
n
2(α,η)) = B2(x

n−1
1 (α,η)), B2(y

n
2(α,η)) = B2(y

n−1
1 (α,η)).

(12)

The second set are of nonlinear Robin type, similar to those used in an optimized
Schwarz algorithm for 1D mesh generation in [3]. We replace the x equations of
(12) by

B3(x
n
1(β ,η),y

n
1(β ,η)) = B3(x

n−1
2 (β ,η)yn−1

2 (β ,η))

B4(x
n
2(α,η),yn

2(α,η)) = B4(x
n−1
1 (α,η),yn−1

1 (α,η)).
(13)

Note, the mesh PDE (8) indicates that the nonlinear termS1 in the operatorB3

is constant across theξ = α andξ = β interfaces. Furthermore, as the system of
equations resulting from (8-9) are already nonlinear, the nonlinear transmission con-
ditions will not have a large impact on the cost of solving thesystem.

5 Numerical Implementation and Results

The local EP (4), the physical boundary conditions onΩc, and the transmission
conditions (10, 11), (12) or (13), are discretized using standard finite differences on
a uniform grid in the computational(ξ ,η) variables. Second order centered differ-
ences are used, using the ghost value technique as needed at the boundaries to ensure
the scheme is second order. The nonlinear transmission conditions require nonlin-
ear, rather than linear, equations to be solved at the interface. This is not onerous as
the whole system is solved with a Newton iteration.

In the examples we use the test functionu(x,y) =
[
1−e15(x−1)

]
sin(πy). The

function is shown, along with its locally equidistributed mesh, in Figures 2 and 3.
The physical mesh(x,y) is generated by solving (4) using a grid of 18× 18 uni-
formly spaced mesh points inΩc. For this example, we use an optimized Schwarz
iteration, with transmission conditions (12), on 2 subdomains with 4 points of over-
lap in theξ direction. Here the number of points of overlap refers to thenumber
of shared grid points, the overlap width is approximately half of this number times
∆ξ . We choose the parametersa= 0.7, b= 0.05 andp= 2.3. The mesh on subdo-
main 1 is shown in red, on subdomain 2 in blue, and the overlap region in purple.
In general, the meshes obtained by the different methods will be visually indistin-
guishable from one another at convergence. To compare the DDmethods we will
plot their convergence histories.

In Figure 4 we plot the maximum error between the subdomain and single do-
main solutions for each ofxn

1, xn
2, yn

1, andyn
2 obtained using classical Schwarz. These

are obtained over a 12 by 12 grid with 4 points of overlap inξ and parameters
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Fig. 2 Adaptive mesh generated for the test
function.
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Fig. 3 The test function plotted using an adap-
tive mesh.

a = 0.7 andb = 0.05. As can be seen, each component of the solution converges
at approximately the same rate, so we simplify our discussion by comparing the
convergence of onlyxn

1 in the remaining figures.
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Fig. 4 Classical Schwarz convergence histo-
ries for each part of the solution,xn
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1,2.
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Fig. 5 Classical Schwarz convergence histo-
ries for varying amounts of overlap.

In Figure 5 we compare the classical Schwarz algorithm for varying amounts of
overlap, using 2, 4, 6 and 8 points of overlap in theξ direction. As expected, the
rate of convergence improves as the overlap increases.

For the two possible optimized Schwarz iterations, we examine the effect of vary-
ing the parameterp in Figures 6 and 7. To generate these results we use a 12 by 12
mesh with two points of overlap in theξ direction and parametersa = 0.7 and
b= 0.05. For both types of transmission conditions, the best performance observed
occurs forp = 2. Comparing the linear Robin condition (Figure 6) and nonlinear
Robin condition (Figure 7), we see that the convergence histories for a generalp
are very similar. To examine these similarities, we plot theconvergence histories
for both optimized iterations forp= 1,2,3 on the same set of axes in Figure 8. We
see that while the variations in this particular case are small, the nonlinear trans-
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Fig. 6 Convergence histories for the Schwarz
iteration using linear Robin conditions for
varying p.
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Fig. 7 Convergence histories for the Schwarz
iteration using nonlinear Robin conditions for
varying p.

mission conditions consistently outperform the linear Robin conditions. This is also
observed in the results of Figure 9, in which we plot convergence histories for all
three proposed DD algorithms. For this example we use a 12 by 12 mesh decom-
posed into two subdomains, with two points of overlap inξ and parametersa= 0.7
andb= 0.05. In this example we see that both optimized Schwarz methods vastly
outperform classical Schwarz, with the nonlinear transmission conditions slightly
outperforming the linear Robin conditions.
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Fig. 8 Convergence histories for linear and
nonlinear Robin transmission conditions with
varying p.

1 2 3 4 5 6 7 8 9 10 11
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

DD Iterations

E
rr

or

 

 

Classical

Linear Robin, p = 2.3

Nonlinear Robin, p = 2.3

Fig. 9 Convergence histories for all three iter-
ations considered.

Another way to assess the meshes obtained from a DD iterationis to compute a
mesh quality measure. An equidistribution quality measurefor each elementK of
the grid,Qeq(K), is presented in [7]. The maximum ofQeq over all elements is 1 if
and only if the equidistribution condition is satisfied exactly. The larger the value of
maxKQeq(K) the farther the mesh is from equidistributingMMM. In Table 1 we compute
the maxKQeq(K) for the first five iterations of each proposed Schwarz algorithm.
The zero column gives the mesh quality measure for the initial uniform 12× 12
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mesh and the∞ column gives the mesh quality measure for the mesh obtained by
solving system (4) over a single domain. Note, local equidistribution will not give
a value of 1 for the mesh quality measure. We see that the meshes obtained by the
optimized Schwarz algorithms rapidly give good meshes.

Table 1 Mesh quality measures for the grids obtained by the proposed Schwarz iterations.

Iterations 0 1 2 3 4 5 ∞
Classical 1.6375 1.3630 1.3629 1.3178 1.3136 1.2795 1.1979

Linear Robin 1.6375 2.0076 1.1979 1.1979 1.1979 1.1979 1.1979
Nonlinear Robin 1.6375 2.0114 1.1979 1.1979 1.1979 1.1979 1.1979

6 Conclusion

In summary, we have proposed three different Schwarz DD iterations for obtaining
2D adaptive meshes defined by a local equidistribution principle. The numerical
results show that the optimized methods provide a significant improvement over the
slow convergence of classical Schwarz, with the nonlinear transmission conditions
inspired by the work of [3] exhibiting the best results. Ongoing work includes the
theoretical analysis of these DD approaches for 2D mesh generation and coupling
the DD mesh generation with a DD solver for the physical PDE ofinterest.
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MPI–OpenMP algorithms for the parallel
space–time solution of Time Dependent PDEs

Ronald D. Haynes1 and Benjamin W. Ong2

1 Introduction

Modern high performance computers offer hundreds of thousands of processors that
can be leveraged, in parallel, to compute numerical solutions to time dependent par-
tial differential equations (PDEs). For grid-based solutions to these PDEs, domain
decomposition (DD) is often employed to add spatial parallelism [19].

Parallelism in the time variable is more difficult to exploitdue to the inherent
causality. Recently, researchers have explored this issueas a means to improve the
scalability of existing parallel spatial solvers applied to time dependent problems.
There are several general approaches to combine temporal parallelism with spatial
parallelism. Waveform relaxation [15] is an example of a “parallel across the prob-
lem” method. The “parallel across the time domain” approaches include the parareal
method [11, 17, 16]. The parareal method decomposes a time domain into smaller
temporal subdomains and alternates between applying a coarse (relatively fast) se-
quential solver to compute an approximate (not very accurate) solution, and apply-
ing a fine (expensive) solver on each temporal subdomain in parallel. Alternatively,
one can consider “parallel across the step” methods. Examples of such approaches
include the computation of intermediate Runge–Kutta stagevalues in parallel [18],
and Revisionist Integral Deferred Correction (RIDC) methods, which are the family
of parallel time integrators considered in this paper. Parallel across the step meth-
ods allow for “small scale” parallelism in time. Specifically, we will show that if a
DD implementation scales toNx processors, a RIDC-DD parallelism will scale to
Nt ×Nx processors, whereNt < 12 in practice. This contrasts with parallel across
the time domain approaches, which can potentially utilizeNt ≫ 12.

This paper discusses the implementation details and profiling results of the par-
allel space–time RIDC-DD algorithm described in [5]. Two hybrid OpenMP – MPI
frameworks are discussed: (i) a more traditional fork-joinapproach of combining
threads before doing MPI communications, and (ii) a threaded MPI communications
framework. The latter framework is highly desirable because existing (spatially par-
allel) legacy software can be easily integrated with the parallel time integrator. Nu-
merical experiments measure the communication overhead ofboth frameworks, and
demonstrate that the fork-join approach scales well in space and time. Our results
indicate that one should strongly consider temporal parallelization for the solution
of time dependent PDEs.

1 Memorial University of Newfoundland, St. John’s, Newfoundland, Canada e-mail:rhaynes@
mun.ca ·2 Michigan State University, Institute for Cyber-Enabled Research, East Lansing, MI,
USA e-mail:ongbw@msu.edu
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2 Review

This paper is interested in parallel space-time solutions to the linear heat equation.
We describe the application of our method to the linear heat equation in one spatial
dimensionx∈ [0,1] andt ∈ [0,T],

ut = uxx, u(t,0) = g0(t), u(t,1) = g1(t), u(0,x) = u0(x). (1)

The actual numerical results in§4 are presented for the 2D heat equation.

2.1 RIDC

RIDC methods [6, 7] are a family of parallel time integratorsthat can be broadly
classified as predictor corrector algorithms [10, 2]. The basic idea is to simultane-
ously compute solutions to the PDE of interest and associated error PDEs using a
low-order time integrator. We first review the derivation ofthe error equation.

Supposev(t,x) is an approximate solution to (1), andu(t,x) is the (unknown)
exact solution. The error in the approximate solution ise(t,x) = u(t,x)−v(t,x). We
define the residual asε(t,x) = vt(t,x)− vxx(t,x). Then the time derivative of the
error satisfieset = ut −vt = uxx− (vxx+ ε). The integral form of the error equation,

[
e+

∫ t

0
ε(τ ,x)dτ

]

t
= (v+e)xx−vxx, (2)

can then be solved fore(t,x) using the initial conditione(0,x) = 0. The correction
e(t,x) is combined with the approximate solutionv(t,x) to form an improved so-
lution. This improved solution can be fed back in to the errorequation (2) and the
process repeated until a sufficiently accurate solution is obtained. It has been shown
that each application of the error equation improves the order of the overall method,
provided the integral is approximated with sufficient accuracy using quadrature [8].

We introduce some notation to identify the sequence of corrected approxima-
tions. Denotev[p](t,x) as the approximate solution which has errore[p](t,x), which
is obtained by solving

[
e[p]+

∫ t

0
ε [p](τ ,x)dτ

]

t
= (v[p]+e[p])xx−v[p]xx , (3)

where v[0](t,x) denotes the initial approximate solution obtained by solving the
physical PDE (1) using a low-order integrator. In general, the error from thepth
correction equation is used to construct the(p+1)st approximation,v[p+1](t,x) =
v[p](t,x)+e[p](t,x). Hence, equation (3) can be expressed as

[
v[p+1]−

∫ t

0
v[p]xx (τ ,x)dτ

]

t
= v[p+1]

xx −v[p]xx . (4)
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We compute a low-order prediction,v[0],n+1, for the solution of (1) at timetn+1

using a first-order backward Euler discretization (in time):

v[0],n+1−∆ t v[0],n+1
xx = v[0],n, v[0],n+1(a) = g0(t

n+1), v[0],n+1(b) = g1(t
n+1), (5)

with v[0],0(x) = u0(x). With some algebra, a first-order backward Euler discretization
of equation (4) gives the update,v[p+1],n+1, as

v[p+1],n+1−∆ t v[p+1],n+1
xx = v[p+1],n−∆ t v[p],n+1

xx +

∫ tn+1

tn
v[p]xx (τ ,x)dτ , (6)

with v[p+1],n+1(a) = g0(tn+1) and v[p+1],n+1(b) = g1(tn+1). The integral in equa-
tion (6) is approximated using a sufficiently high-order quadrature rule [8].

Parallelism in time is possible because the PDE of interest (1) and the error
PDEs (4) can be solved simultaneously, after initial startup costs. The idea is to fill
out the memory footprint, which is needed so that the integral in equation (6) can be
approximated by high-order quadrature, before marching solutions to (5) and (6) in
a pipe–line fashion. See Figure 1 for a graphical example, and [6] for more details.

b b

b b b

b b b b

b

bc

bc

bc

bc

Original PDE for v
[0](t, x)

Error PDE for v
[1](t, x)

Error PDE for v
[2](t, x)

Error PDE for v
[3](t, x)

1st correction

2nd correction

3rd correction

tn−3 tn−2 tn−1 tn tn+1. . . . . .

Fig. 1 The black dots represent the memory footprint that must be stored before the white dots can
be computed in a pipe. In this figure,v[0],n+2(x), v[1],n+1(x), v[2],n(x) andv[3],n−1(x) are computed
simultaneously.

2.2 RIDC–DD

The RIDC–DD algorithm solves the predictor (5) and corrections (6) using DD al-
gorithms in space. The key observation is that (5) and (6) areboth elliptic PDEs of
the form(1−∆ t ∂xx)z= f (x). The functionf (x) is known from the solution at the
previous time step and previously computed lower-order approximations. DD algo-
rithms for solving elliptic PDEs are well known [3, 4]. The general idea is to replace
the PDE by a coupled system of PDEs over some partitioning of the spatial domain
using overlapping or non–overlapping subdomains. The coupling is provided by
necessary transmission conditions at the subdomain boundaries. These transmission
conditions are chosen to ensure the DD algorithm converges and to optimize the con-
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vergence rate. In [5], as a proof of principle, (5-6) are solved using a classical par-
allel Schwarz algorithm, with overlapping subdomains and Dirichlet transmission
conditions. Optimized RIDC–DD variants are possible usingan optimized Schwarz
DD method [13, 12, 9], to solve (5-6). The solution from the previous time step can
be used as initial subdomain solutions at the interfaces. Wewill use RIDCp–DD to
refer to apth-order solution obtained usingp−1 RIDC corrections in time and DD
in space.

3 Implementation Details

We view the parallel time integrator reviewed in§2.1 as a simple yet powerful tool to
add further scalability to a legacy MPI or modern MPI–CUDA code, while improv-
ing the accuracy of numerical solution. The RIDC integrators benefit from access to
shared memory because solving the correction PDE (6) requires both the solution
from the previous time step and previously computed lower-order subdomain solu-
tion. Consequently, we propose two MPI-OpenMP hybrid implementations which
map well to multi-core, multi-node compute resources. In the upcoming MPI 3.0
standard [1], shared memory access within the MPI library will provide alternative
implementations.

Implementation #1: The RIDC-DD algorithm can be implemented using a tra-
ditional fork join approach, as illustrated in Program 1. After boundary information
is exchanged, each MPI task spawns OpenMP threads to performthe linear solve.
The threads are merged back together before MPI communication is used to check
for convergence. The drawback to this fork-join implementation, is that the parallel
space-time algorithm becomes tightly integrated, making it difficult to leverage an
existing spatially parallel DD implementation.

1. MPI Initialization
2. ...
3. for each time step
4. for each Schwarz iteration
5. MPI Comm (exchange boundary info)
6. OMP Parallel for each prediction/correction
7. linear solve
8. end parallel
9. MPI Comm (check for convergence)
10. end
11. end
12. ...
13. MPI Finalize

Program 1: RIDC-DD implementation using a fork-join approach.The time parallelism occurs
within each Schwarz iteration, requiring a tight integration withan existing spatially parallel DD
implementation.
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Implementation #2: To leverage an existing spatially parallel DD implemen-
tation, a non-traditional hybrid approach must be considered. By changing the or-
der of the loops, the Schwarz iterations for the prediction and the correction loops
can be evaluated independently of each other. This is realized by spawning indi-
vidual OpenMP threads to solve the prediction and correction loops on each sub-
domain; the Schwarz iterations for the prediction/correction step run independently
of each other until convergence. This implementation (Program 2) has several con-
sequences: (i) a thread safe version of MPI supportingMPI THREADMULTIPLE
is required. (ii) In addition, we required a thread-safe, thread-independent ver-
sion ofMPI BARRIER, MPI BROADCASTandMPI GATHER. To achieve this, we
wrote our own wrapper library using the thread safeMPI SEND, MPI RECVand
MPI SENDRECVprovided by (i).

1. MPI Initialization
2. ...
3. for each time step
4. OMP Parallel for each prediction/correction level
5. for each Schwarz iteration
6. MPI Comm (exchange boundary info)
7. linear solve
8. MPI Comm (check for convergence)
9. end
10. end parallel
11. end
12. ...
13. MPI Finalize

Program 2: RIDC-DD implementation using a non-traditional hybrid approach. Notice that lines
5-9 are the Schwarz iterations that one would find in an existing spatially parallel DD implementa-
tion. Hence, provided the DD implementation is thread-safe, one could wrap the time paralleliza-
tion around an existing parallel DD implementation.

4 Numerical Experiments

We show first that RIDC-DD methods converge with the designedorders in space
and time. Then, we profile communication costs using TAU [14]. Finally, we show
strong scaling studies for the RIDC-DD algorithm. We compute solutions to the
heat equation inR2, where centered finite differences are used to approximate the
second derivative operator. Errors are computed using the known analytic solution.
The computations are performed at the High Performance Computing Cenrer at
Michigan State University, where nodes (consisting of two quad core Intel Westmere
processors) are interconnected using infiniband and a high speed Lustre file system.
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4.1 Convergence Studies and Profile Analysis

In Figure 2, the convergence plots show that our classical Schwarz RIDC-DD al-
gorithm converges as expected in space and time. In general,one would balance
the orders of the errors in space and time appropriately for efficiency. Here we pick
RIDC4 since it mapped well to our available four core socketsand to demonstrate
the scalability of our algorithm in time. We could, of course, used a fourth order
method in space. The Schwarz iterations are iterated until atolerance of 10−12

is reached for the predictors and correctors (which explains why the error in the
fourth-order approximation levels out as the time step becomes small).

10
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−3

10
−210

−15
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−10

10
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0

dt

|| 
e|

| ∞

 

 

slope = 1

slope = 4

Prediction
1 Correction
2 Corrections
3 Corrections

(a) Time Convergence (b) Space Convergence

Fig. 2 (a) Classical Schwarz RIDCp-DD algorithms,p= 1,2,3,4, converge to the reference so-
lution with the designed orders of accuracy. Here∆x is fixed while∆ t is varied. (b) Second-order
convergence in space is demonstrated for the fourth-order RIDC-DD algorithm. Here,∆ t is fixed
while ∆x is varied.

The communication costs for our two implementations of RIDC4-DD are pro-
filed using TAU [14]. We see in Figure 3, communication costs are minimal for
implementation #1, and scales nicely as the number of nodes is increased, but the
communication cost is significant for implementation #2. InFigure 3(a,c), the do-
main is discretized into 180×180 grid nodes, which are split into a 3×3 config-
uration of subdomains. In Figure 3(b,d), the domain is discretized into 360× 360
grid nodes, which are split into a 6×6 configuration of subdomains. This keeps the
number of grid points per subdomain constant so that the computation time for the
matrix factorization and linear solve are the same.

4.2 Characterizing Parallel Performance

Due to the better communication profile, we use framework #1 for our experiments.
We fix ∆x= 1

180, ∆y= 1
180, ∆ t = 1

1000, and TOL=10−12 (the Schwarz iteration tol-
erance). We consider three configurations of subdomains: 2×2, 4×4 and 6×6. For
each configuration we illustrate the speedup and efficiency due to the time paral-
lelism in Figure 4. We choose to fix the ratio between the overlap and subdomain
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(a) Implementation #1
3×3 domain

(b) Implementation #1
6×6 domain

(c) Implementation #2
3×3 domain

(d) Implementation #2
6×6 domain

Fig. 3 Profile of the RIDC4-DD algorithm using both implementations. Overhead and communi-
cation costs are reasonable for implementation #1, but are high for implementation #2.

size to ensure the number of unknowns on each subdomain scales appropriately as
the number of subdomains is increased.
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Fig. 4 Scaling study (in time) for a
RIDC4-DD algorithm.

In Figure 4 we show three curves corre-
sponding to a 2× 2, 4× 4 and a 6× 6 config-
uration of subdomains. For each configuration
we compute a fourth order solution in time us-
ing 1,2 and 4 threads. The 6×6 configuration
of subdomains with 4 threads uses a total of 144
cores. We plot the efficiency (with respect to the
one thread run) as a function of the number of
threads. Speedup is evident as temporal paral-
lelization is improved, however, efficiency de-
creases as the number of subdomains increases.

5 Conclusions

This paper has presented the implementation details and first reported profiling re-
sults for a newly proposed space–time parallel algorithm for time dependent PDEs.
The RIDC–DD method combines traditional domain decomposition in space with
a new family of deferred correction methods designed to allow parallelism in time.
Two possible implementations are described and profiled. The first, a traditional hy-
brid OpenMP–MPI implementation, requires potentially difficult modifications of
an existing parallel spatial solver. Numerical experiments verify that the algorithm
achieves its designed order of accuracy and scales well. Thesecond strategy al-
lows a relatively easy reuse of an existing parallel spatialsolver by using OpenMP
to spawn threads for the simultaneous prediction and correction steps. This non–
traditional hybrid use of OpenMP and MPI currently requireswriting of custom
thread–safe and thread–independent MPI routines. Profile analysis shows that our
non-traditional use of OpenMP–MPI suffers from higher communication costs than
the standard use of OpenMP-MPI. An inspection of the prediction and correction
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equations indicates that optimized Schwarz variants of thealgorithm are possible
and will enjoy nice load balancing. This work is ongoing.
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Neumann–Neumann Waveform Relaxation for
the Time-Dependent Heat Equation

Felix Kwok1

1 Introduction

The goal of this paper is to introduce and analyze a new variant of waveform relax-
ation (WR) methods based on Neumann–Neumann iterations. Originally introduced
by [13] for ODE systems, WR methods have first been used to solvetime-dependent
PDEs in [11] and [12]. When applying a WR method for a given domain Ω and a
decomposition into subdomains{Ωi}Ni=1,∪iΩ i = Ω , each iteration consists of solv-
ing independent subproblems onΩi× [0,T], i.e., over thewhole time window[0,T],
before exchanging information across the interfaces; in other words, the informa-
tion exchanged consists of interface traces over the time window [0,T]. This is in
contrast with the classical approach, in which one fixes a time stepping strategy for
the whole domainΩ and uses domain decomposition to solve the resulting spatial
problem at each time step. One advantage of the WR framework isthat it allows
the use of different spatial and time discretizations for each subdomain; this is espe-
cially useful for problems with large coefficient jumps [9] or with different models
for different parts of the domain [8]. In addition, since communication between
subdomains are less frequent than for the standard approach, there is a reduction in
communication costs, particularly for networks with high latency.

Typically, WR methods can be derived from methods for elliptic PDEs. For
example, one can extend the parallel Schwarz method with classical transmission
conditions [14] to obtain the parallel Schwarz WR method; this has been ana-
lyzed in [11, 12]. WR extensions based on optimized Schwarz methods [6] have
also been proposed. Substructuring methods form another class of methods for
elliptic PDEs: examples include the Neumann–Neumann method [2, 4], as well
as the FETI method [5] and its variants. However, to the best of our knowledge,
no substructuring-type analogue of WR has been proposed, despite substructuring
methods having many attractive properties for elliptic problems, such as mesh inde-
pendence in the two-subdomain case. Thus, our first aim is to define the Neumann–
Neumann waveform relaxation (NNWR) method, which generalizes the elliptic
Neumann–Neumann method in a natural way. This is done in Section 2.

Our second goal is to understand the convergence of the proposed algorithm for
parabolic problems. For systems of ODEs, a Picard–Lindelöf type argument shows
that convergence is superlinear on bounded time intervals[0,T], with an error es-
timate of the form(CT)k/k! after k iterations [16]. For overlapping Schwarz WR
methods applied to the advection-diffusion equation, the estimate can be improved

1 Universit́e de Geǹeve, 2-4 Rue du Lièvre, 1211 Geǹeve, Switzerland, e-mail:felix.kwok@
unige.ch

165



166 Felix Kwok

to e−(kL)2/T , whereL is the size of the overlap [12]; this bound is possible because
of the diffusivity of the problem. However, for unbounded time intervals, only lin-
ear convergence can be expected [11]. Similar conclusions hold for Schwarz WR
with optimized transmission conditions, with or without overlap [15, 7, 1]. Using
the 1D heat equation as the model problem, we show that the NNWRmethod also
converges superlinearly for finite time intervals; this is done in Section 3, with some
numerical experiments confirming the results in Section 4. We also derive a linear
bound that is valid for unbounded time intervals. We have chosen to analyze the
method in the continuous setting because it allows us to understand the asymptotic
behaviour of the algorithm for very fine grids, without requiring explicit knowledge
of how each subdomain problem is discretized. For ease of presentation, we prove
our results for two subdomains in one spatial dimension; [10] contains further re-
sults, some of which are mentioned at the end of Section 4.

2 The NNWR algorithm

Suppose we want to solve the 1D heat equation

∂tu−∂ 2
x u= f , x∈Ω = (−b,a), t ∈ (0,T],

with initial conditionsu(x,0) = v(x) and Dirichlet boundary conditionsu(−b, t) =
uL(t), u(a, t) = uR(t). We consider a decomposition into two non-overlapping sub-
domainsΩ1 = (−b,0) andΩ2 = (0,a). On the interfaceΓ = {0}, we are given the
initial guessg0(t), t ∈ [0,T]. Then the NNWR algorithm is given by the following
iteration: fork= 1,2, . . ., do

(i) Dirichlet step:





∂tu
k
1−∂ 2

x uk
1 = f (x, t) on (−b,0),

uk
1(−b, t) = uL(t),

uk
1(0, t) = gk−1(t),

uk
1(x,0) = v(x) on (−b,0),





∂tu
k
2−∂ 2

x uk
2 = f (x, t) on (0,a),

uk
2(0, t) = gk−1(t),

uk
2(a, t) = uR(t),

uk
2(x,0) = v(x) on (0,a).

(ii) Neumann step:





∂tψk
1−∂ 2

x ψk
1 = 0 on(−b,0),

ψk
1(−b, t) = 0,

∂n1ψk
1 = ∂n1uk

1+∂n2uk
2 onΓ ,

ψk
1(x,0) = 0 on(−b,0),





∂tψk
2−∂ 2

x ψk
2 = 0 on(0,a),

∂n2ψk
2 = ∂n1uk

1+∂n2uk
2 onΓ ,

ψk
2(a, t) = 0,

ψk
2(x,0) = 0, on (0,a).

(iii) Update step:

gk(t) = gk−1(t)−θ [ψk
1(0, t)+ψk

2(0, t)].
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The relaxation parameterθ ∈ (0,1] is chosen to obtain fast convergence. Note
that this algorithm can be generalized in a straightforwardway to handle decompo-
sitions into many subdomains and in higher dimensions, see [10]. This is because,
unlike for the elliptic case, the Neumann step is always well-posed for the heat
equation, even for “floating” subdomains that do not share anedge with∂Ω .

Analysis by Laplace transforms. Our convergence analysis is based on the Laplace
transform method. The Laplace transform of a functionu(x, t) with respect to time
is defined as

û(x,s) := L {u(x, t)}=
∫ ∞

0
u(x, t)e−st dt.

In the remainder of the paper, hats will denote the Laplace transform of a function
in time, ands will denote the Laplace variable. Since we are interested inthe error
gk(t)−u(0, t) of the method, it suffices to assume thatv(x), f (x, t),uL(t) anduR(t)
all vanish and study howgk(t) tends to zero ask→ ∞. In this case, the NNWR
algorithm can be written in Laplace space as follows: fork= 1,2, . . ., do

(i) Dirichlet step:





(s−∂ 2
x )û

k
1 = 0 on(−b,0),

ûk
1(−b,s) = 0,

ûk
1(0,s) = ĝk−1(s),





(s−∂ 2
x )û

k
2 = 0 on(0,a),

ûk
2(0,s) = ĝk−1(s),

ûk
2(a, t) = 0.

(ii) Neumann step:





(s−∂ 2
x )ψ̂k

1 = 0 on(−b,0),

ψ̂k
1(−b,s) = 0,

∂xψ̂k
1 = ∂xû

k
1−∂xû

k
2 onΓ ,





(s−∂ 2
x )ψ̂k

2 = 0 on(0,a),

−∂xψ̂k
2 = ∂xû

k
1−∂xû

k
2 onΓ ,

ψ̂k
2(a,s) = 0.

(iii) Update step:

ĝk(s) = ĝk−1(s)−θ [ψ̂k
1(0,s)+ ψ̂k

2(0,s)].

Solving the two-point boundary value problems in the Dirichlet step yields

ûk
1(x,s) = ĝk−1(s)

sinh((x+b)
√

s)
sinh(b

√
s)

, ûk
2(x,s) = ĝk−1(s)

sinh((a−x)
√

s)
sinh(a

√
s)

. (1)

The Neumann step can be solved similarly by letting ˆrk(s) := ∂xûk
1(0,s)−∂xûk

2(0,s):

ψ̂k
1(x,s) = r̂k(s)

sinh((x+b)
√

s)√
scosh(b

√
s)

, ψ̂k
2(x,s) = r̂k(s)

sinh((a−x)
√

s)√
scosh(a

√
s)

. (2)

Then the update step becomes

ĝk(s)= ĝk−1(s)−θ [ψk
1(0,s)+ψk

2(0,s)] = ĝk−1(s)−θ
r̂k(s)√

s
[tanh(b

√
s)+ tanh(a

√
s)].
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But

r̂k(s) = ∂xu
k
1(0,s)−∂xu

k
2(0,s) =

√
sĝk−1(s)

(
cosh(b

√
s)

sinh(b
√

s)
+

cosh(a
√

s)
sinh(a

√
s)

)
.

So we obtain

ĝk(s) = ĝk−1(s)

[
1−θ

(
2+

tanh(a
√

s)
tanh(b

√
s)

+
tanh(b

√
s)

tanh(a
√

s)

)]
. (3)

Note that ifa= b, thenĝk(s) = ĝk−1(s)(1−4θ), which meansthe method converges
to the exact solution in one iteration forθ = 1/4. Thus, the classical result for
elliptic problems also holds for the time-dependent case. The main result of our
paper concerns the case when the subdomains are unequal, i.e., whena 6= b.

Theorem 1 (Convergence of NNWR).Let θ = 1/4. Then the error of the NNWR
method for two subdomains satisfies

‖gk(·)−u(0, ·)‖L∞(0,∞) ≤
(
(a−b)2

4ab

)k

‖g0(·)−u(0, ·)‖L∞(0,∞). (4)

Moreover, for every finite time interval(0,T), NNWR converges superlinearly with
the estimate

‖gk(·)−u(0, ·)‖L∞(0,T) ≤ e−k2m2/T
(
(a−b)2

ab

)k

‖g0(·)−u(0, ·)‖L∞(0,T), (5)

where m= min{a,b}.

3 Convergence analysis

Since (3) is symmetric with respect toa and b, we will assume without loss of
generality thata> b in the remainder of the paper. Forθ = 1/4, the recurrence (3)
simplifies to give

ĝk(s) =−ĝk−1(s) · sinh2((a−b)
√

s)
sinh(2a

√
s)sinh(2b

√
s)

=:−Y(s)ĝk−1(s), (6)

which impliesĝk(s) = (−1)kYk(s)ĝ0(s). Note that for Re(s) > 0, we haveY(s) =

O(e−4b|s|1/2
) as|s| → ∞, i.e.,Y(s) decays exponentially as|s| → ∞. Thus, by [3, p.

183], Y(s) is the Laplace transform of a regular functiony1(t). If we now define
yk(t) = L −1{Yk(s)}, then fort ∈ (0,T), we have

|gk(t)|=
∣∣∣∣
∫ t

0
g0(t− τ)yk(τ)dτ

∣∣∣∣≤ ‖g0‖L∞(0,T)

∫ T

0
|yk(τ)|dτ . (7)
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Thus, to obtainL∞ convergence estimates, we need bounds on
∫ T

0 |yk(τ)|dτ. Our
first step is to show thatyk(t) ≥ 0, for t > 0, which makes bounding its integral
much easier. We start by stating a few elementary propertiesof positive functions
and their Laplace transforms; their proofs follow easily from the definitions.

Lemma 1. Let f and g be positive functions, i.e., f(t) ≥ 0 and g(t) ≥ 0 for t > 0,
and let F(s) = L { f (t)}. Then

(i) For all T > 0,
∫ T

0
| f (τ)|dτ ≤

∫ ∞

0
f (τ)dτ = lim

s→0
F(s).

(ii) ( f ∗g)(t) =
∫ t

0
f (t− τ)g(τ)dτ ≥ 0 for all t > 0.

(iii) ‖ f ∗g‖L1(0,T) ≤ ‖ f‖L1(0,T) · ‖g‖L1(0,T).

Lemma 2. For β > α ≥ 0, let

Q1(s) =
sinh(α

√
s)

sinh(β
√

s)
, Q2(s) =

cosh(α
√

s)
cosh(β

√
s)
.

Then q1(t) = L −1{Q1(s)} and q2(t) = L −1{Q2(s)} are positive functions.

Proof. Forn= 1,2, . . . , let un(x, t) andvn(x, t) be the solutions of the following two
boundary value problems:





∂tun−∂ 2
x un = 0 on(0,β ),

un(0, t) = 0,

un(β , t) = fn(t),

un(x,0) = 0,





∂twn−∂ 2
x wn = 0 on(−β ,β ),

wn(−β , t) = fn(t),

wn(β , t) = fn(t),

wn(x,0) = 0.

A calculation similar to that in Section 2 shows thatL {un(α, t)}= Q1(s) f̂n(s) and
L {wn(α, t)} = Q2(s) f̂n(s). Moreover, if fn(t) ≥ 0 for all t, then by the maximum
principle, we haveun(α, t) ≥ 0. We now choose a sequence( fn) of positive func-
tions that converges weakly toδ (t); then since eachun(α, t) is positive, we have
un(α, t)→ q1(t)≥ 0. A similar argument shows thatwn(α, t)→ q2(t)≥ 0. ⊓⊔

We now analyze the kernely1(t), with Laplace transformY(s), as defined in (6).

Lemma 3. Let m≥ 1 be the unique integer such that mb< a ≤ (m+ 1)b. Then
Y(s) = V(s)H(s), with V(s) = 1/cosh2(b

√
s) and lims→0H(s) = (a− b)2/4ab.

Moreover, h(t) =L −1{H(s)} is positive, so that y1(t) = (v∗h)(t)≥ 0 for all t > 0.

Proof. For k< m, we have the identity
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√
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√

s)

=
1
2

[
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√
s)−1−cosh(2(a− (k+1)b)

√
s)+1

]

= sinh((2a− (2k+1)b)
√

s)sinh(b
√

s).
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Sincek< m, we have 0< 2a− (2k+1)b< 2a, which gives
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√

s)
sinh(2a

√
s)sinh(2b

√
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√
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√
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√
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√
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.

Applying this identity repeatedly fork= 1, . . . ,m−1 gives
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√
s)

sinh(2a
√

s)sinh(2b
√

s)

=
sinh2((a−mb)

√
s)

sinh(2a
√

s)sinh(2b
√

s)
+

m−1

∑
k=1

sinh((2a− (2k+1)b)
√

s)
sinh(2a

√
s)

· sinh(b
√

s)
sinh(2b

√
s)

=
1

2cosh2(b
√

s)

[
sinh2((a−mb)

√
s)cosh(b

√
s)

sinh(2a
√

s)sinh(b
√

s)
+

m−1

∑
k=1

sinh((2a− (2k+1)b)
√

s)cosh(b
√

s)
sinh(2a

√
s)

]

=
1

4cosh2(b
√

s)

[
sinh((a−mb)

√
s)

sinh(a
√

s)
· sinh((a−mb)

√
s)

sinh(b
√

s)
· cosh(b

√
s)

cosh(a
√

s)
+

m−1

∑
k=1

(
sinh((2a−2kb)

√
s)

sinh(2a
√

s)
+

sinh((2a−2(k+1)b)
√

s)
sinh(2a

√
s)

)]

Let V(s) = 1/cosh2(b
√

s) andH(s) be the rest. Then since 0< a−mb≤ b < a,
we see thatH(s) consists of a sum of products of functions of the formQ1(s) and
Q2(s) in Lemma 2. Thus, its inverse Laplace transformh(t) is positive. Moreover,
sincev(t) = L −1{V(s)} is also positive by Lemma 2, we see thaty(t) = (v∗h)(t)
is positive. Finally, since lims→0V(s) = 1, we have

lim
s→0

H(s) = lim
s→0

Y(s) = lim
s→0

sinh2((a−b)
√

s)
sinh(2a

√
s)sinh(2b

√
s)

=
(a−b)2

4ab
. ⊓⊔

We are finally ready to prove our main result.

Proof (Theorem 1).According to (7), it suffices to bound
∫ T

0 |yk(τ)|dτ for finite
T > 0 and forT = ∞, whereyk(t) =L −1{Yk(s)}. Sincey1(t) is positive by Lemma
3, so isyk(t), so by Lemma 1(i), we have

∫ ∞

0
|yk(τ)|dτ = lim

s→0
Yk(s) =

( (a−b)2

4ab

)k
,

which shows the linear bound (4). ForT < ∞, let vk(t) = L −1{Vk(s)} andhk(t) =
L −1{Hk(s)}. Then since

∫ ∞
0 hk(t)dt = lims→0Hk(s) = (lims→0H(s))k, we have

‖yk‖L1(0,T) ≤ ‖vk‖L1(0,T) · ‖hk‖L1(0,T) ≤
( (a−b)2

4ab

)k∫ T

0
vk(τ)dτ . (8)

To bound the remaining integral, letD(s) = 4ke−2kb
√

s−Vk(s). We will show that
d(t) = L −1{D(s)} ≥ 0. We have
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D(s)= 4ke−2kb
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= 4k · (1+e−2b

√
s)2k−1

(eb
√
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From [17], we know thatL −1{e−2bm
√

s} = bm√
πt3

e−b2m2/t is a positive function for

m≥ 1. Sincevk(t) = L −1{Vk(s)} is also positive, we see thatd(t) is in fact a sum
of convolutions of positive functions. Henced(t)≥ 0, as claimed. Thus, we have

∫ T

0
vk(τ)dτ ≤

∫ T

0
(vk(τ)+d(τ))dτ =

∫ T

0
4k kb√

πτ3
e−k2b2/τ dτ = 4kerfc

(
bk√
T

)
.

But erfc(x)≤ e−x2
for all x≥ 0; introducing this into (8) gives the estimate

‖yk‖L1(0,T) ≤
( (a−b)2

ab

)k
erfc

(
bk√
T

)
≤
( (a−b)2

ab

)k
e−k2b2/T ,

which tends to zero ask→ ∞.

4 Numerical experiments

Figure 1 shows the convergence of NNWR for a mildly asymmetriccase (a= 0.7,
b= 0.3) and a strongly asymmetric case (a= 0.9, b= 0.1) when applied to a finite-
difference Crank–Nicolson discretization. We see that thebounds in Theorem 1,
while not necessarily sharp, does capture the superlinear convergence of the method.
As the length of the time windowT increases, the error curve approaches the lin-
ear bound, which can be increasing for highly asymmetric problems. In this case,
the error can grow substantially before decreasing to zero superlinearly. Thus, one
should divide up the problem into several small time windowsbefore using NNWR.
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Fig. 1 Convergence curves and their respective bounds for (i)a = 0.7, b = 0.3 and (ii) a = 0.9,
b= 0.1. The solid curves (with markers) denote theL∞ error afterk iterations for the final timeT
indicated, and dotted lines of the same color show the superlinear bound (5) for the sameT. The
linear bound (4) is shown as a solid black line (no markers).
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Convergence estimates for more general decompositions canalso be obtained.
For the 1D heat equation withN subdomains, we have

max
1≤i≤N

‖ek
i ‖L∞(0,T) ≤

( √
6

1−e−(2k+1)/τ

)2k
e−k2/τ max

1≤i≤N
‖e0

i ‖L∞(0,T), (9)

whereek
i is the error along theith interface at iterationk andτ = T/h2, with h being

the smallest subdomain size. The estimate (9) is also valid for the 2D heat equation
on a rectangular domain decomposed intoN strips. For the proofs of these and
other results, see [10]. Note that asN increases, the subdomain sizeh necessarily
decreases, and the bound (9) shows that the error can increase before superlinear
convergence kicks in, just like in the asymmetric case above. To remedy this, we
recommend using a coarse grid correction, which is the subject of a future paper.
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GPU-based Parallel Reservoir Simulators

Zhangxin Chen1, Hui Liu1, Song Yu1, Ben Hsieh1 and Lei Shao1

1 Introduction

Nowadays reservoir simulators are indispensable tools to reservoir engineers. They
are widely used in the optimization and prediction of oil andgas production. How-
ever, for large-scale reservoir simulation, computational time is usually too long.
A case with over one million grid blocks may run weeks or even months. High
performance processors and well-designed software are demanded. Though today’s
CPUs (Central Processing Unit) are much more powerful than before, performance
of single CPU tends to slow down due to material and energy consumption and
heat dissipation issues. Processor vendors have begun to move to multiple process-
ing units, which form two major directions: multi-core CPUsand many-core GPUs
[11].

In reservoir simulation, numerical methods like the finite difference and finite
volume methods [7] are often used to discretize the mathematical models. Linear
and nonlinear systems arising from the discretized models by those methods are
sparse, which are usually time-consuming and difficult to solve. Krylov subspace
solvers [18, 1] are general methods to solve these linear systems, and for large-
scale reservoir simulation with over one million grid blocks, a reservoir simulator
may take 90% or even more time on the solution of the linear systems. Fast and
accurate linear and nonlinear solvers are essential to reservoir simulators. Saad et
al. developed the GMRES solver for general unsymmetric linear systems [1, 18]
and Vinsome designed the ORTHOMIN solver, which was originally developed for
reservoir simulators [19]. PCG, BICGSTAB, algebraic multigrid and direct linear
solvers were also proposed. Commonly used preconditionerswere also developed,
such as Incomplete LU (ILU) factorization, domain decomposition, algebraic multi-
grid, and multi-stage preconditioners [1, 18]. GPUs (Graphics Processing Unit) are
usually used for display. Since each pixel can be processed simultaneously, GPUs
are designed in such a way that they can manipulate data in parallel. Their float
point performance and memory speed are very high [16, 15]. Ingeneral, GPUs are
ten times faster than general CPUs [16, 15], which makes thempowerful devices
for parallel computing. Since GPUs are designed for graphics processing and not
for general tasks, their architectures are different from those of CPUs. Hence new
algorithms for GPUs should be developed to utilize GPUs’ performance. NVIDIA
developed a hybrid matrix format, the corresponding sparsematrix-vector multipli-
cation kernel and a GPU-based linear solver package CUSP [4,5, 2]. Bell et al. from

1Department of Chemical and Petroleum Engineering, Universityof Calgary, 2500 Uni-
versity Drive NW, Calgary, AB, Canada, T2N 1N4, e-mail:{zhachen}{hui.j.
liu}{soyu}{bhsieh}{lshao}@ucalgary.ca
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NVIDIA also investigated fine-grained parallelism of AMG solvers using a single
GPU [3]. Saad et al. developed a sparse matrix-vector multiplication kernel for JAD
matrix format and the GMRES solver [11]. Chen et al. designeda new matrix for-
mat, HEC, a new matrix-vector multiplication kernel, Krylov subspace solvers, al-
gebraic multigrid solvers and several preconditioners [20, 13, 14, 12]. Haase et al.
developed a parallel AMG solver for a GPU cluster [10]. In this paper, we will intro-
duce our work on developing a GPU-based parallel iterative linear solver package
and applying it to reservoir simulation.

The framework is as follows: In§2.1, GPU computing, our parallel linear solvers
and GPU-based reservoir simulators are introduced. In§3, numerical experiments
are presented.

2 Parallel Reservoir Simulator

In this section, we will propose GPU-based parallel linear solvers and precondition-
ers, and apply these solvers to reservoir simulation.

2.1 GPU Computing

The NVIDIA Fermi GPU, Tesla C2070, has 14 SMs (Streaming Multi-processors),
and each SM has 32 SPs (Streaming Processors). That’s 448 streaming processors
in total while a normal CPU has only 2, 4, 6 or 8 cores. The GPU architectures are
being developed rapidly. Each SM of the new Tesla Kepler GPUshas 192 SPs, much
more than Fermi GPUs. The Tesla Kepler K20X has 2688 processors in total. At this
moment we are using Fermi GPUs. The NVIDIA Fermi GPU, Tesla C2070, has a
peak performance of 1030G FLOPS in single precision and a peak performance of
515G FLOPS in double precision, which are around 10 times faster than that of
CPUs. The Tesla Kepler K20X GPU has a peak performance of 1310G FLOPS in
double precision and a peak performance of 3950G FLOPS in single precision [17].

Each SM has its own L1 cache, shared memory and register. Theyshare L2 cache,
constant memory, texture memory and global memory. The global memory stores
most of data, and is used to communicate with CPUs. The NVIDIATesla C2070
has 6 GB memory. Its memory speed is around 144 GB/s while the memory speed
of CPUs is around 15 GB/s. The GPU memory is also about 10 timesfaster than the
CPU memory. The Tesla Kepler K20X GPU has a memory speed of 250GB/s [17].
NVIDIA provides CUDA Toolkit [16, 15] to help users develop high performance
programs.
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2.2 Parallel Linear Solvers

GPUs have different architectures from general purpose CPUs. The NVIDIA GPUs
access global memory in a coalesced way, which means that if the memory access
is arranged well, threads in a grid block can fetch data in oneor a few rounds. In
this case, the memory access speed is the highest and codes are efficient. GPUs are
emerging parallel devices. However, algorithms that work well on CPUs may not
work effectively on GPUs [12]. We develop a new matrix formatand the corre-
sponding sparse matrix-vector multiplication kernel (SPMV) to accelerate iterative
linear solvers. The new matrix format, HEC (Hybrid of ELL andCSR format), is
shown in Fig. 1. A HEC matrix has two submatrices, ELL matrix and CSR matrix.
The ELL submatrix stores the regular part of a given matrix and the CSR subma-
trix stores the irregular part of the given matrix. The ELL submatrix is stored in
column-major manner. The main advantage of HEC is that it is friendly to ILU-
related preconditioners. When we store a lower triangular matrix, it’s clear that the
last element in ELL or CSR part is a diagonal element and elements before the di-
agonal one are easy to recognize. If we use HYB, which is efficient for SPMV, the
irregular part is stored in a COO matrix, we don’t know which element is the diag-
onal one or elements before it. The second advantage is that SPMV algorithm for
HEC is simple and implementation is straightforward. The psudo-codes for SPMV
operation is listed in Alg. 1. Alg. 1 is for calculatingy = Ax. Other related BLAS
2 operations are similar. We also develop BLAS 1 operations.A typical operation
y= αx+βy is shown in Alg. 2.

ELL CSR

Ap

Aj

Ax

Aj Ax

Fig. 1 HEC matrix format

We consider the following linear system:

Ax= b, (1)

whereA is a nonsingularn×n matrix,b is the right-hand side andx is the solution to
be solved for. Krylov subspace solvers are general purpose methods for the solution
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Algorithm 1 Sparse Matrix-Vector Multiplication,y= Ax
for i = 1: n do

the i-th thread calculate thei-th row of ELL matrix;{ELL part, use one thread for each row}
end for

for i = 1: n do
the i-th thread calculate thei-th row of CSR matrix;{CSR part, use one thread for each row}

end for

Algorithm 2 BLAS 1 subroutine,y= αx+βy
for i = 1: n do

y[i] = αx[i]+βy[i]; {Use one GPU kernel to deal with this loop}
end for

of linear systems. Based on BLAS 1 and BLAS 2 subroutines we have implemented
several Krylov subspace solvers and algebraic multigrid (AMG) solvers, including
GMRES, CG, BICGSTAB, ORTHOMIN, classical AMG and smoothed aggregation
AMG solvers.

In practice, an equivalent linear system of equation (1) is solved:

M−1Ax= M−1b, (2)

whereM is a nonsingularn×nmatrix, called a preconditioner or left-preconditioner.
When we choose a preconditionerM, a general principle is that M is an good ap-
proximation ofA and in this case, it means that the product ofM−1 andA approxi-
mates the unit matrixI well. The condition number ofM−1A is much smaller than
that ofA and the preconditioned linear system (2) is much easier to solve compared
to the original equation (1). Meanwhile,M should also be easy to construct and
be easy to solve. We have implemented ILU(k)[18], block ILU(k) [18], ILUT(tol,
p)[18], block ILUT(tol, p)[18], domain decomposition, approximate inverse, poly-
nomial and algebraic multigrid preconditioners. For many preconditioners, an upper
triangular linear system and a lower triangular linear system are required to solve.
GPU-based parallel triangular solvers are developed to speed the solving of triangu-
lar linear systems. Details can be read in [13].

2.3 Reservoir Simulator

The reservoir simulator generates a Jacobian matrix in eachNewton iteration. As
mentioned above, the solution of linear systems in each Newton iteration may dom-
inate the whole simulation time. For a large-scale black oilsimulator, the linear
solvers take over 90% of the running time. It is necessary forus to apply high per-
formance linear solvers. We replace CPU-based linear solvers with GPU-based par-
allel linear solvers. The linearized systems are transferred to GPUs, and then GPUs
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solve the linear system using hundreds of microprocessors in parallel and transfer
the solution back to the simulator. By applying GPU-based linear solvers, reservoir
simulators run much faster and it is possible for personal computers to run larger
cases.

3 Numerical Experiments

Numerical experiments are performed on our workstation with Intel Xeon X5570
CPUs and NVIDIA Tesla C2050/C2070 GPUs. The operating system is CentOS
6.3 X86 64 with CUDA Toolkit 5.1 and GCC 4.4. All CPU codes are compiled
with -O3 option and in this paper only one CPU core is employed. The type of float
point number is double and blocks mean the number of sub-domains in this section.

Example 1.Several different SPMV algorithms [2, 4] are compared usingmatrices
from the University of Florida sparse matrix collection [9]. Performance data [14] is
collected in Tab 1 and numbers in the table mean speedup of GPU-based algorithms.

Table 1 Example 1: Performance of SPMV

Matrix CSR ELL HYB HEC
msc23052 0.71 1.55 2.29 2.50
cfd2 1.41 8.06 6.86 11.61
ESOC 1.06 11.56 11.56 11.61
cage13 1.25 7.56 9.42 11.04
af shell8 1.17 8.66 9.63 11.12
parabolicfem 4.36 9.97 7.56 10.00
Emilia 923 0.97 6.64 8.36 8.65
atmosmodd 2.94 14.54 14.50 14.57
Serena 0.98 1.79 7.26 7.29
SPE10 1.13 1.24 11.15 10.27

In Tab 1, the first column stands for matrix and others mean speedup using dif-
ferent SPMV algorithms. We can see that algorithms using HYBand HEC matrix
formats are always efficient and the performance of our HEC matrix format is better
than that of HYB.

Example 2.The matrix used here is from SPE10 [7, 8]. The SPE10 problem isa
standard benchmark for the black oil simulator. The problemis highly heterogenous
and it is designed to solve hard. The grid size for SPE10 is 60x220x85. The number
of unknowns is 2,188,851 and the number of non-zeros is 29,915,573. The linear
solver employed is GMRES(20), and block ILU(k), block ILUT(tol, p) and do-
main decomposition preconditioners are applied as preconditioners. Here RAS (Re-
stricted Additive Schwarz) a domain decomposition method developed by Cai[6].
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Performance data is collected in Table 2. For this example, loading time is always
less than 1s.

Table 2 Example 2: Performance of SPE10

Preconditioner Parameters Setup (s) CPU (s) GPU (s) Speedup
BILU(0) (1, 0) 4.23 76.65 12.42 6.16
BILU(0) (16, 0) 2.04 92.80 12.78 7.25
BILU(0) (128, 0) 1.76 86.22 12.05 7.14
BILU(0) (512, 0) 1.63 92.82 12.87 7.20
BILUT (1, 0) 4.76 23.50 9.03 2.60
BILUT (16, 0) 2.49 32.00 7.17 4.46
BILUT (128, 0) 1.94 42.51 7.82 5.42
BILUT (512, 0) 1.81 47.44 8.80 5.37
RAS (256, 1) 9.28 106.61 14.36 7.41
RAS (1024, 1) 11.91 110.36 16.36 6.73
RAS (256, 2) 10.99 107.89 17.28 6.23
RAS (1024, 2) 15.28 138.60 20.93 6.61

In Table 2, the first column stands for preconditioners. The second column stands
for parameters used for each preconditioner and they are thenumber of sub-domains
and overlap respectively. The others are for setup time, running time and speedup,
respectively. From the table, we can speed ILU(0) 6.2 times faster. The speedup can
be higher if we increase the number of blocks. The average speedup of BILU(0) is
about 7. In this example, BILUT is the most effective preconditioner. It always takes
the least running time. However, due to its irregular non-zero pattern, its speedup is
lower than that of the other two precondtioners. Since thereis not enough memory
on GPU, the maximum number of blocks for RAS in this case is 1024. The average
speedup of RAS is 6.5.

Example 3.The matrix used here is also from SPE10, which has the same size with
the one we use in Example 2. Its pressure part has a dimension of 1,094,421 and
has 7,478,141 non-zeros. Here we solve pressure matrix using algebraic multigrid
solver and the entire matrix is solved by GMRES (40) with CPR-AMG (Constrained
Pressure Residual) preconditioner [7]. To compare, the entire matrix is also solved
using GMRES(40) with ILU(0) preconditioner. Classical AMGsolver is applied
here. The standard interpolator and damped Jacobi smootherare applied. V-cycle is
used for solving phase and the coarsest level is solved usingGMRES. The AMG
solver has 8 levels. The termination criterium is 1e-6. Performance data is shown in
Tab 3.

The speedup of AMG is 6.49 when solving pressure matrix. When CPR-AMG
is used as a preconditioner, the GMRES(40) converges quickly. CPR-AMG is much
more efficient than ILU(0). And a speedup of 6.74 is obtained.From Tab 3, we can
also see that the setup phase takes too much time, which should be optimized in
future.
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Table 3 Example 3: Performance of AMG

Solver Preconditioner Setup (s) CPU (s) GPU (s) Speedup ResidualIterations
AMG 3.96 6.86 1.04 6.49 4.88e-7 11
GMRES(40) CPR-AMG 8.43 185.42 27.51 6.74 3.91e-7 9
GMRES(40) ILU(0) 4.3 1037.26 195.96 5.29 9.42e-4 100

Example 4.This example is to test the speedup of our GPU solver in the whole black
oil simulator. The case is SPE10 simulation in 100 days. The grid size for SPE10 is
60x220x85. The solver is GMRES(20). Performance data is shown in Tab 4.

Table 4 Example 4: Performance of black oil simulator

Preconditioner Blocks CPU (s) GPU (s) Speedup
BILU(0) 1 49610.28 7721.09 6.43
BILU(0) 4 53350.63 8524.31 6.26
BILU(0) 8 54286.07 8720.25 6.23
BILUT 1 19533.45 9008.22 2.17
BILUT 4 23187.85 8670.53 2.67
BILUT 8 21718.45 7908.42 2.75

As shown in Tab 4, the block ILU(0) preconditioner achieves aspeedup of 6.2
while the speedup of block ILUT is much lower. The reason is that the non-zero
pattern of ILUT is irregular and the ILU factorization takestoo much time.

4 Conclusion

We have developed a GPU-based parallel linear solver package. When solving ma-
trices from reservoir simulation, the parallel solvers aremuch more efficient than
CPU-based linear solvers. However, efforts should be made to improve the setup
phase of domain decomposition, the factorization of ILUT and parallelism of block
ILUT preconditioner.
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Optimized Schwarz methods with overlap for
the Helmholtz equation

Martin J. Gander1 and Hui Zhang1

1 Introduction

For the Helmholtz equation, simple absorbing conditions ofthe form∂n− iω were
proposed as transmission condition (TC) in Schwarz methodsfirst without over-
lap in [4], and later also with overlap, see [3, 12]. More advanced TCs can also be
used, see e.g. [11, 14, 2]. Furthermore, parameters can be introduced into TCs and
then optimized for rapid convergence, which led to the so called optimized Schwarz
methods, see e.g. [6, 13] for elliptic equations.Withoutoverlap, the parameters in-
volved in some zero- and second-order TCs for the Helmholtz equation have been
optimized in [8, 7].With overlap, preliminary numerical studies of the parameters
have been presented in [5, 9]. In this paper, we present the asymptotic solutions of
the corresponding optimization problems with small overlap. We also compare the
optimized parameters with other choices based on convergence factors and actual
iteration numbers. We finally test for the first time Taylor second-order absorbing
conditions for domain decompositionwith overlap in the Helmholtz case.

2 Schwarz Methods with Overlap

As a model problem, we consider the Helmholtz equation in free space,

(ω2+∆)u= f (x,y), (x,y) ∈ R×Rd−1,

equipped with the Sommerfeld radiation condition

lim
r→∞

r
d−1

2 (
∂u
∂ r
− iω) = 0, r =

√√√√x2+
d−1

∑
j=1

y2
j .

We decompose the domain into two overlapping subdomainsΩ1 = (−∞,L)×Rd−1

andΩ2 = (0,∞)×Rd−1 with the overlap sizeL > 0. The Schwarz iteration reads

ω2un+1
1 +∆un+1

1 = f (x,y), (x,y) ∈Ω1,

(∂x+S1)(u
n+1
1 )(L,y) = (∂x+S1)(un

2)(L,y), y∈ Rd−1,

1Section of Mathematics, University of Geneva, 2-4 rue du Liévre, Case postale 64, e-mail:
{martin.gander}{hui.zhang}@unige.ch
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and
ω2un+1

2 +∆un+1
2 = f (x,y), (x,y) ∈Ω2,

(−∂x+S2)(u
n+1
2 )(0,y) = (−∂x+S2)(un

1)(0,y), y∈ Rd−1,

whereS j , j = 1,2 are two linear operators in some trace spaces along{L}×Rd−1

and{0}×Rd−1, respectively. For the analysis it suffices to consider by linearity the
casef (x,y) = 0 and to analyze convergence to the zero solution. We take a Fourier
transform in they direction to obtain

(ω2−|k|2)ûn+1
1 +∂ 2

xxû
n+1
1 = 0, x∈ (−∞,L),

(∂x+s1)(û
n+1
1 )(L,k) = (∂x+s1)(ûn

2)(L,k),

and
(ω2−|k|2)ûn+1

2 +∂ 2
xxû

n+1
2 = 0, x∈ (0,∞),

(−∂x+s2)(û
n+1
2 )(0,k) = (−∂x+s2)(ûn

1)(0,k),

wherek is the Fourier variable ofy and sj denotes the symbol ofS j . Since the
Sommerfeld radiation condition excludes growing solutions as well as incoming
modes at infinity we obtain the solutions

ûn+1
1 (x,k) = ûn+1

1 (L,k)eλ (k)(x−L),

ûn+1
2 (x,k) = ûn+1

2 (0,k)e−λ (k)x,

whereλ (k) denotes the root of the characteristic equationλ 2+(ω2−|k|2) = 0 with
positive real part or negative imaginary part,

λ (k) :=

{√
|k|2−ω2 for |k|> ω,

−i
√

ω2−|k|2 for |k|< ω.
(1)

Substitution of the solutions into the transmission conditions yields

ûn+1
1 (L,k) = s1(k)−λ (k)

s1(k)+λ (k)e
−λ (k)Lûn

2(0,k),

ûn+1
2 (0,k) = s2(k)−λ (k)

s2(k)+λ (k)e
−λ (k)Lûn

1(L,k).

By recursion we have ˆun+1
1 (L,k) = ρ(k)ûn−1

1 (L,k) andûn+1
2 (0,k) = ρ(k)ûn−1

2 (0,k),
where the convergence factorρ for a double iteration is defined by

ρ(k) =
s1(k)−λ (k)
s1(k)+λ (k)

· s2(k)−λ (k)
s2(k)+λ (k)

e−2λ (k)L. (2)

Setting the two complex parameterss1 = p1− iq1 ands2 = p2− iq2, with p j ,q j ∈R,
and insertings1, s2 and (1) into the convergence factor (2), we find after simplifying
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|ρ(p1,q1, p2,q2,k)|2 =





p2
1+(q1−

√
ω2−|k|2)2

p2
1+(q1+

√
ω2−|k|2)2

p2
2+(q2−

√
ω2−|k|2)2

p2
2+(q2+

√
ω2−|k|2)2

, |k|2 < ω2,

q2
1+(p1−

√
|k|2−ω2)2

q2
1+(p1+

√
|k|2−ω2)2

q2
2+(p2−

√
|k|2−ω2)2

q2
2+(p2+

√
|k|2−ω2)2

e−4λ (k)L, |k|2 > ω2.

(3)
As long as|k| 6= ω andp j ,q j > 0, we have|ρ |< 1.

Remark 1.It was shown in [6] that the two-sided operatorsS j = sj ∈ C can be
transformed into the second-order operators

S̃1 = S̃2 = r1− r2 ∇2
y, with r1 =

−ω2+s1s2

s1+s2
, r2 =

1
s1+s2

, (4)

and the associated convergence factor for a single iteration is then given by

ρ̃(k) =
s1(k)−λ (k)
s1(k)+λ (k)

· s2(k)−λ (k)
s2(k)+λ (k)

e−λ (k)L, (5)

which is just (2) withL replaced byL/2.

3 Optimized transmission conditions

For simplicity, we considerp1 = q1, p2 = q2. Our goal is to find good parameters
p1, p2 such that the modulus of the squared convergence factor (3) is as small as
possible over a range of frequencies|k| ∈ [kmin,k−]∪ [k+,kmax], wherek− <ω < k+.
We require|k| to be away fromω because|ρ | = 1 when|k| = ω, independently of
what one chooses for the parametersp j andq j . Since in general we do not know
how the Fourier coefficients of the initial error are distributed over the frequencies,
we minimize|ρ | for the worst case, that is, we solve the min–max problem

argmin(p1,p2)∈P

(
max

|k|∈[kmin,k−]∪[k+,kmax]
|ρ(p1, p1, p2, p2,k)|2

)
, (6)

whereP is a certain search domain of the parameters. For well-posedness of the sub-
domain problems, we should chooseP ⊂ [0,∞)2. The best approximation problem
(6) is difficult to solve, and we only give asymptotic formulas for the parameters
such that the convergence factor is as small as possible in different limiting pro-
cesses in the mesh sizeh and the wave numberω.

The proofs of the following theorems are beyond the scope of this short paper
and will appear in [10].

Theorem 1.Let L=CLh, kmax∈ [C/h,∞], CL,C,kmin,k−,k+ andω be positive and
independent of h, kmin < k− < ω, kmax> k+ > ω andP= {(p1, p2) |0≤ p1≤ p2 <
∞}. Suppose h is small and|k| ∈ [kmin,k−]∪ [k+,kmax]. If we set
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p1 = p∗1 =C2/5
ω (4L)−1/5/2+o(h−1/5),

p2 = p∗2 =C1/5
ω (4L)−3/5+o(h−3/5),

(7)

where Cω = min
{

ω2−k2
−,k

2
+−ω2

}
, then (3) is bounded by1−4(4L

√
Cω)

1/5+

o(h1/5). Moreover, any solution of (6) must satisfy (7).

Theorem 2.Let L = CLh, h = Ch/ωγ , γ ≥ 1, kmax ∈ [C/h,∞], δω = min{ω −
k−,k+−ω} with CL,Ch,C,k− and k+ positive constants independent ofω, kmin <
k− < ω, kmax> k+ > ω andP= {(p1, p2) |0≤ p1 ≤ p2 < ∞}. Supposeω is large
and|k| ∈ [kmin,k−]∪ [k+,kmax]. Then, for1≤ γ < 9/8 any solution of (6) satisfies

p∗1 = δ 3/8
ω (ω/2)5/8+o(ω5/8),

p∗2 = (2δω)
1/8 ω7/8+o(ω7/8),

for which (3) is bounded by1− 4 · 21/8 δ 1/8
ω ω−1/8 + o(ω−1/8). For γ > 9/8, any

solution of (6) satisfies

p∗1 = (δω ω)2/5L−1/5/2+o(ω2/5+γ/5),

p∗2 = (δω ω)1/5L−3/5/2+o(ω1/5+3γ/5),

and (3) is bounded by1− 4
√

2(ChCL)
1/5 δ 1/10

ω ω1/10−γ/5 + o(ω1/10−γ/5). Finally,
for γ = 9/8, any solution of (6) satisfies

p∗1 = (ChCLδω)
1/3 ω5/8+o(ω5/8),

p∗2 =ChCL ω7/8+o(ω7/8),

and (3) is bounded by
{

1−16ChCL ω−1/8+o(ω−1/8), if 2−15/8δ 1/8
ω ≤ChCL,

1−2
√

2δ 1/6
ω C−1/3

h C−1/3
L ω−1/8+o(ω−1/8), if 2−15/8δ 1/8

ω ≥ChCL.

Remark 2.In the particular caseγ = 9/8, the constant in front of the leading term
of p∗1 can be an arbitrary number in the interval[

√
2δω/(8ChCL),32C3

hC3
L] in order

to solve (6). But the choice in the above theorem is the best inthe sense that it
simultaneously minimizes the maximum of the other local butnot global maxima.

Remark 3.In practice, we use only the leading order terms of the optimized param-
eters. But it is also possible to extract higher order terms.

Fig.1 shows the convergence factors of different Schwarz methods, obtained for
the model problem inR2, with ω = 20π andh= 1/100. The maximum of the con-
vergence factors for double iterations over the chosen interval k∈ [π,ω−π]∪ [ω +
π,π/h] are 1.0, for the classical Schwarz method and Després’ method without over-
lap [4], 0.4376 for Despŕes’ method with overlap [3, 12], 0.1548 for the optimized
Schwarz methods without overlap [7], and and 0.0764 for the same method with
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Fig. 1 Convergence factors of different Schwarz methods as functions of the Fourier parameterk,
for ω = 20π, h = 1/100. The vertical lines indicate theω, ω − π andω + π which are used to
exclude a short interval for the optimized methods.

overlap. The overlap size we chose is 2h, and we used the second-order formulation
(4), (5) for the optimized methods.

4 Numerical experiments

We used the ORAS formulation described in [13] for our implementation. As an
alternative, one could also use a substructured formulation, see e.g. [9]. We im-
plemented the second-order transmission conditions as indicated in Remark 1. We
always solve the homogeneous equation with the zero solution and use aran-
dom initial guess to stimulate all frequencies. We use the domain decomposition
Ω1 = (0, 1

2 +h)× (0,1), Ω2 = (1
2−h, 1)× (0,1), and iterate until the relative resid-

ual is less than 10−8. We compare the overlapping Schwarz methods with optimized
second-order transmission condition denoted by OO2 to those with the classical
Dirichlet condition denoted by Cl, simple absorbing conditions of the form∂n− iω
(i.e. Despŕes’ method with overlap, c.f. [3, 12]) denoted by TO0, because it cor-
responds to a Taylor expansion of zero order of the symbol of the DtN operator,
and the second-order low frequency absorbing condition, which is denoted by TO2.
Since the Schwarz methods can be used as a stationary iterative solver, or as a pre-
conditioner for GMRES, both cases are tested, except for theclassical Schwarz
stationary iteration, which can not converge.

We consider the open cavity problem with homogeneous Dirichlet boundary con-
ditions on the top and the bottom of the unit square and the TO2second-order ab-
sorbing conditions [1] on the left and the right sides, and also the free space problem
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Table 1 Iteration numbers for the open cavity problem on the left and for the free space problem
on the right, top half forω = 9.5π, and below forω = 10π.

1/h Stationary GMRES Stationary GMRES
TO0 TO2 OO2 Cl. TO0 TO2 OO2 TO0 TO2 OO2 Cl. TO0 TO2 OO2

50 34 35 14 25 16 15 12 23 24 17 25 17 15 13
100 74 84 17 30 22 22 13 33 41 21 28 21 21 14
200 166 172 20 38 27 32 14 51 73 22 33 27 30 15
400 343 345 20 49 33 41 14 85 135 23 42 33 40 15
800 662 717 21 67 40 50 16 144 249 24 58 42 49 16

50 67 70 19 26 15 14 14 22 23 17 26 16 15 13
100 227 222 31 30 21 22 15 32 40 20 27 21 21 14
200 469 371 44 38 28 32 15 50 71 22 33 27 30 15
400 681 455 51 51 34 42 15 83 130 22 43 34 40 15
800 864 504 55 68 41 52 17 136 241 23 55 42 49 15

truncated to the unit square with the TO2 second-order absorbing conditions at the
boundary.

First, we fix ω = 9.5π (or ω = 10π) which are away from (or on) the sine
frequencies at the continuous level in they-direction. The corresponding iteration
numbers are listed in Table 1. We can see that the minimum distance fromω to
the frequencies at the discrete level in they-direction plays an important role in all
thestationaryiterations while in theGMRESiterations this effect is only moderate.
Fig.2 shows the asymptotic behavior of the different Schwarz methods ash→ 0, for
the open cavity problem, and confirms our Fourier analysis results in Theorem 1.

Now we fix hω or hω3/2 constant to see how the Schwarz methods behave for
higher and higher wave numbers, which corresponds to Theorem 2. The iteration
numbers are listed in Table 2. We see that the optimized method still converges faster
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Fig. 2 Asymptotic behavior of the Schwarz methods for the open cavity,ω = 9.5π.
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Table 2 Iteration numbers for the open cavity problem on the left and for the free space problem
on the right, top half forhω = π/5, and below forhω3/2 ≈ 3.52.

1/h Stationary GMRES Stationary GMRES
TO0 TO2 OO2 Cl. TO0 TO2 OO2 TO0 TO2 OO2 Cl. TO0 TO2 OO2

100 86 67 35 38 20 19 16 27 27 18 35 20 18 15
200 – 110 – 48 25 22 19 33 30 19 43 25 21 16
400 280 150 72 69 38 32 20 43 37 19 53 28 25 17
800 178 139 44 76 42 35 25 56 45 19 65 32 30 17

100 80 87 15 34 22 20 14 29 31 19 30 21 18 14
200 – 2948 – 43 27 27 19 42 39 19 34 27 24 15
400 266 279 26 49 33 32 18 56 50 20 41 35 30 16
800 208 218 21 70 46 41 18 78 65 20 47 43 37 16

than the others when used as a preconditioner for GMRES, while the stationary
iterations are again greatly affected by the discrete frequencies close to the wave
number. The bars in the tables represent divergence.

Next, we test the various Schwarz methods for an increasing number of sub-
domains. Since in most cases the stationary iterations diverge, we only show the
GMRES iteration numbers in Table 3, where we use a bar to represent iteration
numbers larger than 3000. We can see, neglecting the numbersin the parentheses
for the moment, that all the methods deteriorate rapidly andthe overlapping TO2
method outperforms the others eventually. Clearly the optimization of the two sub-
domain convergence factor does not predict well the optimalchoice in the case of
many subdomains for the Helmholtz equation.

To partially improve the OO2 method, we introduce now two heuristics. First, we
takeδω = Nπ/2 instead ofδω = π in the former experiments, whereN denotes the
number of subdomains in thex-direction. Second, since the real parts of the parame-
ters slow down the convergence for propagating modes, whichbecomes worse when
the number of subdomains increases, we usesj = (2/N− i) p j ( j = 1,2) instead of
sj = (1− i) p j . The new results are shown in the parentheses of Table 3, where the
first numbers are obtained by using the two heuristics and thesecond numbers are
from numerically optimized parameters based on a new many-subdomain Fourier

Table 3 Iteration numbers of GMRES,h= 1/256,ω = 51.2π, overlap 2h.

Sub. open cavity free space
Cl. TO0 TO2 OO2 Cl. TO0 TO2 OO2

2×1 52 28 24 18 48 25 23 16
4×1 396 68 46 68 (45 40) 163 29 24 45 (30 22)
8×1 – 160 102 162 (91 88) – 44 33 108 (50 36)

16×1 – 682 221 492 (183 188) – 88 65 258 (82 67)

2×2 118 66 63 61 49 27 25 20
4×4 2192 184 172 183 (177 166) 372 38 33 49 (42 35)
8×8 – 789 618 734 (638 601) – 69 65 104 (82 70)

16×16 – 2047 1473 2268 (1859 1514) – 123 127 184 (168 136)
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analysis. But still, the low frequency Taylor conditions perform best in these exper-
iments. Our on-going work is to take a closer look at the multi-domain case and to
seek better choices of parameters if it is possible.
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DG discretization of optimized Schwarz methods
for Maxwell’s equations

Mohamed El Bouajaji1, Victorita Dolean2, Martin J. Gander3, St́ephane Lanteri1,
and Ronan Perrussel4

1 Introduction

In the last decades, Discontinuous Galerkin (DG) methods have seen rapid growth
and are widely used in various application domains (see [13]for an historical intro-
duction). This is due to their main advantage of combining the best of finite element
and finite volume methods. For the time-harmonic Maxwell equations, once the
problem is discretized with a DG method, finding robust solvers is a difficult task
since one has to deal with indefinite problems. From the pioneering work of Despŕes
[5] where the first provably convergent domain decomposition (DD) algorithm for
the Helmholtz equation was proposed and then extended to Maxwell’s equations
in [6], other studies followed. Preliminary attempts to obtain better algorithms for
this kind of equations were given in [3, 4, 12], where the firstideas of optimized
Schwarz methods can be found. Then, the advantage of the optimization process
was used for the second order Maxwell system in [1]. Later on,an entire hierarchy
of optimized transmission conditions for the first order Maxwell’s equations was
proposed in [9, 11] . For the second order or curl-curl Maxwell’s equations second
order optimized transmission conditions can be found in [14, 15, 16, 17]. We study
here optimized Schwarz DD methods for the time-harmonic Maxwell equations dis-
cretized by a DG method. Due to the particularity of the latter, DG discretization ap-
plied to more sophisticated Schwarz methods is not straightforward. In this work we
show a strategy of discretization and prove the equivalencebetween multi-domain
and single-domain solutions. The proposed discrete framework is then illustrated by
some numerical results in the two-dimensional case.

We consider time-harmonic Maxwell’s equations in a homogeneous medium
written as a first order system (see [10] for more details)

G0W +Gx∂xW +Gy∂yW +Gz∂zW = 0, (1)

where

W =

(
E
H

)
, G0 =

(
(σ + iω)I3×3 03×3

03×3 iωI3×3

)

with E, H the complex-valued electric and magnetic fields,ω the angular frequency
of the time-harmonic wave,σ the electric conductivity. For a general vectorn =

1 Inria Sophia Antipolis-Ḿediterrańee, France e-mail: {Mohamed.El_
Bouajaji}{Stephane.Lanteri}@inria.fr ·2 University of Nice-Sophia Antipo-
lis, France e-mail: dolean@unice.fr ·3 University of Geneva, Switzerland e-mail:
martin.gander@unige.ch ·4 CNRS, Universit́e de Toulouse, Laplace, France e-mail:
perrussel@laplace.univ-tlse.fr
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(
nx ny nz

)
, we also define the matrices

Gn =

(
03×3 Nn
NT

n 03×3

)
andNn =




0 nz −ny

−nz 0 nx

ny −nx 0


 .

Then, forl ∈ {x,y,z}, we have thatNl = Nel andGl = Gel , whereel , l = 1,2,3 are
the canonical basis vectors. Our goal is to solve the boundary-value problem

G0W +Gx∂xW +Gy∂yW +Gz∂zW = 0 in Ω ,
(MΓm−Gn)W = 0 onΓm and (MΓa−Gn)(W−W inc) = 0 onΓa,

(2)

whereW inc is a givenincident field, while MΓm andMΓa are trace operators defined
on themetallicandabsorbingboundariesΓm andΓa (see [10] for more details)

MΓm =

(
03×3 Nn
−NT

n 03×3

)
andMΓa = |Gn|=

(
NnNT

n 03×3

03×3 NT
n Nn

)
.

The matricesG+
n and G−n are the positive and negative parts ofGn based on its

diagonalization and we have that|Gn|= G+
n −G−n .

2 Continuous classical and optimized Schwarz algorithms

We now decompose the domainΩ into two non-overlapping subdomainsΩ1 and
Ω2, and denote byΣ the interface betweenΩ1 and Ω2, by W j the restriction of
W to Ω j and byn the unit outward normal vector toΣ directed fromΩ1 to Ω2.
Schwarz algorithms consist in computing iterativelyWn+1

j from Wn
j , for j = 1,2

G0Wn+1
1 +Gx∂xWn+1

1 +Gy∂yWn+1
1 +Gz∂zWn+1

1 = 0, in Ω1,

(G−n +S1G+
n )W

n+1
1 = (G−n +S1G+

n )W
n
2, on Σ ,

G0Wn+1
2 +Gx∂xWn+1

2 +Gy∂yWn+1
2 +Gz∂zWn+1

2 = 0, in Ω2,

(G+
n +S2G−n )W

n+1
2 = (G+

n +S2G−n )W
n
1, on Σ ,

(3)

whereS1 andS2 are differential operators. WhenS1 = S2 = 06×6, the interface con-
ditions become the positive and negative flux operatorsG+

n andG−n , and theclas-
sical Schwarz algorithmis obtained. ApplyingG+

n (respectivelyG−n ) to a vector
W means to select the characteristic variables associated toout-going (respectively
in-coming) waves, which is very natural considering the hyperbolic nature of the
problem, see [9] (section 3.1). We note that
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Algorithm 1 2 3 4 5

F (S̃j ) 0 − s−iω
s+iω − k2+iωσ

k2−2ω2+iωσ+2iωs
− sj−iω

sj+iω − k2+iωσ
k2−2ω2+iωσ+2iωsj

Table 1 Five different choices for the symbols of the operators in the transmission conditions (6)
leading to five different optimized Schwarz algorithms

G−n =

(
−NnNT

n Nn
NT

n −NT
n Nn

)
=

(
I3×3

−NT
n

)(
−NnNT

n Nn
)
,

G+
n =

(
NnNT

n Nn
NT

n NT
n Nn

)
=

(
I3×3

NT
n

)(
NnNT

n Nn
)
.

(4)

Thus the classical transmission conditions are equivalentto impedance conditions,

G−n Wn+1
1 = G−n Wn

2⇔Bn(En+1
1 ,Hn+1

1 ) = Bn(En
2,H

n
2),

G+
n Wn+1

2 = G+
n Wn

1⇔B−n(En+1
2 ,Hn+1

2 ) = B−n(En
1,H

n
1).

(5)

with Bn(E,H) = NT
n E−NT

n NnH. For Ω2 we have used the fact thatG+
n = −G−−n.

The classical Schwarz algorithm is adopted in [10] togetherwith low order DG
methods in the 3D case. Along the lines of (5), we have the equivalences

(G−n +S1G+
n )W

n+1
1 = (G−n +S1G+

n )W
n
2

⇔ (Bn + S̃1B−n)(En+1
1 ,Hn+1

1 ) = (Bn + S̃1B−n)(En
2,H

n
2),

(G+
n +S2G−n )W

n+1
2 = (G+

n +S2G−n )W
n
1

⇔ (B−n + S̃2Bn)(En+1
2 ,Hn+1

2 ) = (B−n + S̃2Bn)(En
1,H

n
1),

(6)

whereS̃1 andS̃2 denote differential operators which are approximations ofthe trans-
parent operators. From these transparent operators we can obtain a hierarchy of op-
timized algorithms with appropriate choices forS̃1 and S̃2 [11]. The operatorsS1

andS2 are eventually defined to guarantee the equivalences in (6).
If we consider the TM formulation of Maxwell’s equations, that is with E =

(0 0 Ez )
T andH = (Hx Hy 0)T , thenW = (Ez Hx Hy )

T , Nn = (ny −nx )
T , and

G0 =

(
σ + iω 01×2

02×1 iωI2×2

)
, Gx =

(
0 Nex

NT
ex

0

)
and Gy =

(
0 Ney

NT
ey

0

)
.

We give in Table 1 the symbolsF (S̃j) of S̃j in the 2d case for conductive media for
five different Schwarz algorithms, where the parameterss= p(1+ i), s1 = p1(1+ i)
ands2 = p2(1+ i) are solutions of some min-max problems, as explained in [11]
(section 5, table 5.1). Note that the Fourier symbols of the operators in algorithms
1, 2 and 4 are constants, therefore they have the same expression as in the physical
space. In this case (6) can be written in the 2d situation considered here as

En+1
1 −NnHn+1

1 + S̃1(E
n+1
1 +NnHn+1

1 ) = En
2−NnHn

2+ S̃1(En
2 +NnHn

2),

En+1
2 +NnHn+1

2 + S̃2(E
n+1
2 −NnHn+1

2 ) = En
1 +NnHn

1+ S̃2(En
1−NnHn

1).
(7)
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This is not the case for algorithms 3 and 5 which involved second order transmission
conditions. Here, thẽSj are operators whose Fourier symbols have the form

F (S̃j) =
q j(k)

r j(k)
with q j(k) =−(k2+ iωσ) andr j(k) = k2−2ω2+ iωσ +2iωsj .

where the Fourier variablek corresponds to a transform with respect to the tan-
gential directionτ along the interface, assuming a two-subdomain decomposition
with a straight interface. In that case,F−1(q j) andF−1(r j) are partial differential
operators in theτ variable,

F−1(q j) = ∂ττ − iωσ , F−1(r j) =−∂ττ −2ω2+ iωσ +2iωsj , sj ∈ C,

and (7) can be re-written as

F−1
(
r1(E

n+1
1 −NnHn+1

1 )
)
+ F−1

(
q1(E

n+1
1 +NnHn+1

1 )
)

= F−1 (r1(En
2−NnHn

2))+F−1 (q1(En
2 +NnHn

2)) ,

F−1
(
r2(E

n+1
2 +NnHn+1

2 )
)
+ F−1

(
q2(E

n+1
2 −NnHn+1

2 )
)

= F−1 (r2(En
1 +NnHn

1))+F−1 (q2(En
1−NnHn

1)) .

3 Discontinuous Galerkin approximation

Let Th be a discretization ofΩ andΓ 0, Γ m andΓ a be the sets of purely inter-
nal, metallic and absorbing faces ofTh. We denote byK an element ofTh and
by F = K ∩ K̃ the face shared by two neighboring elementsK andK̃. On this face
F , we define theaverageby {W} = 1

2(WK +WK̃) and thetangential trace jump
by [[W]] = GnK WK +GnK̃

WK̃ . For two vector functionsU andV in (L2(D))6, we
denote(U,V)D =

∫
D U ·V dx, if D is a domain ofR3 and 〈U,V〉F =

∫
F U ·V ds

if F is a face ofR2. For sake of simplicity, we will skip some subscripts, that is
(·, ·) = (·, ·)Th

= ∑K∈Th
(·, ·)K . On the boundaries we define

MF,K =





(
ηFNnK NT

nK
NnK

−NT
nK

03×3

)
with ηF 6= 0, if F belongs toΓ m,

|GnK | if F belongs toΓ a.

Using these notations, the weak formulation of the problem is

(G0W,V) +

(
∑

l∈{x,y,z}
Gl ∂l W,V

)
− ∑

F∈Γ 0

〈[[W]],{V}〉F + ∑
F∈Γ 0

〈
1
2
[[W]],{V}

〉

F

+ ∑
F∈Γ m∪Γ a

〈
1
2
(MF,K−GnK )W,V

〉

F
= ∑

F∈Γ a

〈
1
2
(MF,K−GnK )W inc,V

〉

F
.
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Note that we have implicitly adopted an upwind scheme for thecalculation of the
boundary integral over an internal faceF ∈ Γ 0. An alternative choice is that of
a centered scheme. Both of these options are discussed and compared in [8]. Let
Pp(D) denote the space of polynomial functions of degree at mostp on a domain
D. For any elementK ∈ Th, let Dp(K) ≡ (Pp(K))6. The vectorsW andV will be
taken in the spaceDp

h =
{

V ∈ (L2(Ω))6 | V|K ∈ Dp(K), ∀K ∈Th
}

.
For the discretization of optimized transmission conditions, letΓΣ be the set of

faces onΣ , Γ j
0 be the set of interior faces ofΩ j andΓ j

b be the set of faces ofΩ j

lying on ∂Ω . Then the weak form in the two-subdomain case can be written as

L (W1,V1)+∑
Γ 1

0

⋄+∑
Γ 1

b

⋄+ ∑
F∈ΓΣ

〈
1
2
(|GnK |−GnK )(W1−W2),V1

〉

F
= 0,

L (W2,V2)+∑
Γ 2

0

⋄+∑
Γ 2

b

⋄+ ∑
F∈ΓΣ

〈
1
2

(
|GnK̃
|−GnK̃

)
(W2−W1),V2

〉

F
= 0,

(8)

whereL (W j ,V j) ≡ (G0W j ,V j) + (∑l Gl ∂l W j ,V j) and, for simplicity, we have
replaced some terms on the faces that are not important for the presentation by a⋄.
For any faceF =K∩K̃ onΣ , if n denotes the normal onΣ directed fromΩ1 towards
Ω2, andK andK̃ are elements ofΩ1 andΩ2, we havenK = n = −nK̃ . In order to
simplify the notation, we make use ofG−n = 1

2(Gn−|Gn|) andG+
n = 1

2(Gn + |Gn|).
Then, starting from initial guessesW0

1 and W0
2, the classical Schwarz algorithm

computes the iteratesWn+1
j from Wn

j by solving onΩ1 andΩ2 the subproblems

L (Wn+1
1 ,V1)+∑

Γ 1
0

⋄+∑
Γ 1

b

⋄− ∑
F∈ΓΣ

〈
G−n (W

n+1
1 −Wn

2),V1
〉

F = 0,

L (Wn+1
2 ,V2)+∑

Γ 2
0

⋄+∑
Γ 2

b

⋄+ ∑
F∈ΓΣ

〈
G+

n (W
n+1
2 −Wn

1),V2
〉

F = 0.
(9)

In order to introduce optimized transmission conditions (3) into the DG discretiza-
tion, we first want to show explicitly what transmission conditions the classical
relaxation in (9) corresponds to. To do so, the subdomain problems solved in (9)
are not allowed to depend on variables of the other subdomainanymore, since the
coupling will be performed with the transmission conditions, and we thus need to
introduce additional unknowns, namelyWn+1

2,Ω1
on Ω1 andWn+1

1,Ω2
on Ω2, in order to

write the classical Schwarz iteration with local variablesonly, i.e.

L (Wn+1
1 ,V1)+∑

Γ 1
0

⋄+∑
Γ 1

b

⋄− ∑
F∈ΓΣ

〈
G−n (W

n+1
1 −Wn+1

2,Ω1
),V1

〉
F
= 0,

L (Wn+1
2 ,V2)+∑

Γ 2
0

⋄+∑
Γ 2

b

⋄+ ∑
F∈ΓΣ

〈
G+

n (W
n+1
2 −Wn+1

1,Ω2
),V2

〉
F
= 0.

(10)

Comparing with the classical Schwarz algorithm (9), we see that in order to ob-
tain the same algorithm, the transmission conditions for (10) need to be chosen as
G−n Wn+1

2,Ω1
= G−n Wn

2 andG+
n Wn+1

1,Ω2
= G+

n Wn
1, which implies that at the limit, when
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the algorithm converges, we must verify the coupling conditions

G−n W2,Ω1 = G−n W2, G+
n W1,Ω2 = G+

n W1, (11)

where we dropped the iteration index to denote the limit quantities. The Schwarz
algorithm (10) can however also be used with optimized transmission conditions
(3), which have to be the DG discretization of the strong relations

G−n Wn+1
2,Ω1

+S1G+
n Wn+1

1 = G−n Wn
2+S1G+

n Wn
1,Ω2

,

G+
n Wn+1

1,Ω2
+S2G−n Wn+1

2 = G+
n Wn

1+S2G−n Wn
2,Ω1

.
(12)

Then, we want to show the equivalence between (11) and the DG discretization we
adopt for the transmission conditions (12) at convergence in a 2d case. First, from
(4) note that relation (11) is equivalent to

NnNT
n E2,Ω1−NnH2,Ω1 = NnNT

n E2−NnH2,
NnNT

n E1,Ω2 +NnH1,Ω2 = NnNT
n E1+NnH1.

(13)

We translate these relations using auxiliary variablesΛ2,Ω1 := E2,Ω1 −NnH2,Ω1,
Λ2 := E2−NnH2, Λ1,Ω2 := E1,Ω2 +NnH1,Ω2 andΛ1 := E1 +NnH1 belonging to
the trace spaceMp

h =
{

η ∈ L2(Σ) | η |F ∈ Pp(F), ∀F ∈ Σ
}

. Then (13) becomes

Λ2,Ω1 = Λ2 and Λ1,Ω2 = Λ1. (14)

From (12) and (14), we have to find for optimized transmissionconditions a suitable
DG discretization of the relations

Λ2,Ω1 + S̃1Λ1 = Λ2+ S̃1Λ1,Ω2 and Λ1,Ω2 + S̃2Λ2 = Λ1+ S̃2Λ2,Ω1. (15)

We focus on the case of second order transmission conditionsand (15) becomes

(−∂ 2
τ + iωσ −2ω2+2iωs1)(Λ2,Ω1−Λ2)+(−∂ 2

τ + iωσ)(Λ1,Ω2−Λ1) = 0,
(−∂ 2

τ + iωσ −2ω2+2iωs2)(Λ1,Ω2−Λ1)+(−∂ 2
τ + iωσ)(Λ2,Ω1−Λ2) = 0.

(16)

Let (η j) j be a basis ofMp
h . We define the discrete matricesMΣ andKΣ by

(MΣ )i, j = ∑
F∈Σ
〈ηi ,η j〉F ,

(KΣ )i, j = ∑
F∈Σ
〈∂τ ηi ,∂τ η j〉F + ∑

n∈Σ0

αnh−1[[[[ηi ]]]]n[[[[η j ]]]]n

− ∑
n∈Σ0

{{∂τ ηi}}n [[[[η j ]]]]n− [[[[ηi ]]]]n
{{

∂τ η j
}}

n ,

where positiveness is guaranteed for sufficiently largeαn, Σ0 denotes the set of in-
terior nodes ofΣ , [[[[·]]]]n and{{·}}n denotes the jump and the average at a node
n between values of the neighboring segments. The matrixKΣ comes from the dis-
cretization of−∂ 2

τ using a symmetric interior penalty approach [2]. If we denote by
AΣ = (KΣ + iωσMΣ ), the DG discretization of (16) we consider is
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(
AΣ −2(ω2− iωs1)MΣ AΣ

AΣ AΣ −2(ω2− iωs2)MΣ

)(
Λ2,Ω1−Λ2

Λ1,Ω2−Λ1

)
= 0. (17)

Theorem 1. If s1 and s2 are defined as given in [11] (section 5, table 5.1) then
relations (14) and (17) are equivalent.

The proof is based on the invertibility of the matrix of (17) and can be found in [7].

4 Numerical results

In order to illustrate numerically the proposed discrete versions of the optimized
Schwarz algorithms, we consider the propagation of a plane wave in a homoge-
neous conductive medium withΩ = [0,1]2 and σ = 0.5. We use DG with sev-
eral orders of polynomial interpolation, denoted by DG-Pk with k = 1,2,3,4,
and impose on∂Ω = Γa an incident waveW inc = ( ky

ω
−kx
ω 1)Te−ik·x, andk =

( kx ky )
T = (ω

√
1− i σ

ω 0)T . The domainΩ is decomposed into two subdomains

Ω1 = [0,0.5]× [0,1] andΩ2 = [0.5,1]× [0,1]. The aim is to retrieve numerically the
asymptotic behavior of the convergence factors of the optimized Schwarz methods.
It has been proved that these factors behave like 1−O(hαi ), i = 2,3,4,5. We show
here that numerically they behave like 1−O(hβi ), i = 2,3,4,5, with βi ≈ αi . The
performance of these algorithms is summarized in Figure 1.
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Simulations of micro channel gas flows with
domain decomposition technique for kinetic and
fluid dynamics equations

Sudarshan Tiwari1, Axel Klar1 and Steffen Hardt2

1 Introduction

In the last 20 years many research papers have been reported about the development
of domain decompositions for the kinetic and the fluid dynamic equations, see for
example [7, 8, 10, 14, 11, 12, 15, 16]. From large to small scale geometries one
may experience different degrees of rarefaction of a gas. The degrees of rarefac-
tion of a gas can be measured by the Knudsen numberKn = λ/L, whereλ is the
mean free path andL is the characteristic length, for example the channel width. For
Kn < 0.001, the flow is in the continuum regime, the compressible Navier-Stokes
equations with no-slip boundary conditions are solved. For0.001< Kn < 0.1, the
flow is in the slip regime, where the Navier-Stokes equationswith velocity-slip and
temperature jump conditions are solved [1]. ForKn> 0.1 a kinetic type approach,
based on the Boltzmann equation is required. We note that thekinetic approach is
valid in the whole range of rarefaction of a gas. At standard conditions the mean free
path of a gas in a micro- or nano channel is of the orderL or larger, so the Knudsen
number is no longer small. Therefore, the fluid dynamic equations, the compressible
Euler or Navier-Stokes equations, cannot predict the flows correctly in a small scale
geometry [9].

In this paper we present stationary solutions of a Poiseuille flow in a micro chan-
nel. We have considered the large range of Knudsen numbers. We use the domain
decomposition of the Boltzmann and the compressible Navier-Stokes equations. We
have coupled a meshfree particle method for the compressible Navier-Stokes equa-
tions and a DSMC type of particle method for the Boltzmann equation. We have
first observed the discrepancy in the Boltzmann and Navier-Stokes solutions. Then
we have defined boundary layers and solved the Boltzmann equations in the bound-
ary layers and the Navier-Stokes equations in the rest of thechannel. We have used
the standard interface boundary conditions between both domains, see [16, 15]. Al-
ternatively, we have solved the Navier-Stokes equations until steady state has been
reached. It gives quite diffusive solutions, however, thisis the good candidate to
initialize the Boltzmann solver. One can apply a breakdown criterion to the station-
ary Navier-Stokes equations and then decompose the Boltzmann and Navier-Stokes
domains.

1 Department of Mathematics, TU Kaiserslautern, Erwin-Schroendinger Strasse, 67663 Kaiser-
slautern, Germany e-mail:{tiwari}{klar}@mathematik.uni-kl.de ·2 Center of Smart
Interfaces, TU Darmstadt, Petersenstr. 32, 64287 Darmstadt, Germany e-mail: hardt@csi.
tu-darmstadt.de
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The paper is organized as follows. In section 2 we present themathematical mod-
els and numerical methods. In section 3 we discuss the numerical solutions and the
domain decompositions.

2 Governing equations and numerical methods

In this section we introduce the Boltzmann equation, the Navier-Stokes equations as
its hydrodynamic limit, numerical methods and domain decomposition strategies.

2.1 The Boltzmann equation and its hydrodynamic limits

The Boltzmann equation describes the time evolution of a distribution function
f (t,x,v) for particles of velocityv ∈ Re3 at x ∈ D ⊂ Res(s = 1,2,3) and time
t ∈ Re+. It is given by

∂ f
∂ t

+v·∇x f = Q( f , f ), (1)

where

Q( f , f ) =
∫

Re3

∫

S2
β (|v−w|,η)[ f (v′) f (w

′
)− f (v) f (w)]dω(η)dw

with

v
′
= Tv,w(η) = v−η < η ,v−w>, w

′
= Tw,v(η).

Here,β denotes the collision cross section,η is the unit normal vector on the sphere,
dω(η) is the solid-angle element in the direction ofη and<,> is the scalar product.
For the sake of simplicity, we have not used any bold letters for vector quantities,
like x,v,w, etc. Writing the equations in dimensionless form one observes thatQ is
of the orderO( 1

Kn). The local mean free pathλ = λ (x, t) is given by

λ =
kT√

2π pd2
, (2)

wherek is the Boltzmann constant,T = T(x, t) the temperature,p = p(x, t) the
pressure andd is the diameter of molecules. For more details we refer to [6]. For
Kn tending to zero one can show that the Boltzmann distributionfunction f tends
to the local Maxwellian [5]

fM(t,x,v) =
ρ

(2πRT)3/2
e−
|v−U |2

2RT , (3)
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whereρ = ρ(x, t) is the density,U = U(x, t) the mean velocity andR is the gas
constant. The parameters of the Maxwellianρ ,U,T solve the compressible Euler
equations. This can be verified from the asymptotic expansion of f in Kn, where
the zeroth order approximation gives the local Maxwellian distribution and the first
order approximation [3] gives the Chapman-Enskog distribution

fCE(t,x,v) = fM(t,x,v) [1+φ(t,x,v)] , (4)

with

φ(t,x,v) =
2
5

q·c
ρ(RT)2

( |c|2
2RT

− 5
2

)
− 1

2
τ : c⊗c
ρ(RT)2 , (5)

wherec= v−U . Here,φ = O(Kn) and the parametersρ ,U,T,q,τ satisfy the com-
pressible Navier-Stokes equations

∂ρ
∂ t

+∇ · (ρU) = 0

∂ (ρU)

∂ t
+∇ · (ρU⊗U + pI− τ) = 0 (6)

∂ (ρE)
∂ t

+∇ · [(ρE+ p)U− τ ·U−q] = 0,

whereE = |U |2/2+ e is the total energy ande is the internal energy. The stress
tensorτ and heat flux vectorq are of orderKn and given by

τi j = µ
(

∂Ui

∂x j
+

∂U j

∂xi
− 2

3
∇ ·U δi j

)
, q=−κ∇T. (7)

The dynamic viscosityµ = µ(x, t) and the heat conductivityκ = κ(x, t) for a
monatomic gas of hard sphere molecules are of orderKn. They are given, see [4],
by

µ =
5

16d2

√
mkT

π
, κ =

15k
4m

µ , (8)

wherem is the molecular mass. In this paper we have considered a monatomic gas
of hard spheres.

2.2 Numerical methods

We apply Lagrangian particle methods of different characters for both types of equa-
tions. The Boltzmann equation is solved by a DSMC type Monte Carlo method,
whereas the Navier-Stokes equations are treated with a meshfree particle method,
which is called the Finite Pointset Method (FPM).
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2.2.1 Particle Method for the Boltzmann equation

For solving the Boltzmann equation we have used a variant of the DSMC method
[4], developed in [13, 2]. The method is based on the time splitting of the Boltzmann
equation. Introducing fractional steps one solves first thefree transport equation (the
collisionless Boltzmann equation) for one time step. During the free flow, boundary
and interface conditions are taken into account. In a secondstep (the collision step)
the spatially homogeneous Boltzmann equation without the transport term is solved.
To simulate this equation by a particle method an explicit Euler step is performed.
The result is then used in the next time step as the new initialcondition for the free
flow. To solve the homogeneous Boltzmann equation the key point is to find an effi-
cient particle approximation of the product distribution functions in the Boltzmann
collision operator given only an approximation of the distribution function itself. To
guarantee positivity of the distribution function during the collision step a restriction
of the time step proportional to the Knudsen number is needed. That means that the
method becomes exceedingly expensive for small Knudsen numbers.

2.2.2 Meshfree particle method for the Navier-Stokes equations

We solve the Navier-Stokes equations by a meshfree Lagrangian particle method.
We approximate the spatial derivatives at an arbitrary particle from its surround-
ing clouds of points with the help of the least squares method. We express the
compressible Navier-Stokes equations in primitive variables according to the La-
grangian form. We first fill a computational domain by a finite number of particles
and assign all fluid quantities to them. Then we approximate the spatial derivatives
at every particle position. The resulting equations reduceto a time dependent system
of ordinary differential equations. This system can be solved by a simple integra-
tion scheme. One can use the explicit Euler scheme, but this requires a very small
time step. Here a two step Runge-Kutta method is used which issufficient for the
test cases considered in this paper. Due to space limitations, we do not present the
meshfree method, we refer to our earlier reports, see [17, 16].

2.2.3 Coupling particle methods for the Boltzmann and the compressible
Navier-Stokes equations

The DSMC method is a mesh-based method since gas molecules have to be sorted
into cells for the intermolecular collisions. As already described, the compressible
Navier-Stokes equations are solved by a meshfree method. Therefore, we need to
couple the mesh-based and the meshfree particle methods. Wedecompose a domain
into Boltzmann and Navier-Stokes domains, then we have to prescribe the interface
boundary conditions from one domain into another domain.

In order to apply the interface boundary conditions for the Boltzmann equation,
we have to define the boundary cells (or interface cells) in the Navier-Stokes do-



Domain decomposition for micro-channel flows 201

main. On these buffer cells we generate gas molecules according to a Maxwellian
distribution, where the parameters are approximated from the Navier-Stokes equa-
tions. If the gas molecules leave the Boltzmann domain and enter to Navier-Stokes
one, we delete them.

The interface boundary conditions for the Navier-Stokes equations are applied as
follows. In the Boltzmann domain we sample and store the macroscopic quantities
at the cell centers. Near the interface there may be several Boltzmann cell centers,
which are the neighbor of a Navier-Stokes particle. In this case we consider all
neighboring Boltzmann cells and approximate the spatial derivatives from the least
squares method. Instead of using the Dirichlet boundary condition at the Boltzmann
interface cell, we find this approach is sufficient. When the Navier-Stokes particles
leave the Navier-Stokes domain, we delete them. If they thinned out the domain, we
add new particles and interpolate the data from its neighboring particle values.

It is well known that in all DSMC type solvers there are some statistical fluctua-
tions in the solutions of the Boltzmann equation. These fluctuating data destabilize
the Navier-Stokes solver. Therefore, we need a smoothing operator, see [16, 15] for
details.

3 Numerical results

We consider a micro channel of size[0, 5·H]× [0, H] with H = 1·10−6mas shown
in Fig. 1(b). The left and right walls are inflow and outflow boundaries, respectively
and the upper and lower are solid wall boundaries. While solving the Navier-Stokes
equations, we prescribe a temperatureTin and a pressurepin on the inflow bound-
ary. Similarly, we prescribe a pressurepout on the outflow boundary. We use the
Neumann boundary conditions for the velocity and temperature, on the in- and out-
flow boundaries. Furthermore, zero velocity andT = T0 are considered on the upper
and lower boundaries, whereT0 is the initial temperature of the gas. We choose
Argon as a gas with a molecular massm= 6.63· 10−26kg. The Boltzmann con-
stantk = 1.38·10−23JK−1, the molecular diameterd = 3.68·10−10m, the ratio of
specific heatsγ = 5/3 enter as parameters. These parameters give the gas constant
R= 208JkgK−1. The dynamic viscosity and thermal conductivity in the compress-
ible Navier-Stokes equations are assumed to be constant andare evaluated with the
initial temperature according to eq. (8). The initial velocity is zero. The initial pres-
sure is(pin + pout)/2 and the initial density is determined from the ideal gas law.

When we solve the Boltzmann equation we initialize the gas according to the
Maxwellian distribution in each cell with the initial parameters as described for the
Navier-Stokes solver. We generate the molecules accordingto the Maxwellian dis-
tribution at the inflow boundary, where the density is determined from the given
pressure and the temperature using the ideal gas law. The mean velocity is extrap-
olated from the the interior of the Boltzmann cells. Similarly, we also generate the
molecules according to the Maxwellian distribution at the outflow boundary, where
we extrapolate the mean velocity and the temperature from the interior cell values
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and the pressure is given. If the molecules leave the inflow oroutflow boundary we
delete them. On the upper and lower walls we use the diffuse reflection with thermal
accommodation. We choose 200×40 cells for the Boltzmann solver and the mesh-
free particles for the Navier-Stokes solver of the same order. For the Navier-Stokes
solver we choose the time step∆ t equal to 3·10−11sand 0.5∗∆x/

√
(2RT0), where

∆x is the cell size. In all cases we compute upto the final timet = 1·10−6s.
In the first test case, we considerpin = 624000Pa, pout = 208000Pa andT0 =

300K. This gives the Knudsen number on the left of 0.01101 and on the right of
0.03303. We are now in the slip regime, where we expect the Navier-Stokes solu-
tions with no slip boundary conditions do not match with the Boltzmann ones. In
Fig. 1(a) thex component of velocities from both solvers at 2/3rd of the channel
length along they axis are plotted. We observe that there is a discrepancy between
the solutions of both equations. It is required to use slip boundary conditions for the
Navier-Stokes equations on the solid boundaries. Instead of that we define boundary
layers, 5 cells adjacent to the top and bottom walls as the Boltzmann domain and
the rest is the Navier-Stokes one, see Fig. 1 (b). After the domain decomposition the
coupled solutions of the Boltzmann and Navier-Stokes equations match perfectly,
see Fig. 2(a) for this small range of the Knudsen number.
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Fig. 1 (a)x component of velocity along they axis at 2/3rd of the channel length forKn= 0.01101
to 0.03303 from Boltzmann and Navier-Stokes solvers (b) A priori domain decomposition: ’red’
or ’+’ = Navier-Stokes domain, ’green’ or ’x’ = Boltzmann domain

In the second test case, we increase the Knudsen number by changing different
inlet and outlet pressures 168480Pa and 56160Pa, respectively. This corresponds
the Knudsen number varying 0.0408 to 0.12 from left to right boundaries. For this
range of Knudsen numbers, we decrease the time step∆ t to 2·10−11s for the Navier-
Stokes solver. We are still in the slip regime and close to it,however, for this range of
Knudsen numbers defining the boundary layers like in Fig. 1(b) does not provide the
correct coupled solutions as shown in Fig. 2(b). Here, we observe that the coupled
solution is close to the Navier-Stokes solution. In this case one may increase the size
of boundary layers, but it is not clear how much one has to increase. So, we use the
alternative strategy.
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Fig. 2 x component of velocity along they axis at 2/3rd of the channel length. (a) forKn= 0.01101
to 0.03303 (b) forKn= 0.0408 to 0.12

The efficient way is to use a breakdown criterion to decomposethe domains as
suggested in [15] for steady problems. The idea is to solve first the Navier-Stokes
equations everywhere until the steady state is reached. As we have seen in Fig. 2
(b), the Navier-Stokes solutions do not match with the Boltzmann solutions in this
regime, however, they are somehow near to the Boltzmann ones. Then we apply
the breakdown criterion‖φ‖ suggested in [14] and decompose the domain. We as-
sume, for example, if the value of‖φ‖ at a cell is less than 0.01 the cell is defined
as a Navier-Stokes cell, otherwise a Boltzmann one. In Fig. 3the time evolution
of the domain decompositions for the Knudsen numbers ranging from 0.01103 to
0.03303 at time different times are plotted. One can solve the Boltzmann and the
Navier-Stokes equations in the corresponding domains. However, for the stationary
solutions, it is sufficient to solve the Navier-Stokes equations until they reach the
steady state and then to further use the domain decomposition and coupling method.
After t = 3 ·10−8s we reach the steady state of the Navier-Stokes equations andthe
domain decomposition does not change. Aftert = 3·10−8swe solve both equations
in their domains of validity until the final time. When we compare the figures Fig.
1(b) and Fig. 3 at timet = 3 ·10−8s, we see the Boltzmann domain is bigger in the
latter figure. There is no unique values for this breakdown quantity. It depends upon
the problem considered.

Now, for higher Knudsen numbers ranging from 0.0408 to 0.12 we observed
that in the steady state the Navier-Stokes domain becomes smaller for the same
criterion, see Fig. 4. Here the above coupling algorithm will not be the optimal one
since we have a very small Navier-Stokes domain and we need additional effort to
use the interface boundary conditions. Therefore, it is convenient to consider the
entire domain as Boltzmann one with the initial conditions as stationary solutions
of the Navier-Stokes equations. Then, we run for few more iterations and then start
sampling the data.

The above results show that the coupling method may be relevant for regimes
where the Knudsen number is less than 0.03.
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Fig. 3 Domain decomposition: ’red’ or ’+’ = Navier-Stokes domain and ’green’ or ’x’ = Boltzmann
domain after application of the breakdown criterion to solutions of the Navier-Stokes equations for
the rangeKn= 0.01101 to 0.03303 . Top rows are fort = 3·10−9sandt = 6·10−9sand the bottom
rows are fort = 9·10−9sandt = 3·10−8s.
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Multiscale Finite Elements for Linear Elasticity:
Oscillatory Boundary Conditions

Marco Buck1, Oleg Iliev1, and Heiko Andr̈a1

1 Introduction

Multiscale finite element methods (MsFEMs) have been widelyused when solving
elliptic PDEs with highly oscillating coefficients on multiple scales. Beyond their
application in the upscaling framework [7, 8, 9, 3], they areoften utilized for the
construction of robust coarse spaces in the context of two-level overlapping domain
decomposition preconditioners.

In [4, 2, 15] coarse basis functions are constructed by solving local generalized
eigenvalue problems. The scalar multiscale finite element basis is used as a parti-
tion of unity to setup the spectral problems and allows the dimension of the resulting
coarse space to be sufficiently low. The method guarantees robustness for various el-
liptic PDEs with respect to arbitrary coefficient variations. Another recent approach
where generalized eigenvalue problems are solved in overlapping regions of local
subdomains is presented in [13]. It provides applications to isotropic linear elasticity
problems with robustness properties similar to them in [4, 2, 15].

For scalar elliptic PDEs it is shown in [5, 6] that oscillatory multiscale finite
element coarse spaces ensure robustness for a large class ofcoefficient variations.
This includes variations in the interior of coarse elements, but allows coefficient
jumps also across coarse element boundaries when high contrast regions can be
characterized as a union of disjoint islands.

A first application of the multiscale finite element method with (vector-valued)
linear boundary conditions to linear elasticity (see also the adaptive method in [11])
is given in [1]. If material jumps occur only in the interior of coarse grid ele-
ments, uniform condition number bounds which do not depend on the contrast in
the Young’s modulus are obtained. However, the method failsto be robust when
stiff inclusions touch coarse element bondaries. This motivates the construction of
boundary conditions for the multiscale finite element basiswhich adapt to the het-
erogeneities in the PDE coefficients.

The outline of the paper is as follows. In Section 2 we state the equations of linear
elasticity and briefly describe their discretization with vector-valued piecewise lin-
ear finite elements. The abstract two-level additive Schwarz method is summarized
in Section 3. Section 4 contains the detailed introduction of the oscillatory multi-
scale finite element basis. Numerical results are presentedin Section 5 and final
conclusions are given in Section 6.

1 Fraunhofer Institute for Industrial Mathematics (ITWM), Fraunhofer-Platz 1, 67663 Kaisers-
lautern, Germany, e-mail:{Buck,Iliev,Andrae}@itwm.fraunhofer.de
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2 Finite Element Discretization in Linear Elasticity

Let Ω ⊂ Rd be a bounded, polyhedral (d = 3) or polygonal (d = 2) Lipschitz do-
main. The displacement fieldu=(u1, . . . ,ud)

⊤ of a solid body inΩ , deformed under
the action of a volume forcef and a traction forcet, is governed by the mixed BVP

−divσ(u) = f in Ω , (1)

σ(u) = C : ε(u) in Ω ,

whereσ is the stress tensor,ε is the strain tensor andC(x) is the fourth order elas-
ticity tensor. The system in equation (1) is subject to the boundary conditions

u = 0 onΓD, σ(u)n= t onΓN,

wheren is the unit outer normal vector on∂Ω = ΓD∪Γ N with meas(ΓD)> 0.
Let Th be a tetrahedral (d = 3) or triangular (d = 2) mesh and letΣh(Ω̄) denote the
set of vertices inΩ̄ . We introduce a finite element discretizationuh of displacements
u on the spaceV h := span

{
ϕ j,h

k : Ω̄→Rd, x j ∈ Σh(Ω̄), k= 1, . . . ,d
}

of continuous
piecewise linear vector-valued functions onTh. Assuming enough regularity, the
discretization leads to a symmetric positive definite linear systemAu = f (see e.g.
[10] for more details).

3 Overlapping Domain Decomposition Preconditioners

We are interested in constructing two-level overlapping domain decomposition pre-
conditioners for the linear system which are robust w.r.t. mesh parameters and varia-
tions in the PDE coefficients. They combine local solves on overlapping subdomains
{Ωi , i = 1, . . . ,N} (with overlap-widthδ > 0) and a global solve on a coarse gridTH .
Let V 0⊂ V h

0 be a coarse space defined onTH and letV i = V h(Ωi) be the space of
vector-valued linear basis functions onTh which are supported inΩi , i = 1, . . . ,N.
The action of the two-level additive Schwarz preconditioner is defined implicitly by

M−1
AS = R⊤0 A−1

0 R0+
N

∑
i=1

R⊤i A−1
i Ri ,

whereRi , i = 0, . . . ,N is the restriction operator fromV h to V i andAi = RiAR⊤i is
the corresponding submatrix ofA (cf. [14]). We assume here thatTH also consists
of tetrahedra (d = 3) or triangles (d = 2), each of which consists of a union of fine
elementsτ ∈Th. For anyD⊂ Ω̄ , we denote byΣH(D) the set of nodes ofTH in D
andNH(D) is the corresponding index-set of coarse nodes.
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4 Multiscale Finite Elements for Linear Elasticity

Multiscale basis functions with oscillatory boundary conditions are introduced for
scalar elliptic PDEs in [7] to reflect the heterogeneities inthe PDE coefficients
also across coarse element boundaries. In this section we present the extension
to linear elasticity. We define the multiscale basis and introduce suitable coordi-
nate transformations that allow the derivation of the equations which govern the
boundary data of the oscillatory multiscale basis on general meshes. On compos-
ites with isotropic constituents, we present the construction in detail. We denote by
ω̄p := {T ∈ TH : p∈NH(T)} the union of coarse elements which share the node
xp ∈ ΣH(Ω̄) . For anyp ∈ NH(Ω̄) andm∈ {1, . . . ,d}, the oscillatory multiscale
basis functionV h ∋ φ p,MsO

m : ωp→ Rd, is defined such that forT ⊂ ω̄p,

div(C : ε(φ p,MsO
m )) = 0 in T,

φ p,MsO
m = η p,T

m on ∂T, (2)

where the oscillatory boundary dataη p,T
m : ∂T → Rd are continuous and compati-

ble, i.e.η p,T
m =η p,T ′

m on∂T∩∂T ′⊂ Ω̄ for T, T ′ ∈TH . We impose the vector-valued
nodal constraints

η p,T
mk (x

q) = δpqδmk, xq ∈NH(T), k∈ {1, . . . ,d} (3)

and show howη p,T
m = (η p,T

m1 , . . . ,η p,T
md )

⊤ is derived in Section 4.2 and 4.3.

4.1 Coordinate Transformation

The boundary dataη p,T
m in equation (2) are extracted by solving a restricted version

of the PDE (1) to the coarse element boundary which implies that φ p,MsO
m |∂T is in-

dependent of the coordinate in the direction normal to∂T. To make the construction
applicable to edges and faces ofT ∈TH which are not aligned with or perpendicular
to one of the coordinate axis, we apply a suitable coordinatetransformation of the
Cartesian coordinate system with basis{e1, . . . ,ed} to a (right handed) coordinate
system with orthonormal basis{ê1, . . . , êd}. W.l.o.g., for any

edgeE : we introduce the rotated coordinate system such that ˆe1 is parallel toE
faceF : we introduce the rotated coordinate system such that the normal vectorn

onF is parallel to one of the coordinate axis, i.e. ˆe3 = n.

Let x̂1, . . . , x̂d be the coordinates ofx=(x1, . . . ,xd)
⊤ w.r.t. the transformed basis. The

coordinate transformation can be described by a linear mapΘ : T→Rd, x̂=Θxwith
θi j = êi ·ej , 1≤ i, j ≤ d. The elasticity coefficients of the stiffness tensorĈ transform
under the rotation of the coordinate system to ˆci jkl =∑d

p,q,r,s=1 θip θ jq θkr θls cpqrs (cf.
[12]).
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4.2 Equations Governing the Oscillatory Boundary Data

Using the rotated coordinate system in Section 4.1, we derive the reduced problems
on a faceF of T ∈ TH for the system of anisotropic linear elasticity. The compo-
nents of the elasticity operator in equation (1) read

d

∑
j=1

∂ jσi j (u) =
d

∑
j=1

∂ j

( d

∑
k,l=1

ci jkl εkl(u)
)
. (4)

Forcing thatφ̂ p,MsO
m = η̂ p,T

m (x̂1, . . . , x̂d−1) is independent of ˆxd on F and using the
symmetry ˆci jkl = ĉi jlk of the stiffness tensor, we obtain by usingε̂kl(û) =

1
2(∂̂kûl +

∂̂l ûk) in the rotated coordinate system

d

∑
j=1

∂̂ j σ̂i j (η̂ p,T
m ) =

d−1

∑
j=1

∂̂ j

( d

∑
k,l=1

ĉi jkl ε̂kl(η̂ p,T
m )

)

=
d−1

∑
j=1

∂̂ j

( d−1

∑
k,l=1

ĉi jkl ε̂kl(η̂ p,T
m )+ 2

d−1

∑
k=1

ĉi jkd ε̂kd(η̂ p,T
m )

)

=
d−1

∑
j=1

∂̂ j

( d−1

∑
k,l=1

ĉi jkl ε̂kl(η̂ p,T
m )

)
(5)

+
d−1

∑
j=1

∂̂ j

(d−1

∑
k=1

ĉi jkd ∂̂kη̂ p,T
md

)
. (6)

While equation (5) affects exclusively the first two components of η̂ p,T
m , equation

(6) acts only on the third component of the oscillatory boundary data onF . For
an anisotropic stiffness tensor, a reduced system needs to be solved onF in which
the three components of̂η p,T

m2 are coupled. Having a deeper look at the entries of
the stiffness tensor, the systems in (5) and (6) are fully decoupled for an orthotropic
material whose symmetry axes are normal to ˆe1, . . . , êd. Particularly, the components
η̂ p,T

m1 andη̂ p,T
m2 onF are then governed by a 2D system of linear elasticity (see (5)),

while the component̂η p,T
md normal toF is governed by a scalar second order elliptic

PDE (see (6)). Analogously, on an edgeE , we can deduce that the boundary data
η̂ p,T

m (x̂1) are governed by scalar second order PDEs in each particular component
which may, again, be coupled in the anisotopic case.

4.3 Oscillatory Boundary Conditions for Isotropic Linear Elasticity

Given the formulation of the reduced problems in a suitable coordinate system, we
summarize the procedure of computing boundary dataη p,T

m on the faces and edges
of T, assuming that the stiffness tensor is isotropic. Its components are given by
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ci jkl = λδi j δkl +µ(δikδ jl +δil δ jk), whereµ > 0 andλ ≥−2
3µ are the Laḿe coeffi-

cients of the material (see e.g. [10]) which we assume here tobe piecewise constant
in τ ∈ Th. Note that the material coefficients are not uniquely determined on∂T,
a proper averaging (e.g. by taking their maximum values) in the adjacent elements
τ ∈Th is required.
From (5) and (6), together witĥη p,T

m = η̂ p,T
m (x̂1) along the edgeE , the reduced

problem in rotated coordinates reads

∂̂1

(
(λ +2µ) ∂̂1η̂ p,T

m1

)
= 0 onE ,

∂̂1

(
µ ∂̂1η̂ p,T

mk

)
= 0 onE , k= 2,3. (7)

It needs to be equipped with the boundary conditions defined in (3). Let us assume
thatE = Ep1p2 connects the two nodesxp1 = xp,xp2 ∈ ΣH(Ω̄), then we impose

η̂ p,T
m (x̂p1) = Θ em,

η̂ p,T
m (x̂p2) = (0,0,0)⊤. (8)

In order to grasp immediately that the boundary data on a faceF are governed by a
reduced elasticity system in the first two components and a scalar elliptic problem in
the component normal toF , we state the equations governing the reduced problem
under the assumption thatλ and µ are piecewise constant onF . This allows to
simplify the notation of the reduced system without affecting its weak formulation.
According to equation (5) and (6), the reduced system reads

µ (∂̂11η̂ p,T
m1 + ∂̂22η̂ p,T

m1 )+(λ +µ)(∂̂11η̂ p,T
m1 + ∂̂12η̂ p,T

m2 ) = 0 a.e. onF ,

µ (∂̂11η̂ p,T
m2 + ∂̂22η̂ p,T

m2 )+(λ +µ)(∂̂21η̂ p,T
m1 + ∂̂22η̂ p,T

m2 ) = 0 a.e. onF , (9)

µ (∂̂11η̂ p,T
m3 + ∂̂22η̂ p,T

m3 ) = 0 a.e. onF .

Let F = Fp1p2p3 contain the coarse nodesxp1,xp2 andxp3. Then the three edges
Ep1p2, Ep1p3 andEp2p3 form the 2D boundary of the faceF . The system in (9) is
subject to the boundary conditions

η̂ p,F
m |Epkpl

= η̂
p,Epkpl
m 1≤ k< l ≤ 3,

where η̂
Epkpl
m is the solution of the BVP in (7) and (8) on the edgeEpkpl in the

coordinate system w.r.t.F and η̂ p,D
m denotes the restriction of̂η p,T

m to D ⊂ ∂T.
Note that the rotated coordinate systems differ for any faceand edge. Once the
boundary data are computed on and edge or a face, they should be transformed to
the original coordinate system.
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4.4 Properties of the Oscillatory Multiscale Basis

As shown in [1], the multiscale basis with vector-valued linear boundary data (MsL)
recovers all rigid body modes. If no material jumps occur on the boundaries of
coarse elements, it can be shown thatφ p,MsO

m = φ p,MsL
m . Prescribing homogeneous

material parameters, both multiscale bases coincide with the vector-valued linear
coarse basis. Furthermore, the construction of the oscillatory multiscale basis guar-
antees that the rigid body translations are contained in thecoarse space. In gen-
eral, not all the rigid body rotations are preserved exactlyon the coarse element
boundaries. The complexity of computingφ p,MsO

m is of the same asymptotic order
O
(
d(H

h )
d
)

as forφ p,MsL
m , with a small additional cost that is one order ofH

h cheaper.

5 Numerical Results

In this section we present numerical examples on a binary composite. We apply
different coarsening strategies for the two-level additive Schwarz preconditioner,
including a vector-valued linear coarse space as well as multiscale coarse spaces
with linear and oscillatory boundary conditions. We perform the simulations on a
domainΩ̄ = [0,1]× [0,1]× [0,L],L > 0, using regular fine and coarse triangular
meshesTh andTH of equal structure with uniform mesh sizeh andH, respectively.
Both meshes are constructed from an initial voxel geometry by decomposing each
voxel into five tetrahedra. In the experiments we show condition numbers as well as
iteration numbers of the PCG algorithm. The stopping criterion is set to reduce the
preconditioned initial residual by 6 orders of magnitude.

The medium consists of an isotropic matrix material with coefficients (µmat= 1,
λmat = 1) and contains inclusions (µinc,λinc) which are positioned equally in each
coarse block of sizeH ×H ×H as shown in Fig. 1. The distribution of the inclu-
sions as well as the boundaries of the coarse tetrahedra are shown in more detail in
Fig. 2. At each slice in the plane normal toX1 andX2 the position of the inclusions
above and below this level are indicated in dark and shaded red, respectively. Each
inclusion touches or crosses coarse element boundaries while one inclusion in the
center is isolated in the interior of a coarse element. Table1 shows the condition

Fig. 1 Binary composite;
matrix material (grey) and
inclusions (red); discretization
in 14x14x7 voxels (left); 2D-
projection onto the(X1,X2)-
plane with position of the
inclusion (right); each coarse
block is decomposed in five
tetrahedra;
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and iteration numbers for the three coarsening strategies under the variation of the
material contrast∆E := µinc/µmat= λinc/λmat. For ∆E > 1, condition and iteration
numbers for vector-valued linear and multiscale coarse space with linear boundary
conditions grow with the contrast in the material coefficients, where the latter does
not perform noticeably better than the linear coarse space.The multiscale coarse ba-
sis functions with oscillatory boundary conditions are bounded in energy and show
coefficient-independent bounds of the condition number. For ∆E < 1, each coarse
space performs well.

Table 1 Condition numbersκ and iteration numbers (#it) of precond. matrix forH = 7h, δ = 2h

∆E Lin MsL MsO

10−9 26 (28) 26 (28) 26(28)
10−6 26 (28) 26 (28) 26(28)
10−3 26 (28) 26 (28) 26(28)
100 25 (27) 25 (27) 25(27)
103 426(91) 233(76) 25(27)
106 965(102) 955(104) 25(27)
109 970(102) 955(104) 25(27)

6 Conclusions

In this study, we extended the oscillatory multiscale finiteelement method as in-
troduced in [7] to the PDE system of anisotropic linear elasticity. We derived the
reduced system which governs the oscillatory boundary datain a general setting
which allows their construction on triangular, tetrahedral, quadrilateral and hexahe-
dral coarse meshes. We applied the coarse basis in the context of two-level additive
Schwarz domain decomposition preconditioners. Numericalresults are presented
on a tetrahedral mesh for isotropic composites where inclusions touch the coarse

Fig. 2 2D-slices (atX3 =
l h, l ∈ {1, . . . ,6}) of a coarse
block of 7×7×7 voxels of the
medium in Fig. 1 ; boundaries
of coarse tetrahedral elements
(black), matrix material (grey)
and 1x1x1 inclusions (red);
inclusions touch the slice from
below (shaded red) or top
(dark red); inclusions touch
coarse element boundaries
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element boundaries. We observed condition number bounds ofthe preconditioned
linear system which are independent of the contrast in the Young’s modulus in the
inclusions.

It is easy to verify (see e.g. [1]) that the computation of a multiscale finite element
basis is more costly on quadrilateral and hexahedral coarsemeshes than on their
triangular and tetrahedral counterparts (by a factor of4

3 in 2D and a factor of 2 in
3D). However, we may point out that, especially for applications in three spatial
dimensions, using hexahedral coarse meshes may be beneficial for the robustness
of the overall method as it reduces the amount of element boundaries which are
introduced when tetrahedral coarse meshes are used.

Acknowledgements The authors would like to thank Prof. Yalchin Efendiev and Prof. Victor Calo
for fruitful discussions and their valuable comments on the subject of this manuscript.
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Inexact BDDC methods for the cardiac
Bidomain model

Stefano Zampini1

1 Introduction

The cardiac Bidomain model consists in a reaction-diffusion system of PDEs for
the intra- and extra-cellular cardiac potentials coupled with a nonlinear system of
ODEs accounting for the cellular model of ionic currents. Fully implicit methods
in time have been considered in a few studies, see e.g. [16] and references therein.
As in most of previous work (see [18] for a review), in this study we consider an
Implicit-Explicit operator splitting technique in order to separate the part of the
system of PDEs describing diffusion of cardiac potentials from the large and stiff
nonlinear system of ODEs accounting for the reaction terms.The resulting space-
time discretization of the so-called parabolic-parabolicBidomain operator leads to a
large, sparse, symmetric positive semidefinite linear system which must be solved at
each time step of a cardiac beat simulation using a Krylov subspace method. Given
a component by component finite element discretization of the cardiac potentials,
the coefficient matrix of the linear system to be solved is

K̂ =

[
Ai 0
0 Ae

]
+

χ
δt

[
M −M
−M M

]
(1)

whereδt is the value of the time step andχ the membrane capacitance per unit
volume;M andAi,e are the mass and stiffness matrices with entries

{M}rs =
∫

Ω
φ r

hφ s
h, {Ai,e}rs =

∫

Ω
Di,e∇φ r

h ·∇φ s
h,

where for sake of simplicity the same finite element basis{φ j
h} is considered for

each cardiac potential. Anisotropic conductivity tensorsDi(x) and De(x) model
propagation of electrical signals with orthotropic anisotropy

Di,e(x) =
3

∑
j=1

σ i,e
j (x)a j(x)a j(x)

T ,

with σ i,e
j (x) > 0 the conductivity coefficient of the intra- and extra-cellular media

measured along the orthonormal triplet{a j(x)}3j=1 describing cardiac fiber rota-
tion [9]. For additional details on the operator splitting technique adopted and the
diffusion tensors, see [6].

1 CINECA, SuperComputing Applications and Innovations dept., Rome branch, Via dei Tizii 6,
00185 Rome (Italy)s.zampini@cineca.it
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Many different preconditioners have been already proposedfor the efficient it-
erative solution of the Bidomain model in its parabolic-parabolic formulation (1).
Among them, we mention block Jacobi preconditioners [6], algebraic multigrid [13,
14], multilevel Schwarz preconditioners [11, 15, 12] and balancing Neumann-
Neumann methods [19]. An exact BDDC algorithm and a FETI-DP method have
been constructed, analyzed and experimentally validated by the Author in [20].

2 Inexact BDDC preconditioner

Following the framework of substructuring algorithms [17], the cardiac domainΩ
is decomposed intoN non-overlapping open Lipschitz subdomainsΩ j of diameter
H j , forming a coarse conforming finite element partition ofΩ and naturally defining
the interface, i.e.

Ω =
N⋃

i= j

Ω j , Γ =
⋃

j 6=k

∂Ω j ∩∂Ωk, Γj = ∂Ω j ∩Γ .

A triangulation is introduced in each subdomain with matching finite element nodes
on the boundaries of adjacent subdomains across the interface. As usual in non-
overlapping literature, the finite elements space defined onΩ j will be denoted by
W( j) and it is further split into its interior (labeled byI ) and interface (Γ ) parts; the
following spaces should then be introduced

W( j) = W( j)
I

⊕
W( j)

Γ , W =
N

∏
j=1

W( j), WI =
N

∏
j=1

W( j)
I ,

together with the subspacêW ⊂ W of continuous functions. Within the non-
overlapping framework, a global matrix is never assembled explicitly; instead a
Bidomain linear matrixK( j) is assembled on each subdomain and reordered as

[
K( j)

II K( j)
IΓ

K( j)T

IΓ K( j)
Γ Γ

]
.

The unassembled global matrix defined onW can thus be defined asK = diag(K( j));

similarly, KII = diag(K( j)
II ).

The exact BDDC preconditioner for matrix̂K can be formulated as (see [8, 10])

M−1
BDDC = M−1

I +(I −M−1
I K̂)M−1

Γ (I − K̂M−1
I ),

where
M−1

I = RT
I K−1

II RI , M−1
Γ = RT

D (Pcoarse+Plocal)RD,
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with RI the restriction operator from̂W to W andRD the scaled restriction operator
from Ŵ to W built using a suitable partition of unity [20]. The coarse term of the
preconditioner can be defined by

Pcoarse=ΨK−1
c ΨT , Kc =ΨTKΨ ,

with the coarse primal basis function matrix given by the solution of the following
minimization problem posed onW

Ψ = argminwTKw, s.t.Cw= I ,

whereI is the identity matrix andC is the block diagonal matrix of BDDC con-
straints which ensures the continuity of coarse basis functions at primal degrees of
freedom. The action of the local term of the preconditioner is given by

[
K CT

C 0

][
Plocal g

µ

]
=

[
g
0

]
.

The application of the BDDC preconditioner requires the solution of the block di-
agonal Dirichlet and Neumann problems given by the matricesKII andKrr respec-
tively, whereKrr is obtained fromK by removing the matrix entries related to the
subdomain vertices belonging to the coarse primal space [8].

It is well known that the local problems defined by the BDDC preconditioner can
be bottlenecks in three dimensions, since direct factorizations require too much time
and memory if the number of degrees of freedom in any subdomain is large; also,
backward and forward substitution algorithms do not map well on modern architec-
tures and accelerators. A possible solution consists in using multigrid precondition-
ers as black-box inexact solvers for the local Dirichlet andNeumann problems as
proposed by Dohrmann [8]; the approach preserves scalability and quasi-optimality
of the exact BDDC method provided a sufficient quality of the inexact solvers.

An approximate BDDC preconditioner can be constructed as follows: let K̂♭ be
the matrix which is equal tôK except for the coupling of the interior degrees of
freedom and letK♯ be the matrix equal toK except for the blocks related to the
Neumann problem of the BDDC preconditioner, i.e.

K̂♭ =

[
K♭

II KIΓ
KT

IΓ KΓ Γ

]
, K♯ =

[
K♯

rr Krv

KT
rv Kvv

]
.

In practice, matricesK♭
II andK♯

rr are not explicitly known, since they represent an
approximation of the exact matrices through the multigrid process.

Inexact solvers can be obtained in such a way thatK♭ andK♯ will be spectrally
equivalent to the exact matrices

γ1gT K̂g≤ gT K̂♭g≤ γ2gT K̂g ∀g∈ Ŵ, (2)

α1gTKg≤ gTK♯g≤ α2gTKg ∀g∈W. (3)
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where 0< γ1≤ γ2 and 0<α1≤α2 are constants independent onhandH =maxj H j .
A priori estimates for the latter constants are not requiredfor the implementation,
but they can be estimated by conjugate gradient iterations.In addition, if the matrix
K̂ is singular as for the Bidomain model, matricesK♭ andK♯ should satisfy the so
called null space property

ker(K̂♭) = ker(K̂), ker(K♯) = ker(K).

Given a candidate preconditionerP−1
II for K♭−1

II , the following correction was pro-
posed in [8] to satisfy the null space property

K♭−1

II = NI (N
T
I KII NI )

−1NT
I +ET

I P−1
II EI , (4)

where
EI = I −KII NI (N

T
I KII NI )

−1NT
I ,

with I the identity matrix andNI the restriction of ker(K̂) to the interior degrees of
freedom. The same argument holds true for the Neumann problem, thus

K♯−1

rr = Nr(N
T
r Krr Nr)

−1NT
r +ET

r P−1
rr Er , (5)

where
Er = I −Krr Nr(N

T
r Krr Nr)

−1NT
r ,

with P−1
rr a candidate preconditioner forK♯−1

rr .
The action of the approximate BDDC preconditioner can then be defined as

M̃−1
BDDC = M♭−1

I +(I −M♭−1

I K̂♭)M♯−1

Γ (I − K̂♭M♭−1

I ),

where the superscript♭ (respectively♯) denote quantities obtained by replacing the
matrix K̂ (resp.K) by K♭ (resp.K♯) in the construction of the BDDC operator. In
other words,

M♭−1

I = RT
I K♭−1

II RI , M♯−1

Γ = RT
D

[
P♯

coarse+P♯
local

]
RD,

with
P♯

coarse=Ψ ♯K♯−1

c Ψ ♯T , K♯
c =Ψ ♯T K♯Ψ ♯,

and the block saddle point matrix is modified as
[

K♯ CT

C 0

]
.

For further details on the inexact approach considered, see[8].

The following theorem holds (see [8] for the proof).
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Theorem 1.The condition number of the approximate BDDC preconditioner can
be bounded from above by the condition number of the exact BDDC preconditioner
as

κ2(M̃
−1
BDDCK̂)≤C

α2γ3
2

α1γ3
1

κ2(M
−1
BDDCK̂),

whereγ1 andγ2 are given by (2),α1 andα2 by (3) and C is a constant independent
of the parameters of the spatial discretization h and H and the number of subdo-
mains N. Moreover, if the coarse problem A♯

c is solved inexactly by the action of a

preconditioner A♯♯
−1

c satisfying

β1gTA♯−1

c g≤ gTA♯♯−1

c g≤ β2gTA♯−1

c g,

with 0< β1≤ β2, it will hold

κ2(M̃
−1
BDDCK̂)≤C

max{1,β2}α2γ3
2

min{1,β1}α1γ3
1

κ2(M
−1
BDDCK̂).

A quasi-optimal bound for the condition number of the exact BDDC method for
the Bidomain model in the parabolic-parabolic form has beenproved in [20].

Theorem 2.Let the BDDC coarse primal space be spanned by the vertex nodal fi-
nite element functions and the edge cut-off functions. Then, for the three-dimensional
Bidomain model, it will hold

κ2(M
−1
BDDCK̂)≤C(1+ log(H/h))2,

with H = maxj H j and C a constant independent of h, H, N and possible jumps in

conductivity coefficientsσ (i,e)
k of the Bidomain operator aligned withΓ .

3 Numerical resuts

In this Section parallel numerical experiments are presented for a parallellepipedal
domainΩ subdivided intoN = Nx×Ny×Nz subdomains. EachΩ j is discretized by
low-order Q1 finite elements, i.e. conforming hexaedral shape-regular isoparametric
tri-linear finite elements of characteristic diameterh. The linear system (1) is solved
by the preconditioned conjugate gradient (PCG) algorithm with a zero initial guess
and stopping criterion‖rk‖2/‖r0‖2 ≤ 10−6, whererk is the preconditioned residual
at thekth iterate. The right-hand side is always random and uniformly distributed.
Extreme eigenvalues of the preconditioned operators, denoted byλm andλM in the
following, are estimated using the well-known recursive formula for Lanczos itera-
tions; the experimental condition number is computed asκ2 = λM/λm.

The parallel code used to obtain the numerical results has been developed in
Fortran and C; the Message Passing Interface (MPI) library has been used for paral-
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lelization, assigning one subdomain to one MPI process. TheBDDC preconditioner
has been developed using the Portable Extensible Toolkit for Scientific Computa-
tion [5] (PETSc) and it is available for download within the development version of
the library (see https://bitbucket.org/petsc/petsc). Whenever the BDDC algorithm
is exactly applied, local problems are solved using the Unsymmetric Multifrontal
sparse LU factorization package [7] (UMFPACK), while the algebraic multigrid
(AMG) method boomerAMG provided by the HYPRE library [3] is used as a black-
box solver within the inexact BDDC algorithm. The interested reader is referred
to [13, 14] where the AMG method has been successfully applied to the serial
and parallel solution of the Bidomain linear system. The BDDC coarse problem
is solved in parallel either with the MUltifrontal Massively Parallel sparse direct
Solver [4] (MUMPS) or inexaclty with the parallel boomerAMGmethod. For all
test cases considered, the coarse space is spanned by subdomain vertices and edge
averages for both cardiac potentials; unless otherwise stated, the conductivity co-
efficients used are reported in [6]. OneV1,1-cycle with Gauss-Seidel smoothing is
always used for the AMG method in order to preserve symmetry of the resulting
operator.

Table 1 contains results of a quasi-optimality test obtained on the x8664 Linux
cluster Matrix of CASPUR [1], where each core is equipped with 2GB memory. In
this test case,Ω is divided in 3x3x3 subdomains,h=1E-2,δt=1E-2 and increasing
values ofH are considered; thus, the volume ofΩ increases asH/h increases. In-
exact solvers are used for both sets of local problems whereas the coarse problem is
solved exactly with a parallel factorization. AMG based local solvers does not make
the performances of the BDDC deteriorate with respect toH/h and they allow us
to manage larger local problems, since the memory requirements for a multigrid
preconditioner are linear in the local size. Quasi-optimality is thus preserved by the
inexact BDDC algorithm for the Bidomain model.

Table 1 Comparison between exact and inexact BDDC method for differentvalues ofH/h. For
each run, extreme eigenvalues, condition number and number of iterations are shown. Test case
with h=1E-2 and 3x3x3 subdomains.

M−1
BDDCK̂ M̃−1

BDDCK̂
H
h λm λM κ2 it λm λM κ2 it

5 1.00 1.45 1.45 6 0.88 1.42 1.61 7
10 1.00 2.28 1.28 9 0.88 2.14 2.45 10
15 1.00 2.98 2.98 11 0.87 2.66 3.06 11
20 1.00 3.49 3.49 13 0.87 3.17 3.71 13
25 1.00 4.02 4.02 13 0.85 3.56 4.18 14
30 out of memory 0.76 3.91 5.14 15
35 out of memory 0.75 4.23 5.60 16
40 out of memory 0.70 4.43 6.27 16

Table 2 contains experimental results of a weak scalabilitytest for the inexact
BDDC algorithm on the BlueGene/Q FERMI of CINECA [2]; total number of de-
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grees of freedom (dofs), condition number, number of PCG iterations and solving
time per iteration (time/it) in seconds are reported. In thetest case,h=1E-2,H/h=30,
δt=1E-2 and the number of subdomainsN grows in each dimension as reported in
the first two columns. Thus, the volume ofΩ increases asN increases. Inexact
solvers for both local problems and, in parallel, for the coarse problem are used.
Results are scalable in the number of iterations and solvingtime per iteration up to
4K cores and 200 millions degrees of freedom.

Table 2 Weak scalability test for the inexact BDDC method. For each run,number of subdomains
and domain decomposition, number of degrees of freedom (dofs), condition number, number of
PCG iterations (it) and solving time per iteration are shown. Test case withh=1E-2 andH/h=30.

N subd dofs κ2(M̃
−1
BDDCK̂) it time/it (s)

8 2x2x2 410.758 5.79 13 0.96
64 4x4x4 3.203.226 5.79 13 0.94
512 8x8x8 25.298.674 9.81 15 1.01
4096 16x16x16 201.089.250 11.12 16 1.12

Finally, we report on a test case with coefficients with jumpsaligned withΓ ,
obtained on the x8664 Linux cluster Matrix of CASPUR [1]. As test case, we con-
sider a 3x3x3 decomposition ofΩ , h=1E-2,H/h=15 andδt=1E-2; inexact solvers
are used for both local problems, instead the coarse problemis solved exactly with a
parallel factorization. Two different checkerboard patterns of discontinuities in the
conductivity coefficients are considered; conductivity coefficients are initially set to
σ i,e

1 =10, σ i,e
2 =1 andσ i,e

3 =0.1, then the following cases are built given a factor
p> 0:

A Each conductivity coefficient, either intra- or extra-cellular, is multiplied byp
in the black subdomains and by 1/p in the white subdomains.

B Intra-cellular coefficients are multiplied byp in the black subdomains and by
1/p in white subdomains; conversely, extra-cellular coefficients are multiplied
by 1/p in the black subdomains and byp in white subdomains.

Numerical results are summarized in Table 3, with columns labeled according to the
previous classification. The condition number and the number of iterations (listed
in round brackets) of the inexact BDDC algorithm remain almost constant when
we vary the factorp largely in both test cases considered; the ratio between inexact
and exact condition number is also shown to highlight the quality of the inexact
approach.
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Parallel coupled and uncoupled multilevel
solvers for the Bidomain model of
electrocardiology

Piero Colli Franzone1, Luca F. Pavarino2, and Simone Scacchi2

1 Introduction

The Bidomain model describes the spread of electrical excitation in the anisotropic
cardiac tissue in terms of the evolution of the transmembrane and extracellular elec-
tric potentials,v andue respectively. This model consists of a non-linear parabolic
reaction-diffusion partial differential equation (PDE) for v, coupled with an elliptic
linear PDE forue. The evolution equation is coupled through the non-linear reac-
tion term with a stiff system of ordinary differential equations (ODEs), the so-called
membrane model, describing the ionic currents through the cellular membrane. The
different space and time scales involved make the solution of the Bidomain sys-
tem a very challenging computational problem, because its discretization in three-
dimensional ventricular geometries of realistic size requires the solution of large
scale (often exceedingO(107) unknowns) and ill-conditioned linear systems at each
time step.

Several approaches have been developed in order to reduce the high compu-
tational costs of the Bidomain model. Fully implicit methods in time, requiring
the solution of non-linear systems at each time step, have been considered in e.g.
[10, 9]. Alternatively, most previous works have considered IMEX time discretiza-
tions and/or operator splitting schemes, where the reaction and diffusion terms are
treated separately, see e.g. [2, 3, 18, 20, 23]. The advantage of IMEX and operator
splitting schemes is that they only require the solution of alinear system for the
parabolic and elliptic PDEs at each time step. A further splitting approach consists
in uncoupling the parabolic PDE from the elliptic one, see e.g. [23, 4].

Many different preconditioners have been proposed in orderto obtain efficient
iterative solvers for the linear systems deriving from bothsplitting and uncou-
pling techniques: block diagonal or triangular [13, 14, 2, 22, 5], optimized Schwarz
[6], multigrid [19, 16, 15, 13, 14], multilevel Schwarz [11], Balancing Neumann-
Neumann [24] and BDDC [25] preconditioners.

The aim of the present work is to apply the Multilevel Additive Schwarz precon-
ditioners of [11] to both a coupled and an uncoupled time discretization of the Bido-
main system and to compare their parallel performance. Three-dimensional parallel
numerical tests on a BlueGene cluster, reported in Sec. 4, show that the uncou-

1 Department of Mathematics, University of Pavia, via Ferrata 1, 27100 Pavia, Italy, e-mail:
colli@imati.cnr.it ·2 Department of Mathematics, University of Milano, via Saldini 50,
20133 Milano, Italy, e-mail:{luca.pavarino}{simone.scacchi}@unimi.it
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pled technique is as scalable as the coupled one. Moreover, the conjugate gradient
method preconditioned by Multilevel Additive Schwarz preconditioners converges
faster for the uncoupled system than for the coupled one. Finally, in all parallel
numerical tests considered, the uncoupled technique proposed is always about 1.5
times faster than the coupled approach.

2 The anisotropic Bidomain model

The macroscopic Bidomain representation of the cardiac tissue volumeΩ is ob-
tained by considering the superposition of two anisotropiccontinuous media, the
intra- (i) and extra- (e) cellular media, coexisting at every point of the tissue and
separated by a distributed continuous cellular membrane; see e.g. [12] for a deriva-
tion of the Bidomain model from homogenization of cellular models. We recall that
the cardiac tissue consists of an arrangement of fibers that rotate counterclockwise
from epi- to endocardium, and that have a laminar organization modeled as a set of
muscle sheets running radially from epi- to endocardium, see [7]. The anisotropy
of the intra- and extracellular media is described by the orthotropic conductivity
tensorsDi(x) andDe(x), see e.g. [2].

We denote byΩ ⊂R3 the bounded physical region occupied by the cardiac tissue
and introduce a parabolic-elliptic formulation of the Bidomain system. Given an ap-
plied extracellular current per unit volumeIe

app : Ω × (0,T)→R, we seek the trans-
membrane potentialv : Ω×(0,T)→R, extracellular potentialsue : Ω×(0,T)→R,
gating variablesw : Ω×(0,T)→RNw and ionic concentrationsc : Ω×(0,T)→RNc

such that




cm
∂v
∂ t
−div(Di(x)∇v)−div(Di(x)∇ue)+ Iion(v,w,c) = 0 in Ω × (0,T)

−div(Di(x)∇v)−div((Di(x)+De(x))∇ue) = Ie
app in Ω × (0,T)

∂w
∂ t
−R(v,w) = 0,

∂c
∂ t
−S(v,w,c) = 0, in Ω × (0,T)

(1)

with insulating boundary conditions, suitable initial conditions onv,w,c and where
cm is the membrane capacitance per unit volume. The non-linearreaction termIion

and the ODE system for the gating variablesw and the ionic concentrationsc are
given by the chosen ionic membrane model. Here we will consider the Luo-Rudy I
(LR1) membrane model [8].

3 Discretization and numerical methods

Space discretization. The variational formulation of system (1) is first discretized
in space by the finite element method. In this work, we will consider isoparametric
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trilinear finite elements on hexahedral meshes. In the following, we denote byAi,e

the symmetric intra- and extracellular stiffness matricesand byM the mass matrix.
We define the block mass and stiffness matrices as

M=

[
M 0
0 0

]
, A=

[
Ai Ai

Ai Ai +Ae

]
.

Time discretization. We consider two implicit-explicit (IMEX) strategies, both
based on decoupling the ODEs from the PDEs and on treating thelinear diffusion
terms implicitly and the non-linear reaction terms explicitly.

• Coupled method.The equations arising from the discretization of the PDEs
are solved as a coupled system. Givenwn, cn, vn, un

e at the generic time stepn:
- we first solve the ODEs system using the Implicit Euler method for the gating
variables and the Explicit Euler method for the ionic concentrations, obtaining
the new gating variableswn+1 and the new ionic concentrationscn+1,
- then we solve the PDEs system, obtaining the new potentialsvn+1 andun+1

e .
Summarizing in formulae, givenwn, cn, vn,un

e, the scheme is

wn+1−∆ t R(vn,wn+1) = wn

cn+1 = cn+∆ t S(vn,wn+1,cn)

(cm

∆ t
M+A

)[ vn+1

un+1
e

]
=

cm

∆ t
M

[
vn

un
e

]
+

[−MI ion(vn,wn+1,cn+1)

MIe,n+1
app

] .

As a consequence, at each time step, we solve one linear system with unknowns
(vn+1,un+1

e ). Because the iteration matrix is symmetric positive semi-definite,
the iterative method employed is the preconditioned conjugate gradient (PCG)
method. Due to the ill-conditioning of the iteration matrixand the large number
of unknowns required by realistic simulations of cardiac excitation in three-
dimensional domains, a scalable and efficient preconditioner is required. We
adopt here the 4-level Multilevel Additive Schwarz (MAS(4)) preconditioner,
see [21, 11].

• Uncoupled method. The two equations arising from the discretization of the
PDEs are uncoupled by introducing the following scheme. Givenwn, cn, vn, un

e
at the generic time stepn:
- we first solve the ODEs system using the Implicit Euler method for the gating
variables and the Explicit Euler method for the ionic concentrations, obtaining
the new gating variableswn+1 and the new ionic concentrationscn+1,
- then we solve the elliptic equation, obtainingun

e,
- and finally we update the transmembrane potentialvn+1 by solving again the
parabolic equation.
Summarizing in formulae, givenwn, cn, vn,un

e, the uncoupled scheme is
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wn+1−∆ t R(vn,wn+1) = wn

cn+1 = cn+∆ t S(vn,wn+1,cn)

(Ai +Ae)un
e = −Aivn+MIe,n

app(cm

∆ t
M+Ai

)
vn+1 =

cm

∆ t
Mvn−Aiun

e−MI ion(vn,wn+1,cn+1).

As a consequence, at each time step we solve first the linear system with matrix
Ai +Ae deriving from the elliptic equation and afterwards the linear system with
matrix cm

∆ t M+Ai deriving from the parabolic equation. Both linear systems are
solved by the PCG method, since the matrices are symmetric positive definite
in the parabolic case and semi-definite in the elliptic case.The preconditioner
used for the parabolic system is Block Jacobi (BJ), because the related matrix is
well-conditioned, while the preconditioner used for the ill-conditioned elliptic
system is the MAS(4) preconditioner, described below.

Multilevel Additive Schwarz preconditioners. Let Ω k, for k= 0, ..., ℓ−1, be a
family of ℓ nested triangulations ofΩ , coarsening fromℓ−1 to 0,Aℓ−1 = A in the
coupled method andAℓ−1 = Ai +Ae in the uncoupled method, andRk the restriction
operators fromΩ ℓ−1 to Ω k. Define the matrices on each grid asAk = RkAℓ−1RkT

for
k = 0, ..., ℓ−2. We then decompose each gridΩ k, for k = 1, ..., ℓ−1, into N over-
lapping subgridsΩ k

m for m= 1, ...,N and define the local restriction operatorsRk
m

from Ω ℓ−1 to Ω k
m and the local matricesAk

m = Rk
mAℓ−1RkT

m . The Multilevel Additive
Schwarz (MAS(ℓ)) preconditioner is given by

B−1
MAS= R0T

A0−1
R0+

ℓ−1

∑
k=1

N

∑
m=1

RkT

m Ak−1

m Rk
m.

The condition number of the resulting preconditioner operator TMAS= B−1
MASA

ℓ−1 is
bounded by

κ2(TMAS)≤C max
k=1,...,ℓ−1

(
1+

hk−1

δk

)
,

wherehk is the mesh size ofΩ k grid, δk is the overlap size on levelk andC is a
constant independent ofhk, δk, N andℓ; see [11] and for hybrid variants [17].

4 Numerical results

In this section, we present the results of parallel numerical experiments performed
on the BlueGene Cluster BG/Q of the Cineca Consortium (www.cineca.it). Our
FORTRAN code is based on the parallel library PETSc [1], fromthe Argonne Na-
tional Laboratory.
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procs do f coupled uncoupled
κ2 = λM/λm it time κ2 = λM/λm it time

64 4,319,890 41.85=8.70/2.08e-1 43 5.65 15.52=4.50/2.90e-1 29 1.82+1.07=2.89
128 8,553,474 33.41=6.79/2.03e-1 39 5.57 14.94=4.46/2.99e-1 28 2.02+1.03=3.05
256 17,040,642 36.37=6.81/1.87e-1 40 5.70 15.36=4.46/2.91e-1 28 1.92+1.05=2.97
512 33,949,186 27.37=5.16/1.88e-1 36 5.48 14.35=4.38/3.05e-1 28 1.98+0.99=2.97

1,024 67,766,274 29.53=5.16/1.75e-1 36 5.69 14.43=4.42/3.06e-1 28 2.17+1.04=3.21
2,048 135,268,866 27.56=5.08/1.84e-1 34 8.50 13.23=4.33/3.28e-1 27 2.93+1.72=4.65
4,096 270,274,050 28.91=5.09/1.76e-1 34 16.39 13.23=4.33/3.28e-1 27 5.58+3.63=9.21
8,192 540,021,250 25.03=5.10/2.04e-1 32 16.51 12.41=4.30/3.47e-1 26 5.93+3.75=9.68

16,384 1,079,515,650 26.55=5.11/1.92e-1 32 17.39 12.41=4.30/3.47e-1 26 6.24+3.83=10.07
32,768 2,159,978,114 – 12.03=4.32/3.59e-1 26 6.90+3.94=10.84

Table 1 Test 1. Weak scaling for coupled and uncoupled MAS(4) solvers onellipsoidal structured
meshes. Average condition number (κ2), extreme eigenvalues (λM , λm), PCG iteration count (it )
and CPU time in seconds (time) per time step. The CPU times in the uncoupled column are ex-
pressed as the sum of the elliptic plus the parabolic solver. The run with 32K cores in the case of
coupled solver failed because of RAM limitations.

4.1 Test 1: weak scaling on ellipsoidal domains, structuredmesh

The coupled and uncoupled linear solvers are compared here in a scaled speedup
test on ellipsoidal deformed domains, discretized by structuredQ1 finite element
grids. The number of subdomains (and processors) is increased from 64 to 32,768,
forming increasing ellipsoidal domainsΩ . The fine mesh is chosen so as to keep the
local mesh size on each subdomain fixed at 32×32×32. With these choices, the
global size of the discrete Bidomain system increases from about 4 million dof for
the smallest domain with 64 subdomains to more than 2 billiondof for the largest do-
main with 32,768 subdomains. The physical dimensions of theincreasing cartesian
slabs are chosen so that the fine mesh sizeh is kept fixed to the valueh= 0.01 cm.
The simulation is run for 10 time steps of 0.05 msduring the depolarization phase,
which is the most intense computationally.

The results reported in Table 1 clearly show that, since the MAS(4) precondi-
tioner is employed, both the coupled and uncoupled methods are scalable. In fact,
all mathematical quantities (condition number, extreme eigenvalues, PCG iteration
count) seem to approach constant values when increasing thenumber of subdo-
mains. Also the CPU times scale quite well, because they onlyincrease of about a
factor 3−4 from 64 to 32,768 processors, with a very small and slow increase after
4096, while the global problem increases by a factor 512.
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method it Tit time Ttime
coupled 22 82,861 2.43 9.29e+3

uncoupled 27 92,157 1.72 5.87e+3

Table 2 Test 2. Comparison of coupled and uncoupled solvers on a whole heartbeat simulation,
with 28,755,650 dof, 1,024 processors. Average PCG iteration count (it ) and CPU time (time) per
time step, total PCG iteration count (Tit) and CPU time (Ttime). The CPU times are expressed in
seconds.
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Fig. 1 Test 2. Epicardial transmembrane (left) and extracellular (right) potential distributions at
t = 26msafter an electric stimulus applied during the systolic phase of the heart beat.

4.2 Test 2: comparison between coupled and uncoupled methods
on a complete cardiac cycle simulation

We now compare the coupled and uncoupled solvers on a complete heartbeat (500
ms) in a portion of an ellipsoid, modeling half of the left ventricle, discretized by a
Q1 structured finite element grid of 384×384×96 elements (28,755,650do f). The
MAS(4) preconditioner is employed in the coupled solver andfor the elliptic linear
system in the uncoupled solver, while the BJ preconditioneris employed for the
parabolic linear system in the uncoupled solver. The simulations are run on 1,024
cores. The time step size is changed according to the adaptive strategy described in
[2].

The results reported in Table 2 show that the uncoupled method is about 1.5
times faster than the coupled one, because at each time step one solves two linear
system of half size, the parabolic one being well conditioned and cheap to solve.
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Fig. 1 reports the epicardial transmembrane and extracellular potential distributions
at t = 26 msafter an electric stimulus has been applied during the systolic phase of
the heart beat at the center of the epicardial surface.

5 Conclusion

We have applied Multilevel Additive Schwarz preconditioners to both coupled and
uncoupled time discretizations of the Bidomain model of thecardiac bioelectric ac-
tivity and we have compared their parallel performance. Three-dimensional parallel
numerical tests on a BlueGene/Q cluster up to 32K cores have shown that the uncou-
pled technique is as scalable as the coupled one. Moreover, the conjugate gradient
method preconditioned by Multilevel Additive Schwarz preconditioners converges
faster for the uncoupled system than for the coupled one. Finally, in all parallel nu-
merical tests considered, the uncoupled technique proposed was always about 1.5
times faster than the coupled approach.
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Fuzzy Domain Decomposition: a new
perspective on heterogeneous DD methods

Martin J. Gander1 and J́erôme Michaud1

1 Motivation

In a wide variety of physical problems, the complexity of thephysics involved is
such that it is necessary to develop approximations, because the complete physical
model is simply too costly. Sometimes however the complete model is essential to
capture all the physics, and often this is only in part of the domain of interest. One
can then use heterogeneous domain decomposition techniques: if we know a priori
where an approximation is valid, we can divide the computational domain into sub-
domains in which a particular approximation is valid and thetopic of heterogeneous
domain decomposition methods is to find the corresponding coupling conditions to
insure that the overall coupled solution is a good approximation of the solution of
the complete physical model. For an overview of such techniques, see [9, 10] and
references therein. However, there are many physical problems where it is not a pri-
ori known where which approximation is valid. In such problems, one needs to track
the domain of validity of a particular approximation, and this is usually not an easy
task. An example of such a method is theχ-method, see [4, 1].

In this contribution, we introduce a new formalism for heterogeneous domain de-
composition, which is not based on a sharp decomposition into subdomains where
different models are valid. The main idea relies on the notion of Fuzzy Setsintro-
duced by Zadeh [12] in 1965. The Fuzzy Set Theory relaxes the notion of belonging
to a set throughmembership functionsto (fuzzy) sets that account for partially be-
longing to a set. In the context of heterogeneous domain decomposition, this could
be useful if one assumes that the computational domain can bedecomposed into
fuzzy sets that form a partition of the domain in a sense that needs to be specified.
Once such a partition is given, one can compute the solution of the coupled problem
using the membership functions. Note that the membership functions can depend on
space and time and therefore can take into account a change inthe validity domain
of a particular approximation. We show here that this technique leads to an excellent
coupling strategy for the 1D advection dominated diffusionproblem. Such a domain
decomposition method would be able, in principle, to take into account part of the
domain where none of the available approximations are validunder the assumption
that a combination of them is a good enough approximation there.

On the assumption u= u1+u2: The idea to use fuzzy set theory came from an
assumption that arose in some specific coupling methods (seebelow). We formulate
it here for a generic partial differential equation of the form

1Universit́e de Geǹeve, 2-4 rue du Lìevre, CP 64, CH-1211 Genève 4,
e-mail:{Martin.Gander}{Jerome.Michaud}@unige.ch
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L (u) = g, (1)

whereL is a linear differential operator.

Assumption 1(u= u1+u2).We assume that the solution u of (1) can be written as a
sum, u= u1+u2, and that one can derive a coupled system for the new unknownsu1

and u2. The derivation of the coupled system might then use relevant approximations
for one or both components.

This assumption has been used at least in two different series of papers: the first one
is in physics for the approximation of neutrino radiative transfer in core-collapse
supernovae [11, 2, 3], and the second one is in mathematics for the coupling between
the kinetic equation and approximations of it (diffusion, Euler, Navier-Stokes...)
[8, 5, 6, 7].

In the following, we will see how this assumption can be linked with fuzzy sets.
This will lead us to introduce fuzzy domain decomposition methods.

2 Fuzzy Sets and Fuzzy Domain Decomposition Methods

Let X be a set in the classical sense of generic elementsx, such thatX = {x}.
Definition 1 (Fuzzy Set).A fuzzy set Aof X is characterized by amembership func-
tion hA(x) that associates to every point ofX a real number in[0,1]. The value of
hA(x) represents thegrade of membership of x in A. ThesupportSupp(A) of a fuzzy
set A is the classical subset ofX defined by Supp(A) = {x∈ X|hA(x) 6= 0}.

Remark 1.If the membership function is a characteristic function, then we recover
the classical notion of sets.

We next list a few useful properties of fuzzy sets:

Definition 2 (Complementary set).Thecomplementary set Ac of a fuzzy setA is
defined by its membership functionhAc = 1−hA.

Definition 3 (Union of fuzzy sets).Theunionof two fuzzy setsA andB of mem-
bership functionhA(x) and hB(x) is the fuzzy setC, denoted byC = A∪B. It is
characterized by its membership functionhC(x) linked with those ofA andB by
hC(x) = max(hA(x),hB(x)), ∀x∈ X.

Remark 2.The union of a fuzzy set with its complementary set is not equal to the
initial set, unless the membership functions are characteristic functions:A∪Ac X.

Definition 4 (Algebraic sum of fuzzy sets).The algebraic sumof A andB is de-
noted byA+B and is defined by the membership functionhA+B = hA + hB. This
definition has a meaning only ifhA(x)+hB(x)≤ 1,∀x∈ X.

Remark 3.Note that the algebraic sum has the property thatA+Ac = X.
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Let Ω be the computational domain of the problem we want to solve. We use the
algebraical sumof fuzzy sets to obtain a decomposition of the domain:

Definition 5 (Fuzzy Domain Decomposition (FDD)).A fuzzy domain decomposi-
tion is given by the fuzzy setsΩi , i = 1, . . . ,n defined by their membership functions
hi such that their algebraic sum equals the domainΩ : Ω = Ω1+ · · ·+Ωn. In terms
of membership functions, this condition reads∑n

i=1hi(x) = 1,∀x∈Ω .

Definition 6. Let u be a function fromΩ toR. We define therestriction of u to the
fuzzy set Aof Ω by uA = hAu, wherehA is the membership function ofA.

Proposition 1. Let u be a function fromΩ to R, let {Ωi}ni=1 be a fuzzy domain
decomposition ofΩ and let ui be the restriction of u toΩi . Then

u=
n

∑
i=1

ui and u′ =
n

∑
i=1

u′i . (2)

Proof. This is a direct consequence of Definition 6 of the restriction of u to fuzzy
sets, and the linearity of derivatives.⊓⊔

Definition 7 (FDDM, eFDDM, iFDDM). A FDD method(FDDM), is a numeri-
cal method based on an FDD of the domain. We will say that an FDDM is explicit
(eFDDM) if the membership functionshi are explicitly known, and implicit other-
wise (iFDDM).

Remark 4.The relation (2) shows that if the Assumption 1 is used, it is natural to
interpret the resulting method as an FDDM. The methods of Degond et al. [8, 5, 6, 7]
belong to the eFDDM class, but the IDSA [11, 2, 3] is an exampleof an iFDDM.

If we want to obtain an heterogeneous DDM, we need two ingredients. The first
one is a coupling methodology between the two approximations (one of them may
be exact), and the second one is a criterion to decide where anapproximation is
valid. The advantage of an eFDDM is that thehi functions are used both for imple-
menting the coupling and the criterion. As the partition is explicitly known, we can
change it to test various criteria for the validity of the different approximations.

We now show the coupling procedure for a decomposition into two fuzzy do-
mains. Assume that we want to solve an approximation of Problem (1) and that we
have two approximationsL1 andL2 of the linear operatorL valid in a fuzzy sense
in Ω1 andΩ2 respectively. Then, we can decompose Problem (1) as

L (u∗) = g ⇔ h1L (u∗)+h2L (u∗) = g ; h1L1(u)+h2L2(u) = g, (3)

where we have introduced in the last formulation the approximated operators. Here,
u∗ stands for the exact solution andu for the approximate solution. The symbol;

means ”is approximated by”. In order to obtain a FDDM, we willuse Assumption 1
, and to obtain an explicit method in the sense of Definition 7,we require
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ui = hiu, u′i = h′iu+hiu
′, u′′i = h′′i u+2h′iu

′+hiu
′′, i = 1,2, (4)

where we used the product rule forhi sufficiently smooth.
As g= h1g+h2g, we can rewrite Equation (3)3 as a system

{
h1L1(u) = h1g on Ω ,
h2L2(u) = h2g on Ω ,

;

{
L̃1(u1) = h1g+L12(u2) on Supp(Ω1),

L̃2(u2) = h2g+L21(u1) on Supp(Ω2).
(5)

The second system is obtained by using Assumption 1 and Equation (4). The use of
the product rule to handle the fact that thehi do not commute withLi leads to the
operatorsL̃i andLi,3−i that are linked by the relation

L̃i = Li−Li,3−i , i = 1,2. (6)

The change in support simply reflects the fact that Equation (5)1 is non-trivial only
in Supp(Ωi). Equation (5)2 is an eFDDM for Problem (3)3.

Remark 5.The boundary conditions of an eFDDM can be easily defined by trans-
ferring the boundary conditions onu to ui using Equation (4).

3 An Example: Advection Dominated Diffusion

As an example, we consider forν ,a> 0 the 1D advection diffusion equation

L (u∗) = νu∗′′+au∗′ = 0 on(0,1), u∗(0) = 0, u∗(1) = 1, (7)

whose closed form solution is given byu∗(x) = e−ax/ν−1
e−a/ν−1

. For ν
a ≪ 1, the diffusion

term is only important close to 0 where a boundary layer forms. We can define the
operators

L1 := L = ν∂xx+a∂x, and L2 := a∂x, (8)

and, as before, using Assumption 1 and Equation (4) we have

L12 := ν(h′′1 +2h′1∂x)+ah′1 and L21 := ah′2. (9)

The eFDDM method we get with the operators from (8,9), using Equation (6) to
defineL̃i , with g= 0, is

νu′′1 +(a−2νh′1)u
′
1− (νh′′1 +ah′1)u1 = 2νh′1u′2+(νh′′1 +ah′1)u2, on Supp(Ω1),

au′2−ah′2u2 = ah′2u1, on Supp(Ω2).
(10)

Under Assumption 1 and Equation (4), Equations (5)2 and (3)3 are equivalent.
The problem we are solving is then equivalent, by Equation (3)3, to

h1νu′′+au′ = 0, on (0,1), u(0) = 0, u(1) = 1, (11)
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whose analytical solution, provided that Supp(Ω1) is connected, is given by

u(x) =

∫ x
0 (e
−∫ y

0
a

νh1(z)
dz
)dy

∫
Supp(Ω1)(e

−∫ y
0

a
νh1(z)

dz
)dy

, if x∈ Supp(Ω1), u(x) = 1, otherwise. (12)

We now study the approximation quality of this method asν
a→ 0 for a decreasing

twice continuously differentiable membership functionh1 of the form

h1(x):= 1, if 0 ≤ x≤ c1, h1(x):= h(x), if c1 < x< c2, h1(x):= 0, if c2≤ x≤ 1,
(13)

where 0< h(x) ≤ 1, so that Supp(Ω1) in Equation (12) is Supp(Ω1) = [0,c2). We
defineδ := c2−c1 to be the width of the coupling region.

Theorem 1.For h1 as in Equation (13), the relative error errApp(
ν
a ) :=

‖u−u∗‖L2(0,1)
‖u∗‖L2(0,1)

satisfies whenνa → 0 the estimates:

c1 = cst., c1 = κ
( ν

a

)1−ε
, c1 = κ ν

a ln( a
ν ), c1 = κ ν

a ,

δ = cst. δ = κ ′
( ν

a

)1−ε δ = κ ′ νa δ = κ ′ νa
errApp(

ν
a ) O(e−

ac1
ν ) O

(
e−κ( a

ν )
ε
)

O(ln( a
ν )

0.5( ν
a )

κ+0.5) O(( ν
a )

0.5)

(14)

Here,κ > 0, κ ′ ≥ 0 are constants, and0< ε ≤ 1.

Proof. The proof of this result is divided into 3 steps. Step 1 finds two functions ˜u∗1
andũ∗2 that satisfy ˜u∗1≤ u≤ ũ∗2. With such functions, we always have the bound

‖u−u∗‖L2(0,1)

‖u∗‖L2(0,1)
≤max

i=1,2
ei , ei :=

‖ũ∗i −u∗‖L2(0,1)

‖u∗‖L2(0,1)
. (15)

Step 2 estimates maxi=1,2e2
i and step 3 handles the 4 cases in(14).

Step 1:With h1 as in Equation (13), we can express the functionu as

u(x) =





1−e−
ax
ν

1−e−
ac1ν
(

1− a
ν
∫ c2
c1 e

− a
ν
∫ y
c1

h−1(z)dz
dy

) , if 0 ≤ x≤ c1,

1−e−
ac1ν
(

1− a
ν
∫ x
c1

e
− a

ν
∫ y
c1

h−1(z)dz
dy

)

1−e−
ac1ν
(

1− a
ν
∫ c2
c1 e

− a
ν
∫ y
c1

h−1(z)dz
dy

) , if c1 < x< c2,

1, if c2≤ x≤ 1.

Using the fact that 0< h(z)≤ 1, we have the estimate

1−e−
ac1
ν < 1−e−

ac1
ν

(
1− a

ν

∫ x

c1

e−
a
ν
∫ y
c1

h−1(z)dzdy

)
≤ 1−e−

ax
ν , c1 < x< c2.

Using this estimate, we define ˜u∗i , i = 1,2 as
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if 0 ≤ x≤ c1,
1−e−

ax
ν

1−e−
ac2ν

if c1 < x< c2,
1−e−

ac1ν

1−e−
ac2ν

if c2≤ x≤ 1, 1





=: ũ∗1(x)≤ u(x)≤ ũ∗2(x) :=





1−e−
ax
ν

1−e−
ac1ν

if 0 ≤ x≤ c1,

1−e−
ax
ν

1−e−
ac1ν

if c1 < x< c2,

1 if c2≤ x≤ 1.

Step 2:We now compute the relativeL2-errors forũ∗i , i = 1,2. Using Equation (15),
we have

e2
1 = I1(1,2)+ I2+ I3 and e2

2 = I1(2,1)+ I3,

where the different terms are integrals of the form
∫
(

ũ∗i
u −1)2dx,

I1(i, j) :=
∫ ci

0

(
1−e−

a
ν

1−e−
acj
ν
−1

)2

dx= ci

(
1−e−

a
ν

1−e−
acj
ν
−1

)2

=O

(
ci(

ν
a
)e−

2acj (
ν
a )

ν

)
,

(16)

I2:=
∫ c2

c1

[
(1−e−

ac1
ν )(1−e−

a
ν )

(1−e−
ac2
ν )(1−e−

ax
ν )
−1

]2

dx≤δ max
i=1,2



[
(1−e−

ac1
ν )(1−e−

a
ν )

(1−e−
ac2
ν )(1−e−

aci
ν )
−1

]2



= O

(
δ (

ν
a
)e−

2ac1(
ν
a )

ν

)
, (17)

I3 :=
∫ 1

c2

(
1−e−

a
ν

1−e−
ax
ν
−1

)2

dx=
∫ 1

c2

[
∞

∑
k=1

e−
kax
ν (1−e−

a
ν )−e−

a
ν

]2

dx=O

(
ν
a

e−
2ac2(

ν
a )

ν

)
.

(18)
As e−

aci
ν < 1 ande−

ax
ν < 1, we can use geometric series to obtain estimates of the

different integrals. Taking only the leading term gives theresult forI1(i, j) andI3.
For I3, the leading term under the integration ise−

ax
ν , becausex≤ 1. ForI2 we also

used the monotonicity of the exponential to obtain the boundand then, use once
again a geometric series to conclude. In the order notation,we have specified the
possible dependence ofci andδ on the parameterνa .

Step 3:We now need to distinguish the different cases in order to complete the
proof. Using Equations (16,17,18), we can compute the results shown in Table 1.
Finally, we use relation (15) to obtain (14).⊓⊔
This theorem shows that the approximation quality of the method is similar to the
best known coupling methods for this kind of problem, namelythe one based on the
factorization of the operator, see [10].

Numerical experiment: We now show a numerical experiment, where we
solve (10) with the membership functionh1 as in Equation (13), with

h(x) = δ−3(2x3−3(c1+c2)x
2+6c1c2x−c2

2(3c1−c2)),

andh2 := 1−h1. With this decomposition, we solve the advection-diffusion problem
if x≤ c1, the purely advective model ifx≥ c2, and the mixed model in-between.
The coupling is done with a spline. We introduce a set of equidistant pointsxi =
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c1 = cst., c1 = κ
( ν

a

)1−ε
, c1 = κ ν

a ln( a
ν ), c1 = κ ν

a ,

δ = cst. δ = κ ′
( ν

a

)1−ε δ = κ ′ νa δ = κ ′ νa
I1(1,2) O(e−

2ac2
ν ) O

(
e−2(κ+κ ′)( a

ν )ε
)

O(ln( a
ν )(

ν
a )

2κ+1) O( ν
a )

I1(2,1) O(e−
2ac1

ν ) O
(

e−2κ( a
ν )ε
)

O(ln( a
ν )(

ν
a )

2κ+1) O( ν
a )

I2 O(e−
2ac1

ν ) O
(

e−2κ( a
ν )ε
)

O(( ν
a )

2κ+1) O( ν
a )

I3 O(e−
2ac2

ν ) O
(

e−2(κ+κ ′)( a
ν )ε
)

O(( ν
a )

2κ+1) O( ν
a )

e2
1 O(e−

2ac1
ν ) O

(
e−2κ( a

ν )ε
)

O(ln( a
ν )(

ν
a )

2κ+1) O( ν
a )

e2
2 O(e−

2ac1
ν ) O

(
e−2κ( a

ν )ε
)

O(ln( a
ν )(

ν
a )

2κ+1) O( ν
a )

Table 1 Table of the order of the different integralsI j .
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Fig. 1 Results for the cases 2 and 3 of Theorem 1 where we refined the gridkeepingnν constant.
We see that the curves follow the theoretical predictions.

i ·∆x with i = 0, . . . ,n+1 and∆x= 1/(n+1). We discretize the problem (10) with
an upwind 3-point finite difference scheme. This gives us a system of 2n coupled
equations. For each componentu j , j = 1,2, we remove from the system all the
irrelevant equations, those for whichh j(xi) = 0; this corresponds to the restriction
to Supp(Ω j).

In order to illustrate the behavior of the method, we have chosen the cases 2 and
3 in Theorem 1. In both cases, the observed behavior is in verygood agreement with
the predictions, see Figure 1 where we computed the relativeerrorErrA between the
numerical advection-diffusion solution and its approximation for different parame-
ters. In the two cases shown, the coupling region is moving towards zero whenν is
decreasing and we see that the approximation quality depends on how the coupling
region is moved, accordingly to Theorem 1. We keptnν constant in order to capture
the boundary layer that forms whenν → 0.
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4 Conclusion

We presented a new heterogeneous domain decomposition method based on Fuzzy
Set Theory. We have shown a concise analysis for a simple, butrelevant, model
problem which showed that this type of coupling leads to a very efficient heteroge-
neous domain decomposition method. This method can be viewed as a formalization
of a coupling technique for very complex problems, see for example [5, 6] for the
coupling between kinetic and hydrodynamic equations. In such a coupling, the par-
tition between the different fuzzy domains can evolve with time and can even adapt
automatically to the local conditions using some local criterion, see [6].

We think that such methods have a great potential in various coupling problems
and in particular for problems in which the partition into different domains of va-
lidity of concurrent approximations is not a priori clear, because they permit to try
different criteria by changing only the way the membership functions are defined.

We are currently interested in such a method for the couplingof the diffusion
limit of the relativistic Boltzmann equation with a stationary free streaming limit of
it. This would be an alternative to the current version of theIDSA, which still has
some mathematical issues that need to be fixed, see [2, 3] for more details.
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A New Coarse Grid Correction for RAS/AS

Martin J. Gander1, Laurence Halpern2, and Ḱevin Santugini Repiquet3

1 Introduction

It is well known that for elliptic problems, domain decomposition methods need a
coarse grid in order to be scalable. One talks about strong scalability of an algorithm,
if it permits to solve a problem of fixed size faster in the sameproportion that one
adds processors. For example if on one processor, a stronglyscalable algorithm
needs 10 seconds to solve the problem, it would need 1 second using 10 processors.
Strong scalability is difficult to achieve already from a theoretical point of view, the
limit as the number of processors goes to infinity leads to zero work per processor
for a problem of fixed size. One therefore also talks about weak scalability, which
means that one can solve a larger and larger problem with moreand more processors
in a fixed time. For example if a weakly scalable algorithm solves a problem with
100’000 unknowns in 10 seconds using 1 processor, it should be able to solve a
problem with 1’000’000 unknowns in the same 10 seconds using10 processors.
Domain decomposition methods with coarse grids attempt to reach this goal.

The most fundamental result for the two level additive Schwarz method is then
precisely that the condition number of the preconditioned elliptic problem satisfies
the estimate

K (M−1
ASA)≤C(1+

H
δ
), (1)

whereδ denotes the size of the overlap, andH the diameter of the coarse mesh, see
the seminal technical report [2], or also the book [11] for a complete and detailed
treatment. This result indicates that if one keeps the ratioof the coarse mesh cells to
the overlap in a two level additive Schwarz method constant,the method is weakly
scalable (as long as the coarse grid solve remains negligible).

Similarly, for substructuring methods, to which the FETI and Balancing Neumann-
Neumann methods belong, there is a condition number estimate of the precondi-
tioned system of the form

K (M−1
subA)≤C(1+ ln(

H
h
))2, (2)

where nowh denotes the mesh size. This theoretical result has been established for
the Balancing Neumann-Neumann algorithm in [3, 9], and for the FETI method in
[10]; for a complete treatment, see again the book [11]. In overlapping methods,

1Universit́e de Geǹeve e-mail: Martin.Gander@unige.ch ·2 Universit́e Paris 13 e-
mail: halpern@math.univ-paris13.fr ·3 Institut Math́ematiques de Bordeaux, CNRS
UMR5251, MC2, INRIA Bordeaux - Sud-Ouest e-mail:Kevin.Santugini@math.
u-bordeaux1.fr
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Fig. 1 Decomposition into many subdomains for the one dimensional model problem

the mesh sizeh is often related to the overlap parameterδ , since the overlap is in
general just one or a few mesh cells, and this permits us to compare (1) and (2).

It is also very easily possible to understand intuitively why such a coarse level
correction is necessary, if one wants to obtain a scalable method. For the simple
model problem,

(η−∂xx)u= 0, u(0) andu(1) given, (3)

we consider the parallel Schwarz method introduced by Lions[8] for the decompo-
sition shown in Figure 1,

(η−∂xx)un
i = 0 in Ωi ,

un
i (αi) = un−1

i−1 (αi), un
i (βi) = un−1

i+1 (βi),
(4)

which is a one level method, and is equivalent to RAS (restricted additive Schwarz
[1]), see [4] and [5] for a proof of equivalence. We show in Figure 2 the first few
iterations of algorithm (4): in the top row, for the case of two subdomains, we clearly
see that both iterates on the left and right subdomain start to converge with the first
iterations toward the solution, which is a straight line in this example withη = 0,
whereas with sixteen subdomains in the bottom row, the subdomains on the left
remain at zero, since communication in this algorithm is only local between the
subdomains.

2 Geometric Investigation of the Coarse Grid Correction

In order to obtain a scalable algorithm, one can introduce a second level solve like
in multigrid: one simply introduces for the fine discretization Au= f of (3) a coarse
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Fig. 2 First iterations of Lions parallel Schwarz methods (equivalent to RAS) for two subdomains
in the top row, and sixteen subdomains in the bottom row,η = 0
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αi

αi+1βi−1

βiΩi

Ωi−1 Ωi+1

x

Fig. 3 Various choices to place coarse grid nodes: center of subdomains(empty squares), center
of overlaps (empty circles), in the overlap to the left and right of the RAS discontinuity (filled
circles) and an equal number of coarse grid points within the subdomains for a fair comparison
(filled squares)

grid, and then, after each iteration of algorithm (4), performs the correction

rn = f −Aun ;
rc = Rrn ;
uc = A−1

c rc ;
un = un+Euc ;

(5)

using standard components. In our example, we use for the extensionE linear inter-
polation, for the restrictionR the extension transposed and normalized, and for the
coarse matrix the Galerkin projectionAc = RAE. A classical choice for the coarse
grid is to put one grid point into the center of each subdomainas shown by the empty
square in Figure 3. This leads for our example to the convergence result shown in
Figure 7 on the left. We clearly see that without coarse grid,the convergence slows
down as we add subdomains, whereas with the coarse grid, the convergence curves
remain the same, the algorithm is scalable.

In order to see geometrically how the coarse grid correction(5) works, we now
visualize in each iteration step how it operates: we show in Figure 4 for the case of
four subdomains the iterates before the coarse grid correction, then the residual, the
best coarse correction possible and the one actually computed, and finally the iter-
ates after the coarse grid correction. We clearly see that the coarse grid correction is
effective: after one coarse grid correction, in the top row,the approximate solution is
already very close for all subdomains to the solution sought. We see however also a
very unnatural kink appearing in the corrected approximation on the right. Looking
at the middle picture of the top row, we see that the residual is concentrated in the
center of the overlaps. This is because in RAS, subdomain solutions are composed
piecewise, and subdomain solutions satisfy the equations in the subdomains (one
says they are harmonic), and thus have zero residual there. The coarse correction
computed with grid points in the center of each subdomain arenot suitable to cor-
rect such a residual support well, as one can see in the middlefigure in each row:
the residual is smeared out into the subdomains, instead of being corrected in the
overlap.

This indicates that coarse grid degrees of freedom in our example should be
placed in the overlap, in order to avoid the smearing of the residual into the sub-
domains, and ideally one should have one degree of freedom oneach side of the
non-zero residual location, in order to capture the ’jump’ in the ideal correction
shown in the middle column, see the filled circles in Figure 3.The best coarse space
must have as a range such types of corrections. We show in Figure 5 for the same
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Fig. 4 On each line the iterates before the coarse correction (left), residual, best possible coarse
correction and coarse correction actually computed (middle),and iterates after the coarse correc-
tion (right) for the first few iterations of the Lions parallelSchwarz method with coarse correction

example what happens with this new coarse grid correction. The result is striking:
we obtain convergence of the Schwarz algorithm with this coarse grid correction in
two iterations, independently of the number of subdomains.Under the conditions

(i) The coarse grid nodes are in the overlap and can capture the discontinuity from
RAS,

(ii) The coarse grid functions satisfy the homogeneous equation,

one obtains a direct solver! In order to illustrate that it isimportant for the coarse
grid shape functions to be harmonic, we show in Figure 6 what happens when we
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Fig. 5 Residual, best possible coarse grid correction and coarse correction actually computed with
good placement of coarse grid nodes (left), iterate after the new coarse grid correction (middle),
and iterate after the Schwarz correction (right) starting with the same initial configuration as shown
on the top left in Figure 4

solve a problem withη = 10, and still use piecewise linear coarse shape functions.
We clearly do not obtain the solution any more after two iterations, but still a very
rapidly converging method, note the different scaling in the residual plot on the left
of Figure 6! In order to finally compare with a classical two level additive Schwarz
method (AS), and measure the influence of using a Krylov method to accelerate
the iteration, we present in Figure 7 on the right the convergence histories for this
example. It is well known that AS does not converge without Krylov acceleration,
which explains the plateau observed in Figure 7. But even with Krylov accelera-
tion, the method is much slower than RAS with the new coarse grid placement. We
also notice that RAS now does basically not need Krylov acceleration any more,
convergence with and without Krylov is very similar.
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Fig. 6 Example withη = 10, but otherwise the same configuration as in Figure 5
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Fig. 7 Iteration versus error for Lions parallel Schwarz algorithmwith and without coarse grid on
the left, and comparison of AS with classical coarse grid and RAS with optimally placed coarse
grid with and without Krylov acceleration on the right

The key question is: can we learn anything from this simple one dimensional ex-
ample for a problem in higher dimensions? According to the design rule 1. above,
the coarse grid needs to have nodes in the overlap, and enoughto capture an arbi-
trary residual located there, as shown in Figure 8 on the left. Then one can prove
that we still get a direct solver, provided design rule 2. above is also satisfied. It
is interesting at this point to indicate a relation of this coarse grid correction and
the optimal transmission operator introduced in [6], whichleads to convergence of
an optimized Schwarz method in two iterations, independently of the number of
subdomains and subdomain configuration, even with crosspoints! The transmission
operator also contains a coarse grid component there, and itneeds precisely the same
traces as our presently proposed coarse grid, and one can finda complete proof at
the algebraic level on convergence in two iterations in [6].Similarly, for a banded
matrix, there is also an optimal transmission operator in [7], which again involves
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δ
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δ
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Fig. 8 Optimal coarse grid in two dimensions, and a simple approximation, extending the 1d opti-
mal placement in tensor form
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the same global traces. Naturally, these methods are related, but the precise relation
is non-trivial and will be developed elsewhere.

The coarse space indicated in Figure 8 on the left is however very expensive,
it requires many degrees of freedom, and also a solve for eachin order to obtain
harmonic shape functions. A much cheaper alternative is indicated in Figure 8 on
the right: one simply places four coarse grid nodes around the cross point of the
decomposition. One can then again use Q1 coarse shape element functions, which
are harmonic. We show in Figure 9 the convergence histories we obtain for the
Laplace equation on the unit square, decomposed into 16×16 subdomains, using
256×256 gridpoints. On the left we used the Lions Schwarz method with a coarse
grid (equivalent to two level RAS) with overlap 3h. We show the result for the

• classical placement of one coarse grid node in the center of each subdomain
(classical Q1, empty square in the 1d Figure 3),

• one node at each crosspoint (Q1 in overlap, empty circle in the 1d Figure 3), in
order to illustrate that really one node is not enough for thejumps in RAS,

• four nodes per subdomain equally spaced (Q1 fair, filled square in the 1d Figure
3) with the same number of coarse grid points as the optimizedcoarse grid for
a fair comparison, and

• four nodes around the crosspoints (optimized Q1, filled circle in the 1d Figure
3), with the same number of coarse grid points as Q1 fair.

Clearly the optimized placement of the coarse grid nodes leads to a substantially
faster method than all the other choices.

In Figure 9 on the right we show the corresponding result for AS with minimal
overlaph. It is interesting to note that for minimal overlap, the influence of the
placement of the coarse nodes is even more important, and oneobtains a much
faster method than with any of the other coarse grid node placements in this two
dimensional example.
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Fig. 9 Convergence histories for two level RAS with various coarse grid node placements on the
left and overlap 3h, and on the right for AS (additive Schwarz) with overlaph
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3 Conclusions

We explained geometrically the interplay between Schwarz iterations and coarse
grid corrections. Our example in one dimension revealed that in addition to having
harmonic coarse space shape functions, it is also very important where the coarse
grid nodes are placed. Optimal placement in one dimension isin the overlap, which
leads to a method that converges in two iterations, independently of the number
of subdomains. In higher spatial dimensions, it is still possible to construct such a
coarse grid correction, but one has to use a number of degreesof freedom propor-
tional to the skeleton of the decomposition. Using however asimple approxima-
tion, placing only few degrees of freedom around the crosspoints, leads already to
a much faster iterative method than placing coarse nodes as it is done traditionally
somewhere within the subdomains. Several theoretical results are already available,
though in the different context of transmission conditions, see [6] and [7], and we
are currently working on a rigorous error analysis of this new idea. It is also an open
question how such an optimized coarse grid would have to looklike for a general
decomposition of a general domain, our examples here havingbeen simple squares.
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Aggregation-based aggressive coarsening with
polynomial smoothing

James Brannick1

Abstract This paper develops an algebraic multigrid preconditionerfor the graph
Laplacian. The proposed approach uses aggressive coarsening based on the aggrega-
tion framework in the setup phase and a polynomial smoother with sufficiently large
degree within a (nonlinear) Algebraic Multilevel Iteration as a preconditioner to the
flexible Conjugate Gradient iteration in the solve phase. Weshow that by combining
these techniques it is possible to design a simple and scalable algorithm. Results of
the algorithm applied to graph Laplacian systems arising from the standard linear
finite element discretization of the scalar Poisson problemare reported.

1 Introduction

This paper concerns the development of an algebraic multigrid (AMG) method for
solving the (graph) Laplacian problem. The corresponding linear system is defined
in terms of the following bilinear form:

(Au,v) = ∑
e∈E

weδeuδev+ ∑
i∈Sb

diuivi = ( f ,v), (1)

whereG = (V ,E ) denotes an unweighted connected graph,V andE denote the
set of vertices and edges ofG , respectively, andδeu= (ui −u j) for e= (i, j) ∈ E .
Note that thelower-order terms, diuivi , i ∈ Sb, are included to account for various
types ofboundary conditionsfor problems originating from discretization of partial
differential equations (PDEs). If the lower-order terms are omitted and the wieghts
we = 1, then the variational problem reduces to the graph Laplacian for a graphG
that we focus on here. The graph Laplacian,A, is then a symmetric and positive
semi-definite matrix and its kernel is the space spanned by the constant vector.

The main aim of the paper is to study the use of polynomial smoothing to-
gether with aggressive unsmoothed aggregation-based algebraic multigrid (UA-
AMG) coarsening in developing an AMLI-cycle or k-cycle preconditioner [2] for
the graph Laplacian system. We consider the recently proposed polynomial based on
the best approximation tox−1 in the uniform norm [10] in formulating the proposed
UA-AMG algorithm. A multilevel smoothed aggregation (SA) AMG algorithm us-
ing polynomial smoothers based on Chebychev approximations and itsV-cycle con-
vergence analysis are found in [13]. We note that, these results are also used in [10]

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
e-mail:brannick@psu.edu
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to derive an SA two-level preconditioner with polynomial smoothing for diffusion
problems. In both methods, the polynomial approximation isused to form (1) a
smoother for the interpolation operator and (2) a relaxation scheme for the solver.
These preconditioners yield uniformly convergent methodsprovided polynomials
of sufficiently large degree are used in both steps. Further development and analysis
of polynomial smoothers are found in [1] and [8, 3].

Here, we consider an approach in which the polynomial smoother is used as the
relaxation scheme in the AMG solver and interpolation is based on UA-AMG frame-
work. We show that using such plain aggregation based aggressive coarsening with
a polynomial smoother in a AMLI cycle or k-cycle leads to a uniformly convergent
method. Generally, the use of unsmoothed (or plain) aggregation to construct the
coarse space without the use of interpolation smoothing hasbeen observed to result
in slow convergence of aV-cycle multilevel iterative solver. We note that recently
it has been shown that plain aggregation-based coarsening approaches can lead to
effective solvers for a variety of problems provided AMLI ork-cycles are used, e.g,
such approaches have been developed and analyzed for the graph Laplacian in [11],
for more generalM matrices in [12, 7], and for problems in quantum dynamics
in [4]. Generally, the use of AMLI cycles and UA-AMG typically leads to low grid
and operator complexities, limited fill-in in the coarse level operators, and reduces
the arithmetic complexity in the setup phase substantially. The gains in the solve
phase are often less pronounced since AMLI- and NAMLI-cycles use additional
coarse-level corrections to accelerate convergence of theUA-AMG method.

In Section 2, we introduce a graph partitioning algorithm for constructing the
coarse space. Then, in Section 3, we establish an approximation property for such
piecewise constant coarse spaces, which together with the stability estimates for
such methods found in [7], gives a spectral equivalence result that holds for the
corresponding two-level method applied to graph Laplacianon general graphs. The
resulting estimate depends on the degree of the polynomial smoother and the coars-
ening ratio, i.e., the cardinality of the aggregates, and thus provides a way to adjust
the polynomial degree to compensate for aggressive coarsening. We note that the
result is a special case of the general result found in [10]. In the last section, we pro-
vide numerical experiments of the proposed multigrid approach applied to the graph
Laplacian and show that the coarsening can be quite aggressive and still only a low
degree polynomial is needed to obtain a scalable AMLI or k-cycle preconditioner.

2 Subspaces by graph partitioning and graph matching

We define a graph partitioning ofG = (V ,E ) as a set of connected subgraphsGi =
(Vi ,Ei) such that∪iVi = V , Vi ∩V j = /0, i 6= j. In this paper, all subgraphs are
assumed to be non empty and connected. The simplest non trivial example of such
a graph partitioning is a matching, i.e, a collection (subset M ) of edges inE such
that no two edges inM are incident. For a given graph partitioning, subspaces of
V = R|V | are defined as
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VH = {v∈V| v= constant on eachVi }. (2)

Note that each vertex inG corresponds to a connected subgraphGi of G and every
vertex ofG belongs to exactly one such component. The vectors fromVH are con-
stants on these connected subgraphs. Theℓ2 orthogonal projection onVH , which is
denoted byQ, is defined as follows:

(Qv)i =
1
|Vk| ∑

j∈Vk

v j , ∀i ∈ Vk. (3)

Given a graph partitioning, the coarse graphGH = {VH ,EH} is defined by assuming
that all vertices in a subgraph form an equivalence class andthatVH andEH are the
quotient set ofV andE under this equivalence relation. That is, any vertex inVH

corresponds to a subgraph in the partitioning, and the edge(i, j) exists inEH if and
only if the i-th and j-th subgraphs are connected in the graphG .

The algorithm we use in forming a graph partitioning is a variant of the approach
we developed and tested for graphics processing units in [5]. The procedure itera-
tively applies the following two steps:

(A) Construct a setSwhich contains coarse vertices by applying a maximal inde-
pendent set algorithm to the graph ofAk.

(B) Construct a subgraph for each vertex inS by collecting vertices and edges of
the neighbors of vertices inS.

3 Two-level preconditioner with polynomial smoothing for the
graph Laplacian

A variational two-level method with one post smoothing stepis defined as follows.
Given an approximationw∈V to the solutionu of the graph Laplacian system, an
updatev∈V is computed in two steps

(i) y= w+PA†
HPT( f −Aw), AH = PTAP.

(ii) v= y+R( f −Ay).

We use † to denote the pseudo inverse of a matrix. The corresponding error propa-
gation operator of the two-level method is given by

ETL = (I −RA)(I −πA), πA = PA†
HPTA.

Here,ETL is nonsymmetric and, thus, we consider the followingsymmetrizationto
form the two-level preconditioner:B= (I−ETLE∗TL)A

†, with ∗ denoting the adjoint
with respect to the energy inner product(·, ·)A. We note that|ETL|2A = ρ(I −BA),
whereρ(X) is the spectral radius of the matrixX. Further, ifR̄ satisfies(I − R̄A) =
(I −RA)2 so thatR̄= 2R−RAR, then using thatπA is anA-orthogonal projection on
range(P), it follows by direct computation thatB= R̄+(I −RA)PA†

HPT (I −AR) .
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In [10], a spectral equivalence result for the preconditionerB using a polynomial
smoother based on the best approximation tox−1 on a finite interval[λ0, λ1], 0<
λ0 < λ1, in the uniform norm (‖·‖∞) is derived. Here,λ0 > 0 is any lower bound on
the spectrum ofA andλ1 = ‖A‖ℓ∞ is an approximation toρ(A). The unique solution
to the minimization problem

qm(x) = argmin{‖1
x
− p‖∞,[λ0,λ1], p∈Pm}, (4)

determines the polynomial approximation of degreem. For details on the three-term
recurrence used in its construction we refer to [10]. Define

Em := max
x∈[λ0,λ1]

|1−xqm(x)|= max
x∈[λ0,λ1]

x ·
∣∣∣∣
1
x
−qm(x)

∣∣∣∣ .

Then, sinceλ1 is a point of Chebyshev alternance from [10, Theorem 2.1 and Equa-
tion (2.2)] for the error of approximationEm we have

Em = λ1

∣∣∣∣
1
λ1
−qm(λ1)

∣∣∣∣=
[

2λ1

λ1−λ0

]
·
[

δ m

a2−1

]
=

2κδ m

(κ−1)(a2−1)
.

Here, we have denotedκ = λ1
λ0
, δ =

√
κ−1√
κ+1

, anda= κ+1
κ−1. Computing the errorEm

then gives

Em =
δ m(κ−1)

2
.

A restriction on the degreem is given by the requirement thatqm(λ1) > 0. A suf-
ficient condition for the positivity of this polynomial (andalso necessary condition
in many cases) is that1λ1

−Em > 0. Thus, we need to find the smallestm such that
bothEm < ρ andqm(λ1)> 0. We then have that the polynomial is positive if

δ m(κ−1)
2

≤ 1
λ1

⇒ δ m≤ 2
λ1(κ−1)

.

We note that from this it follows thatR= qm(A) and hencēRare symmetric and posi-
tive definite, implying that the smoother in convergent inA-norm. Also, to guarantee
a damping factor less thanρ on the interval[λ0,λ1], we have

δ m(κ−1)
2

≤ ρ ⇒ δ m≤ 2ρ
κ−1

.

Thus, the minimalm that guarantees both properties are satisfied is given by

m≥ 1
| logδ |max

{∣∣∣∣log
2ρ

κ−1

∣∣∣∣ ,
∣∣∣∣log

2
λ1(κ−1)

∣∣∣∣
}
. (5)

The spectral equivalence result that we adopt to analyze a two-level method based
on plain aggregation with this polynomial smoother followsfrom this smoothing es-
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timate and the assumptions of stability and an approximation property of the coarse
spaceVH : for anyv∈Vh,

c−1
p ‖v−Qv‖2+ |v−Qv|2A≤ c1|v|2A, (6)

where| · |A denotes theA semi norm. Recall that in this paperQ is theℓ2 projection
on the span of{1l}nH

l=1 (p.w. constant projection) and, thus, this inequality holds also
in the case thatv is in the kernel ofA, since then, all the terms are equal to zero.

Assume thatVH is such that the above approximation and stability assumptions
hold and the polynomialqm is chosen such that (5) holds for a fixed valueλ0. Then,
the following spectral equivalence holds

vTAv≤ vTB†v≤ KTG vTAv, KTG = 8+8c1
[
cnzcpcs+1

]
. (7)

This result is a special case of Theorem 4.6 in [10], refined for unsmoothed aggre-
gation applied to the graph Laplacian. Here,cnz is a constant that depends on the
number of nonzeros per row ofA, the constantc1 involves the stability ofQ in A-
norm and the constantcp arises from the weak approximation property, and as we
show below, depends on the cardinality and the diameter of the subgraphs in the
graph partitioning. The constantcs=

ln2 m
m2 , wherem is the degree of the polynomial.

Thus, given a partitioning of the fine-level graph into subgraphs,G = ∪nH
l=1Gl , it is

possible to choose the degree of the polynomialm sufficiently large to control the
constantcp and henceKTG in the above spectral equivalence estimate. This result is
derived from the following estimate (see Corollary 4.4 in [10])

vTB†v≤ 4 inf
vh∈VH

[
|vH |2A+λcs‖v−vH‖2+ |v−vH |2A

]
. (8)

A similar result for smoothed aggregation based on Chebyshev polynomial approx-
imations is found in [8].

Next, we establish the approximation property for the p.w. constant coarse space
VH as defined in (2) for the graph Laplacian. Suppose thatV = {1, . . . ,n} is par-
titioned into nonoverlapping subsets:V = ∪nH

l=1Vl ,nl = |Vl |. Each set of vertices
defines a subgraphGℓ whose vertex set isVl and whose edgesEl are a subset ofE ,
where(i, j) ∈ El if and only if both iand j are inVl . Denote the graph Laplacian as-
sociated with the subgraphGl by Al . Let 1 denote the constant vector onV and 1l the
constant vector onVl extended by 0 outsideVl . Letλl be the smallest positive eigen-

value of the graph Laplacian onGl , namely,λl is defined asλl = min
v: (v,1l )=0

(Al v,v)
‖v‖2 .

Here, the minimum is taken over allv∈Rnl . Givenv∈Rn define‖v‖2Gl
= ∑ j∈V l v2

j ,
which is theℓ2 norm on the subgraphGl . Now, since((v−Qv),1l ) = 0, we have
‖v−Qv‖2Gl

≤ λ−1
l ∑e∈El

(δev)2. Thus,

‖v−Qv‖2 =
nc

∑
l=1

‖v−Qv‖2Gl
≤

nc

∑
l=1

λ−1
l ∑

e∈El

(δev)
2≤ cp ∑

e∈E

(δev)
2 = cp(Av,v). (9)
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The last step follows from the definition ofcp and the observation that since∪lEℓ ⊂
E ,we have that for anyv∈ Rn, ∑nH

l=1 ∑e∈El
(δev)2 ≤ ∑e∈E (δev)2 = (Av,v). Note that

this latter result holds since the second sum is over a largerset. Forshape regular
subgraphs,Gl , the local constantsλ−1

l can be bounded in terms of|Vl | ·diam(Gl )
using Cheeger’s inequality [9]. Here, diam(Gl ) denotes the diameter of the longest
path in thel th subgraph. A similar technique is considered in [12], in which the
constantsλ−1

ℓ are computed by solving local eigenvalue problems.
In [6], commuting relations involving a certain projection, Π , the p.w. constant

projectionQ, the discrete gradient operator,B, andBT on the graph,G , are intro-
duced and are then used to derive a stability estimate of the form

|Q|2A = sup
v: (v,1)=0

|Qv|2A
|v|2A

≤ ‖Π‖2≤ c0 ,

wherec0 is a constant that depends on the shape and alignment of the subgraphs,
but not on the dimension,|V |, of the graph Laplacian,A. It is noteworthy that this
bound holds for general graphs with few assumptions and, further, that, sinceΠ is
constructed one row at a time, this estimate allows local energy estimates that can be
used in forming the graph partitioning. A similar approach was considered in [11].

Given the above approximation and stability estimates and using that|vH |A ≤
c0|v|A, vH = Qv, it follows that the inequality in (6) holds withc1 = 2c0 + 3 and
cp given in (9). This, in turn, implies the spectral equivalence of the two-level pre-
conditioner based on a p.w. constant coarse spaceVH for the graph Laplacian. We
remark that the Galerkin coarse-level operatorAH = PTAP is generally a weighted
graph Laplacian of the formAH = BT

HDBH , whereD is a diagonal weight matrix
with strictly positive entries andBH is the discrete gradient operator defined on the
coarse graphGH(VH ,EH). Similar stability and approximation properties of piece-
wise constant coarse spaces can be established in this more general setting as well
and, then, a similar proof of the spectral equivalence result follows with minor mod-
ifications. Alternatively, it is possible to replace the weighted graph Laplacian with
an unweighted one on the same graph and derive a spectral equivalence result be-
tween the two. The latter result, in turn, again can be used toestablish a spectral
equivalence result for this modified two-level method.

4 Numerical results

We apply the proposed aggregation based preconditioner to graph Laplacians result-
ing from finite element discretizations of the scalar Laplace problem. We consider
both stationary AMLI-cycle and N-AMLI-cycle (k-cycle) preconditioners. For de-
tails on the theory and the implementation of the AMLI and N-AMLI methods we
refer to [2]. In the AMLI approach, we use the polynomial based on the best ap-
proximation tox−1 in the uniform norm to form a the preconditioner between any
two successive levels of the multilevel hierarchy, see [10]. In the N-AMLI-cycle,
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a nonlinear PCG (NPCG) method is applied recursively to solve the coarse-level
equations. The AMLI-cycle is used as a preconditioner for the CG method on the
finest level and the N-AMLI-cycle is applied as a preconditioner to the NPCG itera-
tion. To limit the memory requirements of the nonlinear scheme we restart the outer
fine-level NPCG method every five iterations.

In all tests, the maximal independent set algorithm used in the aggregation pro-
cess for constructing the coarse spaces is applied to the graph of A4, yielding a
coarsening factor of roughlyn/nH = 30 between any two successive levels. The
problem is coarsened until the size of the coarsest level is less than 100. As the
relaxation method in the multilevel solver we use the polynomial smoother based
on the best approximation tox−1 on the interval[λ0, λ1], where the estimate of the
largest eigenvalue is computed asλ1 = ‖A‖ℓ∞ and we setλ0 = λ1/10. Thus, taking
the degree asm= 4 in the polynomial smoother ensures the inequality (5) holds. We
testW-cycle AMLI and N-AMLI preconditioners with such smoother.The stopping
criteria for the flexible preconditioned conjugate gradient iteration is set to a 10−8

reduction in the relativeA norm of the error and the number of iterations needed to
reach this tolerance in the different tests are reported.

In Table 4, we report results of the proposed method for graphLaplacians aris-
ing from discretizing the Poisson problem on structured andunstructured meshes.
We compare the performance of a stationary AMLI with a N-AMLI, both using the
same multilevel hierarchy obtained by applying the aggregation algorithm to the
same Poisson problem with Neumann boundary conditions discretized using stan-
dard linear Finite Elements. For the structured meshes we consider a 2d unit square
domain withn2 unknowns (left) and a 3d unit cube domain withn3 unknowns (mid-
dle). Results for more general graphs (right), coming from unstructured meshes re-
sulting from triangulations of the 3d unit cube, are also included. The unstructured
mesh is formed by adding a random vector of lengthh/2, whereh is the grid length,
to each vertex of a structured triangulation, followed by a Delaunay triangulation.
The (AMLI) N-AMLI method yields a (nearly) scalable solver with low grid and

operator complexities – in all tests the grid complexities
∑J

j=0 n j

n0
were less than 1.03

and the operator complexities
∑J

j=0 nnz(A j )

nnnz(A0)
were less than 1.04.

2d struct. 3d struct. 3d unstruct.
n AMLI N-AMLI

5122 20 19
10242 22 20
20482 23 21
40962 24 21

n AMLI N-AMLI
323 22 20
643 23 22
1283 23 22
2563 25 22

n AMLI N-AMLI
323 24 21
643 25 23
1283 27 24
2563 28 24

Table 1 Results ofW(1,1) AMLI and nonlinear AMLI preconditioners with degreem= 4 poly-
nomial smoother for the Poisson problem.
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5 Conclusion

An algebraic graph partitioning algorithm for aggressive coarsening is developed
and a two-level convergence theory of the resulting solver with polynomial smoother
is developed. It is shown numerically that the resulting N-AMLI approach with
polynomial smoother yields an efficient solver for graph Laplacian problems com-
ing from Finite Element discretizations of the Poisson problem. The graph partition-
ing algorithm, intended for unweighted graphs, is designedto select shape regular
aggregates of arbitrary size and, thus, can be used to obtainpredefined coarsen-
ing factors. The use of an unsmoothed aggregation form of aggressive coarsening
results in low overall grid and operator complexities and limited fill-in in the coarse-
level operators. It further significantly simplifies the triple matrix product to simple
summations of entries of the fine-level matrix.
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Space-Time Domain Decomposition for Mixed
Formulations of Diffusion Equations

Thi-Thao-Phuong Hoang1, J́erôme Jaffŕe1, Caroline Japhet1,2, Michel Kern1 and
Jean Roberts1

1 Introduction

Flow and transport problems in porous media are well-known for their high com-
putational cost. In the far field simulation of an underground nuclear waste disposal
site, one has to work with extremely different length and time scales, and highly
variable coefficients while satisfying strict accuracy requirements. One strategy
for tackling these difficulties is to apply a non-overlapping domain decomposition
method which allows local adaptation in both space and time and makes possible
the use of parallel algorithms. The substructuring method with a Steklov Poincaŕe
operator, which is widely used by engineers for steady problems with strong het-
erogeneities, is a promising option. The optimized Schwarzwaveform relaxation
(OSWR) method, which has been developed over the last decade for finite element
and finite volume methods, is another potential choice.
The objective of this paper is twofold. Firstly, we propose the time-dependent
Steklov Poincaŕe operator and introduce the Neumann-Neumann preconditioner [2]
as well as the weight matrices [13] to improve the convergence speed and handle the
heterogeneities. Secondly, we extend the OSWR approach [8] to the case of mixed
finite elements [3] with their local mass-conservation property. Numerical experi-
ments in 2D are presented to illustrate the performance of the two methods for a
simplified ANDRA test case.

For an open, bounded subsetΩ of Rd (d = 2,3) with Lipschitz boundary∂Ω and
some fixed timeT > 0, we consider the following time-dependent diffusion problem

ω∂tc+∇ · (−D∇c) = f in Ω × (0,T) , (1)

c = 0 on∂Ω × (0,T), (2)

c(0, ·) = c0 in Ω , (3)

wherec is the concentration of a contaminant,ω the porosity andD a symmetric,
positive definite diffusion tensor.
We now rewrite (1) in an equivalent mixed form by introducingthe vector field
r :=−D∇c. This yields

ω∂tc+∇ · r = f in Ω × (0,T) ,
D−1r +∇c = 0 in Ω × (0,T) ,

(4)

1 INRIA, Rocquencourt, France, e-mail:{Phuong.Hoang_Thi_Thao}{Jerome.
Jaffre}{Michel.Kern}{Jean.Roberts}@inria.fr ·2 Universit́e Paris 13, LAGA,
Villetaneuse, France, e-mail:japhet@math.univ-paris13.fr
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along with boundary and initial conditions (2) - (3). Henceforth, unless otherwise
specified, we implicitly assume boundary condition (2) on∂Ω .

Theorem 1. (Well-posedness and Regularity)

Suppose that the diffusion tensorD is in W1,∞(Ω)d2
. If f ∈ L2(0,T;L2(Ω)) and

c0 ∈ H1
0(Ω), then problem (4) has a unique weak solution(c, r) such that

c ∈ H1(0,T;L2(Ω)) and r ∈ L2(0,T;H(div,Ω))∩L∞(0,T;L2(Ω)d).

Moreover, if f∈ H1(0,T;L2(Ω)) and c0 ∈ H2(Ω)∩H1
0(Ω) then

c ∈ W1,∞(0,T;L2(Ω)) and r ∈ L∞(0,T;H(div,Ω))∩H1(0,T;L2(Ω)d).

The proof is based on energy estimates and Galerkin’s method(see [12, 9]).

2 Two space-time domain decomposition methods

Our work relies on the decomposition ofΩ into non-overlapping subdomains. For
simplicity, we describe the methods in case of two non-overlapping subdomainsΩ1

andΩ2 with Γ = ∂Ω1∩∂Ω2∩Ω (the results can be extended to the case of many
subdomains as we shall see in the numerical experiments).

Let {ci , r i} be the restriction toΩi , i = 1,2, of {c, r}, the solution to (4). Problem
(4) can be reformulated in the equivalent multi-domain formby solving the same
problem (globally in space and time) in each subdomain:

ωi∂tci +∇ · r i = f in Ωi× (0,T)
D−1

i r i +∇ci = 0 in Ωi× (0,T)
ci(0) = c0 in Ωi

for i = 1,2, (5)

along with the physical transmission conditions on the space-time interface

c1 = c2

r1 ·n1+ r2 ·n2 = 0
onΓ × (0,T) . (6)

whereni is the outward unit normal vector on∂Ωi .

2.1 Method 1: Time-dependent Steklov-Poincaré operator approach

This method is the continuous counterpart of the Schur complement method, but
extended to the time-dependent problem.
For f andc0 as before andλ ∈ L2(0,T;H

1
2 (Γ )), we define the extension operators

Di : (λ , f ,c0) 7→ (ci(λ , f ,c0), r i(λ , f ,c0)) ,

where(ci(λ , f ,c0), r i(λ , f ,c0)) , i = 1,2, is the solution to the problem

ωi∂tci +∇ · r i = f in Ωi× (0,T) ,
D−1

i r i +∇ci = 0 in Ωi× (0,T) ,
ci = λ onΓ × (0,T) ,

ci(0) = c0 in Ωi .

(7)

Comparing with (5), (6),(ci (λ , f ,c0) , r i (λ , f ,c0)) satisfies (5) - (6) if and only if
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r1 (λ , f ,c0) ·n1+ r2 (λ , f ,c0) ·n2 = 0 on Γ × (0,T) ,

or equivalently,

F1D1(λ , f ,c0)+F2D2(λ , f ,c0) = 0 on Γ × (0,T), (8)

whereFi(ci , r i) := r i ·ni |Γ , i = 1,2, is the normal trace operator.

As the operatorsFi andDi are affine inλ , (8) can be rewritten as

S λ = χ on Γ × (0,T) , (9)

whereS is the linear time-dependent Steklov-Poincaré operator, defined by

S = S1+S2, Siλ :=−FiDi(λ ,0,0) (Dirichlet-to-Neumann operator).

And the right-hand side is

χ = F1D1(0, f ,c0)+F2D2(0, f ,c0).

Remark.

(i) Subdomain problem (7) is wellposed (this is an easy extension of Theorem 1).

(ii) We solve problem (9) iteratively using a Krylov subspace method such as GM-
RES.

(ii) The operatorS is non-symmetric. In particular, by writing the variational for-
mulations of the subdomain problems, we deduce forλ ,η ∈ L2(0,T;H

1
2 (Γ )) that

〈S λ ,η〉=
2

∑
i=1

(∫ T

0

∫

Ωi

D−1r̃ i (η) · r̃ i (λ )+
∫ T

0

∫

Ωi

ωi
∂ c̃i (λ )

∂ t
c̃i (η)

)
,

where(c̃i(λ ), r̃ i(λ )) := Di (λ ,0,0) for i = 1,2. Thus, the well-posedness of (9) is
still an open question (see a related work by F. Kwok [11]).

2.2 Method 2: Optimized Schwarz waveform relaxation approach

We consider the second domain decomposition approach, the Optimized Schwarz
Waveform Relaxation (OSWR) method, where we replace the physical transmission
conditions (6) by the equivalent Robin conditions on the space-time interface

−r1 ·n1+ p1c1 =−r2 ·n1+ p1c2

−r2 ·n2+ p2c2 =−r1 ·n2+ p2c1
onΓ × (0,T) , (10)

wherep1 and p2 are positive parameters that can be optimized to significantly im-
prove the convergence rate of the method (see [1, 4, 5] and thereferences therein).

The OSWR method may be written as follows: at thekth iteration, we solve in each
subdomain the problem

∂tck
i +∇ · rk

i = f in Ωi× (0,T) ,
D−1

i rk
i +∇ck

i = 0 in Ωi× (0,T) ,
−rk

i ·ni + pick
i =−rk−1

j ·ni + pic
k−1
j onΓ × (0,T) , j = (3− i),

ci(0, ·) = c0 in Ωi .

(11)
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Remark.

(i) For the first iteration, the transmission conditions are replaced by

−r1
i ·ni + pic

1
i = gi , onΓ × (0,T)

for gi , i = 1,2, an initial guess on the space-time interface.

(ii) The well-posedness of subdomain problem (11) is an extension of Theorem 1
(see [9]) making use of the spaceH (div,Ωi) defined by

H (div,Ωi) =
{

v ∈ H(div,Ωi) such thatv ·ni ∈ L2(Γ )
}
.

Theorem 2. (Convergence of the OSWR method in mixed form)

Suppose thatD is in W1,∞(Ω)d2
. Let f ∈H1(0,T;L2(Ω)) and c0 ∈H2(Ω) ∩ H1

0(Ω).
If the algorithm (11) is initialized by(gi) given in H1

(
0,T;L2 (Γ )

)
, then it defines

a unique sequence of iterates

(ck
i , r

k
i ) ∈W1,∞(0,T;L2(Ωi))×L∞(0,T;H (div,Ωi))∩H1(0,T;L2(Ωi)

d), i = 1,2,

that converges to the weak solution(c, r) of problem (4).

Remark. Theorem 2 can be extended to the case of many subdomains (see [9]).

As in subsection 2.1, we now derive an interface problem. However, here we use
two interface unknowns: letζi ∈H1

(
0,T;L2 (Γ )

)
, i = 1,2. We define the following

extension operators:

Ri : (ζi , f ,c0) 7→ (ci(ζi , f ,c0), r i(ζi , f ,c0)) , (12)

where(ci(ζi , f ,c0), r i(ζi , f ,c0)) , i = 1,2, is the solution to the problem

ωi∂tci +∇ · r i = f in Ωi× (0,T) ,
D−1

i r i +∇ci = 0 in Ωi× (0,T) ,
−r i ·ni + pici = ζi onΓ × (0,T) ,

ci(0) = c0 in Ωi .

(13)

The interface operators are denoted byBi , i = 1,2, and are defined by

Bi (c j , r j) = (−r j ·ni + pic j) |Γ , j = (3− i). (14)

Thus, transmission conditions (10) lead to the interface problem

ζ1 = B1R2 (ζ2, f ,c0)
ζ2 = B2R1 (ζ1, f ,c0)

onΓ × (0,T), (15)

or equivalently,
(

I −B1R2 (·,0,0)
−B2R1 (·,0,0) I

)(
ζ1

ζ2

)
=

(
B1R2 (0, f ,c0)
B2R1 (0, f ,c0)

)
onΓ × (0,T).

We solve this system iteratively using Jacobi iteration (this is the OSWR method
(11)) or using GMRES.
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3 Discontinuous Galerkin time stepping with different
subdomain time grids

0

T

Ω1 Ω2

∆ t1 ∆ t2 T = M1∆ t1 = M2∆ t2

x

t

Fig. 1 Non-conforming time grids in the subdomains.

As the two methods described in the previous section are global in time, we can
use different time steps in different subdomains accordingto their physical proper-
ties. We consider two possibly different uniform partitions T1 andT2 of the time
interval(0,T) into sub-intervals of lengths∆ t1 and∆ t2 respectively. We denote by
Ji

m the interval(t i
m−1, t

i
m], m= 1, . . . ,Mi , for i = 1,2. In particular, we are interested

in the non-conforming case where∆ t1 6= ∆ t2 as depicted in Fig. 1. For the time
discretization, we use the discontinuous Galerkin method [10, 8]. In this paper, we
consider the lowest order scheme, which is a modified backward Euler method. We
denote byP0(Ti ,W) the space of piecewise constant functions in time on gridTi

with values inW whereW = H
1
2 (Γ ) for Method 1 andW = L2(Γ ) for Method 2:

P0(Ti ,W) =
{

φ : (0,T)→W, φ is constant in time onJi
m, ∀m= 1, . . . ,Mi

}
.

In order to exchange data on the space-time interface between different time grids,
we define the followingL2 projectionΠ ji from P0(Ti ,W) ontoP0(T j ,W): for φ ∈
P0(Ti ,W), Π ji φ |J j

m
is the average value ofφ on J j

m, for m= 1, . . . ,M j . We use a
simple algorithm [6] for effectively performing this projection. With these tools, we
are now able to weakly enforce the transmission conditions over the time intervals.

For Method 1. We takeλ piecewise constant in time (on gridT1, or T2 or on yet
another grid). Let, for instance,λ ∈ P0(T1,H

1
2 (Γ )). Thus, we have

c1 = Π11(λ ) = Id(λ ) and c2 = Π21(λ ), on Γ × (0,T).

The flux is then conserved over each time intervalJ1
m by letting

∫

J1
m

(Π11(r1(Π11(λ )) ·n1)+Π12(r2(Π21(λ )) ·n2)) dt = 0, for m= 1, . . . ,M1.

For Method 2. As we have two Lagrange multipliers on the space-time interface,
we takeζi ∈ P0(Ti ,L2(Γ )) for i = 1,2 and enforce the conservation of the jumps of
the two Robin terms over the time intervals [8] by letting

∫

Ji
m

(ζi−Πi j (−r j(ζ j) ·ni + pic j(ζ j)) dt = 0,
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for m= 1, · · · ,Mi , and fori = 1,2, j = (3− i).

4 Numerical Experiments

We consider 2D problems withD = dI isotropic and constant in each subdomain,
whereI is the identity matrix. We then denote bydi := d|Ωi .

For Method 1: Using a Neumann-Neumann Preconditioner.In the elliptic case
with strong heterogeneity, the convergence of an iterativemethod for the Schur com-
plement problem enhanced with a Neumann-Neumann preconditioner and weight
matrices is independent of the jump in the coefficients [13].Thus, we extend the
idea to our method for parabolic problem. In particular, we rewrite the interface
problem (9) as

(
δ1S

−1
1 +δ2S

−1
2

)
(S1+S2)λ = χ̂ on Γ × (0,T) ,

whereδi = [di/(d1+d2)]
2 andS −1

i , the Neumann-to-Dirichlet operator, is the in-
verse ofSi for i = 1,2. This formula can be generalized to the case of many subdo-
mains.

For Method 2: Using two optimization techniques.To calculate the optimized
Robin parameters for discontinuous coefficients, the first approach is to optimize
the convergence factor based on the two-half space Fourier analysis [4], we call this
approach Opt. 1. In our application to nuclear waste problems where the geometry
consists of small objects embedded in a large space, we use anadapted optimization
proposed in [7], called Opt. 2, which takes into account the size of the subdomains.

We consider a test case designed by ANDRA for the pure diffusion equation. The

10 m

2950 m

3950 m

140 m

Fig. 2 Geometry of the domain.

geometry of the physical domain is depicted in Fig. 2. The porosity is ω = 0.2 in
the repository (in red) andω = 0.05 in the clay layer (in yellow). The diffusion co-
efficient isd = 2×10−9 m2 s−1 in the repository andd = 5×10−12 m2 s−1 in the
clay layer. The source term is

f =

{
10−5 mol/s if t ≤ 105years,
0 if t > 105years,

in the repository, andf = 0 in the clay layer.

For the spatial discretization, we use a non-uniform rectangular mesh with a finer
discretization in the repository (a uniform mesh with 600 points in the x direction
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and 30 points in the y direction) and a coarser discretization in the clay layer (the
mesh size progressively increases with distance to the repository by a factor of 1.05).
We then apply mixed finite elements with the lowest order Raviart-Thomas space
on rectangles. For the time discretization, we use non-matching time grids with
∆ t = 2000 years in the repository and∆ t = 10000 years in the clay layer. Finally,
we decompose the domain into 9 rectangular subdomains (3×3 with the repository
represented by one subdomain).
To analyze and compare the convergence results of differentalgorithms, we solve a
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Fig. 3 Convergence curves for different algorithms and time intervals: with GMRES (on the left)
and with Jacobi (on the right), for short timeT = 200,000 years (on top) and for long timeT =
1,000,000 years (on below).

problem with the right hand sidef ≡ 0. We start with random initial guesses on the
space-time interfaces and check the convergence to zero inL2(0,T;L2(Ω))−norms
of the concentration and vector field, with tolerance 10−6 on the residual. We re-
mark that one iteration of Method 1 with the preconditioner costs twice as much as
one iteration of Method 2 (in terms of number of subdomain solves). Thus we plot
the error versus the number of subdomain solves (instead of versus the number of
iterations). In Fig. 3, we compare the errors for different algorithms (GMRES on
the left and Jacobi iteration on the right) and over different time intervals (shorter
interval on top and longer interval on bottom). The same timesteps,∆ ti , are used for
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the shorter and longer time intervals. We observe that with GMRES, both Method
1 (with Neumann-Neumann preconditioner) and Method 2 (witheither Opt. 1 or
Opt. 2) work well and their performance is comparable. The convergence becomes
slower when the time interval increases, which is reasonable and expected. On the
other hand, with Jacobi iteration, we see that the performance of Opt. 1 (classical)
is far behind Opt. 2 (adapted), especially for the long time case.

Acknowledgements This work was supported by ANDRA, the French Agency for Nuclear Waste
Management.
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Block Jacobi for discontinuous Galerkin
discretizations: no ordinary Schwarz methods

Martin J. Gander1 and Soheil Hajian1

1 Introduction

We study in this paper block Jacobi iterations for matrix problems obtained by dis-
continuous Galerkin (DG) discretizations. To fix ideas, we consider the model prob-
lem

−∆u = f , in Ω ⊂ R2,
u = 0, on ∂Ω .

(1)

Any discretization of (1) leads to a linear system of equations of the form

Ay = f, (2)

wherey is the vector of degrees of freedom representing approximations of u and
possibly∇u. A block Jacobi iteration with two non-overlapping subblocks is given
by

My(n+1) = Ny(n)+ f, M =

[
A1 O
O A2

]
, N =−

[
O A12

A21 O

]
. (3)

For classical discretizations of elliptic partial differential equations, like conforming
finite elements or finite differences, block Jacobi methods are equivalent to classical
Schwarz methods with minimal overlap, see for example [4]. This is different when
the linear system (1) is obtained using DG methods.

Our paper is organized as follows: in section 2 we describe several DG methods
for linear elliptic problems. We follow our discussion by introducing some “hy-
bridizable” DG methods. In section 3 we show that block Jacobi iterations for the
DG methods are corresponding to non-overlapping Schwarz methods with particu-
lar transmission conditions involving the penalty parameter of the DG method used.
We then show numerical experiments in section 4, and presentour conclusions in
section 5.

2 Discontinuous Galerkin methods

We introduce the so-called flux formulations, which define a class of discontinu-
ous Galerkin methods for linear elliptic problems. We use the unified framework
presented in [1].

1 Universit́e de Geǹeve, 2-4 rue du Lìevre, CP 64, CH-1211 Genève 4,e-mail:{Martin.
Gander,Soheil.Hajian}@unige.ch

263
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Let Th = {K} be a shape-regular triangulation of a polyhedral domainΩ ⊂ R2.
Let h=maxK∈Th

hK . We denote byE 0 the set of interior edges shared by allK ∈Th,
the set of boundary edgesE ∂ and all edges byE := E ∂ ∪E 0.

Following [1] we define the broken Sobolev spaceH l (Th) := ∏K∈Th
H l (K) and

the trace spaceT(E ) =∏K∈Th
L2(∂K) whereH l (K) is the Sobolev space inK ∈Th.

We also define two trace operators: letq∈T(E ) andϕ ∈ [T(E )]2. One= ∂K1∩∂K2

we then define average{{·}} and jump[[·]] operators by

{{q}} = 1
2(q1+q2), [[q]] = q1n1+q2n2,

{{ϕ}} = 1
2(ϕ1+ϕ2), [[ϕ]] = ϕ1 ·n1+ϕ2 ·n2,

(4)

whereni is the outward normal ofKi on e, qi := q|∂Ki∩e andϕi := ϕ|∂Ki∩e. On the
boundary ofΩ we set the average and jump operators to be{{ϕ}}= ϕ and[[q]] = qn
respectively. We do not need to define{{q}} and[[ϕ]] one∈ E ∂ ; see [1].

We denote two finite dimensional broken spaces onTh for the discrete ap-
proximation byVh :=

{
v∈ L2(Ω) s.t. v|K ∈ P(K),∀K ∈Th

}
whereP(K) = Pk(K)

andΣh :=
{

τ ∈ [L2(Ω)]2 s.t. τ |K ∈ Σ(K),∀K ∈Th
}

whereΣ(K) = [Pk(K)]2. Here
Pk(K) is the space of polynomials of degree≤ k in the simplexK ∈Th.

For the sake of simplicity we denote the volume and surface integrals by(a,b)K =∫
K ab for K ∈Th and〈a,b〉e =

∫
eab for e∈ E . Moreover‖v‖20,Th

:= ∑K∈Th
(v,v)K .

2.1 Flux formulation

For the Laplacian model problem (1) in the DG context, one first rewrites the equa-
tion in mixed form,

σ = ∇u, −∇ ·σ = f (x), x∈Ω . (5)

Then theflux formulationis the following: letK ∈ Th, v ∈ P(K) and τ ∈ Σ(K).
We multiply (5) byτ andv respectively. Integrating by parts overK, we substitute
boundary terms ofu and σ by two approximation functions. Hence the discrete
weak form reads: find(uh,σh) ∈Vh×Σh for all K ∈Th such that

(σh,τ)K = −(uh,∇ · τ)K + 〈ûh,τ ·nK〉∂K ∀τ ∈ Σ(K),
(σh,∇v)K = ( f ,v)K 〈v, σ̂h ·nK〉∂K ∀v∈ P(K),

(6)

wherenK is the outward normal of elementK and

ûh : H2(Th)×
[
H1(Th)

]2→ T(E ), σ̂h : H2(Th)×
[
H1(Th)

]2→ [T(E )]2 , (7)

which are called numerical fluxes. They approximate the traces ofuh andσh on∂K.
By definingûh andσ̂h we complete the definition of a DG method.

For instance we introduce thelocal discontinuous Galerkinmethod (LDG) with
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ûh = {{uh}}−β · [[uh]] onE 0, ûh = 0 on∂Ω ,
σ̂h = {{σh}}+β [[σh]]−µ [[uh]] onE ,

(8)

whereβ ∈
[
L2(E )

]2
is a constant vector-valued function withβ = 0 on ∂Ω and

µ ∝ h−1
e wherehe is the edge length. We will consider the caseβ = −nK1/2 on

e= ∂K1∩∂K2 whereK1,K2 ∈Th and the assignment ofnK1 is arbitrary. Therefore
the numerical fluxes are

ûh = (uh)K1
, σ̂h = (σh)K2

−µ [[uh]] one. (9)

In case we have non-homogeneous Dirichlet data, e.g.u= gD on∂Ω , the numerical
fluxes are

ûh = gD, σ̂h = σh −µ (uh−gD) one∈ E ∂ . (10)

We now introduce two more methods which are “hybridizable”.A hybridmethod
is defined by eliminating interior unknowns within an element K ∈ Th in terms of
some unknowns defined onE 0, calledλh (which here is ˆuh). We then obtain a system
for λh which is much smaller than the original system. We do not derive these type
of DG methods here but for a unified approach we refer the reader to [2].

Remark 1.A “hybridizable” DG method is designed to approximate the following
continuous problem using ˆuh as Dirichlet data on∂K:

σ −∇u= 0 and−∇ ·σ = f in K, u= ûh(u,σ) on ∂K. (11)

More precisely, their numerical fluxes are such thatσ̂h = (σh)K−µ [(uh)K− ûh] on
∂K which is the numerical flux one uses to impose Dirichlet boundary data on the
boundary of an element; compare with (10).

We introduce two hybridizable methods, namely LDG-H and IP-H, by defining
their numerical fluxes. The LDG-H uses

ûh =
µ1

µ1+µ2
uh,1+

µ2
µ1+µ2

uh,2− 1
µ1+µ2

[[σh]],

σ̂h =
µ2

µ1+µ2
σh,1+

µ1
µ1+µ2

σh,2− µ1µ2
µ1+µ2

[[uh]],
(12)

whereµ ∈ T(E ). Similarly for IP-H we have

ûh =
µ1

µ1+µ2
uh,1+

µ2
µ1+µ2

uh,2− 1
µ1+µ2

[[∇uh]],

σ̂h =
µ2

µ1+µ2
∇uh,1+

µ1
µ1+µ2

∇uh,2− µ1µ2
µ1+µ2

[[uh]].
(13)

One can show that IP-H and LDG-H satisfy Remark 1 by noting that for K ∈Th

σ̂h = (σh)K−µ [(uh)K− ûh] on ∂K. (14)
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3 Domain decomposition for “hybridizable” DG methods

We decompose the domainΩ into two non-overlapping subdomains,{Ω1,Ω2},
such that the interfaceΓ I := Ω1∩Ω2 is a subset ofE 0, i.e. the cut does not go
through any element ofTh. Therefore we obtainTh,1,Th,2 from the originalTh,
and similarlyE 0

1 ,E
0
2 , for our subdomains; see for example Fig. 1 (right).

Let (uh,σh) be the approximate solution obtained from a DG method. Let
(uh,1,σh,1) be the restriction of(uh,σh) to Ω1 and similarly(uh,2,σh,2) to Ω2. Then
(uh,i ,σh,i) for i = 1,2 andK ∈Th,i satisfy





(
σh,i ,τ

)
K =−

(
uh,i ,∇ · τ

)
K +

〈
ûh,i ,τ ·nK

〉
∂K ∀τ ∈ Σ(K),

(
σh,i ,∇v

)
K = ( f ,v)K +

〈
v, σ̂h,i ·nK

〉
∂K ∀v∈ P(K),

(15)

where

ûh,i :=

{
ûh(uh,i ,σh,i ,uh, j ,σh, j) onΓ I and j 6= i,
ûh(uh,i ,σh,i) onE 0

i ,
(16)

and similarly for σ̂h,i . Note that we do not need to define ˆuh,1 on E 0
2 since for

(uh,1,σh,1) we only have one term in (15) that needs the trace of(uh,2,σh,2) on
Γ I and notE 0

2 (similarly ûh,2 does not need to be defined onE 0
1 ).

If the trace of(uh,2,σh,2) is known onΓ I , one can solve for(uh,1,σh,1) in Ω1,
and vice versa. This suggests an iterative algorithm for solving (uh,i ,σh,i) in parallel,

namely: find(u(n+1)
h,i ,σ (n+1)

h,i ) for i = 1,2 such that it satisfies (15) with

ûh,i :=

{
ûh(u

(n+1)
h,i ,σ (n+1)

h,i ,u(n)h, j ,σ
(n)
h, j ) onΓ I and j 6= i,

ûh(u
(n+1)
h,i ,σ (n+1)

h,i ) onE 0
i ,

(17)

starting with an initial guess(u(0)h,i ,σ
(0)
h,i ), i = 1,2. Note that ˆuh,1 is is not equal any

more toûh,2 onΓ I except at convergence, and then we have(u⋆h,i ,σ
⋆
h,i) = (uh,i ,σh,i),

i.e. the domain decomposition approximation at convergence is equal to the mono
domain approximate solution.

Denoting the degrees of freedom associated with(u(n+1)
h,i ,σ (n+1)

h,i ) by y(n+1)
i =

(ui
(n+1),σ i

(n+1))T after choosing a basis forP(K) andΣ(K), we can write the equiv-
alent linear systems for our iterative method as

A1y(n+1)
1 =−A12y

(n)
2 + f 1, A2y(n+1)

2 =−A21y
(n)
1 + f 2, (18)

whereA12 is obtained from
〈
ûh,1,τ ·nK

〉
e,
〈
σ̂h,1 ·nK ,v

〉
e for e⊂ Γ I andA1 is the

stiffness matrix obtained from (15) inΩ1, and similarly forΩ2. Settingy(n+1) :=

(y(n+1)
1 ,y(n+1)

2 )T and f := ( f 1, f 2)
T , we obtain precisely a block Jacobi iteration of

the form (3).
For the classical finite element method withP1 approximation a block Jacobi it-

eration corresponds to a Schwarz method with minimal overlap and Dirichlet trans-
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mission conditions [4]. We show now that for hybridizable DGmethods the block
Jacobi iteration corresponds to a general Schwarz method ofthe form

−∆u(n+1)
1 = f in Ω1, −∆u(n+1)

2 = f in Ω2,

B1u(n+1)
1 = B1u(n)2 onΓ I , B2u(n+1)

2 = B2u(n)1 onΓ I ,
(19)

whereB1 andB2 are two linear operators determined by the particular choice of
DG discretization. The following propositions show the transmission condition on
Γ I in (19), whenM and N in (3) are obtained from LDG-H, IP-H and minimal
dissipation LDG methods.

Proposition 1. Let K1 ∈ Th,1, K2 ∈ Th,2 and e= K1∩K2 ⊂ Γ I . If M and N in (3)
are obtained from an LDG-H discretization, then the block Jacobi iteration (3) is
the discrete version of (19) withB1 = ∂n1 +µ2 andB2 = ∂n2 +µ1 on e.

Proof. We start withK1: since the numerical fluxes of the LDG-H satisfy the

condition in Remark 1, i.e.̂σh,1 = σ (n+1)
h,1 − µ1(u

(n+1)
h,1 − ûh,1)n1, one can con-

clude that we are imposing the following Dirichlet data at the continuous level:

u(n+1)
1 = ûh,1(u

(n+1)
1 ,σ (n+1)

1 ,u(n)2 ,σ (n)
2 ) on e. From the definition of the LDG-H nu-

merical flux (12) we obtain

u(n+1)
1 =

µ1

µ1+µ2
u(n+1)

1 +
µ2

µ1+µ2
u(n)2 −

1
µ1+µ2

(σ (n+1)
1 −σ (n)

2 ) ·n1. (20)

Collecting terms with super index(n+1) and notingσ i ·n1 = ∂n1ui one, we obtain
B1 = ∂n1 +µ2. The same argument applies toK2. ⊓⊔
Proposition 2. Let K1 ∈ Th,1, K2 ∈ Th,2 and e= K1∩K2 ⊂ Γ I . If M and N in (3)
is obtained from an IP-H discretization, then the block Jacobi iteration (3) is the
discrete version of (19) withB1 = ∂n1 +µ2 andB2 = ∂n2 +µ1 on e.

Proof. This result can be proved similarly to the proof of Proposition 1. ⊓⊔
Proposition 3. Let K1 ∈ Th,1, K2 ∈ Th,2 and e= K1∩K2 ⊂ Γ I . Let M and N in
(3) be obtained from a minimal dissipation LDG and assumeβ :=−n1/2, then the
block Jacobi iteration (3) is the discrete version of (19) with B1 = ∂n1 + µ2 and
B2 = 1 on e.

Proof. We start withK2: note that with this definition ofβ we have ˆuh,2 = u(n)h,1 and

σ̂h,2 = σ (n+1)
h,2 − µ2(u

(n+1)
h,2 −u(n)h,1)n2. Comparing with (10), one concludes that we

are imposingu(n+1)
1 = u(n)2 one. Now for K1 using the definition of ˆuh,1 = u(n+1)

h,1 on
e in the first equation of (15) one obtains:

(
σ (n+1)

h,1 −∇u(n+1)
h,1 ,τ

)
K1

=
〈

ûh,1−u(n+1)
h,1 ,τ ·n1

〉
∂K1\e

∀τ ∈ Σ(K1). (21)

Choosingτ = ∇v (since∇V(K1)⊂ Σ(K1)), substituting into the second equation of
(15) yields



268 Martin J. Gander and Soheil Hajian

(
∇u(n+1)

h,1 ,∇v
)

K1
=
〈
σ̂h,1 ·n1,v

〉
e+( f ,v)K1

+

[〈
ûh,1−u(n+1)

h,1 ,τ ·n1

〉
∂K1\e

+
〈
σ̂h,1 ·n1,v

〉
∂K1\e

]
.

Therefore one can conclude that the following Neumann boundary data is imposed

on the interface:σ (n+1)
1 ·n1 = σ̂h,1(u

(n+1)
1 ,σ (n+1)

1 ,u(n)2 ,σ (n)
2 ) ·n1 one. Using the def-

inition of σ̂h,1(.) = σ (n)
2 −µ2(u

(n+1)
1 −u(n)2 )n1 and collecting terms with super index

(n+1) leads toB1 = ∂n1 +µ2. ⊓⊔
The results here are also applicable when a positive reaction terms is present, e.g.

for (η−∆)u= f , η > 0, since the zeroth order term only adds a term likeη (u,v)K
in the mixed formulation, and thus does not change numericalfluxes.

3.1 Comments on optimized Schwarz methods for DG
discretizations

One can estimate the convergence of the block Jacobi method by analyzing the
convergence behavior of the equivalent algorithm at the continuous level given
in (19). This has been done for a simple geometry in [5], wherefor the case
µ1 = µ2 =: µ on Γ I , it is shown that the “uniformly optimal” value forµ is

µ∗ =
(
(K2

min+η)(K2
max+η)

) 1
4 . HereKmin andKmax are the minimum and max-

imum frequencies that can be represented on the interface, heuristically chosen to
beKmin = π andKmax=

π
h for an interface of length one. Thereforeµ∗ ∝ h−

1
2 . The

contraction factor of the Fourier modes in (19) is then bounded byρ∗ = 1−O(
√

h).
For analysis of a discretized optimized Schwarz method using FEM see [6].

We have seen that for the DG methods presented the penalty parameter enters as
Robin parameter in the equivalent continuous Schwarz method. The penalty param-
eter in DG methods is chosen such that it ensures coercivity of the bilinear form as
well as optimal convergence of the discrete approximation to the continuous solu-
tion.

Here we would like to comment only forLDG-H on how to chooseµ such that
one obtains optimal convergence to the continuous solutionand achieves fast con-
vergence of the block Jacobi iteration at the same time. For LDG-H, µ can be cho-
sen asO(1) or O(h−1). However using [3, Theorem 2.2], it can be shown that using

µ ∝ h−
1
2 for a class of DG methods in which LDG-H is also included yields an op-

timal convergence to the continuous solution and we have thefollowing corollary.

Corollary 1. Let the discretization be LDG-H and consider the domain decomposi-
tion setting in section 3. Setµ = h−

1
2 onΓ I andµ = h−α for 0≤ α ≤ 1 onE \Γ I .

Then‖uh−u‖0,Th
≤Chk+1, i.e. optimal approximation. Moreover the contraction

factor of the iterative domain decomposition method (blockJacobi), is bounded by
ρ = 1−O(

√
h) which cannot be improved for any other choice ofµ onΓ I .
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Fig. 1 (left) asymptotic number of iterations required by the non-overlapping Schwarz method
using LDG-H. (right) unstructured mesh with the interfaceΓ I = {0.5}× (0,1).

4 Numerical experiments

We consider(η−∆)u= f in Ω andu= 0 on∂Ω where we setη = 1, Ω = (0,1)2

and f such that the exact solution isu(x,y) = sin(πx)sin(2πx+ π
4 )sin(2πy) in Ω .

We illustrate the results in section 3 using a block Jacobi method as in (3) with
Γ I = {0.5}× (0,1) as interface on an unstructured mesh; see Fig. 1 (right).

The penalty parameter is usually chosen asµ = k2/he wherek is the degree of
the polynomials; this would correspond to a very unusual high frequency approx-
imation of the DtN operator in the optimized Schwarz method,and thus strongly
affects the convergence rate. The convergence results in Fig. 2 are obtained by mea-
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Fig. 2 Block Jacobi method for LDG-H, minimal dissipation LDG, IP-H, LDG-H with µ∗ and
discretization error forP1 andP2.
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suring‖u(n)h −uh‖0,Th
, whereuh is the mono-domain approximate solution andu(n)h

is the solution obtained at iterationn of the block Jacobi method forP1 andP2. It
is evident that IP-H and LDG-H converge faster than minimal dissipation LDG in
the block Jacobi iteration due to their transmission conditions. Moreover LDG-H
with µ∗ converges faster than LDG-H usingµ ∝ h−1 since its parameter is chosen
as suggested by optimized Schwarz theory.

Fig. 1 (left) shows the number of iterations required for theblock Jacobi method
to reduce the iteration error to the machine precision for LDG-H with different
penalty parameters onΓ I on a sequence of unstructured meshes. We show that for
LDG-H the contraction factor with “uniformly” optimalµ∗ behaves as predicted in
Corollary 1 and [5], i.e.ρ∗ = 1−O(

√
h), while with µ = O(1) or O(h−1) behaves

like ρ = 1−O(h).

5 Conclusions

We have shown that block Jacobi methods for DG discretizations correspond to
non-overlapping Schwarz methods with Robin-, or Robin and Dirichlet transmis-
sion conditions. This is in contrast to standard finite element methods, where block
Jacobi methods correspond to classical Schwarz methods with minimal overlap and
Dirichlet transmission conditions. In addition, we found that the penalty parameter
in certain DG method leads to a high frequency approximationin the transmission
condition of the optimized Schwarz method, which is not a very good choice for
the convergence of the Schwarz method. We are currently studying a way to intro-
duce a much better parameter for the convergence of block Jacobi, without changing
however the DG approximation properties.
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Overlapping domain decomposition methods
with FreeFem++

Pierre Jolivet1,3, Fréd́eric Hecht1, Fréd́eric Nataf1, and Christophe Prud’homme2

1 Introduction

Developping an efficient and versatile framework for finite elements domain de-
composition methods can be a hard task because of the mathematical genericity of
finite element spaces, the complexity of handling arbitrarymeshes and so on. The
purpose of this note is to present one way to implement such a framework in the
context of overlapping decompositions. In section 2, the basics for one-level over-
lapping methods is introduced, in section 3, a second level is added to the original
framework to ensure scalability using a portableC++ library, and section 4 gathers
some numerical results.FreeFem++ will be used for the computations of finite
element matrices, right hand side and mesh generation, but the work here is also
applicable to other Domain-Specific (Embedded) Language such asdeal.II [3],
Feel++ [12], GetFem++...

2 One-level methods

Let Ω ⊂Rd (d= 2 or 3) be a domain whose associated mesh can be partitioned into
N non-overlapping meshes{Ti}16i6N using graph partitioners such as METIS [10]
or SCOTCH [5]. LetV be the finite element space spanned by the finite set ofn
basis functions{φi}16i6n defined onΩ , and{Vi}16i6N be the local finite element
spaces defined on the domains associated to each{Ti}16i6N. Typical finite element
discretizations of a symmetric, coercive bilinear forma : V×V → R yield the fol-
lowing system to solve :

Ax= b, (1)

where(Ai j )16i, j6n = a(φ j ,φi), and(bi)16i6n = ( f ,φi), f being in the dual spaceV∗.

Let an integerδ be the level of overlap:
{
T δ

i

}
16i6N is an overlapping decomposi-

tion and if we consider the restrictions{Ri}16i6N from V to
{
Vδ

i

}
16i6N, the local

finite element spaces on
{
T δ

i

}
16i6N, and a local partition of unity{Di}16i6N such

that
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N

∑
j=1

RT
j D jRj = I . (2)

Then a common one-level preconditioner for system (1) introducted in [4] is

P−1
RAS =

N

∑
i=1

RT
i Di(RiART

i )
−1Ri . (3)

The global matrixA is never assembled, instead, we build locallyAδ+1
i the stiffness

matrix yielded by the discretization ofa onVδ+1
i , and we remove the columns and

rows associated to degrees of freedom lying on elements ofT δ+1
i \T δ

i , this yields
Ai = RiART

i . The distributed sparse matrix-vector productAx for x ∈ Rn can be
computed using point-to-point communications and the partition of unity without
having to store the globaldistributedmatrixA. Indeed, using (2), if one looks at the
local components ofAx, that isRiAx, then one can write, introducingOi the set of

neighboring subdomains toi, i.e.
{

j : T δ
i ∩T δ

j 6= /0
}

:

RiAx=
N

∑
j=1

RiART
j D jRjx (4)

= AiDiRix+ ∑
j∈Oi

RiR
T
j A jD jRjx. (5)

since it can be checked that

∀x∈ Rn, RiART
j D jRjx= RiR

T
j RjART

j D jRjx (6)

The sparse matrix-sparse matrix productsRiRT
j are nothing else than point-to-point

communications from neighborsj to i.
In FreeFem++ , stiffness matrices such asAδ+1

i and right-hand sides are assembled
as follows (a simple 2D Laplacian is considered here):

mesh Th; // Th is a local 2D mesh
(
for exampleT δ+1

i

)

fespace Vh(Th, Pk); // Vh is a local finite element space
varf a(u, v) = int2d(dx(u) * dx(v) + dy(u) * dy(v))

+ int2d(f * v) + BC;
matrix A = a(Vh, Vh); // A is a sparse matrix stored in the CSR format
Vh rhs; // rhs is a function lying in the FE spaceVh
rhs[] = a(0, Vh); // Its values are set to solveAx= rhs

The meshTh can either be created on the fly byFreeFem++ , or it can be loaded
from a file generated offline by Gmsh [6], for example when dealing with com-
plex geometries. By default,FreeFem++ handles continuous piecewise linear,
quadratic, cubic, quartic finite elements, and other traditionnal FE like Raviart-
Thomas 1, Morley, ... The boundary conditions depend on the label set on the
mesh. For example, if one wants to impose penalized homogeneous Dirichlet bound-
ary conditions on the label1 of the boundary ofTh, then one just has to add
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+ on(1, u = 0) in the definition of thevarf . For a more detailed intro-
duction toFreeFem++ with abundant examples, interested readers should visit
http://www.freefem.org/ff++ or see [9].
The partition of unityDi is built using a continuous piecewise linear approximation
of

χi =
χ̃i

χ̃i + ∑
j∈Oi

χ̃ j
∣∣
T δ

i ∩T δ
j

, (7)

whereχ̃i is defined as

χ̃i =

{
1 on all vertices ofTi

1− m
δ

on all vertices ofT m
i \T m−1

i ∀m∈ [1;δ ] . (8)

3 Two-level methods

It is well known that one-level domain decomposition methods as depicted in sec-
tion 2 do suffer from poor conditioning when used with many subdomains, [16]. In
this section, we present a newC++ library, independent of the finite element back-
end used, that assembles efficiently a coarse operator that will be used in section
4 to ensure scalability of our framework. The theoretical foundations for the con-
struction of the coarse operator are presented in [14]. Froma practical point of view,
after building each local solverAi , three dependent operators are needed :

(i) the deflation matrixZ,
(ii) the coarse operatorE = ZTAZ,
(iii) the actual precontionerP−1

A-DEF1 = P−1
RAS(I − AZE−1ZT) + ZE−1ZT , thor-

ougly studied in [15].

In [14], the deflation matrix is defined as :

Z =
[
RT

1W1 RT
2W2 · · · RT

NWN
]
∈ Rn×R∑N

i=1 νi (9)

where {
Wi =

[
DiΛi1 DiΛi2 · · · DiΛiνi

]
∈ Rni ×Rνi

}
16i6N

(10)

νi is a threshold criterion used to select the eigenvectorsΛi associated to the smallest
eigenvalues in magnitude of the followinglocal generalized eigenvalue problem:

Aδ
i Λi = λiDiR

T
i,0Ri,0Aδ

i DiΛi

whereAδ
i is the matrix yielded by the discretization ofaonVδ

i , andRi,0 is the restric-

tion operator fromT δ
i to the overlapT δ

i ∩
(
∪ j∈Oi T

δ
j

)
. In FreeFem++ , sparse

eigenvalue problems are solved either with SLEPc [8] or ARPACK [11]. The latter
seems to yield better performance in our simulations. Given, for each MPI process,
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the local matrixAi , the local partition of unityDi , the set of eigenvalues
{

Λi j

}
16 j6νi

and the set of neighboring subdomainsOi , our library assemblesE without having
to assembleA and to storeZ, and computes itsLU or LDLT factorization using either
MUMPS [1, 2], PARDISO [13] or PaStiX [7]. Moreover, all linear algebra related
computations (e.g. sparse matrix-vector products) withinour library are performed
using Intel MKL, or can use user-supplied functions, for example those from within
the finite element Domain-Specific (Embedded) Language. AssemblingE is done
in two steps: local computations and then renumbering.

• first, computelocal vector-sparse matrix-vector triple products which will be
used to assemble the diagonal blocks ofE. For a given row inE, off-diagonal
values are computed usinglocal sparse matrix-vector products coupled with
point-to-point communications with the neighboring subdomains: the sparsity
pattern of the coarse operator is similar to the dual graph ofthe mesh partition-
ing (hence it is denser in 3D than in 2D),

• then, renumber thelocal entries computed previously in thedistributedma-
trix E.

Only few processes are in charge of renumbering entries intoE. Those processes
will be refered to in the rest of this note asmaster processes. Any non master pro-
cess has to send the rows it has previously computed to a specific master process.
The master processes are then able to place the entries received at the right row and
column indices. To allow an easy incremental matrix construction, E is assembled
using the COO format. If need be, it is converted afterwards to the CSR format.
Note here that MUMPS only supports the COO format while PARDISO and PaStiX
work with the CSR format.
After renumbering, the master processes are also the one in charge of computing the
factorization of the coarse operator. The number of master processes is a runtime
constant, and our library is in charge of creating the corresponding MPI commu-
nicators. Even with “large” coarse operators of sizes of around 100000×100000,
less than few tens of master processes usually perform the job quite well: compu-
ting all entries, renumbering and performing numerical factorization take around 15
seconds when dealing with thousands of slave processes.
A routine is then callable to solve the equationEx= y for an arbitraryy∈ R∑N

i=1 νi ,
which in our case is used at each iteration of our Krylov method preconditioned
by P−1

A-DEF1. Once again, the deflation matrixZ is not stored as the products

ZTx∈ R∑N
i=1 νi andZy∈ Rn can be computed explicitely with aglobal matrix-free

method (we only use thelocal Wi plus point-to-point communications with neigh-
boring subdomains).

4 Numerical results

Results in this section were obtained on Curie, a Tier-0 system for PRACE com-
posed of 5040 nodes made of 2 eight-core Intel Sandy Bridge processors clocked
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at 2.7 GHz. The interconnect is an InfiniBand QDR full fat treenetwork. We want
here to assess the capability of our framework to scale:

(i) strongly: for a givenglobal mesh, the number of subdomains increases while
local mesh sizes are kept constant (i.e. local problems get smaller and smaller),

(ii) weakly: for a givenglobal mesh, the number of subdomains increases while
local mesh sizes are refined (i.e. local problems have a constant size).

We don’t time the generation of the mesh and partition of unity. Assembly and fac-
torization of the local stiffness matrices, resolution of the generalized eigenvalue
problems, construction of the coarse operator and time elapsed for the convergence
of the Krylov method are the important procedures here. The Krylov method used
is the GMRES, it is stopped when the relative residual error is inferior toε = 10−6

in 2D, and 10−8 in 3D. All the following results where obtained using aLDLT fac-
torization of the local solversAδ

i and the coarse operatorE using MUMPS (with a
MPI communicator set to respectivelyMPI COMMSELF or the communicator cre-
ated by our library binding master processes).

First, the system of linear elasticity with highly heterogeneous elastic moduli
is solved with a minimal geometric overlap of one mesh element. Its variational
formulation reads:

∫

Ω
λ∇ ·u∇ ·v+2µε(u)Tε(v)+

∫

Ω
f ·v+

∫

∂Ω
g·v (11)

where

• λ andµ are the Laḿe parameters such thatµ =
E

2(1+ν)
andλ =

Eν
(1+ν)(1−2ν)

(E being Young’s modulus andν Poisson’s ratio). They are chosen to vary be-
tween two sets of values,(E1,ν1) = (2·1011,0.25), and(E2,ν2) = (108,0.4).

• ε is the linearized strain tensor andf the volumetric forces (here, we just con-
sider gravity).

Because of the overlap and the duplication of unkowns, increasing the number of
subdomains means that the number of unknowns increases alsoslightly, even though
the number of mesh elements (triangles or tetrahedra in the case ofFreeFem++ ) is
the same. In 2D, we use piecewise cubic basis functions on an unstructuredglobal
mesh made of 110 million elements, and in 3D, piecewise quadratic basis functions
on an unstructuredglobalmesh made of 20 million elements. This yields a symmet-
ric system of roughly 1 billion unkowns in 2D and 80 million unknowns in 3D. The
geometry is a simple[0;1]d× [0;10] beam (d = 1 or 2) partitioned with METIS.

Solving the 2D problem initially on 1024 processes takes 227seconds, on 8192
processes, it takes 31 seconds (quasioptimal speedup). With that many subdomains,
the coarse operatorE is of size 121935× 121935. It is assembled and factorized
in 7 seconds by 12 master processes. For the 3D problem, it takes initially 373 sec-
onds. At peak performance, near 6144 processes, it takes 35 seconds (superoptimal
speedup). This time, the coarse operator is of size 92160×92160 and is assembled
and factorized by 16 master processes in 11 seconds.



276 Pierre Jolivet et al.

Fig. 1 Linear elasticity test cases. 2D on the left, 3D on the right. Strong scaling

Moving on to the weak scaling propreties of our framework, the problem we
now solve is a scalar equation of diffusivity with highly heterogeneous coefficients
(varying from 1 to 105) on [0;1]d (d = 2 or 3). Its variational formulation reads:

∫

Ω
κ∇u·∇v+

∫

Ω
f ·v (12)

The targeted number of unkowns per subdomains is kept constant at approximately
800 thousands in 2D, and 120 thousands in 3D (once again withP3 andP2 finite
elements respectively).

Fig. 2 Diffusion equation test cases. 2D on the left, 3D on the right. Weak scaling

In 2D, the initial extended system (with the duplication of unkowns) is made of
800 million unkowns and is solved in 141 seconds. Scaling up to 12288 processes
yields a system of 10 billion unkowns solved in 172 seconds, hence an efficiency of
141
172≈ 82%. In 3D, the initial system is made of 130 million unkowns and is solved
in 127 seconds. Scaling up to 8192 processes yields a system of 1 billion unkowns
solved in 152 seconds, hence an efficiency of127

152≈ 83%.
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5 Conclusion

This note clearly shows that our framework scales on very large architectures for
solving linear positive definite systems using overlappingdecompositions with
many subdomains. It is currently being extended to support nonlinear problems
(namely in the field of nonlinear elasticity) and we should beable to provide sim-
ilar functionalities for non-overlapping decompositions. It should be noted that the
heavy use of threaded (sparse) BLAS and LAPACK routines (viaIntel MKL, PAR-
DISO, and the Reverse Communication Interface of ARPACK) has already helped
us to get a quick glance at how the framework performs using hybrid parallelism.
We are confident that using this novel paradigm, we can still improve our scaling
results in the near future by switching the value ofOMPNUMTHREADSto a value
greater than 1.
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On the influence of curvature on transmission
conditions

Hélène Barucq1, Martin J. Gander2, and Yingxiang Xu3

1 Introduction

Domain decomposition methods are both highly successful parallel solvers and also
important modeling tools, since problems in subdomains canbe treated by adapted
methods to the physics in each subdomain. Subdomain boundaries are therefore
rarely straight lines. The focus of this paper is to study theinfluence of curvature on
transmission conditions used in optimized Schwarz methods. For straight interfaces
and simple geometries, optimized interface conditions aretypically determined us-
ing Fourier analysis, see for example [4] and references therein. Asymptotically,
these optimized conditions are still valid for curved interfaces, as shown in [5, 6].
Since however the curvature is the most important information for a smooth curve,
we want to study in this paper if and how the interface curvature influences the
constants in the optimized parameters.

We consider the model problem

(∆ −η)u= f , on Ω = R2, η > 0, (1)

and we require the solution to decay at infinity. As shown in Fig. 1 on the left,
we decomposeΩ into two overlapping subdomainsΩ1 = (−∞,a(y))× R and
Ω2 = (b(y),∞)×R, whereΓ1 given bya(y) andΓ2 given byb(y) are smooth curves
satisfyinga(y)≥ b(y). A general parallel Schwarz algorithm is then given by

(∆ −η)un
i = f in Ωi ,

Bi(un
i ) = Bi(u

n−1
j ) onΓi , 1≤ i 6= j ≤ 2,

(2)

whereBi , i = 1,2, are transmission conditions to be chosen. IfBi , i = 1,2 are cho-
sen as∂ni +DtNi , with DtNi the Dirichlet to Neumann operators, the iterates will
converge in two steps [4]. These operators are however non-local, and thus difficult
to use in practice. Therefore, local approximations are used in optimized Schwarz
methods. We study in what follows such local approximations, obtained by micro-
local analysis, and by studying a circular model problem, with the goal to investigate
how the curvature influences these approximations.

1 MAGIQUE-3D (INRIA Bordeaux - Sud-Ouest) INRIA-CNRS-Université de Pau et des Pays de
l’Adour, BP 1155, F64013 PAU, France, e-mail:helene.barucq@inria.fr ·2 Section de
Mathématiques, Université de Geǹeve, 2-4 rue du Lìevre, CP 64, 1211 Genève 4, Suisse, e-mail:
Martin.Gander@unige.ch ·3 School of Mathematics and Statistics, Northeast Normal Uni-
versity, Changchun 130024, China, e-mail:yxxu@nenu.edu.cn , partly supported by NSFC-
11201061 and CPSF-2012M520657.
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2 Transmission conditions based on micro-local analysis

Micro-local analysis is a well established technique for the design and study of
absorbing boundary conditions, where it is used to approximate theDtN, see [2]
and references therein. We use in this section micro-local analysis to develop and
analyze transmission conditions. As in [2], we consider local coordinates composed
by the curvilinear abscissas and the variabler along the normal direction. In these
local coordinates, the model problem (1) can be rewritten as

L u := ∂rr u+
κ
h

∂ru+
1
h

∂s(
∂su
h

)−ηu= f , (3)

whereκ = κ(s) is the curvature of the curveΓi at the parameters, andh= h(r,s) =
1+ rκ(s). The symbol of the operatorL is given by

L̂ = ∂rr +
κ
h

∂r +
i
h

∂s(
1
h
)ξ − 1

h2 ξ 2−η . (4)

A pseudodifferential operatorP is defined byPu(x) :=
∫

eix·ξ p(x,ξ )û(ξ )dξ , pro-
vided its symbolp(x,ξ ) ∈ Sm, i.e. for every compact setK in Rn and for ev-

ery α,β there existsc = c(α,β ,K) s.t. for all (x,ξ ) ∈ K×Rn, |∂ α
ξ Dβ

x p(x,ξ )| ≤
c(1+ |ξ |)m−|α |. Based on the Nirenberg’s factorization theorem, there exist two clas-
sical pseudo-differential operatorsΛ− andΛ+ of order+1, depending smoothly on
r, such that

L u= (∂r +Λ−)(∂r +Λ+)u, (5)

which can be expanded as

L u= ∂rr u+(Λ−+Λ+)∂ru+op(∂rλ+)u+Λ−Λ+u, (6)

where op(∂rλ+) is the operator whose symbol is∂rλ+. In (5) and (6), the symbol
’=’ must be interpreted as equal up to aC∞-regularizing operator, since the symbols
of Λ+ andΛ− are explicitely defined by the factorization process up to a symbol in

Γ2 = b(y)

Γ1 = a(y)

Ω1

Ω2

x

1

Ω̃2

Ω̃1

R

L

1

Fig. 1 An arbitrary domain decomposition with curved interfaces (left) and a circular domain
decomposition (right)
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S−∞. Identifying (3) and (6) we get

Λ−+Λ+ =
κ
h
, op(∂rλ+)+Λ−Λ+ =

1
h

∂s(
∂s

h
)−η . (7)

Due to the integral representation formula of pseudo-differential operators, the op-
eratorsΛ− andΛ+ are determined by their symbols. Using the calculus of pseudo-
differential operators, system (7) can be written at the symbol level,

λ−+λ+ =
κ
h
,

+∞

∑
α=0

(−i)α

α!
∂ α

ξ λ−∂ α
s λ++∂rλ+ =−η−h−2ξ 2+

i
h

∂s(
1
h
)ξ , (8)

whereλ± ∼ ∑+∞
j=−1 λ±− j are the symbols ofΛ±. The goal is now to determine the

symbolsλ− andλ+: from the first equation in (8), we get

λ−− j +λ+
− j = 0, if j 6= 0 and λ−0 +λ+

0 =
κ
h
. (9)

By identifying the homogeneous symbols of highest degree, we obtain

λ−1 λ+
1 =−h−2ξ 2−η , (10)

whereη is considered to be an operator of order 2, see Section 3 of [2]for details.
Therefore, we have

λ+
1 =

√
h−2ξ 2+η and λ−1 =−

√
h−2ξ 2+η . (11)

Going further with the identification of the homogeneous symbols of the next higher
degree, we find a relation between the unknownsλ−0 andλ+

0 ,

λ−1 λ+
0 +λ−0 λ+

1 − i∂ξ λ−1 ∂sλ+
1 +∂rλ+

1 =
i
h

∂s(
1
h
)ξ . (12)

Eliminatingλ−1 andλ−0 , we get

λ+
0 =

1

2λ+
1

(
κ
h

λ+
1 + i∂ξ λ+

1 ∂sλ+
1 +∂rλ+

1 −
i
h

∂s(
1
h
)ξ ). (13)

We can derive a recursive formula from similar relations forlower degrees of ho-
mogeneity. First, we rewrite the left-hand side of the second equation in (8) as

+∞

∑
α=0

(−i)α

α!

+∞

∑
j=−1

∂ α
ξ λ−− j

+∞

∑
k=−1

∂ α
s λ+
−k+

+∞

∑
l=−1

∂rλ+
−l . (14)

Since∂ α
ξ λ−− j∂ α

s λ+
−k ∈ S−( j+k+α), the homogeneous part of degree−m in (14) for

any non-negative integerm is
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m+2

∑
α=0

(−i)α

α! ∑
j +k= m−α,
j ≥−1,k≥−1

∂ α
ξ λ−− j∂

α
s λ+
−k+∂rλ+

−m.

Identifying symbols of the same homogeneity in (8) leads to

m+2

∑
α=0

(−i)α

α! ∑
j +k= m−α,
j ≥−1,k≥−1

∂ α
ξ λ−− j∂

α
s λ+
−k+∂rλ+

−m = 0.

Using thatλ−−m−1 = −λ+
−m−1, from the previous equation, the symbolλ+

−m−1 for
m≥ 0 can be recursively expressed from homogeneous symbols of higher order by

λ+
−m−1 =

1

2λ+
1

( ∑
j +k= m,
j ≥ 0,k≥ 0

λ−− jλ
+
−k+

m+2

∑
α=1

(−i)α

α! ∑
j +k= m−α,
j ≥−1,k≥−1

∂ α
ξ λ−− j∂

α
s λ+
−k+∂rλ+

−m).

(15)
Let ℓ be a positive integer, andµ be the symbol of the pseudo-differential oper-
ator op(µ) defined onΓi × (−δ ,δ ), i = 1,2, such that∑−1≤ j≤p λ+

− j − µ is of or-

der (1/
√η)ℓ−1 for all sufficiently largep. Denoting byµ̃ the symbol defined on

Γi , i = 1,2 by µ̃ := µ |r=0, and choosing as transmission conditionBi = ∂ni +op(µ̃)
onΓi , we obtain the MATCs (Micro-local Analysis based Transmission Conditions)
of orderℓ/2 as

Bi = ∂ni +op( ∑
−1≤ j≤ℓ−2

λ+
− j), onΓi , i = 1,2. (16)

From (15), note thatλ+
−m−1 still contains the termλ+

1 =
√

h−2ξ 2+η , and thus re-
sults in non-local transmission conditions. To obtain local transmission conditions,
we use a Taylor expansion inξ of the symbolsλ+

− j ,−1≤ j ≤ 2 to the order shown
as index in the parentheses below, and obtain the following MATCs:

MATC1 Bi(u) = ∂ni u+op((λ+
1 )0)u= ∂ni u+

√ηu;
MATC2 Bi(u) = ∂ni u+op((λ+

1 )0+(λ+
0 )0)u= ∂ni u+(

√η + κ
2 )u;

MATC3 Bi(u)= ∂ni u+op(
2
∑

j=−1
(λ+
− j)0)u= ∂ni u+(

√η+ κ
2− κ2

8
√η +

κ3+ d2

ds2
κ(s)

8η )u;

MATC4 Bi(u)= ∂ni u+op(
1
∑

j=−1
(λ+
− j)1)u= ∂ni u+(

√η+ κ
2− 1

8
κ2√η )u−

d
dsκ(s)

2η ∂su;

MATC5 Bi(u) = ∂ni u+op((λ+
1 )2)u= ∂ni u+

√ηu− 1
2
√η ∂ 2

s u;

MATC6
Bi(u) = ∂ni u+op(∑2

j=−1(λ
+
− j )−2)u= ∂ni u+(

√η + κ
2 − 1

8
κ2√η + 1

8

κ3+ d2

ds2
κ(s)

η )u

+(
d
dsκ(s)

2η − 13
8

κ(s) d
dsκ(s)

η
3
2

)∂su− ( 1
2
√η − 1

2
κ
η + 13

16
κ2

η
3
2
− 7

8

2κ3+ d2

dx2
κ(s)

η2 )∂ 2
s u,

where the MATC1–3 are of order 0, MATC4 is of order 1, and MATC5and MATC6
are of order 2. Note how the curvatureκ(s) enters these transmission conditions.
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3 Transmission conditions based on a circular model problem

For optimized Schwarz methods, transmission conditions are often analyzed and
optimized for a model problem, see [4]. Following this principle, we consider a
circular decomposition of the domainΩ = R2 as shown in Fig. 1 on the right,

Ω̃1 = {(x,y)|
√

x2+y2 < R1 = R+L}, Ω̃2 = {(x,y)|R2 = R<
√

x2+y2 < ∞}.

In this setting, the curvature of the interface enters naturally, κ(s) = 1/R. Using
polar coordinates, a general Schwarz algorithm for this decomposition is

∂rr un
i +

1
r ∂run

i +
1
r2 ∂θθ un

i −ηun
i = f in Ω̃i ,

Bi(un
i ) = Bi(u

n−1
j ) on r = Ri , 1≤ i 6= j ≤ 2.

(17)

In the classical Schwarz algorithm, one uses forBi the identity operator in (17).
Using Fourier series in the angular variable, we obtain after a short calculation for
the convergence factorρcla in this case (for details of such calculations, see [3])

ρcla = ρcla(k,R,L,η) :=
Ik(
√ηR)

Kk(
√ηR)

Kk(
√η(R+L))

Ik(
√η(R+L))

, ∀k∈ R, (18)

whereIk(·) andKk(·) are the modified Bessel functions of the first (exponentially
increasing) and the second kind (exponentially decreasing), see [1]. Hence, for an
overlapL > 0, the classical Schwarz algorithm converges, with the asymptotic esti-
mate

sup
kmin≤k≤kmax

ρcla = 1−GminL+O(L2), Gmin =
1

RIkmin(
√ηR)Kkmin(

√ηR)
,

wherekmin andkmax denote the estimates of the lowest and highest relevant numer-
ical frequencies respectively. If there is no overlap, the method does not converge.

Optimized Schwarz methods are based on linear operatorsSi , i = 1,2 along the
interface, here in theθ direction, with symbolsσi , andBi(u) = ∂ru−Siu in (17).
This results in methods with convergence factorsρopt(k,L,R,η ,σ1,σ2) given by
(for details, see [3])

ρopt =

∂r Kk(
√ηr)

Kk(
√ηr) +σ1(k)

∂r Ik(
√ηr)

Ik(
√ηr) +σ1(k)

∣∣∣
r=R+L

·
∂r Ik(

√ηr)
Ik(
√ηr) −σ2(k)

∂r Kk(
√ηr)

Kk(
√ηr) −σ2(k)

∣∣∣
r=R
·ρcla. (19)

We can see from (19) that the optimal choice for whichρopt vanishes isσ1(k) =

− ∂r Kk(
√ηr)

Kk(
√ηr) |r=R+L andσ2(k) =

∂r Ik(
√ηr)

Ik(
√ηr) |r=R, again the symbol of the non-local DtN

operator. Optimized Schwarz methods use local approximations of the form

σi(k) = pi +qik
2, i = 1,2, (20)
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and determinepi , qi such that the convergence factorρ(k,L,R,η , p1, p2,q1,q2) is
small. These transmission conditions are then easy to use and inexpensive. Simple

approximations are obtained by Taylor expansion of the approximation
√

η +k2/R2
i

of the optimal symbol: T0 (Taylor of order zero) is given byp1 = p2 =
√η , q1 =

q2 = 0, and leads with the estimatekmax =
πR
h , whereh is the mesh size, to the

asymptotic convergence factor bounds 1−4
√

2η 1
4
√

h+O(h) with overlapL = h,
and 1−4

√ηπ−1h+O(h2) without overlap (still convergent!). T2 (Taylor of order
two) is obtained withpi =

√η , qi =
1

2
√ηRi

, i = 1,2, and leads to the bounds 1−
8η 1

4
√

h+O(h) with overlapL = h, and 1−8
√ηπ−1h+O(h2) without overlap. It

is interesting to note that the curvature 1/R does not play a role in the asymptotic
convergence factor estimates!

Optimized transmission conditions are based on minimizingthe maximum of
the convergence factor: letCOO0= {p1 = p2 > 0,q1 = q2 = 0}, COO2= {p1 =
p2 > 0,q1 = q2 > 0} andC2-sided= {p1 > 0, p2 > 0,q1 = q2 = 0}. By solving the
min-max problems

min
p1,p2,q1,q2∈CI

( max
kmin≤k≤kmax

|ρ(k,L,R,η , p1, p2,q1,q2)|), (21)

where the indexI ∈ {OO0,OO2,2-sided}, we can determine the optimized choice
of the parameters in each case. The corresponding optimizedtransmission con-
ditions are then called OO0 (optimized of order 0), OO2 (optimized of order 2)
and 2-sided (two-sided optimized) Robin transmission condition. Using asymp-
totic analysis, see [3] for details, we obtain for example for OO0 (q1 = q2 = 0 )

p1 = p2 = 2−1G
2
3
minh

− 1
3 and maxk |ρOO0|= 1−4G

1
3
minh

1
3 +O(h

2
3 ) with overlapL= h,

andp1 = p2 = 2−
1
2 G

1
2
minπ 1

2 h−
1
2 and maxk |ρOO0|= 1−2

3
2 G

1
2
minπ− 1

2 h
1
2 +O(h) with-

out overlap. Note that now also the convergence factor depends on the curvature
1/R throughGmin. However, limkmin→0Gmin = 2

√η , independent ofR.

4 Comparison of the two families of transmission conditions

We compare now the transmission conditions derived by micro-local analysis to the
ones obtained based on optimization. We notice that MATC1 and T0 are identical;
MATC5 looks like T2, but without the curvature dependence. In fact, MATC5 is
exactly the Taylor condition of order 2 for a straight interface, see [4]. Next, we plot
in Fig. 2 all the convergence factors of the Schwarz algorithm (17) with the various
transmission conditions for a circular decomposition. We observe that MATC2-4
perform similarly to T2. Since MATC2-4 are of order≤ 1, we conclude that involv-
ing the curvature does improve the performance. It also seems that MATC5 performs
quite well. However, this is not always the case: we show a comparison between the
three second order transmission conditions in Fig. 3. We cansee that MATC5 is
much more sensitive toR (1/R is the curvature) than the other two, both in the case
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Table 1 Number of iterations required by the Schwarz algorithm with different transmission con-
ditions with overlapL = h and without overlap (in parentheses)

h Cla MATC1(T0) MATC2 MATC3 MATC4 MATC5 T2 OO0 OO2 2-sided

1/50 332 26(310) 20(177) 20(173) 22(208) 17(370) 18(1081) 16(52) 14(48) 41(41)
1/100 684 36(597) 29(354) 27(331) 32(410) 16(644) 23(1832)21(75) 13(57) 35(51)
1/200 1279 51(1163) 40(662) 39(646) 42(784) 17(1033) 29(3048) 26(101) 14(62) 27(61)
1/400 2919 71(2236) 53(1296) 53(1236) 59(1519) 22(1536) 39(4294) 32(151) 14(70) 23(71)

with and without overlap: the optimized transmission condition performs always
better than the other two; the MATC5 gets its best performance aroundR= 0.5 (this
is exactly the case of Fig. 2), it performs as T2 atR= 1, since then the approxi-
mation is identical, and with increasingR it performs worse and worse. We finally
note that MATC6 does not perform well: in the middle of Fig. 2,we see that near
k = 1.5 the convergence factor blows up. Hence MATC6 is not a good choice as
transmission condition.

5 Numerical experiments

We perform numerical experiments for a model problem in polar coordinates,

∂rr u+ 1
r ∂ru+ 1

r2 ∂θθ u−ηu = f (r,θ) in Ω ,

u = 0 on∂Ω ,
(22)

whereΩ = (0,1)× (0,2π) is decomposed intoΩ = Ω1∪Ω2, with Ω1 = (0,R+
L)× (0,2π) andΩ2 = (R,1)× (0,2π), andL ≥ 0 is the overlap. We use a finite
difference scheme on a uniform grid with mesh sizeh to simulate directly the error
equations,f = 0, forR= 0.5 andη = 2, and a random initial guess is chosen so that
all the frequency components are present in the initial error. The number of iterations
required by the parallel Schwarz method (17) are shown in Table 1. We clearly see

Fig. 2 Convergence factors of MATC1-5 and the Taylor conditions (left), MATC6 (middle), and
with optimized transmission conditions (right), forη = 2, overlapL = 0.01 andR= 0.5
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Fig. 3 The maxima of the convergence factors as functions ofR with overlap (left) and without
(right)

that the transmission conditions based on optimization getbetter performance in this
experiment.

6 Conclusion

We presented two different approaches to take the curvatureof interfaces into ac-
count in the transmission conditions of optimized Schwarz methods: micro-local
analysis, and analysis using a circular model problem. In both cases, we obtained
curvature dependent transmission conditions. A preliminary comparison shows that
the transmission conditions based on optimization performbetter on the model prob-
lem, and that it could be important to take the curvature intoaccount in transmission
conditions. In our opinion it is however essential to do a more thorough theoretical
and numerical study on more general geometry, where micro-local analysis is still
applicable, before we can definitely draw conclusions.
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Conservative inexact solvers for porous media
flow

Eirik Keilegavlen1 and Jan M. Nordbotten1

1 Introduction

Simulation models of flow and transport in geological porousmedia are character-
ized by a high degree of uncertainty due to both discretization errors and incomplete
measurements of physical parameters. In the context of linear solvers this seemingly
mandates the use of inexact strategies, where a solution is sought with an accuracy
similar to that of the overall computational model. Since the solution of linear sys-
tems often consumes a substantial part of the total simulation time, inexact solvers
can yield considerable computational savings. However thederivation of the contin-
uous model is based on conservation of mass, and this property must be preserved
in the discrete system for the results to be physically meaningful. The discretization
schemes commonly applied are conservative by construction, but unless the linear
solver is designed specifically to produce solutions that, even if inexact, conserve
mass the inexact solution may not yield a stable overall simulation strategy. For this
reason linear systems are commonly solved to an accuracy that is much higher than
mandated by known discretization errors and parameter uncertainties.

The key to producing physically meaningful inexact solutions is to design the
linear solver by the same principles as the discretization scheme. Herein we will
explore these ideas in the context of two-phase flow in a horizontal porous media.
The phases denoted water (w) and oil (o) are immiscible and incompressible with a
velocity given by Darcy’s law

uα =−λαK∇p, α = w,o. (1)

Here the phase mobilitiesλw andλo, represent fluid viscosity and rock-fluid inter-
action. FurthermoreK is the permeability andp is the fluid pressure. Of particular
importance to this paper are the properties of the permeability, which commonly
possesses sharp contrasts of several orders of magnitude and spatial correlation
structures on a continuum of length scales. Conservation ofmass for each phase
is expressed as

φ
∂Sα
∂ t

+∇ ·uα = qα , α = w,o, (2)

whereφ represents porosity,Sα is the volume fraction of phaseα andqα is the
source term. The saturations are assumed to fill the pore volume, that isSw+So = 1.
Thus when (2) for the two phases are added to get an equation for conservation of

1Department of Mathematics, University of Bergen, e-mail:{Eirik.Keilegavlen}{Jan.
Nordbotten}@math.uib.no
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total mass, the saturations are eliminated. This gives a linear elliptic equation for the
pressure, which can be written

∇ ·uT =−∇ · (λTK∇p) = qT . (3)

Here uT = uw + uo is the total velocity,λT = λw + λo is the total mobility and
qT = qw+qo is the total source term.

2 Discretization

In the rest of the paper we describe the construction of an inexact linear solver for
(3) which preserves the conservation property ofuT . The solver is formulated in
terms of a novel multi-level control volume method which is briefly described next.
More details can be found in [6].

2.1 A hierarchy of control volume discretizations

In applications conservation of mass is considered an essential property that should
be preserved during discretization. To that end a cell centered control volume
method is applied for the spatial discretization. A discrete Darcy’s law is constructed
as in [1]

uh,α =−λU
α Thph, (4)

whereuh,α is the discrete phase velocities for phaseα, Th is a matrix of transmis-
sibilities andph is a cell centered approximation of the pressure. The mobilities,
λU

α , are discretized by phase-wise upstream weighting. A discrete equation for the
pressure is found by

Dh((λU
w +λU

o )Thph) = Ahph = qh, (5)

whereDh is the discrete divergence,Ah is the system matrix andqh represents dis-
crete sources. We note that (5) can be considered a Petrov-Galerkin discretization
of (3), with piece-wise constants on the cells as test functions and shape functions
defined by the specific control volume method. When (5) has beensolved forph, (2)
for the water phase is discretized by an explicit method withupstream weighting of
the mobilities.

The sharp contrasts and long correlation structures of the permeability is reflected
in the discretization matrixAh, thus solving (5) is time consuming. Discretization
errors and uncertainties in the permeability make the linear system a prime candidate
for an inexact linear solver. However, (5) was derived by requiring conservation of
mass, and unless this is reflected in the inexact solution, conservation errors will
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in worst case grow exponentially in the time propagation of (2). The linear solver
should therefore be constructed to produce a discrete flux field that, even if inexact,
satisfies (5). Furthermore an efficient solution strategy for (5) should invoke coarse
solvers to account for the global dependencies of the equation.

An inexact two-level method which retains the conservationproperty can be real-
ized within the framework of the multiscale finite volume (MSFV) method [3], see
also [7]. The domain is partitioned into a coarse grid and a coarse shape function
ψH is constructed for each coarse cell to account for fine-scalevariabilities in the
permeability. Coarse test functionsφH are defined as piece-wise constants on the
coarse cells. A coarse linear system is then defined as

(ΦT
HAhΨH)pH = AH pH = ΦT

Hqh. (6)

Here ΦH andΨH are column matrices of test and shape functions, respectively,
andAH is the coarse discretization. It is important to note the similarity between
(5) and (6), in that both are obtained by applying Petrov-Galerkin techniques. In
this way the coarse linear system retains the conservation property of the fine-scale
discretization. Specifically it will produce conservativecoarse fluxes in the sense
that the fluxes into a coarse cell match the sources within thecell. When projected
to the fine scale the inexact fluxes will not be conservative. This is remedied by a
post-processing step where local fine-scale problems are solved within each coarse
cell [3]. The boundary conditions are the projection of the conservative coarse fluxes
to the fine scale.

2.2 Multi-level flux post-processing

The two-level method outlined above amounts to an inexact linear solver that can
also be applied as a preconditioner within an iterative solver. However it is natural
to seek multi-level methods to realize efficient residual smoothing strategies. Also
when multiple grid levels are available, adaptive upscaling can be applied during the
simulation. Finally, the MSFV method is known to be unstablein cases where the
coarse grid does not follow anisotropy patterns in the permeability [5]. This can be
remedied by an unstructured coarsening strategy that is currently under development
but for this approach to be robust multiple coarsening stepswith mild upscaling
ratios should be applied.

Since (6) has the same properties as (5) in terms of sparsity pattern and con-
servation property, a further coarsening of the system can easily be constructed by
recursion. However, for the multi-level method to be applicable as a conservative
inexact linear solver, multi-level post-processing is needed, and specifically local
Neumann problems must be solved. For the coarser levels the discretization of Neu-
mann boundary conditions is not available, and this has in practice limited control
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volume linear solvers to two grid levels. In the following wewill outline how the
multi-level post-processing can be realized, a thorough explanation is given in [6].

As for the two-level method, the post-processing is performed by solving local
problems that are confined to single cells on the coarser level. When conservative
fluxes on coarse faces are known these can be mapped to any finerlevel via the
shape functions, specifically they can be mapped one level down to form bound-
ary conditions for the local problems. In this way the flux discretization on coarse
boundaries is replaced by known fluxes. However there will befaces interior to the
coarse cell with exterior cells in their flux discretization, in conflict with the goal of
a local post-processing. The exterior cells are eliminatedby considering groups of
cells that are centered around vertexes on the boundary of the coarse cell and have
common support for their basis functions, as illustrated inFig. 1. The exterior cells
can be replaced by the known fluxes over the boundary by formulating and solving
a local linear system. When the number of exterior cells and the number of known
fluxes are equal, the elimination is straightforward. If there are more exterior cells
than there are boundary conditions (respectively 3 and 2 in Fig. 1), additional equa-
tions can be obtained by splitting the boundary fluxes into sub-fluxes on a finer grid
level and computing higher order moments of the fluxes based on these. Note that on
the finest level the elimination is straightforward since a boundary discretization is
available there; thus the splitting into sub-fluxes is available when needed. A linear
system is then solved around all vertexes on the boundary, and the results are used
to formulate a local system within the coarse cell that is solved to get conservative
fluxes.

This methodology provides conservative fluxes for all faceson all grid levels
even if the accompanying pressure is inexact. We make two comments on the ap-
proach: firstly the only pair of pressure and fluxes which satisfies both the dis-
crete flux law (4) and the conservation equation (5) is the exact solution. The post-
processed fluxes possess the conservation property, but they cannot be computed
from the inexact pressures via (4). The post-processed fluxes can be thought of as
being exact for a modified permeability field, in accordance with an uncertainty in
this parameter. Secondly the post-processing is not applicable unless the inexact so-
lution preserves the conservation property of the continuous problem. This not only

Fig. 1 Parts of cells with
common support for their ba-
sis functions centered around
a vertex at the boundary of
a coarse cell. Fluxes (ar-
rows) and cells close to the
boundary of a coarse cell
(bold). Cells 3-5 are outside
the coarse cell and must be
eliminated from the flux ex-
pression foru2 usingu1 and
u3 (which are known) and
their sub-fluxes.

1

2

3

45

u1

u2

u3
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requires the construction of coarse problems as described above, but also a careful
treatment of the right hand side of the linear system. To be specific, the right hand
side should be coarsened according to the Schur complement formulation of the
multi-level method [8]. The multi-level method with this special coarsening can be
applied as a correction to the residual of any inexact solution. The corrected solution
will in general still be inexact, but it will possess the structure necessary to apply
the post-processing.

2.3 Error control

With the post-processing outlined above, we can obtain solutions that are inexact but
still honor the conservation property. There are two natural criteria for controlling
the linear solver. The simplest option is to terminate the iterations when a desired re-
duction of the relative residual is achieved and then apply post-processing to obtain
a mass conserving flux field. However, even though the post-processing produces a
velocity field without conservation errors a reduction of the relative residual gives
little control of the accuracy of the fluxes. A more nuanced notion of error can be
derived from [4], where we find the expression

‖K−1/2(u−u∗h)‖ ≤ inf
s∈H1
‖K−1/2(u∗h−K∇s)‖+ sup

β∈H1,‖β=1‖
(∇ · (u−u∗h),β ), (7)

whereu is the true flux andu∗h is the post-processed flux field. The last term eval-
uates to zero since the post-processed and exact fluxes have the same divergence.
The triangular inequality applied on the first term gives

‖K−1/2(u−u∗h)‖ ≤ ‖K−1/2(u∗h−K∇p∗h)‖+ inf
s∈H1
‖K1/2∇(p∗h−s)‖, (8)

with p∗h representing the inexact pressure. The first term on the right hand side of
(8) is immediately computable, and can be interpreted as theerror stemming from
the linear solver. We denote this termeLS. The second term is identified as the dis-
cretization error, denoteded. To give reasonable estimates for the gradient ofp∗h in
heterogeneous media, we compute this from face pressures that are reconstructed
from the fine-scale discretization. The estimate (8) can employed to control the lin-
ear solution process by terminating the iterations when theerror from the linear
solver is smaller than the discretization error, at which point it can be argued that it
makes little sense to improve the inexact solution.
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(a) ε < 5·10−5 (b) ε < 10−5

(c) eLS< ed (d) ε < 10−10, no p.p.

Fig. 2 Saturation profiles obtained with different stopping criteria for the linear solvers. Water
(light) is injected into a domain initially filled with oil (dark). Injection (O) and production (X)
wells are marked in (a). Periodic boundary conditions are applied.

3 Numerical results

In this section we illustrate the utility of the conservative framework by coupling an
inexact multi-level linear solver for the pressure equation to a non-linear transport
problem. The computational grid is Cartesian, with 34 cells in each direction. The
permeability is taken from the bottom layer of the 10th SPE comparative solution
project (SPE10) [2], which is characterized by long and highly permeable channels
and sharp contrasts of 6 orders of magnitude. The medium is initially filled with oil.
Water is injected in the lower left corner of the grid, and a production well is placed
in the middle of the domain.

The phase velocities in (4) are discretized on the fine-scalegrid by a two-point
flux approximation. Periodic boundary conditions are assigned for simplicity. Three
levels of coarsening are applied, each with a ratio of 3 in each direction, and a direct
solver is invoked on the coarsest grid. Thus the coarse operator constitutes a four-
level multi-grid method. Updates of the saturation feed back to the pressure equation
via the mobilities, which are set toλw = S3

w andλo = 10S2
o, and thus the velocity

field must be updated regularly. The pressure time step is fixed at a tenth of the total
simulation time, while the time step for the saturation equation is decided by the
CFL criterion.

To solve the pressure equation, GMRES iteration preconditioned by the multi-
level method is applied. Four criteria for terminating the iterative solver are con-
sidered: Two consider the reduction of the relative residual, ε, and terminate the
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iterations whenε < 5·10−5 andε < 10−5, respectively. The third criterion requires
that eLS < ed, which in this case corresponds to a value ofε of 10−6− 10−8. All
these estimates apply post-processing to ensure the approximated flux field is con-
servative. Finally, we consider a solver with the same preconditioner, but where
post-processing is not applied after the iterations. In this case the fluxes must be
brought sufficiently close to being conservative by iterating on the solution. Note
that this is the strategy applied by a traditional linear solver. For the present setup,
a value ofε < 10−10 is needed to avoid severe stability issues due to conservation
errors.

Table 1 Total number of GMRES iterations needed to achieve desired tolerance level.

ε < 5·10−5 ε < 10−5 eLS< ed ε < 10−10, no p.p.

190 200 212 293

Snapshots of the saturation distributions with the respective control parameters
are shown in Fig. 2. All simulations predict the same large-scale pattern, and it is
only the loosest tolerance for the pressure solver that yields notable differences in
the saturation profile. The computational gains from applying post processing can
be seen from the number of iterations shown in Tab. 1. We observe that there is
considerable room for computational savings without sacrificing significant accu-
racy of the transport solution. We reiterate that this is dueto the post-processing,
which facilitates inexact yet conservative flux fields. Somecaution is needed when
deciding the stopping criterion for the linear solver as theaccuracy necessary to get
reasonable transport solution is highly dependent on the simulation setup. Note that
if the post-processing is not applied the accuracy to produce a flux field that makes
the transport solver behaves stable increases significantly. The tolerance necessary
will be different for other simulations, and in practice theonly options to obtain
stable simulations are to iterate until the exact solution is found, or to apply an
inexact solver and somehow tackle conservation errors in the transport solver. We
also remark that the performance of all preconditioners suffers from the Cartesian
coarse grids that leads to strong heterogeneities within the coarse cells. This will be
amended by an unstructured coarsening procedure currentlyunder development.

4 Concluding remarks

In this paper we have considered the application of an inexact linear solver for
porous media flow with the special property that it provide a set of fluxes that
exactly satisfy a conservation law, even if the associated pressure that drives the
flux was approximated. The solver was formulated as a multi-level control volume
discretization, and we considered the coupling of the solver with a non-linear trans-
port problem. Since the approximated flux field possessed theconservation prop-



294 Eirik Keilegavlen and Jan M. Nordbotten

erty, considerable computational savings were possible without sacrificing stability
or significant accuracy in the transport simulation.

For simulation of realistic applications there will alwaysbe a trade-off between
accuracy and computational effort, and this balance is particularly well articulated
when control parameters for linear solvers are decided. We have shown in this paper
that the linear solver should not be considered a stand-alone part of the overall sim-
ulation tool. Instead it should be in accordance with the same principles as guided
the choice of the disrcetization scheme. The resulting solver will provide solutions
that even if approximated are physically meaningful, enhancing the robustness of
the simulator.
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Robust isogeometric Schwarz preconditioners
for composite elastic materials

L. Beirão da Veiga1, D. Cho2, L. F. Pavarino1, and S. Scacchi1

1 Introduction

In this paper, we study Overlapping Schwarz preconditioners for the system of lin-
ear elasticity for composite materials discretized with Isogeometric Analysis (IGA).
This is an innovative numerical methodology, introduced byHughes et al. [10, 6],
where the geometry description of the PDE domain is adopted from a Computer
Aided Design (CAD) parametrization usually based on Non-Uniform Rational B-
Splines (NURBS). In IGA, these NURBS basis functions representing the CAD
geometry are also used as the PDEs discrete basis, followingan isoparametric
paradigm. Since its introduction, IGA techniques have beenstudied and applied
in diverse fields, see e.g. [6].

In our previous Domain Decomposition (DD) works for IGA scalar elliptic prob-
lems, we studied Overlapping Additive Schwarz (OAS) methods [2] and Balancing
Domain Decomposition by Constraints (BDDC) methods [3], providing optimal and
quasi-optimal convergence rate bounds for isogeometric DDmethods, together with
the required theoretical foundation, technical tools and numerical validation. Other
DD IGA works have explored numerically dual primal Finite Element Tearing and
Interconnecting (FETI-DP) methods for 2D elliptic problems [11] and have studied
multigrid methods for the 2D and 3D Laplacian [9] and Schwarzmethods in the
case of two subdomains with non-matching grids [5].

Here we study Isogeometric OAS preconditioners for the system of linear elastic-
ity for compressible composite materials. An extension to mixed methods for almost
incompressible elastic materials can be found in [4].

We consider the linear elastic deformation of a bodyΩ in Rd, d = 2,3, with
boundary∂Ω = ΓD ∪ΓN. The body is clamped onΓD and it is subjected to a given
tractiong : ΓN → Rd on ΓN, as well as to a body force densityf : Ω → Rd. The
displacement fieldu : Ω → Rd satisfies the system

{
divCε(u)+ f = 0 in Ω
u= 0 onΓD and Cε(u) ·n= g onΓN

(1)

1Department of Mathematics, University of Milano, via Saldini 50, 20133 Milano, Italy, e-
mail: {lourenco.beirao}{luca.pavarino}{simone.scacchi}@un imi.it ·2 De-
partment of Mathematics, Dongguk University, Pil-dong 3-ga, Jung-gu, Seoul, 100-715, South
Korea, e-mail:durkbin@dongguk.edu
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Here,ε is the symmetric gradient operator,n is the unit outward normal at each point
of the boundary,Cτ = 2µτ + λ tr(τ)I for all second order tensorsτ, where tr(τ) is
the trace ofτ, λ = Eν

(1+ν)(1−2ν) ,µ = E
2(1+ν) are the Laḿe constants,E is the Young

modulus andν the Poisson’s ratio. Given loadingsf ∈ [L2(Ω)]d andg∈ [L2(ΓN)]
d,

define
< ψ,v>= ( f ,v)Ω +(g,v)ΓN ∀v∈ [H1(Ω)]d, (2)

where(·, ·)Ω , (·, ·)ΓN indicate as usual theL2 scalar product respectively onΩ and
ΓN. The variational formulation of problem (1) then reads:

{
Find u∈ [H1

ΓD
(Ω)]d such that:

a(u,v) =< ψ,v> ∀v∈ [H1
ΓD
(Ω)]d,

(3)

where[H1
ΓD
(Ω)]d = {v∈ [H1(Ω)]d |v|ΓD = 0} and

a(w,v) =
∫

Ω
2µ ε(w) : ε(v) dx+(λ divw,divv)Ω ∀w,v∈ [H1

ΓD
(Ω)]d. (4)

2 Isogeometric discretization of linear elasticity

We discretize the elasticity system (3) with IGA based on B-splines and NURBS
basis functions, see e.g. [6]. Considering for simplicity the two-dimensional case,
the bivariate B-spline discrete space is defined as

Ŝh = span{Bp,q
i, j (ξ ,η), i = 1, . . . ,n, j = 1, . . . ,m}, (5)

where the bivariate B-spline basis functionsBp,q
i, j (ξ ,η) = Np

i (ξ )Mq
j (η) are defined

by tensor product of one-dimensional B-splines functionsNp
i (ξ ) andMq

j (η) of de-
greep andq, respectively. Analogously, the NURBS space is the span of NURBS
basis functions defined in 1D as

Rp
i (ξ ) =

Np
i (ξ )ωi

∑n
ı̂=1Np

ı̂ (ξ )ωı̂
=

Np
i (ξ )ωi

w(ξ )
, (6)

(with weight functionw(ξ ) = ∑n
ı̂=1Np

ı̂ (ξ )ωı̂ ∈ Ŝh), and in 2D by tensor product

Rp,q
i, j (ξ ,η) =

Bp,q
i, j (ξ ,η)ωi, j

∑n
ı̂=1 ∑m

̂=1Bp,q
ı̂,̂ (ξ ,η)ωı̂,̂

=
Bp,q

i, j (ξ ,η)ωi, j

w(ξ ,η)
, (7)

wherew(ξ ,η) is the weight function andωi, j = (Cω
i, j)3 the weights associated with

a n×m net of control pointsCi, j . The discrete space of NURBS scalar fields on the
domainΩ is defined, component by component as the span of thepush-forwardof
the NURBS basis functions (7)
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Nh := span{Rp,q
i, j ◦F−1, with i = 1, . . . ,n; j = 1, . . . ,m}, (8)

with F : Ω̂ →Ω the geometrical map between parameter and physical spaces

F(ξ ,η) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)Ci, j . (9)

Taking into account the boundary conditions, if for simplicity we consider the
caseΓD = ∂Ω , we define the spline space in parameter space as

V̂h = [Ŝh∩H1
0(Ω̂)]d = [span{Bp,q

i, j (ξ ,η), i = 2, . . . ,n−1, j = 2, . . . ,m−1}]d.

and the NURBS space in physical space as

Vh = [Nh∩H1
0(Ω)]d = [span{Rp,q

i, j ◦F−1, with i = 2, . . . ,n−1; j = 2, . . . ,m−1}]d.
(10)

The IGA formulation of problem (3) then reads:
{

Find uh ∈Vh such that:

a(uh,vh) =< ψ,vh > ∀vh ∈Vh.
(11)

3 Isogeometric Overlapping Schwarz preconditioners

We refer to the monographs [12, 13] for a general introduction to Overlapping
Schwarz methods. We describe first the subdomain and subspace decompositions
in 1D and then extend them by tensor products to 2D and 3D. The decomposition is
first built for the underlying space of spline functions in parameter space, and then
easily extended to the NURBS space in the physical domain.

1D B-spline decomposition.From the full set of knots{ξ1 = 0, ...,ξn+p+1 = 1},
we select a subset{ξik,k = 1, . . . ,N + 1} of (non repeated) interface knots with
ξi1 = 0,ξiN+1 = 1. This subset of interface knots defines a decomposition of the
closure of the reference interval

(
Î
)
= [0,1] =

( ⋃

k=1,..,N

Îk
)
, with Îk = (ξik,ξik+1),

that we assume to have a similar characteristic diameterH ≈ Hk = diam(Îk). The
interface knots are thus given byξik for k = 2, ..,N. For each of the interface knots
ξik we choose an index 2≤ sk ≤ n−1 (strictly increasing ink) that satisfiessk <

ik < sk+ p+1, so that the support of the basis functionNp
sk intersects botĥIk−1 and

Îk. Note that at least one suchsk exists; if it is not unique, any choice can be made.
We then define an overlapping decomposition ofÎ in the following way. Let

r ∈N be an integer (called the overlap index) counting the basis functions shared by
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adjacent subdomains, defined as

V̂k = [span{Np
j (ξ ), sk− r ≤ j ≤ sk+1+ r}]d k= 1,2, ..,N, (12)

with the exception that 2≤ j ≤ s2+ r for the spacêV1 andsN− r ≤ j ≤ n−1 for the
spacêVN. These subspaces form an overlapping decomposition of the spline space
V̂h. Forr = 0 we have the minimal overlap consisting of just one common basis func-
tion between subspaces, while more generally 2r +1 represents the number of basis
functions in common (in the univariate case) among “adjacent” local subspaces. We
now define the extended subdomainsÎ ′k by

Î ′k =
⋃

Np
j ∈V̂k

supp(Np
j ) = (ξsk−r ,ξsk+1+r+p+1), (13)

with the analogous exception forÎ ′1, Î ′N,
We consider two choices for thecoarse spacêV0.
a) A nested coarse space defined by introducing a (open) coarse knot vector

ξ 0 = {ξ 0
1 = 0, ...,ξ 0

Nc+p+1 = 1} corresponding to a coarse mesh determined by the

subdomainŝIk, i.e.

ξ 0 = {ξ1,ξ2, . . . ,ξp,ξi1,ξi2,ξi3, . . . ,ξiN ,ξiN+1,ξiN+1+1,ξiN+1+2 . . . ,ξiN+1+p},

such that the distance between adjacent distinct knots is oforder H, ξ1 = · · · =
ξp = ξi1 = 0 andξiN+1 = ξiN+1+1 = · · ·= ξiN+1+p = 1. A coarse spline space is then
defined as

V̂0 := [ŜH ]
d = [span{N0,p

i (ξ ), i = 2, ...,Nc−1}]d,

with the same degreep of Ŝh and is thus a subspace of[Ŝh]
d.

b) A non-nested coarse space, of smaller dimension than in case a), is defined as

V̂0 := [ŜH ]
d = [span{N0,1

i (ξ ), i = 2, ...,Nc−1}]d,

where now note thatp= 1 and the coarse knot vector (andNc) is changed accord-
ingly

ξ 0 = {ξ1,ξi1,ξi2,ξi3, . . . ,ξiN ,ξiN+1,ξiN+1+1},
with ξ1 = ξi1 = 0 andξiN+1 = ξiN+1+1 = 1. The construction above gives the standard
piecewise linear space on the coarse subdivision.

2D, 3D B-spline decomposition.By tensor product (here in 2D for simplicity),
we define subdomains, overlapping subdomains and extended supports by

Ω̂kl = Îk× Îl , Ω̂ ′kl = Î ′k× Î ′l , 1≤ k≤ N, 1≤ l ≤M,

(whereÎk = (ξik,ξik+1), Îl = (η j l ,η j l+1)). Moreover, we take the indices{sk}Nk=2 as-
sociated to{ξik}Nk=2 and the analogous indices{sl}Ml=2 associated to{η j l }Ml=2. The
local and coarse subspaces are then defined by
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V̂kl = [span{Bp,q
i, j (ξ ,η), sk− r ≤ i ≤ sk+1+ r, sl − r ≤ j ≤ sl+1+ r }]d,

V̂0 = [span{ ◦B
p,q

i, j :
◦
B

p,q

i, j (ξ ,η) := N0,p
i (ξ )M0,q

j (η), i = 1, ...,Nc, j = 1, ...,Mc}]d,

with the usual modification for boundary subdomains and where
◦
B

p,q

i, j are the coarse
basis functions.

2D, 3D NURBS decomposition.The subdomains in physical space are defined
as the image of the subdomains in parameter space with respect to the mappingF

Ωkl = F(Ω̂kl), Ω ′kl = F(Ω̂ ′kl).

The local subspaces and the coarse space are, up to the usual modification for the
boundary subdomains,

Vkl = [span{Rp,q
i, j ◦F−1, sk− r ≤ i ≤ sk+1+ r, sl − r ≤ j ≤ sl+1+ r }]d,

V0 = [span{ ◦R
p,q

i, j ◦ F−1 := (
◦
B

p,q

i, j /w)◦ F−1, i = 1, ...,Nc, j = 1, ...,Mc}]d,

where we recall thatw is the weight function, see (7).
Overlapping Schwarz preconditioners.Given the local and coarse embedding

operatorsIkl : Vkl →Vh, k = 1, ..,N, l = 1, ..,M andI0 : V0→Vh, the discrete space
Vh can be decomposed into coarse and local space as

Vh = I0V0+∑
k,l

IklVkl .

Define the local projections̃Tkl : Vh→Vkl by

a(T̃klu,v) = a(u, Iklv) ∀v∈Vkl ,

and the coarse projectioñT0 : Vh→V0 by

a(T̃0u,v) = a(u, I0v) ∀v∈V0.

Defining Tkl = IklT̃kl andT0 = I0T̃0, our two-level Overlapping Additive Schwarz
(OAS) operator is then

TOAS:= T0+
N

∑
k=1

M

∑
l=1

Tkl . (14)

The matrix form of this operator isTOAS= BOASA , whereA is the stiffness matrix
andBOAS is the Additive Schwarz preconditioner

BOAS= RT
0 A−1

0 R0+
N

∑
k=1

M

∑
l=1

RT
kl A
−1
kl Rkl . (15)

Here,Rkl are restriction matrices with 0,1 entries returning the coefficients of the
basis functions belonging to the local spacesVkl andAkl are the local stiffness ma-
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trices restricted to the subspaceVkl . If the coarse space is nested into the fine space,
RT

0 is the coarse-to-fine interpolation matrix andA0 is the coarse stiffness matrix
associated with the coarse spaceV0. If the coarse space is non-nested,RT

0 is the
coarse-to-fineL2-projection matrix and the coarse space stiffness matrix isgiven by
A0 = R0A RT

0 .
A convergence rate bound.Given the overlap indexr defined before (12), we

define the overlap parameter
γ = h(2r +2), (16)

that is related to the widthδ of the overlapping region by the boundsγ = h(2r+2)≤
δ ≤ h(2r + p+1)≤ p+1

2 γ . Assuming that a) the parametric mesh is quasi-uniform,
and b) the overlap indexr is bounded from above by a fixed constant, we have the
following result (see [4]).

Theorem 1.The condition number of the 2-level additive Schwarz preconditioned
operator TOAS defined in (14), with either nested or non-nested coarse space, is
bounded by

κ2(TOAS)≤C

(
1+

H
γ

)
,

whereγ = h(2r +2) is the overlap parameter defined in (16) and C is a constant
independent of h,H,N,γ (but not of p,k).

4 Numerical results

In this section, we test the convergence properties of the isogeometric OAS pre-
conditioner defined in (15) for linear elasticity problems on 3D domains. The IGA
discretization with mesh sizeh, polynomial degreep, regularityk, is carried out
by using the Matlab isogeometric library GeoPDEs [7]. The domain is decomposed
into N overlapping subdomains of characteristic sizeH and overlap indexr. The re-
sulting linear system is solved by PCG with the isogeometricOAS preconditioner,
with zero initial guess and a stopping criterion of 10−6 reduction of the relative
residual.

Table 1 shows the scalability of the proposed isogeometric OAS preconditioner
for a reference cubic domain decomposed into an increasing number of subdomain-
schoN of fixed subdomain sizeH/h= 4 (scaled speedup test),p= 3, k= 2, over-
lap r = 0 andr = 1, and both nested (left) and non-nested (right) coarse spaces.
In addition to scalability, the results show that the two coarse spaces have similar
performances and both improve when increasing the overlap size.

Table 2 illustrates the robustness of the OAS preconditioner for composite mate-
rials where the Young modulusE presents discontinuities across subdomain bound-
aries. The deformed 3D domain is a twisted bar shown in Fig. 1 (right), discretized
by 16×16×8 fine elements,N = 4×4×2 subdomains, and NURBS withp= 3
andk = 2 (except at the subdomain interfaces wherek = 0). In the central jump
test, the jump region consists of the 2×2×2 central subdomains. Outside the jump
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nested coarse space non-nested coarse space
r = 0 r = 1 r = 0 r = 1

N κ2 = λmax/λmin nit κ2 = λmax/λmin nit κ2 = λmax/λmin nit choκ2 = λmax/λmin nit

2×2×2 16.3= 8.03/0.49 22 9.1= 8.25/0.91 19 17.2= 8.03/0.47 23 9.3= 8.25/0.89 21
3×3×3 18.5= 8.04/0.43 25 11.2= 9.31/0.83 22 22.8= 8.04/0.35 28 12.8= 9.68/0.76 25
4×4×4 19.8= 8.04/0.41 26 11.9= 9.47/0.80 23 20.1= 8.04/0.40 27 12.0= 9.47/0.79 24
5×5×5 20.2= 8.04/0.40 26 12.1= 9.52/0.79 23 20.5= 8.04/0.39 27 12.4= 9.53/0.77 25
6×6×6 20.4= 8.05/0.40 26 12.3= 9.56/0.78 23 20.6= 8.05/0.39 27 12.5= 9.56/0.76 25

Table 1 Scalability of OAS preconditioner with nested (left) and non-nested (right) coarse space:
condition numberκ2(TOAS), extremal eigenvaluesλmax, λmin and PCG iteration countsnit as a
function of the number of subdomainsN. Cubic domain, fixedH/h= 4, p= 3, k= 2, E = 6e+6,
ν = 0.3.

Fig. 1 3D domains used in the numerical tests.

region,E = 6e+3 andν = 0.3, while inside such regionE has the value indicated
in Table 2. In the checkerboard test,E alternates between the valuesE = 6e+3 and
E = 6e+7, whileν = 0.3 everywhere. The results show that the unpreconditioned
PCG deteriorate whenE jumps towards 6e+ 7, while the 2-level OAS precondi-
tioner is very robust for jumps inE.
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Jumping coefficientE, twisted quarter-ring domain
unpreconditioned 1-level OAS 2-level OAS

E κ2 =
λmax
λmin

nit κ2 =
λmax
λmin

nit κ2 =
λmax
λmin

nit

6e+1 1.01e+6= 8.48e+3
8.40e−3 6029 263.96= 8.00

3.03e−2 57 22.40= 8.47
0.38 28

central 6e+3 1.24e+4= 8.74e+3
0.70 691 261.04= 8.00

3.06e−2 66 25.79= 8.34
0.32 30

jump 6e+5 9.92e+5= 7.08e+5
0.71 5793 215.73= 8.00

3.71e−2 55 26.35= 8.58
0.32 29

6e+7 7.85e+7= 7.08e+7
0.90 20625 191.83= 8.00

4.17e−2 54 30.93= 8.62
0.28 30

checkerboardE 8.10e+7= 3.29e+7
0.41 20625 70.32= 8.00

0.11 32 19.21= 8.50
0.44 24

Table 2 OAS robustness with respect to jump discontinuities inE. Outside the central jump region
of 2×2×2 subdomainsE = 6e+3 andν = 0.3. In the checkerboard test forE, E = 6e+3 or
E = 6e+7. Condition numberκ2, extremal eigenvaluesλmax,λmin and iteration countsnit . Fixed
fine mesh 16×16×8, N = 4×4×2, H/h= 4, p= 3, k= 2.

References

1. Y. Bazilevs, L. Beir̃ao da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli. Isogeometric analy-
sis: approximation, stability and error estimates forh-refined meshes.Math. Mod. Meth. Appl.
Sci., 16, 1–60, 2006.

2. L. Beir̃ao da Veiga, D. Cho, L.F. Pavarino, S. Scacchi. Overlapping Schwarz methods for
Isogeometric Analysis.SIAM J. Numer. Anal., 50 (3), 1394-1416, 2012.

3. L. Beir̃ao da Veiga, D. Cho, L.F. Pavarino, S. Scacchi. BDDC preconditioners for Isogeomet-
ric Analysis. Math. Mod. Meth. Appl. Sci. 23 (6): 1099–1142, 2013.

4. L. Beir̃ao da Veiga, D. Cho, L.F. Pavarino, S. Scacchi. Isogeometric Schwarz preconditioners
for linear elasticity systems.Comp. Meth. Appl. Mech. Engrg., 253: 439–454, 2013.

5. M. Bercovier, I. Soloveichik. Additive Schwarz Decomposition methods applied to isogeo-
metric analysis. Submitted for publication.

6. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs.Isogeometric Analysis. Towards integration of CAD
and FEA. Wiley, 2009.

7. C. De Falco, A. Reali, R. Vazquez. GeoPDEs: a research tool for Isogeometric Analysis of
PDEs.Advances in Engineering Software, 42 (12), 1020-1034, 2011.

8. G.E. Farin.NURBS curves and surfaces: from projective geometry to practicaluse. A.K.
Peters, 1995.

9. K. Gahalaut, J. Kraus, S. Tomar. Multigrid Methods for Isogeometric Discretization.Comput.
Methods Appl. Mech. Engrg., in press. doi: 10.1016/j.cma.2012.08.015.

10. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry, and mesh refinement.Comp. Meth. Appl. Mech. Engrg., 194, 4135–
4195, 2005.

11. S. K. Kleiss, C. Pechstein, B. Jüttler, S. Tomar. IETI - Isogeometric Tearing and Interconnect-
ing, Comput. Methods Appl. Mech. Engrg., 247248: 201215, 2012.

12. B. F. Smith, P. Bjørstad, W. D. Gropp.Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

13. A. Toselli, O. B. Widlund.Domain Decomposition Methods: Algorithms and Theory. Com-
putational Mathematics, Vol. 34. Springer-Verlag, Berlin, 2004.



Hybrid Domain Decomposition Solvers for the
Helmholtz Equation

Martin Huber1 and Joachim Scḧoberl1

1 Introduction

When solving the Helmholtz equation with standard finite elements, the oscillatory
behavior of the solution results in a large number of degreesof freedom (DoFs) re-
quired to resolve the wave, especially for high wave numbers. This together with
the indefiniteness of the problem makes an iterative solution of the resulting lin-
ear system of equations difficult. Nevertheless, some advances for finding efficient
preconditioners for wave type problems have been made recently. Well known is
the shifted Laplace Preconditioner [5], or a sweeping preconditioner [4] based on
an approximate blockLDL⊤ factorization, which is constructed layer by layer. Es-
pecially for parallel computing platforms domain decomposition methods are very
popular. Apart from optimized Schwarz methods [8], i.e. Schwarz methods which
rely on optimal transmission conditions as interface condition, the FETI-H [7] and
the FETI-DPH [6] method are widely used. The last two methodscan be seen as fur-
ther developments of the FETI and the FETI-DP methods, respectively, specialized
for Helmholtz problems.

The solution strategies presented in this work are based on amixed hybrid dis-
continuous galerkin formulation [13, 10] Since the hybrid formulation provides ap-
propriate interface conditions an efficient iterative solution with Krylov space meth-
ods combined with domain decomposition preconditioners ispossible. Apart from
adapting a BDDC preconditioner [3, 11] to the current setting, a new Robin type
domain decomposition preconditioner is constructed. Thispreconditioner solves in
each iteration step local problems on subdomains by directly inverting the subdo-
main matrix. Thus, it is well suited for parallel computations. Good convergence
properties of both preconditioners are demonstrated by numerical experiments. The
results of this paper will be presented in more detail in [9].

2 The Mixed Hybrid Discontinuous Galerkin Formulation

Our formulation is based on the mixed form of the Helmholtz equation: Find a scalar
functionu : Ω → C and a vector valued functionp : Ω → Cd

gradu= iω p and divp= iωu

1Institute for Analysis and Scientific Computing, Wiedner Hauptstrasse 8-10, A-1040 Wien, e-
mail: {martin.huber}{joachim.schoeberl}@tuwien.ac.at
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with an absorbing boundary condition−p·n+u= g onΓ := ∂Ω . As computational
domainΩ ⊂Rd with d = 2,3 a Lipschitz polyhedron is considered. Furthermore,n
denotes the outer normal vector, the angular frequencyω is a positive constant and
g∈ L2(Γ ). Note that [12] guarantees a unique solution.

In this paper we make use of the following notations. ByT a triangulation with
the elementsT is denoted. The set of its facetsF we call F , nF represents the
normal vector onto a facetF , andnT is the outer normal vector of an elementT.
Furthermore volume integrals are denoted by

(
u,v
)

T :=
∫

T uv̄ dx and surface inte-
grals by

〈
u,v
〉

∂T :=
∫

∂T uv̄ ds.
In order to obtain efficient solvers for the Helmholtz equation, we consider it

in a mixed hybrid form. Thus, we search for(u, p,uF , pF) ∈ L2(Ω)×H(div,T )×
L2(F )×L2(F ) =: U×V×UF ×VF such that for all(v,q,vF ,qF) ∈U×V×UF ×
VF

∑
T∈T

((
iωu,v

)
T −

(
divp,v

)
T −

(
u,divq

)
T −

(
iω p,q

)
T +

〈
uF ,nT ·q

〉
∂T (1)

+
〈
nT · p,vF

〉
∂T +

〈
nF · p− pF ,nF ·q−qF

〉
∂T

)
−
〈
uF ,vF

〉
Γ =−

〈
g,vF

〉
Γ .

This mixed hybrid formulation was introduced and discussedin [13]. In the formu-
lation the spaceH(div,T ) represents an element wiseH(div) space without conti-
nuity constraints across element interfaces, andL2(F ) is the space ofL2 functions
on the facets. ConsequentlyuF and pF are supported just on the facets, and they
represent the values ofu and p ·nF there. The problem is discretized by the finite
dimensional spaces

Uh := ∏
T∈T

Pk(T), Vh := ∏
T∈T

RTk(T),

UFh := ∏
F∈F

Pk(F), VFh :=UFh,

where polynomials of orderk are denoted asPk andRTk represents a Raviart-Thomas
element of orderk. The discrete solutions we calluh, ph, uFh andvFh, respectively.

Since there is no global coupling for the functionsuh andph across different el-
ements, the corresponding DoFs can be eliminated cheaply onthe element level via
static condensation [1]. Note that this elimination corresponds on each element to
the solution of a wave type problem with Robin boundary conditions, and unique-
ness is guaranteed. The resulting linear system of equations needs now to be solved
only for the facet DoFs.

Remark 1.The original form of equation (1) in [13] contains a penalty parameterη ,
which was chosen to be one in our work. For this choice the local problem on the
element, which needs to be solved during static condensation, corresponds to the
original problem posed on the domain withg=±pF +uF . The sign depends on the
direction of the facet normalnF . Thus,g represents now the incoming impedance
trace for the element.
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In this work domain decomposition preconditioners will be used to solve the re-
duced linear system of equations for the facet unknownsuFh andpFh, which is ob-
tained by eliminating the volume unknownsuh andph. Note that this linear system
of equations is related to the skeleton of a mesh, and a domaindecomposition of the
skeleton is induced by a decomposition of the underlying mesh. Since impedance
traces are obtained from the facet unknowns by a simple transformation of vari-
ables, transmission conditions on the interface in the sense of [2] can be enforced
by guaranteeing the same value of the facet unknowns of different subdomains on
the subdomain interface. Thus the mixed hybrid formulationallows in a natural way
for appropriate transmission conditions for domain decomposition preconditioners.

3 The BDDC preconditioner for the mixed hybrid formulation

In this section, we adapt the BDDC preconditioner introduced by Dohrmann in [3]
(compare also [11]) to wave type problems. Therefore a stabilization term has to be
added to the mixed hybrid formulation, more precisely, the term

∑
T∈T

γ
(〈

(nT ·nF)pF ,vF
〉

∂T\Γ +
〈
uF ,(nT ·nF)qF

〉
∂T\Γ

)
, γ ∈ C (2)

is added to (1). The parameterγ ∈ C is a tuning parameter, we choose based on
numerical experiments. For the Helmholtz and the vector valued wave equation we
made good experience withγ =−0.5−0.1i. These additional terms are just added
for inner facets, and because of the different sign ofnT ·nF for the two neighboring
elements, they cancel out when the global system of equations is assembled. Thus
the problem does not change. But for domain decomposition preconditioners, which
are based on submatrices assembled just for a subdomain the situation changes.
These additional terms do not cancel out in the submatrices for DoFs located on the
interface to other subdomains.

We use a BDDC preconditioner for this modified facet problem.The computa-
tional domain is divided into subdomains, and the DoFs on facets which just belong
to one subdomain are considered to be primal, as well as the low order DoFs on
interface facets. The high order DoFs on interface facets are the dual ones.

This choice leads to a large global system for the primal DoFs. Note that this
system of equations consists due to the missing high order unknowns at the interface
of weakly coupled subdomain blocks. Therefore it can be solved rather efficiently
by direct solvers on parallel computing platforms.
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4 A Robin type domain decomposition preconditioner

Like the BDDC preconditioner, the new Robin type domain decomposition (RDD)
preconditioner will be applied to the skeleton problem, including the stabilizing
terms (2) with the same value forγ.

Before describing the preconditioner, some notations are required. We assume,
that the computational domain is divided intoN subdomainsΩi . For each subdo-
main a matrixAi representing the subdomain problem is subassembled, and the
global matrixA of the linear system of equations is obtained by adding thesesubma-
trices. ByÃi we denote the block ofAi which corresponds to DoFs on inner facets,
i.e. facets which just belong to the domainΩi . The matrixR(i) restricts a vector to
the components corresponding to these inner DoFs of the domain Ωi . The matrix

R(i)
D provides a weighted restriction to the domainΩi , i.e. when applying it, a vector

entry is divided by the number of subdomains to which the corresponding DoFs be-

longs to. Note that an application of the prolongation matrix R(i)⊤
D results again in a

division for the interface DoFs. Thus, by summing up over allsubdomains, a mean
value on the interface can be created.

Using this notations, a RDD step for finding ˜x :=C−1
RDDb with b as right hand side

of the linear system of equations andCRDD as the preconditioner reads as

1) y0 = 0,
2) y1 = y0+∑N

i=1R(i)⊤Ã−1
i R(i)(b−Ay0),

3) y2 = y1+∑N
i=1R(i)⊤

D A−1
i R(i)

D (b−Ay1),

4) x̃= y2+∑N
i=1R(i)⊤Ã−1

i R(i)(b−Ay2).

In step 2, the system of equations is solved exactly for the DoFs on the inner
facets under the constraint that the solution on the interface is zero. Step 3 provides
an update for the interface solution by partitioning the actual residual among the
subdomains and solving the problem there exactly. A continuous interface solution
is constructed by averaging the different subdomain solutions. Finally, in step 4 the
solution is updated by solving the system of equations exactly for the DoFs on inner
facets. Note that the interface solution remains unchanged.

The RDD-preconditioner can also be introduced in the variational projector no-
tation. Therefore, we denote the bilinear form representing the Schur complement
system, which is defined on the facet spaceW := UFh×VFh by a. Additionally, it
is assumed that the bilinear forma can be decomposed into its subdomain contri-
butionsai , i.e. a= ∑N

i=1ai . The subspace ofW containing the functions which are
supported on the subdomainΩi is denoted byWi , and inW̃i functions supported
only on inner facets of the domainΩi are collected. The operator representation of

the restriction matrixR(i)
D is calledR

(i)
D : W→Wi . Thus, when applying it to any

function inW, the function is restricted to the domainΩi , and its values on the in-
terface facets are divided by the number of neighboring subdomains. Furthermore,
R(i) : W→ W̃i is the restriction operator corresponding to the matrixR(i), and by
R(i)⊤ the prolongation operators are denoted.
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Based on this, we define the variational projectorP
(i)
D via P

(i)
D = R

(i)⊤
D P̂

(i)
D

with the projectorP̂(i)
D : W→Wi and

ai(P̂
(i)
D u,φ) = a(u,R(i)⊤

D φ) ∀φ ∈Wi .

In the same way the variational projectorP(i) with P(i) = R(i)⊤P̂(i) can be intro-
duced. Here,P̂(i) : W→ W̃i is given via

ai(P̂
(i)u,φ) = a(u,R(i)⊤φ) ∀φ ∈ W̃i .

If the operatorA corresponds to the bilinear forma, andI is the identity, the error
propagation operatorE of the RDD-preconditioner reads as

E = I −C−1
RDDA =

(
I −

N

∑
i=1

P(i)
)(

I −
N

∑
i=1

P
(i)
D

)(
I −

N

∑
i=1

P(i)
)
.

Remark 2.Because the system of equations is always solved exact for the DoFs on
inner facets, both sets of facet DoFsuFh and pFh are not needed anymore, and the
problem can be formulated just by usinguFh. On the interface, both types of un-
knowns are still necessary in order to fix continuity conditions of the impedance
traces across the interface and to guarantee convergence ofthe iterative solver. Nev-
ertheless, neglecting one type of facet unknowns on inner facets saves many DoFs
in an actual calculation.

5 Numerical Results

For all numerical examples which are presented in this section, we made good ex-
perience by taking a CG-solver, although, there exists no convergence theory for
complex symmetric problems. We start the numerical resultssection by compar-
ing the preconditioners for a simple two dimensional model problem. There, the
Helmholtz equation is solved on a squareΩ = [−1,1]2 with an incoming wave from
above of Gaussian amplitude, fixed by the absorbing boundarycondition. The com-
putations were done with the MPI-parallel finite element code Netgen/Ngsolve (see
http://sourceforge.net/projects/ngsolveor [14]), which contains the software pack-
age Metis for partitioning the domain. If not said differently, a Dell R-910 Server (4
Xeon E7 CPUs with 10 cores a 2.2 GHz, 512 GB RAM) was used.

In Table 1 the iteration numbers for the BDDC and the RDD preconditioner for
different wavelengthsλ := 2π

ω and mesh sizesh are given. For all computations the
polynomial order was kept constant to four, and nine subdomains were used for the
preconditioners.

According to the table, the BDDC preconditioner shows the highest iteration
numbers close to the resolution limit ath≈ λ , which corresponds for a polynomial
order ofp= 4 to about four unknowns per wavelength. When increasing the number
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Table 1 Iteration numbers of the BDDC/RDD preconditioner using 9 subdomains (p = 4) for
different mesh sizes and wavelengthλ .

λ 1 1
2

1
4

1
8

1
16

1
32

1
64

h= 1
4 45/78 49/65 60/61

h= 1
8 51/95 48/84 56/71 73/70

h= 1
16 56/123 50/96 49/83 59/73 80/72

h= 1
32 63/154 57/125 48/101 49/84 65/74 85/74

h= 1
64 66/202 62/164 56/127 50/111 50/89 74/82 101/89

of unknowns per wavelength, either by decreasing the mesh size or by increasing
the wavelength, the number of iterations stays constant or grows slightly. For the
RDD preconditioner the situation is vice versa. Although, for a large wavelength
and a small mesh size the RDD preconditioner needs much more iterations than the
BDDC preconditioner, it gets more and more competitive if the number of degrees
of freedom per wavelength is reduced. Considering, that theRDD preconditioner
is faster than the BDDC preconditioner with respect to setup-time and time per
iteration, it is the method of choice for discretizations close to the resolution limit
of the wave.

One reason for this behavior could be the different structure of the two solvers.
While the RDD preconditioner allows just for local corrections, the BDDC solver
benefits additionally from a coarse grid solution. For a decreasing wavelength, the
solution gets more and more oscillatory, and the coarse gridcorrection, which pro-
vides communication across the whole subdomain loses its importance.

The number of iterations of the BDDC and the RDD preconditioner is also in-
fluenced by the size of the subdomains the computational domain is divided into.
In Figure 1 iteration numbers of these two preconditioners are plotted for differ-
ent wavelengths against the subdomain sizeH, both in logarithmic scale. Note that
the partitioning of the domain was done by Metis, and therefore, H represents an
average subdomain size. In the corresponding experiments the mesh size was kept
constant to 1

64 and the polynomial order to four. For the RDD preconditionerthe
number of iterations decreases with an increasing subdomain size. Figure 1 indi-
cates that this decrease is proportional toH−α . According our experimental data
α was estimated to be approximately 0.65. The situation is slightly different for
the BDDC preconditioner. While it shows the same features forsmall wavelengths,
i.e. for settings close to the resolution limit, the iterations stay almost constant for
large wavelengths. A reason for this is, that for less oscillatory solutions the BDDC
preconditioner benefits from its coarse grid correction.

Finally, we want to demonstrate the efficiency of our preconditioners with a three
dimensional large scale example. The computational results presented in the follow-
ing have been achieved using the Vienna Scientific Cluster 2 (VSC2). In this exam-
ple, the solution of the Helmholtz equation for a grating (compare Figure 2) with pe-
riod 0.14 was computed. The diameter of the computational domain was two. Thus,
assuming a wave incoming from the top with Gaussian amplitude and wavelength
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Fig. 1 Number of iterations plotted versus the size of one subdomainH for the BDDC and the
RDD preconditioner. The polynomial order was 4 andh= 1

64.

Fig. 2 Real part of the solution (left) and its absolute value (right)for a wave diffracted at a grating.

0.025 corresponds to an effective domain size of 80 wavelengths. For this setting,
the left hand plot in Figure 2 shows the real part of the solution, and the absolute
value is plotted on in the righthand plot. In the calculation, the underlying mesh had
about 1.61 million elements with a maximal mesh size of 0.021. Selecting a polyno-
mial order ofp= 4 results in approximately 288.8 million volume unknowns (56.5
M. for u and 232.3 M. forp) and 98.0 million facet unknowns (49.0 M. foruF and
pF ). Using 1200 subdomains, the assembly of the matrix took 58 seconds and the
setup of the RDD preconditioner 33 seconds. The problem was solved in 12.9 min-



310 Martin Huber and Joachim Schöberl

utes with 399 iterations on 1200 processors. Recovering thevolume DoFsuh andph
from the facet DoFsuFh andpFh took 53 seconds.
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Efficient implementation of a multi-level parallel
in time algorithm

Matthew Emmett1 and Michael L. Minion2

1 Introduction

The last decade has seen an increase in research into the parallelization of numer-
ical methods for ordinary and partial differential equations in the temporal direc-
tion. One strategy for temporal parallelization involves decomposing the solution
into time slices, which are distributed across processors or groups of processors,
and employing an iterative scheme for computing the solution on all time slices in
parallel [4, 3, 2]. The communication between time slices inthese algorithms is
quite regular, where each processor must send updates to theinitial condition to the
processor representing the following time slice. This communication must be done
during each iteration of the method, and the amount of data sent is proportional
to the size of the problem being solved. Although this communication takes place
less frequently than that which typically occurs in spatially parallelized solvers for
PDEs, the size of the data that must be transmitted is relatively large, and hence, re-
ducing the effective cost of this data transfer is necessaryto avoid reduced parallel
efficiency.

In [2] a new approach for the temporal parallelization of thenumerical solu-
tion to partial differential equations, called the Parallel Full Approximation Scheme
in Space and Time (PFASST), is introduced. PFASST is similarin structure to the
earlier Parareal [4] and PITA [3] methods, but uses a deferred correction type proce-
dure first described in [5, 7] within time slices instead of a traditional direct method,
which provides an improved theoretical maximum parallel efficiency as compared
to Parareal or PITA. The PFASST algorithm also uses a hierarchy of spatial and
temporal discretizations of the problem, wherein coarse problems are defined in a
procedure analogous to the full approximation scheme (FAS)used extensively in
multigrid methods for nonlinear problems (see e.g., [1]). Since FAS is naturally
recursive, an extension of the approach in [2] to multiple levels of spatial and tem-
poral refinement is possible. The key algorithmic change in PFASST presented here
concerns the issue of the communication cost.

The PFASST method is reviewed here in Sect. 2. In Section 3, anapproach is
outlined wherein corrections computed at different refinement levels are passed be-
tween processors in a way which can greatly reduce the communication overhead
of the PFASST iterations. The timing results presented in Sect. 4 demonstrate the
effectiveness of the proposed communication strategy. Finally, a short discussion of
the current results and future research directions can be found in Sect. 5.

1 Lawrence Berkeley National Laboratory, e-mail:mwemmett@lbl.gov ·2 Institute for Compu-
tational and Mathematical Engineering, Stanford University, e-mail:mlminion@gmail.com

311



312 Matthew Emmett and Michael L. Minion

2 PFASST

In this section, a brief description of the PFASST algorithmis included. It is as-
sumed that the reader is familiar with Spectral Deferred Correction (SDC) methods
and full approximation scheme (FAS) corrections. For more complete details, see
[7, 2].

For the following description, consider the ODE initial value problem

u′(t) = f (t,u(t)), u(0) = u0, (1)

wheret ∈ [0,T]; u0, u(t) ∈ CN; and f : R×CN → CN. It is assumed here that (1)
represents a method of lines discretization of a PDE.

For a PFASST computation withL levels of spatial and temporal resolution (with
level 0 being the finest), the time interval of interest[0,T] is divided intoN uniform
intervals[tn, tn+1] which are assigned to the processorsPn wheren = 0. . .N− 1.
Each interval is subdivided on each levelℓ by definingMℓ + 1 SDC nodestℓ =
[tℓ,0 · · · tℓ,Mℓ

] such thattn = tℓ,0 < · · · < tℓ,Mℓ
= tn+1, where we have omitted the de-

pendence oftℓ on n for brevity. The SDC nodestℓ+1 on levelℓ+ 1 are chosen to
be a subset of the SDC nodestℓ on levelℓ to facilitate interpolation and restriction
between coarse and fine levels. Note that the use of point injection as the coarsen-
ing procedure with Gaussian quadrature nodes means that thecoarse nodes may not
correspond to Gaussian nodes. The solution at themth node on levelℓ during itera-
tion k is denotedU(ℓ,k,m). For brevity letU(ℓ,k) = [U(ℓ,k,0), · · · ,U(ℓ,k,Mℓ)] and
F(ℓ,k) = [F(ℓ,k,0), · · · ,F(ℓ,k,Mℓ)] = [ f (tℓ,0,U(ℓ,k,0)), · · · , f (tℓ,Mℓ

,U(ℓ,k,Mℓ))].
In the parareal method, the processors are typically initialized by using the coarse

propagator in serial to yield a low-accuracy initial condition for each processor.
In [2], an alternative initialization scheme is described.During initialization, each
processor begins coarse SDC sweeps immediately using the initial condition from
the first processor. Hence the number of coarse iterations (SDC sweeps) done on
processorPn in the initialization is equal ton rather than 1. This has the same total
computational cost of doing one coarse SDC sweep per processor in serial, but the
additional SDC sweeps can improve the accuracy of the solution significantly, as
is demonstrated in [2]. During this initial iteration, no communication is necessary
since each processor computes the same data as the processorcorresponding to the
previous process. Hence further discussion of the initialization procedure is omitted.

The full PFASST iterations fork = 0. . .K−1 on each processorPn proceed as
follows. Assuming that the fine solution and function valuesU(0,k) andF(0,k) are
available, the iterations are comprised of the following steps:

(i) Perform one fine SDC sweep using the valuesU(0,k) andF(0,k). This will
yield provisional updated valuesU(0,k+1) andF(0,k+1).

(ii) SendU(0,k+1,M0) to processorPn+1 if n < N−1. This will be received as
the new initial conditionU(0,k+1,0) in the next iteration.

(iii) Go down theV-cycle: for eachℓ= 1. . .L−2
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a. Restrict the fine valuesU(ℓ−1,k+1) to the coarse valuesU(ℓ,k) and com-
puteF(ℓ,k).

b. Compute the FAS correctionB(ℓ,k) usingF(ℓ−1,k+1), F(ℓ,k), andB(ℓ−
1,k).

c. Performnℓ SDC sweeps with the valuesU(ℓ,k), F(ℓ,k) and the FAS cor-
rectionB(ℓ,k). This will yield new valuesU(ℓ,k+1) andF(ℓ,k+1).

d. SendU(ℓ,k+1,Mℓ) to processorPn+1 if n< N−1. This will be received
as the new initial conditionU(ℓ,k+1,0) in the next iteration.

(iv) Perform the bottom sweep:

a. Restrict the fine valuesU(L−2,k+1) to the coarse valuesU(L−1,k) and
computeF(L−1,k).

b. Compute the FAS correctionB(L−1,k) usingF(L−2,k+1), F(L−1,k),
andB(L−2,k).

c. Receive the new initial valueU(L− 1,k,0) from processorPn−1 if n > 0
and computeF(L−1,k,0).

d. PerformnL−1 coarse SDC sweeps using the valuesU(L−1,k), F(L−1,k)
and the FAS correctionB(L−1,k). This will yield new valuesU(L−1,k+
1) andF(L−1,k+1).

e. SendU(L− 1,k+ 1,ML−1) to processorPn+1 if n < N− 1. This will be
received as the new initial conditionU(L−1,k,0) in the current iteration
on the next processorPn+1.

(v) Return up theV-cycle: for eachℓ= L−2. . .1:

a. Interpolate coarse correctionU(ℓ+1,k+1)−U(ℓ+1,k) in space and time
and add toU(ℓ,k+1). Recompute new valuesF(ℓ,k+1).

b. Receive the new initial valueU(ℓ,k+1,0) from processorPn−1 if n> 0.
c. Interpolate correctionU(ℓ+1,k+1,0)−U(ℓ+1,k,0) to newU(ℓ,k+1,0)

and recomputeF(ℓ,k+1,0).
d. Performnℓ SDC sweeps with the valuesU(ℓ,k+ 1), F(ℓ,k+ 1) and the

FAS correctionB(ℓ,k). This will once again yield new valuesU(ℓ,k+1)
andF(ℓ,k+1).

(vi) Interpolate coarse correctionU(1,k+1)−U(1,k) in space and time and add
to U(0,k+1). Recompute new valuesF(0,k+1).

(vii) Receive the new initial valueU(0,k+1,0) from processorPn−1 if n> 0.
(viii) Interpolate correctionU(1,k+1,0)−U(1,k,0) to newU(0,k+1,0) and re-

computeF(0,k+1,0).

The steps above are illustrated in Figure 1(b), in which solid blocks denote SDC
sweeps (Fℓ) and gradient blocks denote interpolation (I ℓℓ+1) or restriction (Rℓ+1

ℓ ). The
length of the blocks are proportional to their cost, with fineSDC sweeps being 4 and
16 times more expensive than intermediate and coarse SDC sweeps, respectively
(which would correspond to a 1D PFASST scheme with both spatial and temporal
refinements by a factor of 2). The length of the interpolationand restriction blocks is
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also proportional to their cost: when transferring betweenlevels we must re-evaluate
the function valuesF(ℓ,k) in order to compute the FAS correctionsB(ℓ,k).

3 Communication between processors

In the precursors to this work appearing in [7, 2] as well as the original papers on
the parareal method, little attention is given to the topic of scheduling the commu-
nication between processors. In this section, a strategy which effectively unblocks
communication except at the coarsest resolution is presented. It is assumed here that
the parallel implementation of PFASST allows computation and communication to
be performed simultaneously.

In each PFASST iteration, the full solution (or correction to the solution) must
be passed forward in time to the next processor. In the two level scheme presented
in [7, 2], this is done directly after the coarse correction is applied to the current
fine solution. Since the coarse SDC sweep on the next processor cannot begin until
this data is received, scheduling the communication in thisway results in ablocking
communication. The blocking communication is depicted in Fig. 1(a), where each
column represents the operations done on a processor with wall time progressing
from bottom to top. The white and black circles correspond tothe send and receive
process on each processor. After the coarsest SDC sweep (denotedF1), the full
update of the initial condition is sent forward in time. The white gap represents the
waiting time, which grows linearly with the number of processors.

Note in Fig. 1(a), the first operation performed after a processor receives data
is a coarse SDC sweep. In order to perform this sweep, a new initial condition is
required, but only at the coarse resolution. The key observation used here is that
it is only necessary to pass the corrections to the initial data during each PFASST
iteration, and more importantly this communication can be decomposed into cor-
rections corresponding to each level of spatial resolution. Although this means that
more data in total is being passed during each PFASST iteration, data from the finer
levels can be sent before the corresponding fine SDC sweeps are performed on each
processor. Therefore, if the computational cost of the computation at the coarser
levels is greater than the communication cost of sending data at a particular level,
then the communication becomesnon-blocking.

For example, consider Fig. 1(b), which diagrams the scheduling of communica-
tion for a three-level implementation of the PFASST algorithm. At each level, as
soon as an SDC sweep is completed (denoted byFℓ for ℓ = 0. . .2), the correction
to the solution at the final SDC node (which corresponds to thefirst SDC node on
the next processor) is sent. This can be done before the recursive call to compute a
correction at the next coarsest level (denoted by the blocksRℓ+1

ℓ ). The sent data can
then be received in a buffer at the next processor and is not needed until after the
corresponding coarse correction has been computed (denoted by the blocksI ℓℓ+1) on
that processor. Hence, the sending of the finest data overlaps with the computation
of the correction on two coarser levels. It is only at the coarsest level that there is no
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computational work to be done while waiting for the data to bereceived. However, if
the coarse data is significantly smaller than fine data, the communication cost at the
coarsest level is likewise significantly reduced. In the three-level, three-dimensional
example in Sect. 4, the coarsest level contains 1/64 the amount of data as the finest
level with communication time similarly reduced.

It should be noted that the crossing of the lines corresponding to communication
in Fig. 1(b) assume that blocking coarse communication could be scheduled to in-
terrupt non-blocking fine level communication, a feature which may not exist in a
standard message passing library. If this is not the case, there is still the opportu-
nity to overlap computation with communication before the blocking coarsest level
send occurs. Finally, recall that the work performed by eachprocessor in Fig. 1(b) is
not uniform since processorPn doesn coarse SDC sweeps during the initialization
procedure.

P0 P1 P2 P3

w
a
ll
c
lo
c
k

P0 P1 P2 P3
receive

send

F0

R
1

0

F1

R
2

1

F2

I1
2

F1

I0
1

it
e
r
a
t
io
n

Fig. 1 Left: (a) Communication diagram for the original 2-level PFASST algorithm. Right: (b)
Communication diagram for the 3-levelV-cycle PFASST algorithm.

4 Timing

Timing information for a three-level PFASST run was obtained for a three dimen-
sional model problem: the incompressible Navier-Stokes equations given by

ut +u·∇u= ν∇2u−∇p∇ ·u= 0. (2)

A method of lines approach is employed by placing the equations in projection form
and using spectral approximations to all spatial derivatives via the FFT [6]. The ad-
vective piece of the equation is treated explicitly while the diffusive piece is treated
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implicitly. The fine spatial discretization consists of 2563 points in a unit cube, re-
sulting in a total of 3×2563 degrees of freedom on the fine level, or approximately
384 megabytes using 64 bits per degree of freedom. The fine temporal discretization
consists of 5 Gauss-Lobatto SDC nodes. The run was performedacross 16 proces-
sors of “Edison”, the Cray XC30 system at the National EnergyResearch Scientific
Computing Center (NERSC).

Figs. 2 and 3 present timing information for various parts ofthe PFASST algo-
rithm across the processors for each PFASST iteration. FromFig. 2 we note that
the iteration time (which encompasses all overhead costs including interpolation,
restriction, and FAS computation) is fairly consistent across each processor and it-
eration, and that the cost of the intermediate and coarse sweeps are significantly
cheaper than the fine sweep.

From Fig. 3 we note that the (blocking) coarse send and receive times are fairly
significant (send/receive 0) between some processors. Thisestablishes that commu-
nication across compute nodes is non-trivial even at the coarse level (recall that the
coarse level consists of 3× 643 degrees of freedom, which is 64 times less than
the fine level). Finally, the fine and intermediate send and receive times (send/re-
ceive 1 and 2) are essentially zero across all processors anditerations. This demon-
strates that the fine and intermediate communications are essentially non-blocking
and were successfully overlapped with computation.

Fig. 2 Timing information for the three-dimensional Navier-Stokes solver. The top panel shows
the total elapsed run time. The bottom panel shows iteration time(including all overhead), SDC
sweep time for each level, and the initialization time (predictor).

The three-level PFASST run using 16 time processors desribed above achieves
a speedup of roughly 7.2 compared to a serial SDC-based run (which requires 8
serial iterations per time step to acheive the same accuracyas 6 PFASST iterations).
This corresponds to a parallel efficiency of roughly 45%. Theparallel efficiency of
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Fig. 3 Communication timing information for the three-dimensional Navier-Stokes solver. The
top panel shows send time for each level, and the bottom panel shows receive time for each level.
Note that the send and receive times for the intermediate and finelevels (1 and 0) are negligible
compared to the coarse level (2).

PFASST can vary substantially depending on the number of processors, the error
tolerance, and the sensitivity of the problem at hand [2].

5 Discussion

In summary, we have demonstrated how the necessary transferof relatively large
amounts of data between processors in the PFASST algorithm can be scheduled
so that only a small amount of the transfer is blocking. As long as the computa-
tion involved in a recursive call to a coarser level correction is more expensive than
the communication, the communication cost is negligible. The effectiveness of the
scheduling procedure relies on the communication and computation being done si-
multaneously, and is optimal if blocking communication caninterrupt non-blocking
communication between two processors.

Current trends in the design of the next generation of large parallel computers
suggest that the relative cost of data transfer between processors will continue to
grow. In this case, more elaborate strategies to avoid blocking communication in the
PFASST algorithm might become necessary. For example, since only the correction
to the solution needs to be passed between processors, it is possible that fewer sig-
nificant digits could be used to transmit data. The main pointwe stress here is that,
except at the coarsest level, there is useful work that a processor can perform while
data is being passed from processor to processor. In fact, the algorithm could be
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reconfigured so that at each stage of the FAS procedure, SDC sweeps are performed
at each level until the necessary data at the next finest levelis received.
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Optimized Schwarz Methods and model
adaptivity in electrocardiology simulations

Luca Gerardo-Giorda1, Lucia Mirabella2, and Mauro Perego3 and Alessandro
Veneziani4

1 Numerical Models for the Cardiac Potential

At the macroscopic level, the myocardial tissue can be regarded as the superposition
of two continuous and anisotropic media, the intra-cellular and the extra-cellular
one. They coexist and are connected by a cell membrane, whosecapacitance is
denoted byCm. The tissue conductivity depends upon its cells orientation, and in
the most general case the associated tensor is anisotropic [7, 14]. In any pointx∈
Ω , whereΩ is the spatial domain under consideration, it is possible toidentify an
orthonormal triplet of directions,al (x), at(x), an(x), with al (x) parallel to the fibers
direction, and we denote byσ l

τ , σ t
τ , andσn

τ (τ = i,e) the corresponding intra and
extracellular conductivity coefficients. The conductivity tensors are given by

Dτ(x) = σ l
τ(x)al (x)a

T
l (x)+σ t

τ(x)at(x)a
T
t (x)+σn

τ (x)an(x)a
T
n (x), τ = i,e. (1)

We assume thatDτ fulfill in Ω a uniform elliptic condition.

The Bidomain model.The Bidomain model is a nonlinear reaction-diffusion sys-
tem of parabolic type describing the spatio-temporal dynamics of theintra andex-
tracellular potentials, denoted byui andue, while the cell membrane is regarded as
dislocated in the domain [2]. We rely in this paper on a non-symmetric formulation
in terms of the transmembrane potentialu= ui −ue, and the extracellular one [4].
We denote byu = (u,ue)

T the unknown, byV = H1(Ω)\{c : c∈ R} and by letting

D =

[
σ l

eDi

σ l
i +σ l

e

σ l
eDi−σ l

i De

σ l
i +σ l

e

Di Di +De

]
E1 =

[
1 0
0 0

]
e1 =

[
1
0

]

the Bidomain system reads as follows. Findu ∈ L2(0,T;H1(Ω)×V), such that

χCmE1
∂u
∂ t
−∇ ·D∇u+ χ Iion(u)e1 = Iapp, (2)

whereχ is the membrane area per tissue volume ratio,Iion(u) is a nonlinear func-
tion of the transmembrane potentialu, specified by a ionic model, and whereIapp

1 BCAM - Basque Center for Applied Mathematics, Bilbao, Spain, e-mail: lgerardo@
bcamath.org ·2 ”W.H. Coulter” Dept. Biomed. Engrg., GaTech, Atlanta, GA, USA, e-mail:
lucia.mirabella@bme.gatech.edu ·3 Dept. of Sci. Comp., Florida State University,
Thallahassee, FL, USA, e-mail:mperego@fsu.edu ·4 Dept. of Math. and CS, Emory Uni-
versity, Atlanta, GA, USA, e-mail:ale@mathcs.emory.edu
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represent the applied current stimuli. Several ionic models are available in literature,
from more phenomenological to more accurate ones, but the choice of the nonlin-
ear termIion(u) does not have any influence on the procedure highlighted in what
follows. The problem is completed by suitable initial conditions, and by homoge-
neous Neumann boundary conditions on∂Ω , modeling an insulated myocardium.
The transmembrane potentialu is uniquely determined from (2), while the extracel-
lular potentialue is determined up to a function of time, and is usually identified by
imposing a zero average at each time (

∫
Ω ue(x, t)dx= 0, for all t ∈ (0,T) ).

The Monodomain model.The Monodomain model is a simplified model for the
propagation of the electrical stimulus, based upon a proportionality assumption be-
tween the intracellular and the extracellular conductivity tensors, namely assuming
De= λDi , whereλ is a constant to be properly chosen. We assume hereλ = σ l

e/σ l
i

[6], and the Monodomain model reads as follows. Findu∈ L2(0,T;H1(Ω)), such
that

χCm
∂u
∂ t
−∇ · σ l

eDi

σ l
i +σ l

e
∇u+ χ Iion(u) = Iapp. (3)

Also system (3) is coupled with suitable initial conditions, and homogeneous Neu-
mann boundary conditions on∂Ω . Differently from the Bidomain, the Monodomain
model features a unique solution and is cheaper to solve numerically. In absence of
applied currents, the Monodomain model is accurate enough to catch the desired
dynamics and effects of the action potential propagation [12]. However, the Bido-
main model becomes necessary when current stimuli are applied in the extracellular
space. Also, the Monodomain is inadequate to simulate defibrillation [16].

1.1 Numerical approximation

Time integration. For simplicity in presentation, we consider a fixed time step∆ t,
and we denote with superscriptn the unknowns computed at timetn = n∆ t. Both
the Bidomain (2) and the Monodomain equations (3) are advanced in (0,T) by a
semi-implicit scheme, where the nonlinear term (the ionic current) is evaluated at
the previous time step [2, 4]. More precisely, moving fromtn to tn+1 we solve inΩ

χCmE1
un+1−un

∆ t
−∇ ·D∇un+1 = Iapp− χ Iion(u

n)e1 (4)

for the Bidomain system, and

χCm
un+1−un

∆ t
−∇ · σ l

eDi

σ l
i +σ l

e
∇un+1 = Iapp− χ Iion(u

n) (5)

for the Monodomain one.
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Space discretization.Both Bidomain (4) and Monodomain (5) models are dis-
cretized in space by finite elements [2, 8, 15]. When solving the Bidomain system,
the unknowns of the fully discrete problem are represented by the vector

(
uh,ue,h

)T
,

storing the nodal values of the transmembrane and extracellular potentials. The ma-
trix associated with the discrete Bidomain models is given by

B =

[
Buu Bue

Beu Bee

]
=

[
χCm
∆ t M + σ l

e
σ l

i +σ l
e
K i

σ l
e

σ l
i +σ l

e
K i− σ l

i
σ l

i +σ l
e

Ke

K i K i +Ke

]
, (6)

whereM is the mass matrix whileK i andKe are the stiffness matrices associated
with the chosen finite elements space.
When solving the Monodomain system, the unknown of the fully discrete problem
is uh, and the associated matrix is simply blockBuu of the matrixB in (6).

Fig. 1 Differences in the propagation of the membrane potential between Bidomain (uBido) and
Monodomain (uMono) simulation:uBido−uMono, with fibers oriented along thex axis (from [6]).

2 A model adaptive strategy

In Fig. 1 (from [6]) we report the differences of the transmembrane potential com-
puted with the Bi- and Monodomain models respectively at different instants. The
Figure pinpoints that the differences are mainly concentrated around the wavefront.
From these results, we argue that the Monodomain provides anaccurate approxima-
tion of the potential in most of the region of interest. Themodel adaptive strategy
consists then in solving the Bidomain only when actually needed. In a first imple-
mentation of this approach [9] a suitablea posteriorimodel estimator was intro-
duced. A hybrid model calledHybridomainwas advocated. The latter assembles
the blockBue only in correspondence with the nodes identified as Bidomainones
by the model estimator, while the second equation stays untouched. This simplifies
significantly the implementation, however the computational advantage is limited,
since also in the Monodomain regions an extended problem with the same size of
the Bidomain one is solved. An alternative procedure consists of a genuine hetero-
geneous coupling by splitting the domains where the two models are solved. This
coupling raises non trivial issues when matching the two models, featuring a dif-
ferent size. This has been considered in [6], where the Optimized Schwarz method
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has been advocated for the heterogeneous coupling, addressing the matching con-
ditions at the interface between two different domains. Here, we focus on practical
issues when using this approach in realistic problems. A first idea would be to triv-
ially use thea posteriorierror estimator for detecting the regions where to solve
the Bidomain problem and then to couple these subdomains with the Monodomain
regions. However, this approach is barely doable. As a matter of fact. the Robin-
type interface conditions in the Optimized Schwarz settingrequire the assembly of
mass matrices on the interfaces. As a consequence, every time the Bidomain region
changes, one should identify the new interfaces and then recompute the matrices,
with an additional computational cost that is anticipated to reduce the advantage of
the Optimized Schwarz coupling. The model adaptive strategy we propose here re-
lies instead on aa priori subdivision ofΩ into smaller subdomainsΩ j . The model
error estimator will associate runtime each subdomain witheither the Bidomain
or the Monodomain problem. In this way, the interfaces matrices needed for the
coupling can be computed once at the beginning of the time loop. Notice that the
non-symmetric formulation of the Bidomain system ensures that the matrices for
the Monodomain model are available after assembling the Bidomain ones.

2.1 Coupling conditions and Optimized Schwarz Methods

We outline here the coupling conditions for the three different types of interfaces. If
the subdomains involved have the same characteristic (Bido/Bido and Mono/Mono)
the corresponding solutions are labeled by subscript 1 and 2, while if the subdo-
mains have different characteristics (Bido/Mono) the corresponding solutions are
labeled with subscriptB andM.

Bidomain/Bidomain interface. The coupling conditions on the Bidomain/Bido-
main interface have been introduced in [5], and are given by

nT
1 D∇u1+α1 Σ u1 = nT

1 D∇u2+α1 Σ u2

nT
2 D∇u2+α2 Σ u2 = nT

2 D∇u1+α2 Σ u1, where Σ =




σ l
e

σ l
i +σ l

e
0

1
σ l

i +σ l
e

σ l
i


 . (7)

The convergence of the Optimized Schwarz Algorithm based onthe interface con-
ditions (7) was analyzed in [5], where also optimal parameters have been identified
by means of Fourier analysis.

Bidomain/Monodomain interface. Due to a dimensional mismatch between the
two models, two interface conditions are needed on the Bidomain side of the inter-
face, and one on the Monodomain side [6]. Possible coupling conditions are
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nT
B

σ l
eDi

σ l
i +σ l

e
(∇uB+∇ue,B)−nT

B
σ l

i De

σ l
i +σ l

e
∇ue,B+

σ l
eα

σ l
i +σ l

e
uB = nT

B
σ l

eDi

σ l
i +σ l

e
∇uM + σ l

eα
σ l

i +σ l
e
uB

nT
BDi(∇uB+∇ue,B)+nT

BDe∇ue,B+αuB+
σ l

i +σ l
e

σ l
i

αue,B = αurest

(8)
for the Bidomain subproblem, and

nT
M

σ l
eDi

σ l
i +σ l

e
∇uM + σ l

eα
σ l

i +σ l
e
uM = nT

M
σ l

eDi

σ l
i +σ l

e
(∇uB+∇ue,B)−nT

M
σ l

i De

σ l
i +σ l

e
∇ue,B+

σ l
eα

σ l
i +σ l

e
uB

(9)
for the Monodomain one. To cope with the mismatch, the secondcondition in (8)
is a transparent boundary condition, designed to avoid spurious reflexions off the
interface for the extracellular potential wave. The convergence of the Optimized
Schwarz Algorithm based on the interface conditions (8)-(9) was analyzed in [6],
where also optimal parameters has been identified by means ofFourier analysis.

Monodomain/Monodomain interface. The Optimized Schwarz coupling is sig-
nificantly simpler on the interface between two Monodomain regions. The semi-
implicit temporal integration scheme reduces the problem at each time step to a
linear steady reaction-diffusion problem, whose solutionby means of Optimized
Schwarz Methods has been widely studied, and an optimal parameter has been iden-
tified [3]. The coupling on the interface is given by

nT
1

σ l
eDi

σ l
i +σ l

e
∇u1+αoptu1 = nT

1
σ l

eDi

σ l
i +σ l

e
∇up

2 +αoptup
2

nT
2

σ l
eDi

σ l
i +σ l

e
∇u2+αoptu2 = nT

2
σ l

eDi

σ l
i +σ l

e
∇u1+αoptu1.

(10)

2.2 The model error estimator

Thea posteriorierror estimator for choosing between a Bidomain or Monodomain
simulation in each subdomain introduced in [9] is based on the extracellular poten-
tial computed from a suitable extension of the Monodomain model. More precisely,

we letDε = De− σ l
e

σ l
i
Di . The model estimator is computed at the subdomain level as

ζ 2
j =

∫

Ω j

∇uM
σ l

i Dε

σ l
i +σ l

e

(
D−1

i +D−1
e

) σ l
i Dε

σ l
i +σ l

e
∇uM dx. (11)

The valueζ 2
j is an upper bound for the error inΩ j between the two models in

a H1(Ω j)-type seminorm depending onDi andDe. The Bidomain model is then
activated inΩ j wheneverζ 2

j exceeds a given thresholdτ j , depending on the size of
the subdomain. Computingζ 2

j requires one matrix-vector and one scalar product,



324 Luca Gerardo-Giorda, Lucia Mirabella, and Mauro Peregoand Alessandro Veneziani

and we denote byK ε the stiffness matrix associated with (11). More details on this
estimator, that we do not report for the sake of space, can be found in [9].

2.3 The model adaptive algorithm

Preprocessing

(i) Split the computational domain into non-overlapping subregionsΩ j ( j = 1, ..,N).
(ii) Identify the interfacesΓi j between subdomainsΩi andΩ j .
(iii) Assemble the local matricesB j

uu, B j
ue, B j

eu, B j
ee, andK j

ε .
(iv) Assemble the interface mass matricesMΓi j .

(v) Compute the incomplete ILU factorization of the localB j
uu andB j

ee matrices.

Runtime (time steptn→ tn+1)

(i) Run a Monodomain simulation at timetn+1 over the whole domainΩ .
(ii) Evaluate the model estimator and compute the local indicatorζ 2

j =(u j
M)TK j

εu j
M.

(iii) For all Ω j ( j = 1, ..,N) such thatζ 2
j > τ j , activate Bidomain.

(iv) Run the Optimized Schwarz Algorithm using the solutioncomputed in Step 1
as initial guess. A few iterations are usually enough.

(v) Advance to timetn+1.

3 Preliminary numerical results

Numerical results in this section have the purpose to show the effectiveness of the
model adaptive method: for this reason we consider here only2D simulations. The
numerical tests are run in MatlabR© 7.5. The Bidomain problems are solved by a
flexible GMRES (f-GMRES) right preconditioned by the Block-triangular precon-
ditioner introduced in [4], while the Monodomain problems are solved by a CG
preconditioned by an ILU factorization.
We consider the stripΩ = [0,3]× [0,1] subdivided into the three noverlapping sub-
domainsΩi = [i−1, i]× [0,1], i = 1,2,3. The fibers are oriented with the principal
direction perpendicular to the interfaces, and we impose a stimulus on the whole left
boundary ofΩ1. The well known Rogers-McCulloch ionic model [13] is used.

We plot in Figure 2 the wavefront position at different times(top row), and the ac-
tivated subdomains (bottom row) during depolarization. The advantage of the model
adaptive approach resides in solving only cheap Monodomainproblems for the large
majority of time steps (in a genuine Monodomain setting, without extensions that
were needed by the Hybrodomain approach). In Table 1 we report the relative CPU
gain over a whole heartbeat duration (450ms) for the model adaptive strategy with
respect to the Optimized Schwarz algorithm introduced in [5].
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uOSB uMA

CPU Time 1.000 0.37

Table 1 Relative CPU time:uOSBanduMA computed with 2 Schwarz iterations.

Fig. 2 Propagation of the membrane potential (in red the excited region, top row), and the activated
Bidomain region (in green and marked by “B”, bottom row).

A more detailed presentation of the method will be the subject of a forthcoming
work. Further work needs to be done to identify the proper trade-off between the
number of subdomains, and the size of the Bidomain region surrounding the wave-
front, and to properly handle the processors load balance ina parallel architecture.
Also, dynamical allocation of tasks is under investigationto properly balance, in
real problems, the load of each processor in the parallel solver.
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A new interface cement equilibrated mortar
method with Ventcel conditions

Caroline Japhet1, Yvon Maday2, and Fŕed́eric Nataf3

1 Introduction

For many applications in mechanics or fluid dynamics, one need to use different
discretizations in different regions of the computationaldomain to match with the
physical scales. Mortar methods [2] are domain decomposition techniques based on
a weak coupling between subdomains and enable the use of nonconforming grids.
On the other hand, optimized Schwarz methods [4, 11, 9, 7, 5],based on Robin
or Ventcel transmission conditions and motivated by the physics of the underlying
problem, greatly enhance the information exchange betweensubdomains and lead to
robust and fast algorithms. Moreover, the Ventcel conditions reduce dramatically the
convergence factor of the Schwarz algorithm compared to Robin conditions [7, 5].

In the finite element case, the NICEM method [6, 8], a new interface cement
using Robin conditions and corresponding to an equilibrated mortar approach (i.e.
there is no master and slave sides) has been developed for Schwarz type methods.

In this paper we extend this approach to Ventcel conditions.

We first consider the problem at the continuous level: findu such that

(Id−∆)u = f in Ω (1)

u = 0 on∂Ω , (2)

where Ω is a C 1,1 (or convex polygon in 2D or polyhedron in 3D) domain of
IRd, d = 2 or 3, andf is given inL2(Ω). We assume thatΩ is decomposed into

K non-overlapping subdomains:Ω = ∪K
k=1Ω k

. We suppose that the subdomains
Ω k, 1≤ k≤ K are eitherC 1,1 or polygons in 2D or polyhedrons in 3D. Letnnnk be
the outward normal fromΩ k. We also assume that this decomposition is geomet-
rically conforming. We introduceΓ k,ℓ the interface of two adjacent subdomains,
Γ k,ℓ = ∂Ω k∩∂Ω ℓ. An optimized Schwarz algorithm for problem (1)-(2) is

(Id−∆)un+1
k = f in Ω k

un+1
k = 0 on∂Ω k∩∂Ω

Bk,ℓ(u
n+1
k ) = Bk,ℓ(un

ℓ) onΓ k,ℓ
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where(Bk,ℓ)1≤k,ℓ≤K,k6=ℓ is the chosen transmission operator on the interface be-
tween subdomainsΩ k andΩ ℓ:

Robin case:Bk,ℓϕ = ∂nnnϕ +αϕ
Ventcel case:Bk,ℓϕ = ∂nnnϕ +αϕ−β∆τk,ℓϕ,

where∆τk,ℓ stands for the Laplace-Beltrami operator onΓ k,ℓ, andα,β > 0 are given.
In order to match Ventcel conditions in the non-conforming discrete case, we need
to introduce a new independent entity representing the normal derivative of the solu-
tion on the interface as in the NICEM method [6, 8]. We thus usea Petrov Galerkin
approach instead of Galerkin approximations as in standardmortar methods.

In Sect. 2 we recall the method at the continuous level. Then in Sect. 3, we present
the method in the non-conforming discrete case and the discrete algorithm with
Ventcel transmission conditions. We finally present in Sect. 4 simulations for two
and twenty-five subdomains. The numerical analysis will be done in future paper.

2 Definition of the problem

The variational statement of the problem (1)-(2) is: Findu∈ H1
0(Ω) such that

∫

Ω
(∇u∇v+uv)dx=

∫

Ω
f vdx, ∀v∈ H1

0(Ω). (3)

We introduce the spaceH1
∗ (Ω k) defined by

H1
∗ (Ω k) = {ϕ ∈ H1(Ω k), ϕ = 0 over∂Ω ∩∂Ω k}.

In order to glue non-conforming grids with Ventcel transmission conditions, denot-
ing byv theK-tuple(v1, ...,vK), we introduce the following constrained space,

V = {(v,q) ∈
(

K

∏
k=1

H1
∗ (Ω k)

)
×
(

K

∏
k=1

H−1/2(∂Ω k)

)
,

vk = vℓ andqk =−qℓ overΓ k,ℓ, ∀k, ℓ}. (4)

Then, problem (3) is equivalent to the following one [8]: Find (u, p) ∈ V such that

K

∑
k=1

∫

Ωk
(∇uk∇vk+ukvk)dx−

K

∑
k=1

H−1/2(∂Ωk) < pk,vk >H1/2(∂Ωk)

=
K

∑
k=1

∫

Ωk
fkvkdx, ∀v∈

K

∏
k=1

H1
∗ (Ω k).

Being equivalent with (1)-(2), wherepk = ∂nnnkuover∂Ω k, this problem is well posed.
Let us describe the method in the non-conforming discrete case.
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3 Non-conforming discrete case with Ventcel conditions

3.1 Local problem

We introduce now the discrete spaces. EachΩ k is provided with its own meshT k
h ,

such thatΩ k
= ∪T∈T k

h
T, 1 ≤ k ≤ K. For T ∈ T k

h , let hT be the diameter ofT

andh the discretization parameter:h = max1≤k≤K hk with hk = maxT∈T k
h

hT . We

suppose thatT k
h is uniformly regular and that the sets belonging to the meshes

are of simplicial type (triangles or tetrahedra). LetPM(T) denote the space of
all polynomials defined over T of total degree less than or equal to M. The finite
elements are of lagrangian type, of classC 0. We define over eachΩ k two con-

forming spacesYk
h andXk

h by : Yk
h = {vh,k ∈ C 0(Ω k

), vh,k|T ∈PM(T), ∀T ∈ T k
h },

Xk
h = {vh,k ∈Yk

h , vh,k|∂Ωk∩∂Ω = 0}. The space of traces over eachΓ k,ℓ of elements

of Yk
h is a finite element space denoted byY k,ℓ

h . With each interfaceΓ k,ℓ, we asso-

ciate a subspacẽWk,ℓ
h of Y k,ℓ

h in the same spirit as in the mortar element method [2]
in 2D or [3, 1] for aP1-discretization in 3D.

More precisely, letT be the restriction toΓ k,ℓ of the triangulationT k
h . In 2D,

T has two end points that we denote asxk,ℓ
0 andxk,ℓ

n that belong to the set of vertices

of the corresponding triangulation ofΓ k,ℓ : xk,ℓ
0 ,xk,ℓ

1 , ...,xk,ℓ
n−1,x

k,ℓ
n . The spacẽWk,ℓ

h is

then the subspace of those elements ofY k,ℓ
h that are polynomials of degree≤M−1

over both[xk,ℓ
0 ,xk,ℓ

1 ] and[xk,ℓ
n−1,x

k,ℓ
n ].

In 3D, we suppose that all the vertices of the boundary ofΓ k,ℓ are connected to
zero, one, or two vertices in the interior ofΓ k,ℓ. Let V , V0, ∂V denote respectively
the set of all the vertices ofT , the vertices in the interior ofΓ k,ℓ, and the vertices
on the boundary ofΓ k,ℓ. Let S(T ) be the space of piecewise linear functions with
respect toT which are continuous onΓ k,ℓ and vanish on its boundary. We denote by
Φa, a∈V the finite element basis functions. Thus,S(T ) = span{Φa : a∈V0}. For
a∈ V , let σa :=

⋃{T ∈T : a∈ T}, Na := {b∈ V0 : b∈ σa}, andN :=∪a∈∂V Na.
Let Tc be the set of trianglesT ∈T which have all their vertices on the boundary of
Γ k,ℓ. ForT ∈Tc, we denote bycT the only vertex ofT that has no interior neighbor.
Let Nc denote the verticesaT of N which belong to a triangle adjacent to a triangle
T ∈Tc. We introduceΦ̂a defined as follows:

Φ̂a :=





Φa, a∈ V0\N
Φa+ ∑

b∈∂V ∩σa

Ab,aΦb, a∈N \Nc

ΦaT + ∑
b∈∂V ∩σaT

Ab,aT Φb+ΦcT , a= aT ∈Nc

.

The weights are defined such that [3]:Ac,a +Ac,b = 1 and |T2,b|Ac,a = |T2,a|Ac,b,
for all boundary nodesc∈ ∂V connected to two interior nodesa andb. HereT2,a

(resp.T2,b) denote the adjacent triangle toabchavinga (resp.b) as a vertex and its
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two others vertices on∂V . For all boundary nodesc∈ ∂V connected to only one
interior nodea, the weights areAc,a = 1.

The spaceW̃k,ℓ
h is then defined bỹWk,ℓ

h := span{Φ̂a, a∈ V0}. ThenW̃k
h is the

product space of thẽWk,ℓ
h over eachℓ such thatΓ k,ℓ 6= /0.

We introduce now the discrete problem. Let∇τk,ℓ be the gradient operator on

Γ k,ℓ. We define the discrete constrained space as follows:

Vh = {(uh, ph
) ∈
(

K

∏
k=1

Xk
h

)
×
(

K

∏
k=1

W̃k
h

)
,

∫

Γ k,ℓ
((ph,k+αuh,k)− (−ph,ℓ+αuh,ℓ))ψh,k,ℓ+

∫

Γ k,ℓ
β∇τk,ℓ(uh,k−uh,ℓ)∇τk,ℓψh,k,ℓ

−
∫

∂Γk,ℓ

β
(
∇τk,ℓuh,k−∇τk,ℓuh,ℓ

)
ψh,k,ℓ = 0, ∀ψh,k,ℓ ∈ W̃k,ℓ

h }, (5)

and the discrete problem is the following one : Find(uh, ph
) ∈ Vh such that

∀vh = (vh,1, ...vh,K) ∈∏K
k=1Xk

h ,

K

∑
k=1

∫

Ωk

(
∇uh,k∇vh,k+uh,kvh,k

)
dx−

K

∑
k=1

∫

∂Ωk
ph,kvh,kds=

K

∑
k=1

∫

Ωk
fkvh,kdx. (6)

Let us describe the algorithm in the discrete case.

3.2 Iterative algorithm

We restrict ourselves to the presentation of the algorithm in 2D.
The recommended approach to find the solution of the previousdiscrete problem

is a GMRES acceleration [12] of the iterative Schwarz algorithm. For the sake of
clarity, let us present the plain Jacobi algorithm applied to the discrete Schwarz
algorithm : let(un

h,k, p
n
h,k) ∈ Xk

h ×W̃k
h be a discrete approximation of(u, p) in Ω k at

stepn. Then,(un+1
h,k , pn+1

h,k ) is the solution inXk
h ×W̃k

h of

∫

Ωk

(
∇un+1

h,k ∇vh,k+un+1
h,k vh,k

)
dx−

∫

∂Ωk
pn+1

h,k vh,kds=
∫

Ωk
fkvh,kdx, ∀vh,k ∈ Xk

h , (7)
∫

Γ k,ℓ

(
(pn+1

h,k +αun+1
h,k )ψh,k,ℓ+β∇τk,ℓu

n+1
k ∇τk,ℓψh,k,ℓ

)
−
∫

∂Γk,ℓ

β∇τk,ℓu
n+1
h,k ψh,k,ℓ

=
∫

Γ k,ℓ

(
(−pn

h,ℓ+αun
h,ℓ)ψh,k,ℓ+β∇τk,ℓu

n
ℓ∇τk,ℓψh,k,ℓ

)

−
∫

∂Γk,ℓ

β∇τk,ℓu
n
h,ℓψh,k,ℓ, ∀ψh,k,ℓ ∈ W̃k,ℓ

h . (8)
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An initial guess(gk,ℓ) is given on each interfaceΓk,ℓ, and by convention for the first
iterate, the right-hand side in (8) is given bygk,ℓ.

4 Numerical results

In this part, we consider aP1 finite element approximation. Problem (6) is a square
linear system, invertible in the various numerical tests weperformed, the results pre-
sented below being some of them. We study the numerical erroranalysis for problem
(6), as well as the convergence of the algorithm (7)-(8) withVentcel compared to
Robin (i.e.β = 0) transmissions conditions.

We consider the initial problem with exact solutionu(x,y) = x3y2+sin(xy). The
domain is the unit squareΩ = (0,1)× (0,1).

We decomposeΩ into non-overlapping subdomains with meshes generated in an
independent manner. On Fig. 1, we consider the case of 2 non-conforming meshes
(on the left), and the case of 25 non-conforming meshes (on the right). In the sequel,
for the error curves versush, the computed solution is the solution at convergence of
the discrete algorithm (7)-(8), with a stopping criterion on theL2 norm of the jumps
of the interface conditions that must be smaller than 10−14.

4.1 Choice of the Ventcel parametersα,β

In our numerical results, the Ventcel parameters are obtained by minimizing the
convergence factor (depending on the mesh size in that case). In the conforming two
subdomains case, with constant mesh sizeh and an interface of lengthL, the optimal
theoretical values of the Ventcel parametersα,β which minimize the convergence

Fig. 1 Nonconforming domain decomposition in 2 domains (left), and 25 domains (right)
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factor at the continuous level are [5]:

α∗ = k2
max

√
k2
min+1−k2

min

√
k2
max+1

√
2(k2

max−k2
min)
((√

k2
max+1−

√
k2
min+1

)(
(k2

max+1)
√

k2
min+1−(k2

min+1)
√

k2
max+1)

) 1
4

β ∗ =
√

k2
max+1−

√
k2
min+1)

3
4

√
2(k2

max−k2
min)
(
(k2

max+1)
√

k2
min+1−(k2

min+1)
√

k2
max+1

) 1
4
,

(9)

wherekmin andkmaxare respectively the minimum and maximum frequencies which
can be represented on a grid with mesh sizeh, given bykmin =

1
L andkmax=

π
h . In

the non-conforming case, the mesh size is different for eachside of the interface.
Thus, we consider the parameters given by (9) withh= hm denoted by(αm,β m), or
with h= hM denoted by(αM,β M), wherehm andhM are respectively the smallest
and highest step size on the interface. We consider also the Robin case with the

optimal theoretical value given by [5]:α∗R =
(
(π

L )
2+1)

(
( π

hM
)2+1)

) 1
4 .

4.2 Two subdomains case

In this part we consider the 2 non-conforming meshes on the left of Fig. 1. As the
problem (6) depends onα,β , we consider two cases:(α,β ) = (αm,βm) (case (m))
and(α,β )= (αM,βM) (case (M)). In order to observe the error versush, a computed
solution (solution of (6)) corresponds to the solution at convergence of (7)-(8). The
solution with(α,β ) = (αm,βm) is different from the one with(α,β ) = (αM,βM).
We represent on Fig. 2 (left), for both cases, the relativeH1 error (defined as in [8]),
and the relativeL2 error versus the mesh sizeh, in logarithmic scale. We start from
the 2 non-conforming meshes and then refine successively each mesh by dividing
the mesh size by two. We observe similar results for both cases. The results show
that the relativeH1 error tends to zero at the same rate as the mesh sizeh. We also
observe that the relativeL2 error tends to zero at the same rate ash2. We represent
on Fig. 2 (right) the asymptotic performance with optimizedVentcel (i.e.α = αM,
β = βM) or Robin (i.e.α = α∗R, β = 0) conditions, for the Schwarz algorithm (7)-(8)
and for the GMRES algorithm. We simulate directly the error equations,f = 0, and
use a random initial guess so that all the frequency components are present. We plot
the numbern∗ of iterations (taken to reduce the error by a factor 10−6) versush on
a log-log plot. The numerical results show the asymptotic behavior predicted by the
analysis given in [5]:
• n∗ = O(h

1
2 ) for Robin (i.e.α = α∗R, β = 0) with Schwarz as an iterative solver,

• n∗ = O(h
1
4 ) for Robin with GMRES (i.e. Schwarz used as a preconditioner),

• n∗ =O(h
1
4 ) for Ventcel (i.e.α =αM, β = βM) with Schwarz as an iterative solver,

• n∗ = O(h
1
8 ) for Ventcel with GMRES.

We also observe that using Krylov acceleration (GMRES) improves the asymp-
totic performance by a square root.



A new interface cement equilibrated mortar method with Ventcelconditions 333

4.3 Twenty-five subdomains case

We now consider the 25 non-conforming meshes on the right of Fig. 1.
In order to observe theH1 error, each computed solution corresponds to the so-

lution at convergence of (7)-(8). We represent on Fig. 3 (left) the relativeH1 error
versus the mesh sizeh in logarithmic scale. We start from the 25 non-conforming
meshes and then refine successively each mesh by dividing themesh size by two.
The results show that the relativeH1 error tends to zero at the same rate as the mesh
sizeh. On Fig. 3 (right), we study the performance of the algorithm(7)-(8) with
Ventcel and Robin transmission conditions. We simulate directly the error equa-
tions, f = 0, and use a random initial guess on the interfaces. We plot the H1 and
L∞ errors versus the number of iterations. We observe that the number of iterations
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to obtain an error smaller than 10−6 is by a factor 4 higher with optimized Robin
conditions compared to optimized Ventcel conditions. The results are similar for the
H1 andL∞ errors.
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FETI-DP methods for Optimal Control
Problems

Roland Herzog1 and Oliver Rheinbach2

1 Introduction

We consider FETI-DP domain decomposition methods for optimal control problems
of the form

min
y,u

1
2

∫

Ω
(y(x)−yd(x))

2dx+
α
2

∫

Ω
(u(x))2dx, (1)

wherey∈V denotes the unknown state andu∈U the unknown control, subject to
a PDE constraint

a(y,v) = ( f ,v)0+(u,v)0 for all v∈V. (2)

The functionyd denotes a given desired state andα > 0 a cost parameters. By(·, ·)0,
we denote the standardL2 inner product. In this paper,a(·, ·)will be the bilinear form
associated with linear elasticity, i.e.,

a(y,v) = (2µε(y),ε(v))0 + (λ divy,divv)0, (3)

whereµ , andλ are the Laḿe parameters.
The state (displacement field) is sought inV = H1

0(Ω ,∂ΩD)
2 = {y∈ H1(Ω)2 :

y= 0 on∂ΩD}, whereΩ ⊂ R2 and∂ΩD is part of its boundary. For simplicity, we
consider the case of volume control, i.e.,U = L2(Ω)2.

Dual-primal FETI methods were first introduced by Farhat, Lesoinne, Le Tallec,
Pierson, and Rixen [3] and have successfully scaled to 105 processor cores [6]. In [8]
a first convergence bound for scalar problems in 2D was provided. Numerical scal-
ability for FETI-DP methods applied to linear elasticity problems was first proven
in [7].

Balancing Neumann-Neumann domain decomposition methods for the optimal
control of scalar problems have been considered in Heinkenschloss and Nguyen [5,
4]. There, local optimal control problems on non-overlapping subdomains are con-
sidered and a Balancing Neumann-Neumann preconditioner isconstructed for the
indefinite Schur complement. Multigrid methods have, of course, also been consid-
ered for optimal control problems, see, e.g., [10]. A reviewof block approaches to
optimal control problems can be found in [9]. A recent block approach can be found
in [11].

1 Fakulẗat für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, Germany, e-mail:
roland.herzog@mathematik.tu-chemnitz.de ·2 Mathematisches Institut, Universität
zu Köln, Weyertal 86-90, 50931 K̈oln, Germany, e-mail:orheinba@mi.uni-koeln.de
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We discretizey by P1 finite elements,u by P0 finite elements and obtain the
discrete problem

min
y,u

1
2

yTMy+
α
2

uTQu−cTy (4)

s.t. Ay= f +Nu. (5)

2 Discrete Problem and Domain Decomposition

The necessary and sufficient optimality conditions are given by the discrete system



M 0 AT

0 αQ −NT

A −N 0






y
u
p


=




c
0
f


 (6)

whereA∈ Rn×n, Q∈ Rm×m, M ∈ Rn×n. Here,A= AT = (a(ϕi ,ϕ j))i, j is a stiffness
matrix, whereasQ= (

〈
ψi ,ψ j

〉
)i, j , M = (

〈
ψi ,ψ j

〉
)i, j andN = (

〈
ϕi ,ψ j

〉
)i, j are mass

matrices. We will denote the block system (6) by

Kx= b. (7)

We decomposeΩ into N nonoverlapping subdomainsΩi , i = 1, . . . ,N, i.e. Ω =⋃N
i=1 Ω i , Ωi ∩Ω j = /0 if i 6= j . Each subdomain is the union of shape-regular finite

element cells with matching nodes across the interface,Γ :=
⋃

i 6= j ∂Ωi∩∂Ω j , where
∂Ωi ,∂Ω j are the boundaries ofΩi ,Ω j , respectively.

For each subdomain, we assemble the local problemK(i), which represents the
discrete optimality system for (1)–(2), restricted to the subdomainΩi . Let us denote,
for each subdomain, the variables that are on the subdomain interface by an index
Γ and the interior unknowns byI . Note that the interior variables also comprise the
variables on the Neumann boundary∂Ω \ ∂ΩD. In block form, we can now write
the subdomain problem matricesK(i), i = 1, . . . ,N as

K(i) =




M(i) 0 A(i)T

0 αQ(i) −N(i)T

A(i) −N(i) 0


=




M(i)
II M(i)

IΓ 0 A(i)
II A(i)

IΓ
M(i)T

IΓ M(i)
Γ Γ 0 A(i)T

IΓ A(i)
Γ Γ

0 0 αQ(i)
II −N(i)T

II −N(i)T
Γ I

A(i)
II A(i)

IΓ −N(i)
II 0 0

A(i)T
IΓ A(i)

Γ Γ −N(i)
Γ I 0 0



. (8)

We define the block matrices

K(i)
II =




M(i)
II 0 A(i)

II

0 αQ(i)
II −N(i)

II

A(i)
II −N(i)

II 0


 , K(i)

Γ Γ =

[
M(i)

Γ Γ A(i)
Γ Γ

A(i)
Γ Γ 0

]
, K(i)

IΓ =




M(i)
IΓ A(i)

IΓ
0 −N(i)T

Γ I

A(i)
IΓ 0


 . (9)
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Following the approach of FETI-type methods a continuity constraintBx= 0 is
introduced to enforce the continuity ofy and p across each interfaceΓ . The intro-
duction of Lagrange multipliersλ then leads to the FETI master system




K(1) B̂(1)

. ..
...

K(N) B̂(N)

B̂(1) . . . B̂(N) 0







x(1)

...
x(N)

λ


=




b(1)

...
b(N)

0


 . (10)

In the context of our optimal control problem,B̂(i) is of the formB̂(i)=
[

B(i)
y 0 B(i)

p

]
.

Note that it is not appropriate to enfore continuity for the control variableu, since it
is an algebraic variable and has been discretized by discontinuous elements.

In dual-primal FETI methods the continuity constraint is enforced on a subset of
the variables on the interfaceΓ by partial finite element assembly. These variables
are denoted by the indexΠ (primal). Here, for our 2D problems, we use primal
vertex variables. For the remaining interface variables, the continuity is enforced by
Lagrange multipliers. Such interface variables are denoted by the index∆ (dual).
We thus write the matricesM(i),A(i),N(i) appearing in (8) in the form

M(i) =




M(i)
II M(i)

I∆ M(i)
IΠ

M(i)T
I∆ M(i)

∆∆ M(i)
∆Π

M(i)T
IΠ M(i)T

I∆ M(i)
ΠΠ


 , A(i) =




A(i)
II A(i)

I∆ A(i)
IΠ

A(i)T
I∆ A(i)

∆∆ A(i)
∆Π

A(i)T
IΠ A(i)T

I∆ A(i)
ΠΠ


 , N(i) =




N(i)
II

N(i)
∆ I

N(i)
Π I


 , (11)

andQ(i) =Q(i)
II . Inserting this block form into (8), we obtain the block form of K(i)

ΠΠ ,

K(i)
ΠΠ =

[
M(i)

ΠΠ A(i)T
ΠΠ

A(i)
ΠΠ 0

]
. (12)

For the assembly of the primal variablesyΠ and pΠ , we define the combined

assembly operator̂R(i)T
Π , i.e., we obtain for the assembled global matrixK̃ΠΠ

K̃ΠΠ = R̂T
Π KΠΠ R̂Π =

[
R̂(1)T

Π , . . . , R̂(N)T
Π

]



K(1)
ΠΠ 0

...

0 K(N)
ΠΠ







R̂(1)
Π

R̂(N)
Π




=
N

∑
i=1

R̂(i)T
Π K(i)

ΠΠ R̂(i)
Π =

N

∑
i=1

[
R(i)T

Π 0

0 R(i)T
Π

][
M(i)

ΠΠ A(i)T
ΠΠ

A(i)
ΠΠ 0

][
R(i)

Π 0

0 R(i)
Π

]

=

[
M̃ΠΠ ÃT

ΠΠ
ÃΠΠ 0

]
. (13)

The partially assembled system matrix is then
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K̃ =




K(1)
BB K̃(1)

BΠ
.. .

...

K(N)
BB K̃(N)

BΠ
K̃(1)T

BΠ . . . K̃(N)T
BΠ K̃ΠΠ




(14)

with the blocks

K(i)
BB =




M(i)
II M(i)

I∆ 0 A(i)
II A(i)

I∆
M(i)T

I∆ M(i)
∆∆ 0 A(i)T

I∆ A(i)
∆∆

0 0 αQ(i)
II −N(i)T

II −N(i)T
∆ I

A(i)
II A(i)

I∆ −N(i)
II 0 0

A(i)T
I∆ A(i)

∆∆ −N(i)
∆ I 0 0



, (15)

and

K̃(i)T
BΠ =

[
M̃(i)T

IΠ M̃(i)T
∆Π 0 Ã(i)T

IΠ Ã(i)T
∆Π

Ã(i)T
IΠ Ã(i)T

∆Π Ñ(i)T
IΠ 0 0

]

=

[
R(i)T

Π 0

0 R(i)T
Π

][
M̃(i)T

IΠ M̃(i)T
∆Π 0 Ã(i)T

IΠ Ã(i)T
∆Π

Ã(i)T
IΠ Ã(i)T

∆Π Ñ(i)T
IΠ 0 0

]
.

(16)

Now, we can formulate the FETI-DP master system,

[
K̃ B̂T

B̂ 0

][
x̃
λ

]
=

[
b̃
0

]
, u∈ Rn, λ ∈ Rm, (17)

from which the solution of the original finite element problem (6) can be obtained by
averaging the solution ˜x from (17) in the interface variables. Here, the jump operator
B̂ only acts on the variablesy∆ andp∆ . The vectors ˜x andb̃ have the form

xT =
[
[y(i)TI ,y(i)T∆ ,u(i)TI , p(i)TI , p(i)T∆ ], . . . , [y(N)T

I ,y(N)T
∆ ,u(N)T

I , p(N)T
I , p(N)T

∆ ], [ỹT
Π , p̃T

Π ]
]

bT =
[
[c(i)TI ,c(i)T∆ ,0, f (i)TI , f (i)T∆ ], . . . , [c(N)T

I ,c(N)T
∆ ,0, f (N)T

I , f (N)T
∆ ], [c̃T

Π , f̃ T
Π ]
]

After the elimination ofx in (17) it remains to solve a system

Fλ = d (18)

whereF is symmetric indefinite, i.e., with positive and negative eigenvalues, by a
suitable Krylov subspace method. The FETI-DP coarse problem is

S̃ΠΠ = K̃ΠΠ −
N

∑
i=1

K̃(i)
BΠ K̃(i)

ΠΠ K̃(i)T
BΠ . (19)
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To define the Dirichlet preconditioner, we consider the block submatrices ofK(i)

defined in (9),

K(i) =

[
K(i)

II K(i)T
Γ I

K(i)
Γ I K(i)

Γ Γ

]
. (20)

Let us define the Schur complement

SΓ Γ =
N

∑
i=1

(K(i)
Γ Γ −K(i)

Γ I (K
(i)
II )
−1K(i)T

Γ I ) =
N

∑
i=1

S(i)Γ Γ , (21)

which can be computed completely in parallel. The Dirichletpreconditioner is then
given in matrix form by

M−1 = BDR̂T
Γ SΓ Γ R̂Γ BT

D =
N

∑
i=1

B(i)
D R̂(i)T

Γ S(i)Γ Γ R̂(i)
Γ B(i)T

D , (22)

whereBD is a variant of the jump operatorB scaled by the inverse multiplicity

of the node. The matricesR(i)
Γ are simple restriction operators which restrict the

nonprimal degrees of freedom of a subdomain to the interface, i.e. R̂(i)
Γ =

[
0 I
0 0

]
, if

the variables are numbered[I ,∆ ] on the right hand side and[∆ ,Π ] on the left hand
side of the operator.

3 Well-posedness of the local problems

In [4] the well-posedness of the local subdomain problems for the balancing
Neumann-Neumann method was considered. These considerations are also valid
for FETI-1-type methods. In contrast to FETI-1 and Balancing Neumann-Neumann
methods the coarse problems of the more recent FETI-DP and BDDC methods are
constructed from partial finite element assembly.

We therefore briefly comment on the well-posedness of the subdomain problems,

i.e. the local blocksK(i)
BB in (14), as well as the coarse problem (19). Each blockK(i)

BB
represents a discrete optimality system local to the subdomainΩi . In contrast to the
original problem (2), natural (stress) boundary conditions are imposed on∂Ωi for
the statey, except in the (few) primal degrees of freedom on the interface boundary,
and except for the degrees of freedom on∂Ωi ∩ ∂ΩD, where Dirichlet conditions
apply. These conditions are sufficient to exclude rigid bodymotions. Consequently,
the local elasticity system (the fourA blocks in (15) combined), is well posed, and
thus it is straightforward to show that also the optimality system is well posed,

whenceK(i)
BB non-singular. The non-singularity of the total matrix̃K in (14) can be

shown along the same lines. And thus the non-singularity of the Schur complement
(19) follows.
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Fig. 1 Model problem: Undeformed configuration, desired state, and solution computed using
FETI-DP.

Finally, (21) is well defined sinceK(i)
II is non-singular. Note that eachK(i)

II rep-
resents a discrete optimality system with all-Dirichlet boundary conditions on∂Ωi

for the state and adjoint states, with these boundary degrees of freedom removed.

4 Numerical Results

Here we will report on the use of GMRES applied to the symmetric indefinite FETI-
DP system (18), using the symmetric indefinite Dirichlet preconditioner (22). Note
that there is no theory for the convergence of GMRES in this situation. The numeri-
cal results are nevertheless very encouraging. We also report on the convergence of
QMR. The stopping criterion is the relative reduction of thepreconditioned residual
by 10 orders of magnitude. In [5, 4] a symmetric QMR was used for the Neumann-
Neumann method. The numerical results are nevertheless very encouraging. The
iteration counts using QMR and GMRES are very similar.

We consider the volume control of a linear elastic problem onthe unit square.
The desired displacementyd is a obtained from applying a linear transformation
to the unit square, i.e.,yd(x,y) = (2

5x, 2
5y)T ; see Fig. 1. The Dirichlet boundary is

on the left. The material data isE = 1 (Young’s modulus) andν = 0.3 (Poisson’s
ratio) in all cases, which are related to the Lamé constants viaE = µ (2µ+3λ )

µ+λ and

ν = λ
2(µ+λ ) .

We numerically observe scalability with respect to the number of subdomains
as known for CG in the symmetric positive case, i.e., the number of iterations ap-
proaches a limit for an increasing number of subdomainsN if H/h is maintained
fixed, see Tab. 1. Moreover the number of iterations grows only weakly withH/h
for a fixed number of subdomainsN, see Tab. 2. In Tab. 3 we see that the methods
shows robustness with respect toα. In Tab. 4 we report on the strong parallel scal-
ability of the largest problem from Tab. 2 using the GMRES implementation from
PETSc [1]. We have used UMFPACK 4.3 [2] for the solution of thesubdomain
problems.
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DIRICHLET PRECONDITIONER - Weak Scaling - GMRES and QMR

N #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr

H/h= 2 H/h= 4 H/h= 8
2×2 25 32 8 9 81 128 11 11 289 512 13 14
4×4 81 128 14 14 289 512 19 20 1089 2048 25 27
6×6 169 288 15 16 625 1152 22 24 2401 4608 30 32
8×8 289 512 15 16 1089 2048 24 25 4225 8192 32 34
10×10 441 800 16 16 1681 3200 24 25 6561 12800 33 36
12×12 625 1152 16 17 2401 4608 25 26 9409 18432 34 38
16×16 1089 2048 16 17 4225 8192 25 26 16641 32768 35 38
20×20 1681 3200 16 17 6561 12800 25 26 25921 51200 36 39
24×24 2401 4608 16 18 9409 18432 25 26 37249 73728 36 39
28×28 3249 6272 16 18 12769 25088 26 26 50625 100352 36 40
32×32 4225 8192 16 18 16641 32768 26 27 66049 131072 37 40
36×36 5329 10368 16 18 21025 41472 26 27 83521 165888 37 41
40×40 6561 12800 16 18 25921 51200 26 27 103041 204800 37 41
48×48 9409 18432 16 18 37249 73728 26 27 148225 294912 37 41
56×56 12769 25088 16 18 50625 100352 26 27 201601 401408 37 41
64×64 16641 32768 16 19 66049 131072 26 27 263169 524288 37 41

Table 1 Weak scaling. The number of GMRES and QMR iterations is scalablewith respect to
the number of subdomains, i.e., it is bounded independently ofN. α = 0.01. Material parameters
E = 1, ν = 0.3. The iteration is stopped when the preconditioned residual has been reduced by 10
orders of magnitudes. The largest problem has 2101252= 4×263169+2×524288 d.o.f.
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DIRICHLET PRECONDITIONER - GMRES and QMR

H/h #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr

N = 2×2 N = 3×3 N = 4×4
2 25 32 8 9 49 72 12 13 81 128 14 14
4 81 128 11 11 169 288 16 17 289 512 19 20
6 169 288 12 12 361 648 18 19 625 1152 23 24
8 289 512 13 14 625 1152 20 21 1089 2048 25 27
12 625 1152 14 14 1369 2592 23 25 2401 4608 28 31
16 1089 2048 14 15 2401 4609 25 27 4225 8192 31 34
24 2401 4608 16 16 5329 10368 28 30 9409 18432 35 36
32 4225 8192 16 17 9409 18432 29 30 16641 32768 37 38
48 9409 18432 17 18 21025 41472 32 33 37249 73728 40 43
64 16641 32768 18 19 37249 73728 33 35 66049 131072 43 45
96 37249 73728 19 19 83521 165888 34 38 148225 294912 46 50
128 66049 131072 19 20 148225 294912 36 39 263169 524288 49 52

Table 2 The number of GMRES and QMR iterations grows only weakly with the subdomain size.
α = 0.01. Material parametersE = 1, ν = 0.3. The iteration is stopped when the preconditioned
residual has been reduced by 10 orders of magnitudes. The largestproblem has 2102452= 2×
2×263169+524288 d.o.f.

DIRICHLET PRECONDITIONER
- GMRES and QMR

N H/h α #gmres #qmr
8×8 4 1 19 20
8×8 4 0.1 22 22
8×8 4 0.01 24 25
8×8 4 0.001 23 24
8×8 4 0.0001 19 21

Table 3 Dependence onα. The preconditioner is robust with respect to the choice of thecost
parameterα > 0.

#Cores N H/h #Points #Elem d.o.f. #gmres Time
1 4×4 64 66049 131072 526340 49 89.7s
2 4×4 64 66049 131072 526340 49 45.6s
4 4×4 64 66049 131072 526340 49 23.9s
8 4×4 64 66049 131072 526340 49 14.2s
16 4×4 64 66049 131072 526340 49 10.7s

Table 4 Strong parallel scalability on a 16 core Opteron 8380 server (2.5 Ghz) for one of the
problems from Tab. 2.

10. Scḧoberl, J., Simon, R., Zulehner, W.: A robust multigrid method for elliptic optimal control
problems. SIAM J. Numer. Anal.49(4), 1482–1503 (2011)

11. Scḧoberl, J., Zulehner, W.: Symmetric indefinite preconditionersfor saddle point problems
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Domain decomposition methods in Feel++

Abdoulaye Samaḱe1, Vincent Chabannes1, Christophe Picard1, and Christophe
Prud’homme2

1 Introduction

Libraries to solve problems arising from partial differential equations (PDEs) through
generalized Galerkin methods are a common tool among mathematicians and engi-
neers. However, most libraries end up specializing in a typeof equation, e.g. Navier-
Stokes or linear elasticity models, or a specific type of numerical method, e.g. finite
elements. The increasing complexity of differential models and the implementation
of state of the art robust numerical methods, demand from scientific computing plat-
forms general and clear enough languages to express such problems and provide
a wealth of solution algorithms available in a minimal amount of code but maxi-
mum mathematical control. There are many freely available libraries which offer
the capabilities described previously to a certain extent.To name a few: the Freefem
software family [6, 9], the Fenics project [10], Getdp [8] orGetfem++ [17], or li-
braries or frameworks such as deal.II (C++) [2], Sundance (C++) [11], Analysa
(Scheme) [1].

The library we present in this paper, called FEEL++, Finite Element Embedded
Language inC++, see [14, 15], provides also a clear and easy to use interface to
solve complex PDE systems. It aims at bringing the scientificcommunity a tool for
the implementation of advanced numerical methods and high performance compu-
ting. Some recent applications of FEEL++ to multiphysics problems can be found
in the literature, seee.g.[13, 7, 5].

FEEL++ relies on a so-calleddomain specific embedded language(DSEL) de-
signed to closely match the Galerkin mathematical framework. In computer science,
DS(E)Ls are used to partition complexity and in our case the DSEL splits low level
mathematics and computer science on one side leaving the FEEL++ developer to
enhance them and high level mathematics as well as physical applications to the
other side which are left to the FEEL++ user. This enables using FEEL++ for teach-
ing purposes, solving complex problems with multiple physics and scales or rapid
prototyping of new methods, schemes or algorithms.

The DSEL on FEEL++ provides access to powerful, yet with a simple and seam-
less interface, tools such as interpolation or the clear translation of a wide range
of variational formulations into the variational embeddedlanguage. Combined with
this robust engine, lie also state of the art arbitrary orderfinite elements — including

1Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble 1, BP53 38041 Greno-
ble Cedex 9, France, Tel.: +33476635497, Fax: +33476631263, e-mail: {abdoulaye.
samake}{vincent.chabannes}{christophe.picard}@imag. fr ·2 Universit́e de
Strasbourg / CNRS, IRMA / UMR 7501, Strasbourg, F-67000, France,e-mail: prudhomme@
unistra.fr
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handling high order geometrical approximations, — high order quadrature formulas
and robust nodal configuration sets. The tools at the user’s disposal grant the flexibil-
ity to implement numerical methods that cover a large combination of choices from
meshes, function spaces or quadrature points using the sameintegrated language
and control at each stage of the solution process the numerical approximations.

This paper presents our ongoing work on building a computational framework
for domain decomposition methods in FEEL++ including overlapping and nonover-
lapping Schwarz methods (conforming and non-conforming) and mortar method.
The complete examples are available in FEEL++ sources. Note that examples using
the three fields method are also available in FEEL++.

The framework main objectives consist in (i) reproducing and comparing easily
several of methods in the literature (ii) developing a teaching and research program-
ming environment (iii) providing the methods at the functional level or at the alge-
braic level. In this context we have also developed also two alternatives: one which
lets the user control the MPI communications and one which hides completely the
MPI communications.

2 Schwarz Methods

Let Ω be a domain ofRd, d = 1,2,3, and ∂Ω its boundary. We look foru the
solution of the problem:

Lu= f in Ω , u= g on ∂Ω (1)

whereL is a linear partial differential operator, andf and g are given func-
tions. LetΩi(i = 1, ...,N, N ∈ N, N ≥ 2) the subdomain partitions ofΩ such that
Ω = ∪N

i=1Ω i and Γi j = ∂Ωi ∩Ω j the interface between neighboring subdomains
Ωi and Ω j . We denoteVΩi the set of neighbors subdomains ofΩi . In the case
of nonoverlapping subdomainsΓi j = Γji . We are interested in the overlapping and
nonoverlapping alternating Schwarz methods[16, 19] as solver in the general non-
matching grids and arbitrary number of subdomains. The generic Schwarz additive
algorithm is given by (2) whereu0

i is known onΓi j , j ∈ VΩi , k ≥ 1 the Schwarz
iteration index andCi is a partial differential operator.

Luk
i = f in Ωi , uk

i = g on ∂Ωi \Γi j , Ciu
k
i =Ciu

k−1
j on Γi j (2)

The algorithm (2) extends easily to the multiplicative version of Schwarz meth-
ods and treats different types of artificial boundary conditions such as Dirichlet-
Dirichlet (DD), Dirichlet-Neumann (DN), Neumann-Neumann(NN) and Robin-
Robin (RR) (see [20, 16, 19]) according the choice of the operatorCi that is assumed
linear in our case. The above algorithm can also adapt to relaxation techniques(see
[16]) necessary for the convergence of some types of interface conditions such as
DN and NN without overlap.
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In the following subsections 2.1 and 2.2, we discuss two different approaches for
Schwarz methods in FEEL++ namely with explicit communications and with seam-
less communications. In the first approach, we deal different types of Schwarz meth-
ods(Additive, Multiplicative, with(out) Relaxation) with different artificial bound-
ary conditions(DD, DN, NN, RR) while having the ability to process (non-)conforming
meshes as well as being able to control the size of the overlapbetween neighboring
subdomains. In the second approach, we use the parallel datastructures of FEEL++
and the algebraic domain decomposition framework providedby PETSC.

2.1 Explicit Communication Approach

The Schwarz methods are used as solvers and the communications are handled ex-
plicitly by the user. Implementation-wise we use PETSC sequentially even though
the code is parallel usingmpi communicators. It requires explicitly sending and
receiving complex data structures such as mesh data structures and elements of
functions space(traces). A sequential interpolation operator is also used to make
the transfer between the grids (overlapping or not, conforming or not). In this case
each subdomain creates locally its mesh and its function space, the matrices and
vectors associated to the discretization process are completely local.

The variational formulation of the problem (2) in the simplest form (L :=−∆ ) in
the subdomainΩi at iteration numberk using Nitsche’s method (see [12]) in the case
of weak Dirichlet-Dirichlet artificial boundary conditions (Ci = Cj = Id, j ∈ VΩi )
is given by: finduk

i ∈ H1(Ωi) such thata(uk
i ,v) = l(v) ∀v∈ H1(Ωi) where

a(uk
i ,v) :=

∫

Ωi

∇uk
i ·∇v+

∫

∂Ωi

−∂uk
i

∂n
v− ∂v

∂n
uk

i +
γ
h

uk
i v (3)

l(v) :=
∫

Ωi

f v+
∫

∂Ωi\Γi j

(
− ∂v

∂n
+

γ
h

v
)

g+ ∑
j∈VΩi

∫

Γi j

(
− ∂v

∂n
+

γ
h

v
)

uk−1
j (4)

whereγ is a penalization parameter andh the maximum mesh size.
Other variants of artificial boundary conditions such as Dirichlet-Neumann(Ci =

Id, Cj = ∂/∂n, j ∈ VΩi ), Neumann-Neumann(Ci = Cj = ∂/∂n, j ∈ VΩi ) and
Robin-Robin(Ci = Cj = (∂/∂n)+ Id, j ∈ VΩi ) are also treated. In the above vari-
ational formulation, only the terms colored in red in (4) requires communications
between neighboring subdomains for each Schwarz iterationand interpolation be-
tween the grids. Note that the assembly of the other terms of the variational for-
mulation is done once and is purely local. We make use ofBoost.MPI and
Boost.Serialization to ease the transfer of FEEL++ complex data structures
such as meshes and (elements of) function spaces.

Listing 1 Feel++ snippet code for parallel Schwarz algorithm

// Create local mesh and function space on subdomain number i
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auto mesh = createGMSHMesh(_mesh=mesh_type, ...);
auto Xh = space_type::New(mesh);
std::vector<mpi::request> reqs; // vector of Boost.MPI requests
for( int j=0, j< Nneighbors, ++j){

// Extract trace mesh on interface number j
trace_mesh_send[j]=mesh->trace(markedfaces(mesh,j)) ;
// Exchange trace mesh with neighbor subdomain number j
auto req1=comm.isend( j,i,trace_mesh_send[j] );
auto req2=comm.irecv( j,j,trace_mesh_recv[j] );
reqs.push_back(req1); reqs.push_back(req2);

} mpi::wait_all(reqs.begin(), reqs.end()); // wait all requests
for( int j=0, j< Nneighbors, ++j){

// Create trace function space for interface number j
TXh[j] = trace_space_type::New(trace_mesh_recv[j]);
// Create interpolation operator from Xh to TXh[j]
opI[j]=operatorInterpolation(Xh,TXh[j]); }

while(!convergence) { // Schwarz iterations
reqs.clear();
for( int j=0, j< Nneighbors, ++j){

// Non conforming interpolation for interface number j
opI[j]->apply(solution,trace_solution_send[j]);
// Exchange trace solution with neighbor subdomain number j
auto req1=comm.isend( j,i,trace_solution_send[j] );
auto req2=comm.irecv( j,j,trace_solution_recv[j] );
reqs.push_back(req1); reqs.push_back(req2);

} mpi::wait_all(reqs.begin(), reqs.end()); // wait all requests
// Update right hand side for each schwarz iteration

for( int j=0, j< Nneighbors, ++j){
form1 ( _test=Xh,_vector=F ) +=

integrate (elements(trace_mesh_send[j]),
- grad (v) * N() * idv (trace_solution_recv[j])
+penaldir * idv (trace_solution_recv[j]) * id (v)/ hFace ()); }

solve(); }

To illustrate our implementation of the Schwarz method, we consider the problem
(1) over a partition over the domainΩ = [0,1]2 into 128 overlapping subdomains
(16×8) with non matching meshes. The boundary condition and the source write
g(x,y) = 0 and f (x,y) = exp(−10xy)cos(3π

8 )sin(xy).

Fig. 1 Numerical solutions obtained by Schwarz parallel additive algorithm in 2D on 128 proces-
sors(1 subdomain/processor): First schwarz iteration(Left) and solution at convergence(Right)
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The numerical solutions in Figure 1 are obtained usingP2 Lagrange elements.
The precision of the numerical solver is fixed to 1e− 7. The mesh size is 0.01 in
each subdomain and the size of the overlap is 0.02 but we don’t ensure that the grids
are conforming. The total number of degree of freedom is 153600. The number
of Schwarz iterations to convergence is 130 and the relativeL2 error ‖u− uh‖ =
1.164901e− 06. The listing 1 illustrates some aspects of the Schwarz algorithm
using theFeel++ language.

2.2 Seamless Communication Approach

Here we consider the domain decomposition methods with seamless communica-
tions in FEEL++. We provide a parallel data framework: we start with automatic
mesh partitioning using GMSH(Chaco/Metis) — adding information about ghosts
cells with communication between neighbor partitition; — then FEEL++ data struc-
tures are parallel such as meshes, (elements of) function spaces — create a parallel
degrees of freedom table with local and global views; — and finally we use the
PETSC Krylov subspace solvers(KSP) coupled with PETSC preconditioners such
as Block-Jacobi, ASM, GASM. The last preconditioner is an additive variant of the
Schwarz alternating method for the case of many subregion, see [19]. For each sub-
preconditioners(in the subdomains), PETSC allows to choose in the wide range of
sequential preconditioners such, ilu, jacobi, ml.

To illustrate this, we perform a strong scalability test with a Laplace problem in
3D using P3 Lagrange elements (about 8 Millions degrees of freedom). The listing 2
corresponds to the code that allowed us to realize this test.The speedup displayed in
table 1 corresponds to the assembly plus the solve times. We can see that the scaling
is good except for the last configuration where the local problems is too small.

Listing 2 Laplacian Solver using continuous approximation spaces and PETSc in parallel

/ * Create parallel function space and some associated element s * /
auto Xh = space_type::New( _mesh=mesh );
/ * Create the parallel matrix and vector of linear system * /
auto A = backend()->newMatrix(_test=Xh, _trial=Xh);
auto F = backend()->newVector(Xh);
/ * Parallel assembly of the right hand side * /
form1 ( _test=Xh, _vector=F )=

integrate ( _range=elements( mesh ), _expr=f * id ( v ) )
/ * Parallel assembly of the global matrix * /
form2 ( _test=Xh, _trial=Xh, _matrix=A ) =

integrate ( _range=elements( mesh ),
_expr= gradt (u) * trans( grad (v)) );

/ * Apply Dirichlet boundary conditions strongly * /
form2 ( _test=Xh, _trial=Xh, _matrix=A ) +=

on( _range=boundaryfaces(mesh),
_element=u,_rhs=F, _expr=g );

/ * solve system using PETSc parallel solvers/preconditioner s * /
backend()->solve( _matrix=A, _solution=u, _rhs=F );
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Table 1 Strong scalability test

Number of Cores Absolute Times Speedup

1024 41.2 1
2048 18.2 2.26
4096 10 4.12
8192 7 5.88

3 Mortar Method

Consider the problem (1) whereL := −∆
and homogeneous Dirichlet boundary condi-
tions. We assume thatΩ is partitioned into
two nonoverlapping subdomains and it is ad-
dimensional domain (d = 2,3), with a Lips-
chitz boundary∂Ω . We also assume thatf be-
longs toL2(Ω). The main idea of this method
is to enforce the weak continuity between the
solutions on each subdomain. This is achieved
by introducing a Lagrange multiplier corre-
sponding to this connection constraint [3].

Fig. 2 Convergence results for Mortar Ele-
ment Method in 2D withL2 Errors curves

Let us denote byVih the finite element approximation space onΩi , of basis
(ψi, j) j=1,···Ni , i = 1,2, and byWh that ofΓ := ∂Ω1∩ ∂Ω2, of basis(φk)k=1,···K and

Λ :=
{

η ∈ H1/2(Γ ) | η = v|Γ for a suitablev∈ H1(Ω)
}

the trace space. The mor-

tar formulation is given by: fori = 1,2 findui ∈Vi := H1(Ωi), λ ∈Λ such that





∫

Ωi

∇ui ·∇vi±
∫

Γ
λvi =

∫

Ωi

f vi ∀ vi ∈ H1(Ωi)

∫

Γ
λ (u1−u2) = 0 ∀ λ ∈Λ

(5)

Listing 3 Jump terms in the global matrix for mortar formulation

// product function spaces Xh1×Xh2×Λh for Ω1×Ω2×Γ
typedef meshes<mesh1_type,mesh2_type,trace_mesh_type> mesh_t ype;
typedef bases<Lagrange<2>,

Lagrange<3>,
Lagrange<2, Mortar > > basis_type;

typedef FunctionSpace< mesh_type, basis_type > space_type;
auto mesh = meshes( mesh1, mesh2, trace_mesh );
auto Xh = space_type::New( _mesh=mesh );
auto u = Xh->element();
auto u1 = u.element<0>();
auto u2 = u.element<1>();
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auto mu = u.element<2>();
// assembly of jump terms in the global matrix A
auto A = M_backend->newMatrix( _trial=Xh, _test=Xh );
form2 ( _trial=Xh, _test=Xh, _matrix=A ) +=

integrate (elements(Xh->mesh<3>()),

The convergence results in figure 2 are obtained with the solution of the problem
(1) using mortar formulation (5) by splitting the initial domainΩ = [0,1]× [0,1] into
two nonoverlapping subdomainsΩ1 = [0,0.45]× [0,1] andΩ2 = [0.45,1]× [0,1]
with g(x,y) = sin(πx)cos(πy) is the exact solution andf (x,y) = 2π2g the right hand
side. The convergence tests are performed by taking different mesh sizeshΩ1 = h∈
{0.2,0.1,0.05,0.025,0.0125}, hΩ2 = hΩ1 +10−3 and different Lagrange polygonal
ordersPk, k ∈ {1,2,3,4,5}. We plot the linear regression lines of‖u−uh‖L2 ver-
sush, and we retrieve the optimal convergence properties provided by the mortar
method. Note that the above 2D/3D mortar code in Listing 3 is purely sequential,
the parallel version of 2D/3D mortar code for arbitrary number of subdomains is
presented in [18].

4 Conclusion

We presented our ongoing work on building a flexible domain decomposition frame-
work in FEEL++. A lot of work remains to be done, however we have already the
toolbox to reproduce a large range of domain decomposition methods in sequential
and to a lesser extent in parallel. Regarding the Schwarz methods, we are currently
working on having them as preconditioners of Krylov subspace methods and build-
ing coarse grid preconditioners on massively parallel architectures, see [9]. As to
the mortar methods, we have already a 2D/3D parallel code with some simple pre-
conditioner strategy [18] and we develop scalable preconditioners for the constraint
space formulation, see [4].
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Additive Schwarz Method for DG Discretization
of Anisotropic Elliptic Problems

Maksymilian Dryja1, Piotr Krzẏzanowski1, and Marcus Sarkis2

1 Introduction

In the paper we consider a second order elliptic problem withdiscontinuous aniso-
tropic coefficients defined on a polygonal regionΩ . The problem is discretized by
a Discontinuous Galerkin (DG) finite element method with triangular elements and
piecewise linear functions. Our goal is to design and analyze an additive Schwarz
method (ASM), see the book by Toselli and Widlund [4], for solving the resulting
discrete problem with rate of convergence independent of the jumps of the coeffi-
cients. The method is two-level and without overlap ofΩl , the substructures into
which the original regionΩ is partitioned. It is proved that the convergence of the
method is independent of the jumps of the coefficients appearing on triangles in-
side ofΩl , see [3]. It is the same for the jumps appearing on triangles which touch
∂Ωl under additional assumptions on the coefficients, like monotonicity or quasi-
monotonicity. The ASM discussed here is a generalization ofmethod presented in
[1]. Numerical experiments confirm the theoretical results.

The paper is organized as follows. In Section 2, differential and discrete DG
problems are formulated. In Section 3, ASM for solving the discrete problem is
designed and analyzed. Numerical experiments are presented in Section 4.

2 Differential and discrete DG problems

We consider the following elliptic problem: findu∗ ∈ H1
0(Ω) such that

a(u∗,v) = f (v), ∀v∈ H1
0(Ω) (1)

where
a(u,v) =

∫

Ω
ρ(x)∇u·∇vdx, f (v) =

∫

Ω
f vdx,

ρ(x) =
(

ρ11(x) ρ12(x)
ρ21(x) ρ22(x)

)
.

1 University of Warsaw, Poland; e-mail:{m.dryja,p.krzyzanowski}@mimuw.edu.pl ·2
Worcester Polytechnic Institute, USA and Instituto Nacional de Mateḿatica Pura e Aplicada,
Brasil; e-mail:msarkis@wpi.edu
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We assume thatΩ is a polygonal region,f ∈ L2(Ω) andρ(x), the diffusivity
tensor, is a symmetric matrix, uniformly positive definite with respect tox, and
ρi j ∈ L∞(Ω), i. j = 1,2. Under these assumptions problem (1) is well posed.

Let T h(Ω) be a triangulation ofΩ with triangular elementsKi and the mesh
parameterh. We assume thatT h(Ω) is shape regular and quasiuniform. LetXi(Ki)
denote a space of linear functions onKi and

Xh(Ω) = ΠN
i=1Xi(Ki), Ω̄ =

N⋃

i=1

Ki

be the space in which problem (1) is approximated. Note thatXh(Ω) 6⊂ H1(Ω) and
its elements do not vanish on∂Ω , in general.

The discrete problem for (1) is of the form: findu∗h ∈ Xh(Ω) such that

âh(u
∗
h,vh) = f (vh), vh ∈ Xh(Ω), (2)

where foru,v∈ Xh(Ω),u= {ui}Ni=1,ui ∈ Xi(Ki),

âh(u,v) =
N

∑
i=1

âi(u,v), f (v) =
N

∑
i=1

∫

Ki

f vi dx

and
ρ(i) = ρ|Ki

, ρ(i) = {ρ(i)
kl }2k,l=1,

andρ(i)
kl are constants onKi which can always be assumed for linear elements. Here

âi(u,v) = ai(u,v)+si(u,v)+ pi(u,v),

with symmetric forms

ai(u,v) =
∫

Ki

ρ(i)∇ui ·∇vi dx,

si(u,v) = ∑
Ei j⊂∂Ki

∫

Ei j

ωi [n
T
i ρ(i)∇ui(v j −vi)+nT

i ρ(i)∇vi(u j −ui)]ds,

pi(u,v) = ∑
Ei j⊂∂Ki

σ
h

∫

Ei j

γi j (ui−u j)(vi−v j)ds

whereEi j = E ji = ∂Ki ∩∂K j ,Ei j ⊂ ∂Ki andE ji ⊂ ∂K j ; ni = nEi j is the unit normal
vector toEi j pointing fromKi to K j ;

ωi ≡ ωEi j =
δ ( j)

ρn

δ (i)
ρn +δ ( j)

ρn

, ω j ≡ ωE ji =
δ (i)

ρn

δ (i)
ρn +ρ( j)

ρn

and
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δ (i)
ρn = nT

i ρ(i)ni , δ ( j)
ρn = nT

j ρ( j)n j ;

γi j ≡ γEi j = 2δ (i)
ρn δ ( j)

ρn /(δ ( j)
ρn +δ (i)

ρn ); σ is a positive (sufficiently large, cf. Lemma 1)
penalty parameter, which ensures the ellipticity of ˆai(·, ·).

To analyze problem (2) we introduce some auxiliary bilinearforms and a broken
norm. Let the elliptic symmetric formdh(·, ·) be defined as

dh(u,v) =
N

∑
i=1

di(u,v), di(u,v) = ai(u,v)+ pi(u,v) (3)

and let the weighted broken norm inXh(Ω) be defined by

‖ u ‖21,h≡ dh(u,u) =
N

∑
i=1

{
‖ (ρ(i))1/2∇ui ‖2L2(Ki)

+ ∑
Ei j⊂∂Ki

σ
h

γi j ‖ ui−u j ‖2L2(Ei j )
}.

(4)

Lemma 1. There existsσ0 > 0 such that forσ ≥ σ0 there exist positive constants
C0 and C1 independent ofρ(i) and h such tha

C0di(u,u)≤ âi(u,u)≤C1di(u,u)

and
C0dh(u,u)≤ â(u,u)≤C1dh(u,u)

for all u ∈ Xh.

For the proof we refer for example to [1] for isotropic cases and [2] for anisotropic
cases.

Lemma 1 implies that the discrete problem (2) is well posed ifthe penalty pa-
rameterσ ≥ σ0. Belowσ is fixed and assumed to satisfy the above condition.

The error bound is given by

Theorem 1.Let u∗ and u∗h be the solutions of (1) and (2). For u∗|Ki
∈ H2(Ki) holds

‖ u∗−u∗h ‖21,h≤Mh2
N

∑
i=1

λmax(ρ(i))|u∗|2H2(Ki)

where M is independent of h,u∗ andρi ; λmax(ρ(i)) is a maximum eigenvalue ofρ(i).

The proof follows from Lemma 1, for details see for example [2].

3 Additive Schwarz method

We design and analyze ASM for solving problem (2) following to the abstract theory
of ASMs, see for example, [4].
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3.1 Decomposition ofXh(Ω)

Let

Ω̄ =
L⋃

l=1

Ω̄l , Ωl ∩Ωm = { /0}, l 6= m

whereΩ̄l is a union of triangulation elementsKi andHl = diam(Ωl ). The decom-
position ofXh(Ω) is

Xh(Ω) = X(0)(Ω)+X(1)(Ω)+ . . .+X(L)(Ω),

where forl = 1, . . . ,L

X(l)(Ω) = {v= {vi}Ni=1 ∈ Xh(Ω) : vi = 0 onKi 6⊂Ωl}

and forl = 0
V(0)(Ω) = span{φ (l)}Ll=1

with φ (l) = 1 onΩ̄l andφ (l) = 0 otherwise.

3.2 Inexact local solvers

Foru(l) = {u(l)i }Ni=1 ∈X(l)(Ω) andv(l) = {v(l)i }Ni=1 ∈X(l)(Ω), l = 1, . . . ,L, we define

bl (u
(l),v(l)) = dh(u

(l),v(l)).

The overlap between local subproblems is very small (only through the subdomain
interface), reducing communication cost to a level similarto substructuring meth-
ods. Instead of solving exact subproblems with form ˆah(·, ·) on subdomains, we
solve problems with simplified formdh(·, ·). Note that onX(l)(Ω)×X(l)(Ω)

dh(u
(l),v(l))= ∑

Ki⊂Ω̄l

{(ρ(i)∇u(l)i ,∇v(l)i )L2(Ki)
+ ∑

Ei j⊂∂Ki

σ
h

γi j (u
(l)
i −u(l)j ,v(l)i −v(l)j )L2(Ei j )

}.

For l = 0 andu(0) = {u(0)i }Ni=1 ∈ X(0)(Ω) andv(0) = {v(0)i }Ni=1 ∈ X(0)(Ω) we set

b0(u
(0),v(0)) = dh(u

(0),v(0))≡
L

∑
l=1

σ
h ∑

Ei j⊂∂Ωl

γi j (u
(0)
i −u(0)j ,v(0)i −v(0)j )L2(Ei j )

.

3.3 Operator equation

For l = 0, . . . ,L, let us defineTl : Xh(Ω)→ X(l)(Ω) by
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bl (Tl u,v) = âh(u,v), v∈ X(l)(Ω).

Then problem (2) is replaced by

Tu∗h = gh, gh =
L

∑
l=0

gl , gl = Tl u
∗
h. (5)

with T = T0 +T1 + . . .+TL. Note that in order to computegl we do not need to
know u∗h. From the theorem below it follows that problems (2) and (5) have the
same unique solution.

3.4 Analysis

Let Ω̄ h
l denote a layer around∂Ωl . It is a union ofKi ⊂ Ω̄l which touch∂Ωl by

edge or/and vertex.
Let

ᾱl := max
Ki⊂Ω̄h

l

λmax(ρ(i)), α l := min
Ki⊂Ω̄h

l

λmin(ρ(i))

whereλmax(ρ(i)) andλmin(ρ(i)) are maximum and minimum eigenvalues ofρ(i) on
Ki .

Theorem 2 (main result).For any u∈ Xh(Ω) there holds

C2β−1âh(u,u)≤ âh(Tu,u)≤C3âh(u,u) (6)

where

β = max
1≤l≤L

ᾱl H2
l

α l h2

and C2 and C3 are positive constants independent ofρ(i), ᾱl andα l for i = 1, . . . ,N
and l= 1, . . . ,L.

To prove Theorem 2 we need to check three key assumptions of the abstract
theory of ASMs, see Toselli and Widlund book [4]. The proof isomitted here due
to the limit of pages and will be published elsewhere.

Remark 1.Note that the convergence of the method is independent of thejumps of
ρ(i) on Ω̄l\Ω h

l for all l = 1, . . . ,L, i.e. of the jumps ofρ(i) onKi which do not touch
∂Ωl .

Remark 2.Let us mention several specific cases when the above estimatecan be
improved. Whenρ is isotropic and subdomainwise constant, then we can prove that
β =maxl (Hl/h) in (6). Whenᾱl andα l are the same order andα l ≤maxKi⊂Ω̄l

λmin(ρ(i)),



356 Maksymilian Dryja, Piotr Krzẏzanowski, and Marcus Sarkis

thenβ = maxl (Hl/h), i.e. the convergence is independent of the jumps ofρ(i). Es-
timate (6) can be also improved in the case whenλmax(ρ(i)) onKi which touch∂Ωl

by edges are monotonic or quasi-monotonic on∂Ωl for l = 1, . . . ,L.

4 Numerical experiments

Let us choose the unit square as the domainΩ and for some prescribed integerm
divide it into L = 2m×2m smaller squaresΩl (l = 1, . . . ,L) of equal size. This de-
composition ofΩ is then further refined into a uniform triangulationT h(Ω) based
on a square 2M×2M grid (M≥m) with each square split into two triangles of identi-
cal shape. Hence, the fine mesh parameterh= 2−M, while the coarse grid parameter
is H = 2−m. We discretize system (1) on the fine triangulation using method (2) with
σ = 7.

In tables below we report the number of Preconditioned Conjugate Gradient it-
erations for operatorT (defined in Section 3.3) which are required to reduce the
initial Euclidean norm of the residual by a factor of 106 and (in parentheses) the
condition number estimate forT. We consider two sets of test problems: with either
anisotropic or discontinuous coefficients matrixρ . We will always choose a random
vector for the right hand side and a zero as the initial guess.

Discontinuous, elementwise constant isotropic coefficients. Let us consider
diffusion coefficient of the form

ρ(x) = ρ11(x) · I (7)

whereρ11 equals 1 on even numbered elements (of fine triangulation) and equals
10−2 on odd ones. Table 1 shows the dependence on the ratio betweenH andh in
this case.

Fine (M)→ 2 3 4 5 6
↓ Coarse (m)
2 33 (32) 82 (300) 133 (530) 164 (840) 237 (2000)
3 45 (41) 140 (370) 189 (700) 225 (1100)
4 48 (42) 155 (470) 186 (690)
5 41 (48) 155 (470)
6 49 (44)

Table 1 Dependence of the number of iterations and the condition number (in parentheses) on the
ratioH/h, whereH = 2−m andh= 2−M . Isotropic, elementwise constant coefficient.

Next, let us fix the number of subdomains and the fine mesh size so thatM = 3
andm= 5 and thusH/h= 4. Table 2 shows the dependence of the convergence rate
and the condition number as we vary the value ofρ11 on odd-numbered triangles;
on even triangles it remains equal to 1 as previously.
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ρ11 100 10−1 10−2 10−3 10−4 10−5 10−6

iter (cond) 61 (80) 72 (102) 167 (6·102) 335 (5·103) 485 (5·104) 613 (5·105) 743 (5·106)

Table 2 Dependence of the number of iterations and the condition number (in parentheses) on the
discontinuity in the isotropic, elementwise constant coefficient. FixedH/h= 4.

Indeed, the condition number estimates agree well with our theory regarding the
dependence on the discontinuity of the coefficient. In our testcase the increase in the
condition number is rather linear than quadratic inH/h, as reported in Table 1. This
behaviour is in agreement with our Remark 2. Let us also explain that low iteration
numbers in Table 2 are due to a very rapid residual in the residual during the initial
phase of the iteration.

Discontinuous, domainwise constant isotropic coefficients. Here we consider
ρ as in (7), with discontinuities aligned with an auxiliary partitioning of Ω into
4× 4 squares. Precisely, we introduce a red–black checkerboard coloring of this
partitioning and setρ = 1 in red regions, and the value ofρ11 reported in Table 3
in black ones. In this way, our decomposition of the domain with M = 5 andm= 3
will always be aligned with the discontinuites and Table 3 shows the dependence on
ρ11 in this case.

ρ11 100 10−1 10−2 10−3 10−4 10−5 10−6

iter (cond) 61 (80) 60 (70) 58 (67) 58 (68) 62 (68) 64 (68) 67 (68)

Table 3 Dependence of the number of iterations and the condition number (in parentheses) on the
discontinuity when the coefficient is isotropic and constant inside subdomains. Red–black 4× 4
distribution ofρ , aligned with domain decomposition. FixedH/h= 4.

As predicted in Remark 2, there is no dependence on the discontinuity in the
coefficients in this case until the coefficient remains continuous (constant) inside
subdomain. This behaviour is not observed when the red–black partitioning is not
aligned with the subdomainsΩl : corresponding numbers for a 3×3 partitioning are
shown in Table 4.

ρ11 100 10−1 10−2 10−3 10−4 10−5 10−6

iter (cond) 62 (80) 68 (130) 85 (710) 96 (7·103) 113 (7·104) 126 (7·105) 140 (7·106)

Table 4 Dependence of the number of iterations and the condition number (in parentheses) on
the discontinuity when the coefficient is isotropic and discontinuous across subdomain boundaries.
Red–black 3×3 distribution ofρ , not aligned with the domain decomposition. FixedH/h= 4.

Anisotropic, discontinuous coefficients. Let us continue with the 4× 4 red–
black partitioning and let us set the coefficient matrixρ equal toρR in red regions
andρB in black ones, where

ρR(x) =

(
10+ρ22 0

0 ρ22,

)
ρB(x) =

(
ρ22 0
0 10+ρ22

)
,
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with constantρ22 as specified in Table 5. In this wayρ is constant in both red and
black regions, but it suffers from discontinuity across thepartitioning borders; the
jump is always equal to 10, while the anisotropy ratio is 1+10/ρ22. The condition
numbers grow linearly with the growth ofρ22, which agrees with Theorem 2.

ρ22 100 10−1 10−2 10−3 10−4 10−5 10−6

iter (cond) 60 (82) 94 (210) 222 (103) 463 (104) 680 (105) 782 (106) 897 (107)

Table 5 Dependence on the anisotropy for discontinuous, piecewise constant coefficient. Fixed
H/h= 4.

Anisotropic, constant coefficients.Finally, let us consider

ρ(x) =
(

1 0
0 ρ22

)

with ρ22 constant throughout entireΩ , assuming values specified in Table 6.

ρ22 100 101 102 103 104 105 106

iter (cond) 60 (82) 74 (102) 159 (6·102) 159 (6·102) 144 (6·102) 143 (6·102) 124 (7·102)

Table 6 Dependence on the anisotropy. FixedH/h= 4. Continuous, constant coefficient.

It turns out that after initial linear increase in the condition number for moderate
ρ22, the condition number is insensitive to further growth of the anisotropy ratioρ22.
This observation can also be explained on the ground of our theory; the details will
be provided elsewhere.
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A one-level additive Schwarz preconditioner for
a discontinuous Petrov-Galerkin method

Andrew T. Barker1, Susanne C. Brenner1, Eun-Hee Park2, and Li-Yeng Sung1

1 A discontinuous Petrov-Galerkin method for a model Poisson
problem

Discontinuous Petrov-Galerkin (DPG) methods are new discontinuous Galerkin
methods [3, 5, 7, 6, 4, 8] with interesting properties. In this article we consider a
domain decomposition preconditioner for a DPG method for the Poisson problem.

Let Ω be a polyhedral domain inRd (d = 2,3), Ωh be a simplicial triangulation
of Ω . Following the notation in [8], the model Poisson problem (in an ultraweak
formulation) is to findU ∈U such that

b(U,V) = l(V) ∀V ∈V,

whereU = [L2(Ω)]d×L2(Ω)×H
1
2

0 (∂Ωh)×H−
1
2 (∂Ωh),V =H(div;Ωh)×H1(Ωh),

b(U,V) =
∫

Ω
σ · τ dx− ∑

K∈Ωh

∫

K
udivτ dx+ ∑

K∈Ωh

∫

∂K
ûτ ·nds

− ∑
K∈Ωh

∫

K
σ ·gradvdx+ ∑

K∈Ωh

∫

∂K
vσ̂nds

for U = (σ ,u, û, σ̂n) ∈U andV = (τ ,v) ∈V, andl(V) =
∫

Ω f vdx.

HereH1/2
0 (∂Ωh) (resp.H−1/2(∂Ωh)) is the subspace of∏K∈Ωh

H1/2(∂K) (resp.

∏K∈Ωh
H−1/2(∂K)) consisting of the traces of functions inH1

0(Ω) (resp. traces
of the normal components of vector fields inH(div;Ω)), and H(div;Ωh) (resp.
H1(Ωh)) is the space of piecewiseH(div) vector fields (resp.H1 functions). The
inner product onV is given by

(
(τ1,v1),(τ2,v2)

)
V = ∑

K∈Ωh

∫

K
[τ1 · τ2+divτ1divτ2+v1v2+gradv1 ·gradv2]dx.

The DPG method for the Poisson problem computesUh ∈Uh such that

b(Uh,V) = l(V) ∀V ∈Vh. (1)

Here the trial spaceUh (⊂U) is defined by

1 Department of Mathematics and Center for Computation and Technology, Louisiana State Uni-
versity, Baton Rouge, LA 70803, USA, e-mail:{andrewb}{brenner}{sung}@math.lsu.
edu ·2 Division of Computational Mathematics, National Institute for Mathematical Sciences,
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Uh = ∏
K∈Ωh

[Pm(K)]d× ∏
K∈Ωh

Pm(K)× P̃m+1(∂Ωh)×Pm(∂Ωh),

Pm(K) is the space of polynomials of total degree≤mon an elementK, P̃m+1(∂Ωh)=

H1/2
0 (∂Ωh)∩∏K∈Ωh

P̃m+1(∂K), whereP̃m+1(∂K) is the restriction ofPm+1(K) to
∂K, andPm(∂Ωh) = H−1/2(∂Ωh)∩∏K∈Ωh

Pm(∂K), wherePm(∂K) is the space of
piecewise polynomials on the faces ofK with total degree≤m.

Let Vr = {(τ ,v) ∈ V : τ |K ∈ [Pm+2(K)]d,v|K ∈ Pr(K) ∀K ∈ Ωh} for somer ≥
m+d. The discrete trial-to-test mapTh : Uh−→Vr is defined by

(ThUh,V)V = b(Uh,V), ∀Uh ∈Uh, V ∈Vr ,

and the test spaceVh is ThUh.
We can rewrite (1) asah(Uh,W) = l(ThW) for all W ∈Uh, where

ah(U,W) = bh(U,ThW) = (ThU,ThW)V

is an SPD bilinear form onVh×Vh, and we define an operatorAh : Uh−→U ′h by

〈AhU,W〉= ah(U,W) ∀U,W ∈Uh. (2)

Our goal is to develop a one-level additive Schwarz preconditioner forAh (cf. [9]).
To avoid the proliferation of constants, we will use the notation A. B (or B& A)

to represent the inequalityA ≤ (constant)×B, where the positive constant only
depends on the shape regularity ofΩh and the polynomial degreesm and r. The
notationA≈ B is equivalent toA. B andB. A.

A fundamental result in [8] is the equivalence

ah(U,U)≈ ‖σ‖2L2(Ω)+‖u‖2L2(Ω)+‖û‖2H1/2(∂Ωh)
+‖σ̂n‖2H−1/2(∂Ωh)

(3)

that holds for allU = (σ ,u, û, σ̂n) ∈Uh, where

‖û‖2
H1/2(∂Ωh)

= ∑
K∈Ωh

‖û‖2
H1/2(∂K)

= ∑
K∈Ωh

inf
w∈H1(K),w|∂K=û

‖w‖2H1(K), (4)

‖σ̂n‖2H−1/2(∂Ωh)
= ∑

K∈Ωh

‖σ̂n‖2H−1/2(∂K)
= ∑

K∈Ωh

inf
q∈H(div;K),q·n|∂K=σ̂n

‖q‖2H(div;K). (5)

Therefore the analysis of domain decomposition preconditioners forAh requires a
better understanding of the norms‖ · ‖H1/2(∂K) and ‖ · ‖H−1/2(∂K) on the discrete

spacesP̃m+1(∂K) andPm(∂K).

2 Explicit Expressions for the Norms onP̃m+1(∂K) and Pm(∂K)

Lemma 1. We have
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‖ζ̃‖2
H1/2(∂K)

≈ hK

(
‖ζ̃‖2L2(∂K)+ ∑

F∈ΣK

|ζ̃ |2H1(F)

)
∀ ζ̃ ∈ P̃m+1(∂K),

where hK is the diameter of K andΣK is the set of the faces of K.

Proof. Let N (K) be the set of nodal points of thePm+1 Lagrange finite element
associated withK andN (∂K) be the set of points inN (K) that are on∂K.

Given anyζ̃ ∈ P̃m+1(∂K), we defineζ̃∗ ∈ Pm+1(K) by

ζ̃∗(p) =

{
ζ̃ (p) if p∈N (∂K),

ζ̃∂K if p∈N (K)\N (∂K),
(6)

whereζ̃∂K is the mean value of̃ζ over∂K. Sinceζ̃∗ = ζ̃ on ∂K, we have

‖ζ̃‖H1/2(∂K) = inf
w∈H1(K),w|∂K=ζ̃

‖w‖H1(K) ≤ ‖ζ̃∗‖H1(K). (7)

Supposew ∈ H1(K) satisfiesw = ζ̃ on ∂K. It follows from (6) and the trace
theorem with scaling that

‖ζ̃∗‖2L2(K) . hK‖ζ̃‖2L2(∂K) = hK‖w‖2L2(∂K) . ‖w‖2H1(K), (8)

and, by standard estimates,

|ζ̃∗|2H1(K) = |ζ̃∗− ζ̃∂K |2H1(K) . h−1
K ‖ζ̃∗− ζ̃∂K‖2L2(∂K)

= h−1
K ‖w−w∂K‖2L2(∂K) . |w|2H1(K). (9)

Combining (7)–(9), we have‖ζ̃‖2
H1/2(∂K)

≈ ‖ζ̃∗‖2H1(K)
. The lemma then follows

from (6), the equivalence of norms on finite dimensional spaces and scaling. ⊓⊔

Lemma 2. We have

‖ζ‖2
H−1/2(∂K)

≈ hK‖ζ‖2L2(∂K)+h−d
K

(∫

∂K
ζds
)2

∀ζ ∈ Pm(∂K).

Proof. We begin with the reference simplex̂K. Let RTm(K̂) be them-th order
Raviart-Thomas space (cf. [2]). Given anyζ ∈ Pm(∂ K̂), we introduce a (nonempty)
subspaceRTm(K̂,ζ ) = {q∈RTm(K̂) : q·n= ζ on∂ K̂ and divq∈P0(K̂)} of RTm(K̂).

Let ζ∗ ∈ RTm(K̂,ζ ) be defined by

ζ∗ = min
q∈RTm(K̂,ζ )

‖q‖L2(K̂).

Then the map̂S : Pm(∂ K̂) −→ RTm(K̂) that mapsζ to ζ∗ is linear and one-to-one,
and we have(Ŝζ ) ·n= ζ on ∂ K̂, div(Ŝζ ) ∈ P0(K̂) and

‖Ŝζ‖L2(K̂) ≈ ‖ζ‖L2(∂ K̂) ∀ζ ∈ Pm(∂ K̂). (10)
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Let ζ1, . . . ,ζNm be a basis ofPm(∂ K̂) and 1= φ1, . . . ,φNm ∈ H1/2(∂ K̂) satisfy

det
[∫

∂ K̂ ζiφ j dŝ
]

1≤i, j≤Nm
6= 0. We define the map̂Q : H(div; K̂)−→ Pm(∂ K̂) by

∫

∂ K̂
(Q̂q)φ j dŝ= 〈q·n,φ j〉H−1/2(∂ K̂)×H1/2(∂ K̂) for 1≤ j ≤ Nm.

It follows from the definition ofQ̂ that ‖Q̂q‖L2(∂ K̂) . ‖q‖H(div; K̂) for all q ∈
H(div; K̂), andQ̂q= ζ if q·n= ζ ∈ Pm(∂ K̂), in which case

‖Ŝζ‖L2(K̂) . ‖ζ‖L2(∂ K̂) = ‖Q̂q‖L2(∂ K̂) . ‖q‖H(div; K̂). (11)

Moreover, sinceφ1 = 1, we have
∫

K̂
div(Ŝζ )dx̂=

∫

∂ K̂
(Q̂q)1dŝ= 〈q·n,1〉H−1/2(∂ K̂)×H1/2(∂ K̂) =

∫

K̂
divqdx̂

and hence
‖div(Ŝζ )‖L2(K̂) . ‖divq‖L2(K̂). (12)

Now we turn to a general simplexK. It follows from (10)–(12) and standard
properties of the Piola transform forH(div) (cf. [10]) that there exists a linear map
S: Pm(∂K)−→ RTm(K) with the following properties:
(i) (Sζ ) ·n= ζ and hence

‖ζ‖H−1/2(∂K) = inf
q∈H(div;K),q·n|∂K=ζ

‖q‖H(div;K) ≤ ‖Sζ‖H(div;K) ∀ζ ∈ Pm(∂K),

(ii) for any q∈ H(div; K) such thatq·n= ζ , we have

‖Sζ‖H(div;K) . ‖q‖H(div;K),

(iii) div (Sζ ) ∈ P0(K) and hence

∫

K
div(Sζ )dx=

∫

∂K
ζ ds or ‖div(Sζ )‖2L2(K) =

(∫

∂K
ζ ds

)2
/|K|,

(iv) we have
h−d

K ‖Sζ‖2L2(K) ≈ h−(d−1)
K ‖ζ‖2L2(∂K).

Properties (i)–(iv) then imply

‖ζ‖2
H−1/2(∂K)

≈ ‖Sζ‖2H(div;K) ≈ hK‖ζ‖2L2(∂K)+h−d
K

(∫

∂K
ζ ds

)2
. ⊓⊔
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3 A Domain Decomposition Preconditioner

Let Ω be partitioned into overlapping subdomainsΩ1, . . . ,ΩJ that are aligned with
Ωh. The overlap among the subdomains is measured byδ and we assume (cf. [11])
there is a partition of unityθ1, . . . ,θJ ∈ C∞(Ω̄) that satisfies the usual properties:
θ j ≥ 0, ∑J

j=1 θ j = 1 onΩ̄ , θ j = 0 onΩ \Ω j , and

‖∇θ j‖L∞(Ω) . δ−1 ∀1≤ j ≤ J. (13)

We take the subdomain space to beU j = {U ∈Uh : U = 0 onΩ \Ω j}. Let U =
(σ ,u, û, σ̂n) ∈Uh. ThenU ∈U j if and only if (i) σ andu vanish on everyK outside
Ω j and (ii) û andσ̂n vanish on∂K for everyK outsideΩ j . We definea j(·, ·) to be
the restriction ofah(·, ·) onU j ×U j . Let A j : U j −→U ′j be defined by

〈A j Uj ,Wj〉= a j(Uj ,Wj) ∀Uj ,Wj ∈U j . (14)

It follows from (3) that

a j(Uj ,Uj)≈ ‖σ j‖2L2(Ω j )
+‖u j‖2L2(Ω j )

+‖û j‖2H1/2(∂Ω j,h)
+‖σ̂n, j‖2H−1/2(∂Ω j,h)

, (15)

whereUj = (σ j ,u j , û j , σ̂n, j) ∈U j , Ω j,h is the triangulation ofΩ j induced byΩh and
the norms‖ · ‖H1/2(∂Ω j,h)

and‖ · ‖H−1/2(∂Ω j,h)
are analogous to those in (4) and (5).

Let I j : U j −→Uh be the natural injection. The one-level additive Schwarz pre-
conditionerBh : U ′h−→Uh is defined by

Bh =
J

∑
j=1

I jA
−1
j I t

j .

Lemma 3. We have
λmin(BhAh)& δ 2.

Proof. Let Ih,1, Ih,2, Ih,3 andIh,4 be the nodal interpolation operators for the compo-

nents∏K∈Ωh

[
Pm(K)

]d
, ∏K∈Ωh

Pm(K), P̃m+1(∂Ωh) andPm(∂Ωh) of Uh respectively.
Given anyU = (σ ,u, û, σ̂n) ∈Uh, we defineUj ∈U j by

Uj =
(
Ih,1(θ jσ), Ih,2(θ ju), Ih,3(θ j û), Ih,4(θ j σ̂n)

)
.

Then we haveU = ∑J
j=1 Uj and, in view of (14) and (15),

〈A j Uj ,Uj〉 ≈ ‖Ih,1(θ jσ)‖2L2(Ω j )
+‖Ih,2(θ ju)‖2L2(Ω j )

+‖Ih,3(θ j û)‖2H1/2(∂Ω j,h)
+‖Ih,4(θ j σ̂n)‖2H−1/2(∂Ω j,h)

. (16)

The following bounds for the first two terms on the right-handside of (16) are
straightforward:
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‖Ih,1(θ jσ)‖2L2(Ω j )
. ‖σ‖2L2(Ω j )

and ‖Ih,2(θ ju)‖2L2(Ω j )
. ‖u‖2L2(Ω j )

. (17)

We will use Lemma 1 and Lemma 2 to derive the following bounds

‖Ih,3(θ j û)‖2H1/2(∂Ω j,h)
. δ−2‖û‖2

H1/2(∂Ω j,h)
, (18)

‖Ih,4(θ j σ̂n)‖2H−1/2(∂Ω j,h)
. δ−2‖σ̂n‖2H−1/2(∂Ω j,h)

. (19)

Let K ∈Ω j,h. It follows from Lemma 1, (13) and standard discrete estimates that

‖Ih,3(θ j û)‖2H1/2(∂K)
≈ hK

(
‖Ih,3(θ j û)‖2L2(∂K)+ ∑

F∈ΣK

|Ih,3(θ j û)|2H1(F)

)

. hK‖û‖2L2(∂K)+hK ∑
F∈ΣK

(
‖∇θ j‖2L∞(Ω)‖û‖2L2(F)

+‖θ j‖2L∞(Ω)|û|2H1(F)

)

. hK‖û‖2L2(∂K)+hKδ−2‖û‖2L2(∂K)+hK ∑
F∈ΣK

|û|2H1(F) . δ−2‖û‖2
H1/2(∂K)

.

Summing up this estimate over all the simplexes inΩ j,h yields (18).
Similarly, it follows from Lemma 2 and (13) that

‖Ih,4(θ j σ̂n)‖2H−1/2(∂ K̂)
≈ hK‖Ih,4(θ j σ̂n)‖2L2(∂K)+h−d

K

(∫

∂K
Ih,4(θ j σ̂n)ds

)2

. hK‖σ̂n‖2L2(∂K)+h−d
K

(∫

∂K
Ih,4
[
(θ j −θ K

j )σ̂n
]
ds
)2

+h−d
K (θ K

j )
2
(∫

∂K
σ̂nds

)2

. hK‖σ̂n‖2L2(∂K)+hKδ−2‖σ̂n‖2L2(∂K)+h−d
K

(∫

∂K
σ̂nds

)2
. δ−2‖σ̂n‖2H−1/2(∂K)

,

whereθ K
j is the mean value ofσ j over K. Summing up this estimate over all the

simplexes inΩ j,h gives us (19).
Putting (2), (3) and (16)–(19) together we find∑J

j=1〈A j Uj ,Uj〉 . δ−2〈AhU,U〉,
which impliesλmin(BhAh) & δ 2 by the standard theory of additive Schwarz pre-
conditioners [11]. ⊓⊔

Combining Lemma 3 with the standard estimateλmax(BhAh) . 1, we obtain the
following theorem.
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Theorem 1.We have

κ(BhAh) =
λmax(BhAh)

λmin(BhAh)
≤Cδ−2,

where the positive constant C depends only on the shape regularity of Ωh and the
polynomial degrees m and r.

Remark 1.Theorem 1 is also valid for DPG methods based on tensor product finite
elements.

4 Numerical results

We solve the Poisson problem on the square(0,1)2 with exact solutionu =
sin(πx1)sin(πx2) and uniform square meshes. The trial space is based onQ1 poly-
nomials forσ and u, P2 polynomials for ˆu, and P1 polynomials forσ̂n. We use
bicubic polynomials for the spaceVr in the construction of the trial-to-test mapTh.

The number of conjugate gradient iterations required to reduce the residual by
1010 are given in Table 1 for four overlapping subdomains. The linear growth of
the number of iterations for the unpreconditioned system isconsistent with the con-
dition number estimateκ(Ah) . h−2 in [8]. Note that in this case the boundary of
every subdomain has a nonempty intersection with∂Ω and it is not difficult to use a
discrete Poincaré inequality to show that the estimate in Theorem 1 can be improved
to κ(BhAh). | lnh|δ−1. This is consistent with the observed growth of the number
of iterations for the preconditioned system asδ decreases.

Table 1 Number of iterations for the Schwarz preconditioner with subdomain sizeH = 1/2.

h δ unpreconditioned preconditioned

2−2 2−2 496 14
2−3 2−3 1556 17

2−2 14
2−4 2−4 3865 20

2−3 17
2−2 14

2−5 2−5 8793 27
2−4 20
2−3 18

In Table 2 we display the results forh= 2−5 and various subdomain sizesH with
δ =H/2. The estimateκ(BhAh). δ−2≈H−2 is consistent with the observed linear
growth of the number of iterations for the preconditioned system asH decreases.
Such a condition number estimate for the one-level additiveSchwarz preconditioner
is known to be sharp for standard finite element methods [1].
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Table 2 Number of iterations withh= 2−5 and various subdomain sizesH with δ = H/2.

h H unpreconditioned preconditioned

2−5 2−1 8793 15
2−2 25
2−3 45
2−4 89
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A smooth transition approach between the
Vlasov-Poisson and the Euler-Poisson system

Giacomo Dimarco1, Luc Mieussens2, and Vittorio Rispoli3

1 Introduction

Plasma dynamics is characterized by a wide range of spatial and temporal scales.
Typical examples include plasmas produced around hypersonic bodies, ion wind
of corona discharges, magnetic fusion processes. Depending on conditions, kinetic
models of Boltzmann type or macroscopic models are commonlyused for plasma
physics simulations. The most common kinetic model for plasmas is the Vlasov
equation, coupled with the electromagnetic field equations. On the other hand, Eu-
ler or Navier-Stokes based models coupled with the Maxwell equations are used for
describing equilibrium plasma flows. Even if fluid models aresufficiently accurate
to describe many observed phenomena, however, for some of them, this choice is
inadequate. In these cases, it turns out that a kinetic description is strictly necessary
to correctly represent the solutions. In these circumstances, the most widely used
numerical methods for solving the Vlasov equation are Particle-In-Cell (PIC) ap-
proaches [1]. They have many advantages in terms of computational cost for large
dimensional problems, for enforcing physical properties such as conservation laws
and in terms of flexibility when handling with complex geometries. On the other
hand, these methods involve a significant level of numericalnoise and the conver-
gence rate is in general quite slow. Moreover, in situationsclose to thermodynam-
ical equilibrium, the cost of PIC methods or, more in general, direct Monte Carlo
simulations increases. For this reason, domain decomposition techniques have been
proposed in the recent past (see [2, 4, 5, 6, 8, 9]). Indeed, inmany situations, the res-
olution of the kinetic equations in the whole computationaldomain is unnecessary
because the fluid equations coupled with suitable equationsfor the electromagnetic
fields provide a sufficiently accurate solution, except in small zones like shock layers
or extremely rarefied regions where departure from thermodynamical equilibrium is
strong.

In this paper, we focus on an adaptive kinetic-fluid approachwhich incorporates
kinetic phenomena in selected regions of phase space where they play a fundamen-
tal role. More in detail, we propose a numerical method for the resolution of the
collisional Vlasov-Poisson equation coupled with the compressible Euler-Poisson
equations through a domain decomposition technique.

1Institut de Math́ematiques de Toulouse; Université de Toulouse; UPS, INSA, UT1,
UTM; CNRS, UMR 5219; F-31062 Toulouse, France. e-mail:giacomo.dimarco@math.
univ-toulouse.fr ·2Institut de Math́ematiques de Bordeaux; Université de Bordeaux; 351,
cours de la Lib́eration - 33405 TALENCE cedex, France. e-mail:Luc.Mieussens@math.
u-bordeaux1.fr ·3 Department of Mathematics; University of Ferrara; Via Machiavelli, 35
- 44121 Ferrara, Italy. e-mail:rspvtr@unife.it
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The present paper represents an extension of two our earlierworks [2, 4], in
which we coupled the BGK equation and the compressible Eulerequations. The key
point on which the method relies is the introduction of a buffer zone in which the
transition from the Vlasov-BGK-Poisson equations and the Euler-Poisson equations
and vice-versa is gradual. Therefore, in the buffer zone, both models are solved and
the solution of the full problem is obtained as the combination of the kinetic and
fluid solutions. The introduction of the intermediate zone makes each of the models
degenerate at the interfaces. In this way, no interface condition is needed. Finally, in
this work we consider a constant in time coupling function and refer to [7] for the
time dependent case.

2 The Vlasov-BGK-Poisson equation

We consider the collisional Vlasov equation for describingthe ions evolution in
a plasmas. In this work we assume that the electrons form a uniform neutralizing
background. The binary interactions between particles aresubstituted by relaxation
towards the equilibrium. The rescaled equation reads

∂t f +v·∇x f +E·∇v f =
1
τ
(M f − f ), (1)

with the initial condition
f (x,v, t = 0) = f0(x,v), (2)

where f = f (x,v, t) is a non negative function describing the time evolution of the
distribution of particles which move with velocityv∈Rd in the positionx∈Ω ⊂Rd

at timet > 0. In the general case, the relaxation timeτ is a function of the macro-
scopic quantities. For our scopes, in the present paper, therelaxation frequency will
be fixed and given at the beginning of the simulations. We refer to [7] for more phys-
ical cases. The electric field E is given as a gradient of a potential function E=∇xΦ ,
whereΦ is obtained from the solution of the Poisson equation

λ 2∆Φ =
∫

Rd
f dv−ρ0, (3)

with λ the so called Debye length andρ0 the background electrons density. The
local thermodynamical equilibrium is defined by

M f = M f [ρ ,u,T](v) =
ρ

(2πθ)d/2
exp

(−|u−v|2
2θ

)
, (4)

whereρ andu are the density and mean velocity whileθ = RT with T the temper-
ature of the ions andR the gas constant.

Formally asε → 0 the function f tends to the local Maxwellian. In this limit,
multiplying the Vlasov-BGK equation (1) by 1,v, 1

2|v2| (the so-called collision in-
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variants), and integrating with respect tov, leads to the following system of balance
laws

∂ρ
∂ t

+∇x · (ρu) = 0, (5)

∂ρu
∂ t

+∇x · (ρu⊗u+ pI)−ρE= 0, (6)

∂E

∂ t
+∇x · ((E + p)u)−ρuE= 0, (7)

p= ρθ , E =
d
2

ρθ +
1
2

ρ |u|2. (8)

wherep is the pressure andE the total energy.

3 The coupling method

In this section we present the coupling strategy between theVlasov-BGK-Poisson
equations and the Euler-Poisson system. We will deal here with a constant in time
coupling between the micro and macroscopic models. However, our final scope is to
derive a time dependent coupling strategy, we refer to [7] for this case. We also refer
to [7] for more details on the numerical discretization, thetreatment of the boundary
conditions and for the general theory about the time-dependent case.

3.1 Decomposition of the kinetic equation

The coupling strategy is inspired by two recent works ([2, 4]) in which the rarefied
gas dynamic case was considered. For sake of simplicity we describe the method
in one space and velocity dimensions. It can be easily extended to a generic N-
dimensional setting. Also different meshes for the cut-offfunction and for the other
variables can be used.

We denote the buffer interval by[a,b], and we introduce a cut-off functionh(x)
such that

h(x) =





1, for x≤ a
0, for x≥ b
0≤ h(x)≤ 1, for x∈ [a,b]

(9)

For instance,h can be chosen piecewise linear in[a,b]:

h(x) =
x−b
a−b

for x∈ [a,b].

We define two distribution functions such thatfR = h f while fL = (1−h) f . We
look now for an evolution equation forfR and for fL. We write
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∂t fR = ∂t(h f) = h∂t f ,

∂t fL = ∂t((1−h) f ) = (1−h)∂t f .

Thus multiplying the Vlasov-BGK equation (1) byh and 1− h respectively, we
obtain the following equations for the time evolution of thedistributionsfR and fL

∂t fR = h
(
−v∂x f −E·∇v f +

1
τ
(M f − f )

)
,

∂t fL = (1−h)
(
−v∂x f −E·∇v f +

1
τ
(M f − f )

)
,

which finally leads to the following system

∂t fR+hv∂x fR+hv∂x fL +E∂v fR =
h
τ
(M f − f ), (10)

∂t fL +(1−h)v∂x fL +(1−h)v∂x fR+E∂v fL =
1−h

τ
(M f − f ), (11)

f = fR+ fL, (12)

with initial data

fR(x,v,0) = h(x,0) f (x,v,0) , fL(x,v,0) = (1−h(x,0)) f (x,v,0). (13)

It is important to note that iff = fL + fR is the solution of (1) with initial data (2),
then( fL, fR) is the solution of (10-11) with initial data (13) and conversely.

3.2 Kinetic-Hydrodynamic coupling

Now, let us assume that the domain can be subdivided into two regions: in one of
the regions, the distribution function is close to a local Maxwellian while in the
other, it is far from it. We choose to seth= 0 in the region wheref is close to the
Maxwellian. Therefore,fL is close to its associated MaxwellianM fL and we can
replace the Vlasov-BGK equation (1) by its macroscopic limit equations without
making any significant error. We also suppose that in the buffer zone,fL remains
close to the equilibrium and thus, it can be replaced byM fL in the whole interval
x< b.

ReplacingfL by M fL in (11) and taking the hydrodynamic moments (mass, mo-
mentum and energy), leads to the following modified Euler system defined in the
intervalx≤ b
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∂ρL
∂ t +(1−h)∂x(ρLuL) =−(1−h)∂x (

∫
R v fRdv) ,

∂ρLuL
∂ t +(1−h)∂x(ρLu2

L + pL)−EρL =−(1−h)∂x
(∫
R v2 fRdv

)
,

∂EL
∂ t +(1−h)∂x((EL + pL)uL)−ρLuLE=−(1−h)∂x

(∫
R v |v|

2

2 fRdv
)
,

(14)

with initial data

(ρL,uL,θL)|(x,0) = (1−h|(x,0))(ρ ,u,θ)|(x,0).

Under these assumptions, we havef = fR+M fL , where fR is a solution of:

∂t fR+hv∂x fR+hv∂xM fL +E∂v fR =
h
τ
(M f − f ), (15)

in the intervalx≥ a. Thus, the coupling model consists of system (14) for the hydro-
dynamic moments in the regionx≤ band of equation (15) for the kinetic distribution
function in the regionx≥ a.

Whenh= 0, system (14) coincides with system (8) becausefR= 0 andfL =M fL .
Moreover no boundary conditions are needed at the boundaryx = b because the
spatial derivatives are degenerate atx = b for the fluid model. A similar remark is
true for fR. Indeed, whenh = 0, fR = 0 and no boundary conditions are needed
for the kinetic equation atx = a because the spatial derivatives are degenerate in
equation (15). In the buffer zone[a,b], the solution of the full kinetic problemf is
computed as the sum of the MaxwellianM fL and of the functionfR. To summarize,
the solution of the full kinetic problem is given byfR if x> b, by M fL if x< a and
by M fL + fR if x∈ [a,b].

An important feature of the method is that it is very easy to divide the domain
in more than two zones. Thus we can define as many buffers and asmany kinetic
regions as necessary if the macroscopic model fails to give the correct solution in
different parts of the domain which are far apart from each other. In this latter case,
the functionh is still a piecewise linear function but there are multiple buffer zones
[a j ,b j ]. Additionally, we can create new buffer zones and new kinetic zones during
the simulation. Such strategy is presented in [4] for the Boltzmann-BGK and in [7]
for the Vlasov-Poisson equations.

4 Numerical test

The numerical example we present is a one-dimensional plasma expansion prob-
lem. This is a two-species problem composed by free ions and fixed electrons. Ions
initially occupy a small region of thicknessD of the space where they have an high
density while in the rest of the domain they have very small density. Background
electrons are initialized by a Maxwell-Boltzmann equilibrium with a self-consistent
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potential and their density is constant everywhere. The test problem consists in ob-
serving the expansion of the ions.

This kind of phenomena are well described by the Vlasov-Poisson system in
rarefied regions and by the Euler-Poisson system in dense regions. For this test case,
we consider all our equation in their adimensional form. fordimensional test cases
we refer to [7].

The numerical physical domain goes from the left boundaryxL = −20 to the
right boundary atxR = 20 while the velocity domain goes fromvmin = −200 to
vmax= 200. There are 1000 cells in physical space and 140 cells in velocity space.
The slab where ions are initialized with high density is[xL,D] with D =−8. Initial
conditions are as follows: for ions, the density isρ = 1, mean velocityu = 0 and
temperatureT = 10 in the high-density slab[xL,D] while in the remaining part of
the domain the density isρ = 5×10−2, mean velocityu= 0 and temperatureT = 8.
Electrons are initialized with densityρ0 = 1 everywhere.

The collision frequency is given by 1/τ whereτ = 5 10−6 in the hydrodynamic
part andτ = 10−1 in the kinetic part. The Debye length takes the valueλ 2 = 10−2

and Dirichlet boundary conditions are imposed for the electric potential asΦ(xL) =
0 andΦ(xR) = 10.0.

The cut-off functionh is initialized ash= 0 for x ranging from−20 toa=−1.0
(fluid region), h = x−a

b−a with b = 0.5 (buffer zone) andh = 1 for x > b (kinetic
region).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -15 -10 -5  0  5  10  15  20

Kinetic

Hydro

B
u
f
f
e
r

Coupling
Kinetic

Euler

Fig. 1 Density profile for the ions at timet = 3.6×10−3. Continuous line coupling method, dashed
line Vlasov-BGK-Poisson model, dotted line Euler-Poisson system.



Smooth transitions between the Vlasov-Poisson and the Euler-Poisson system 373

Boundary conditions are treated as a constant incoming maxwellian injection at
the left boundary and as free Neumann conditions at the rightone.

When the simulation begins, ions start to expand. We plot the solution for the
density after few time stepsti = 3.6×10−3 s (Fig. 1), at an intermediate state before
reaching the buffer zone attm= 8.4×10−3 s (Fig. 2) and at the end of the simulation
at t f = 1.32× 10−2 s (Fig. 3). In the figures we report the results of the domain
decomposition strategy together with the results obtainedby employing a scheme
which solves the Vlasov-BGK-Poisson equation everywhere.We also report the
results obtained by solving the Euler-Poisson system in allthe domain.

The figures show that during all the simulation the coupling strategy is able to
capture the good solution which is the one furnished by solving the kinetic equa-
tion everywhere, while the scheme which solves the Euler-Poisson system fails in
describing the good solution where the collision frequencyis very small. For more
realistic problems, it will be necessary to follow the discontinuities and the regions
where the rarefaction is high during the time evolution of the problem. This can be
accomplished by constructing some adaptive and dynamic decomposition which are
the subject of a future work [7].
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The parareal in time algorithm applied to the
kinetic neutron diffusion equation

A.-M. Baudron1,3, J.-J. Lautard1,3, Y. Maday2,3,4,5, and O. Mula1,2,3

Introduction

In the framework of nuclear core calculations, the development of efficient tools to
run neutron kinetic computations is a field of current activeresearch. While such
calculations are crucial for security assessment and the study of new reactor con-
cepts, they present several mathematical and computational issues that still need to
be overcome.

The exact model (kinetic transport equation) is indeed far too expensive to be
simulated for these purposes and different simplifications(multi group diffusion ap-
proximation) have led to more tractable numerical simulations. Nevertheless, on real
geometries and despite the use of domain decomposition enabling accelerations of
the simulations thanks to parallel architectures [7], there is still need for improve-
ments for applications on regular basis.

In this context, the purpose of this work is to investigate the implementation of
the parareal in time algorithm [9] within an industrial solver called MINOS devel-
oped at C.E.A. (cf. [4]) following the preliminary analysis[5].

The paper is organized as follows: after the presentation ofthe neutron diffusion
equation in Section 1, the main aspects of the parareal method will be recalled in
Section 2. In particular, we will explain the distributed algorithm that has been used
in our case from the point of view of the expected speed-up. The performances of
the parareal in time algorithm in a numerical application are summarized in section
3 which is followed in Section 4 by a discussion about the convergence behavior
observed in our example.

1 Model

The evolution of the fluxψ of neutrons in a reactor coreR is governed by a kinetic
transport PDE whose theoretical properties (existence, uniqueness, positiveness of
the solution) have been investigated in e.g. [6] (chapter XXI, section 2, theorem 3).
Given the fact thatψ depends on 7 variables, namely the timet, the position within

1 C.E.A, CEA Saclay - DEN/DANS/DM2S/SERMA/LLPR - 91191 Gif-Sur-Yvette CEDEX
- France , e-mail: {anne-marie.baudron}{jean-jacques.lautard}{olga.
mulahernandez}@cea.fr ·2 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis
Lions, F-75005, Paris, France e-mail:maday@ann.jussieu.fr ·3 LRC MANON, Labora-
toire de Recherche Conventionnée, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL.·4 Institut
Universitaire de France·5 Brown Univ, Division of Applied Maths, Providence, RI, USA
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the reactor denoted as−→r , the velocity of the neutrons−→v =
√

2E/m
−→
Ω whereE

stands for the energy of the neutron,
−→
Ω stands for the direction of the velocity and

m is the mass of the neutron, it has been proposed in e.g. [6] (chapter XXI, section
5), to simplify the model by first considering the average fluxover the angular vari-

ables as the unknown:φ(t,−→r ,E) = 1
4π
∫
S2

ψ(t,−→r ,
−→
Ω ′,E)d

−→
Ω ′. This approach leads

to results that are accurate enough in most of the usual casesbut the computing time
still remains unacceptably long.

Another simplification consists in averaging also in the energy variable. This fur-
ther approximation, known as the multi-group theory [10], is based on the division
of the energy interval intoG subintervals ([Emin,Emax] = [EG,EG−1]∪·· ·∪ [E1,E0])
and leads to consider the setΦ = {φg}g∈{1,G} as the new unknown solution. In
order to take into account the presence of radioactive isotopes (also called precur-
sors) that are important since they emit neutrons with a given delay, the model is
complemented with a set of first order ODE’s expressing theirdecays denoted as
C = {Cℓ}ℓ∈{1,L}. Since their half-lives have values that vary in a wide range, the
resulting system is very stiff and small time steps are required for an accurate ap-
proximation in long time intervals.

The set(Φ ,C) is the solution of the following set of multi-group diffusion equa-
tions:

(∗)





1
vg

∂φg

∂ t −∇.
(

Dg−→∇ φg
)
+σg

t φg =
G
∑

g′=1
S gg′φg′ + χg

p
G
∑

g′=1
F g′φg′ +

L
∑
ℓ=1

χg
ℓ λℓCℓ

over [0,T]×R,∀g∈ {1,G},
∂Cℓ
∂ t =−λℓCℓ+

G
∑

g′=1
F g′

ℓ φg′ over [0,T]×R,∀ℓ ∈ {1,L},

φg = 0, on [0,T]×∂R
φg(0, .) = φg

0 (.); Cℓ(0, .) =Cℓ,0(.) onR

wherevg is the neutron velocity,Dg the diffusion coefficient andσg
t the total cross-

section in energy groupg. χg
p is the prompt spectrum in energy groupg, χg

ℓ the
delayed spectrum of precursorℓ in energy groupg andλℓ is the decay constant of
precursorℓ. F g andF g

ℓ denote the prompt and delayed fission operators respec-
tively. S gg′ is the neutron scattering operator from energyg to g′ and makes the
flux equations be coupled with respect to the energy variable.

2 The parareal algorithm

The unsteady problem(∗) can be written in a more compact form:

∂y
∂ t

+A (t;y) = 0 , t ∈ [τ0,τ1]; (1)
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it is complemented with initial conditions at timet = τ0 : y(τ0) = y0. The parareal
in time algorithm applied to (1) is an iterative technique where, at each iteration a
predictor corrector propagation is proposed based on two propagators : a fine one
F τ1

τ0 (y0) that computes an approximation of the solution of (1) at timeτ1 accurately
but slowly, and a coarse oneG τ1

τ0 (y0) that computes an other approximation quickly
but not so accurately (and not accurately enough). In addition to these two propa-
gatorsF andG , the parareal in time algorithm is based on the division of the full
interval[0,T] into N sub-intervals[0,T] =

⋃N−1
n=0 [Tn,Tn+1] that will each be assigned

to a processorPn, assuming that we have N processors at our disposal.
The valuey(Tn) is approximated byYk

n ask increases with an accuracy that tends
to the one achieved by the fine solver (see [9], [2], [3] for further details). It is
obtained by the recurrence relation:

Yk+1
n+1 = G

Tn+1
Tn

(Yk+1
n )+F

Tn+1
Tn

(Yk
n )−G

Tn+1
Tn

(Yk
n ), n= 1, ...,N (2)

starting fromY0
n+1 = G

Tn+1
Tn

(Y0
n ) In this work, the recently described distributed al-

gorithm (summarized in [1]) has been used for the practical implementation of
parareal. It represents an improvement of parareal from thealgorithmic point of
vue.

The first method of implementation was indeed suggested in [9] and consisted
on a master-slave algorithm where the master carried out thecoarse propagation in
the whole time interval (each slave being in charge of the finepropagations over
its assigned time slice and sendingF

Tn+1
Tn

(Yk
n ) to the master so that the master com-

puted the parareal corrections (2)∀n). This original algorithm gives rise to two main
computing drawbacks: the coarse propagation by the master is a bottleneck in the
computation and the memory requirement in the master processor scales linearly
with the number of slaves. The distributed algorithm improves both aspects and can
easily be implemented via the MPI library: for each processor Pn the fine and the
coarse solvers are propagated over[Tn,Tn+1] and the parareal correctionYk+1

n+1 is car-
ried out. The process is repeated until convergence, i.e.‖Yk+1

n −Yk
n ‖< η , ∀n, where

η is a given tolerance.
It is easy to realize that this kind of implementation does not change the number

of iterations in order the parareal algorithm to converge but it provides better speed-
ups than the original master-slave version. This is the reason why the distributed
algorithm has been implemented in this study. Indeed, if we do not take into ac-
count the communication time between processors, the theoretical speed-ups of the
distributed and master-slave algorithms are respectively(see [1]):

Sdistrib =
N

Nr+k∗(1+ r)
; SMS=

N
Nr(1+k∗)+k∗

(3)

wherer is the ratio between the two solution times of the two propagatorsG andF
andk∗ is the number of parareal iterations needed in order to converge.
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3 Numerical simulation

3.1 Definition of the test case:

The parareal algorithm has been implemented with an implicit discretization in time.
Note that here we have used the same physical model (diffusion) for both the coarse
and the fine solvers (the only difference is the size of the time steps used to solve
equation(∗) δ t for F and∆ t = Tn+1−Tn for G ). At each time step, a Gauss-Seidel
iteration is used on the energy groups and the spatial discretization is done with
RT-1 finite elements (see [4]).

The geometry and history that have been chosen for the simulation is the so
called TWIGL benchmark that represents a rod withdrawal (see [8]). The geometry
of the core is three-dimensional. A cross-sectional view ofit is specified inFIGURE

1 where only a quarter of it has been represented (the rest canbe inferred by symme-
try). The first group of rods (yellow) is withdrawn fromt = 0 (z= 100cmmeasured
starting from below) untilt = 26.6 s. (z= 180cm) at a constant velocity. The sec-
ond group of rods (brawn) is inserted fromt = 7.5 s. (z= 180cm) until t = 47.7 s.
(z= 60cm) and the simulated interval of time is[0,T] with T = 66.6 s.

Computations have been carried out withG= 2 energy groups,L = 6 precursors.
The coefficients of(∗) remain constant in time and only the geometry varies. The
fine solver has a fixed time step ofδ t = 1/6 s.

The scaling has been evaluated with a convergence test associated in which the
toleranceη has been fixed to the precision of the numerical scheme (i. e.η ∼ 10−3).
With this threshold, convergence has been achieved after only k∗ = 2, 3 or at most
4 iterations of the parareal in time algorithm.
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1

0
 c
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Fig. 1 Cross-sectional view of a quarter of the core in the TWIGL benchmark
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3.2 Strong scaling results:

For the strong scaling analysis, the same problem has been solved on an increasing
numberN of processors. The size of each interval, equal to the time step of the
coarse solver, has been reduced from∆ t = 50δ t to ∆ t = 5δ t in order to increase the
number of processors. Therefore, asN varies, the ratior and the number of parareal
iterationsk∗ change. With the computedk∗ and usingδ t/∆ t as an approximation of
r, one can infer from formula 3 the optimal speed-up values that can be obtained in
our current case with the distributed algorithm (measured speed-ups are of course
lower due to the communication time that is not taken into account in formula 3).
The values are plotted in FIGURE 2, where the theoretical speed-ups of the master-
slave algorithm are also shown in order to compare both methods.
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Fig. 2 Optimal speed-ups obtained for the scaling tests (D=Distributedalgorithm; MS= Master-
Slave algorithm; S-S= Strong Scaling; W-S= Weak Scaling)

As it can be observed, the distributed algorithm performs better for any number
N of processors. For a reduced number of processors, the speed-ups are similar
because both algorithms increase likeN/k∗ for N small enough. However, whenN
becomes significant in formulae 3, the distributed algorithm will behave likeN/r
and the master-slave method likeN/(r(1+ k∗)), making the distributed algorithm
become more perfomant on a wider range of values ofN. The performances reach a
plateau and even decrease whenN becomes very large (N > 20 in our case) because
the cost ofG becomes equivalent to the cost ofF (r tends to 1).

3.3 Weak scaling results

For this alternative evaluation of the scaling, the same geometry as before has been
used. We now consider the case in which the problem has a variable lengthT =N∆ t
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and the time step of the coarse solver∆ t is fixed (i.e. the size of the problem linearly
increases with the numberN of processors). For our computations, the fine and
coarse time steps are fixed toδ t = 1/6 s. and∆ t = 50δ t respectively.

The control rods are inserted and withdrawn periodically with a sequence of mo-
tion that creates fluctuations in the total power. With the computedk∗, the optimal
speed-ups for the distributed algorithm are plotted inFIGURE 2 and compared to
the master-slave model. The most important result here is that the distributed algo-
rithm can effectively speed-up long time calculations as itcan be observed. When
compared to the master-slave implementation for large values ofN, the distributed
algorithm has a clear advantage because the increase ofk∗ has not such a strong neg-
ative impact on it than on the master-slave implementation (as it can also be seen in
FIGURE 2).

4 About the convergence of parareal in the kinetic neutron
diffusion equation

The analysis of the convergence process can be done into two ways, either by look-
ing only at the history of the values at eachTn, 1≤ n≤N, or by looking at the error
at each fine discrete timem∆ t :

ek(tn+mδ t) f ine =
‖FTn+mδ t

Tn
(Φk

n)−FTn+mδ t
0 (Φ0)‖L2

‖Φ0‖L2
(4)

∀n= 1, ...N, ∀m= 0,1, ...∆ t
δ t , ∀k= 0, ...,N−1

FIGURE 3 illustrates the global convergence history according to formula 4. Above
the convergence threshold, we note a surprising behavior ofthe error over each
interval [Tn,Tn+1] that is, in most cases, neither linear nor constant despite that (∗)
is linear. The following analysis will explain that this is due to the presence of the
radioactive isotopes.

Under several hypothesis (see the point kinetics approximation in [10]), the ki-
netic behavior of system(∗) can be analysed through a set of first order ODE’s of
the form:

(5)





dΦ(t)
dt = αΦ(t)+

L
∑
ℓ=1

λℓCℓ(t)

dCℓ(t)
dt = γℓΦ(t)−λℓCℓ(t),∀ℓ= 1, . . . ,L

Φ(0) = Φ0, Cℓ(0) =Cℓ,0

where the coefficients are in the range−0.5≤ α ≤ −6.10−3, while for anyℓ,1≤
ℓ≤ L, 10−2≤ λℓ ≤ 4 and 3.10−3≤ γℓ ≤ 3,4.10−2

In order to understand the phenomenon in the simulation of(∗) represented in
FIGURE 3, let us consider the case whereL = 1 in (5). Due to linearity, the evolution
of the error (ef ine) between the parareal fine propagator and the sequential fineone
follows the same evolution asΦ in (5) over each interval[Tn,Tn+1] starting from
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an initial errorδΦ over Φ and δC over C = C1. This system can be solved and
the solution is the sum of two exponential behaviorseµ−t andeµ+t whereµ± are

the two eigenvalues associated with the problem :µ± =
(α−λ )±

√
(λ+α)2+4λγ
2 . In the

range of values where the physical parameters lie,λ +α is not small and we can

consider thatγ = (λ+α)2

4λ (ε + ◦(ε)). In this case, the eigenvalues behave asµ± =
α−λ±|λ+α |

2 ± |λ+α |
4 ε+◦(ε) whereε is a small quantity, the errorδΦ(t) = δΦ0eαt +

λ
λ+α δC0

(
eαt −e−λ t

)
+ θ(δΦ0,δC0,α,λ )ε + ◦(ε), with θ gathering the terms at

orderε. At first order, and depending on the values ofα andλ , δΦ (and therefore
ef ine) will present an exponentially decreasing trend (e.g.α = −0.006,λ = 4) or
a brief increase followed by a decrease (e.g.α = −0.5, λ = 0.01) as it appears in
FIGURE 3.

Conclusion

The results of this study show that the parareal distributedalgorithm can effectively
speed-up neutron kinetic diffusion calculations. They cancertainly be improved by
coupling parareal with spatial domain decomposition. A further analysis needs to
be done on the impact of the communication time between processors.

An analysis of a surprising behavior of the error within eachinterval [Tn,Tn+1]
has also been explained and is a consequence of a special tuneof the parameters.

Note also that these results represent the first implementation of the parareal in
time algorithm within the industrial solver MINOS so the current results represent
as well a successful industrial application of parareal.

These results are encouraging because they open the door to the construction
of kinetic transport solvers. Our ongoing study is therefore to explore whether the
parareal algorithm can successfully accelerate such calculations.
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Achieving robustness through coarse space
enrichment in the two level Schwarz framework.

Nicole Spillane1,2, Victorita Dolean3, Patrice Hauret2, Fréd́eric Nataf1, Clemens
Pechstein4, and Robert Scheichl5

As many domain decomposition methods the two level AdditiveSchwarz method
may suffer from a lack of robustness with respect to coefficient variation in the
underlying set of PDEs. This is the case in particular if the partition into subdo-
mains is not aligned with all jumps in the coefficients. Thanks to the theoretical
analysis of two level Schwarz methods (see [11] and references therein) this lack of
robustness can be traced back to the so called stable splitting property (already in
[4]). Following the same ideas as in the pioneering work [1] we propose to solve a
generalized eigenvalue problem in each subdomain which identifies which vectors
are responsible for slow convergence. The spectral problemis specifically chosen
to separate components that violate the stable splitting property. These vectors are
then used to span the coarse space which is taken care of by a direct solve while
all remaining components can be resolved on the subdomains.The result is a pre-
conditioned system with a condition number estimate that does not depend on the
number of subdomains or any jumps in the coefficients. We refer to this method as
GenEO for Generalized Eigenproblems in the Overlaps. It is closely related to the
work of [2] where the same strategy leads to a different eigenproblem and different
condition number estimate (which also does not depend on thejumps in the coeffi-
cients or on the number of subdomains). A full theoretical analysis of the two level
Additive Schwarz method with the GenEO coarse space (first briefly introduced in
[8]) is given in [7]. Here our purpose is to show the steps leading from the abstract
Schwarz theory to the choice of our generalized eigenvalue problem (5). In the first
section we introduce the rather wide range of problems to which the method applies
and give the classical two-level Schwarz condition number estimate in the abstract
framework (again, see [11] and references therein). In the second section we work
to make this condition local (on each subdomain), identify the GenEO generalized
eigenproblem and state our main result (Theorem 2). Finallyin the third section we
illustrate the result numerically.

1Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Université Pierre et Marie Curie, 75005
Paris, France·2Manufacture des Pneumatiques Michelin, 63040 Clermont-Ferrand, Cedex 09,
France.·3Laboratoire J.-A. Dieudonńe, CNRS UMR 6621, Université de Nice-Sophia Antipolis,
06108 Nice Cedex 02, France.·4Institute of Computational Mathematics, Johannes Kepler Univer-
sity, Altenberger Str. 69, 4040 Linz, Austria.·5 Department of Mathematical Sciences, University
of Bath, Bath BA27AY, UK.
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1 Problem Setting

Given a finite dimensional Hilbert spaceVh, a continuous and coercive bilinear form
a : Vh×Vh→ R and a right hand sidef ∈ V ′h we consider the following problem.
Find v∈Vh such thata(v,w) = 〈 f ,w〉 for all w∈Vh. Then given a basis forVh we
can derive a linear systemAv = f .

Assumption:The following assumption is needed on the bilinear form:a is given
through positive semi definite element matrices{aτ}τ∈Th

whereTh is a mesh on the
computational domainΩ underlyingVh. Our method can also be defined for abstract
elements and degrees of freedom as in [7] but here we focus on PDEs and prefer this
more intuitive point of view.

The reason why we require this assumption is so that we may define, for any
subsetD which is resolved by the mesh, the following local bilinear form:

aD(v,w) := ∑
τ⊂D

aτ(v|τ ,w|τ). (1)

The Additive Schwarz method is based on an overlapping partition {Ω j}Nj=1 of Ω
where eachΩ j is resolved by the mesh. On each of these subdomains, we denote the
space of functions supported inΩ j by: Vh,0(Ω j) := {v|Ω j

: v∈Vh, supp(v)⊂Ω j}.
An important role is played by the extension operatorR⊤j : Vh,0(Ω j)→Vh which

returns the extension by zero of a functionv ∈ Vh,0(Ω j) to Ω . The adjoint ofR⊤j
is the restriction operatorRj : V ′h→ Vh,0(Ω j)

′ defined by〈Rjg,v〉 = 〈g,R⊤j v〉, for
v ∈ Vh,0(Ω j), g ∈ V ′h. Let Rj be the matrix representation ofRj . This is a boolean
matrix. Then the one level Additive Schwarz preconditioneris defined simply based
on these interpolation operators asM−1

AS,1 := ∑N
j=1R⊤j A−1

j Rj whereA j := RjAR⊤j are
the local problem matrices.

In other words, the one level Schwarz preconditioner approximates the inverse
of the global matrixA−1 by a sum of local inversesA−1

j . The method is known to
converge [11] as long as the subdomains and finite element spaces are chosen so

thatVh = ∑N
j=1

[
R⊤j Vh,0(Ω j)

]
. In some sense this ensures that the local subdomains

are overlapping enough. The drawback of the one level Schwarz method is that
its convergence rate depends on the number of subdomains andthus scales poorly
for large problems. The introduction of a coarse space is a, by now classical, way of
weakening this dependence. Having chosen the coarse spaceVH and an interpolation
operatorR⊤H : VH →Vh, the two-level Additive Schwarz preconditioner is the most
simple two level method: it reads

M−1
AS,2 := R⊤HA−1

H RH +
N

∑
j=1

R⊤j A−1
j Rj , AH := RHAR⊤H (Coarse problem matrix),

(2)
whereRH is the matrix representations ofRH .
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The following theorem is simply a reformulation of the results in Chapter 2 of the
book by Toselli and Widlund [11] where the abstract Schwarz theory is presented.
We refer to there for the proof.

Theorem 1 (Condition number in the abstract Schwarz theory). Let k0 be the
maximal degree of multiplicity of a point inΩ with respect to the partition into

subdomains: k0 = maxx∈Ω

(
#{Ω j : 1≤ j ≤ N,x∈Ω j}

)
.

Assume that for a fixed constant C0 there exists a stable splitting(zH ,z1, . . . ,zN)∈
VH ×Vh,0(Ω1)×·· ·×Vh,0(ΩN) of any v∈Vh:

v= R⊤HzH +
N

∑
j=1

R⊤j zj ; a(R⊤HzH ,R
⊤
HzH)+

N

∑
j=1

a(R⊤j zj ,R
⊤
j zj)≤C2

0a(v,v). (3)

Then the condition number of A preconditioned by the two level Additive Schwarz

operator satisfiesκ
(

M−1
AS,2A

)
≤ (k0+1)C2

0.

This theorem is the cornerstone of our method and we make our objective more
precise thanks to these two remarks:

• The constantk0 in the inequality does not depend on the number of subdomains
but only on the geometry of the partition. For instance in twodimensions if
a regular partition into rectangular subdomains is used then k0 = 4 no matter
what the total number of subdomains is. This means that the presence ofk0 in
the estimate does not violate scalability.

• To make the theorem more precise,C−2
0 is a lower bound for the eigenvalues

of the preconditioned operator andk0+1 is an upper bound. The upper bound
holds and is sharp regardless of the choice of the (non empty)coarse space. For
this reason we do not work to improve the upper bound and instead we will
work only on the lower bound through the stable splitting assumption.

Now the question of making the method robust with respect to the number of
subdomains and the coefficients in the PDEs reduces to the following problem:

Find a coarse spaceVH for which there exists a constantC0 independent
of the number of subdomains and the coefficients in the underlying set
of PDEs such that anyv ∈ Vh admits a stable splitting (3) onto this
coarse space and the local subspaces.

2 From the abstract Schwarz theory to the GenEO coarse space

The practical inconvenience of the stable splitting property is that it is not local.
Reducing it toN local problems relies on the following observation: there are two
simple ways to get a local version ofv, either with the restriction operatorRjv which
returns a function inVh,0(Ω j) that is supported inΩ j or by restricting the domain
of v to Ω j which we denotev|Ω j

. There is no immediate inequality between the
global terma(v,v) and any of the local termsaΩ j (Rjv,Rjv). However the alternative
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inequalitya(v,v)≥ aΩ j (v|Ω j
,v|Ω j

) holds (and motivates the following lemma), since
according to (1),

a(v,v) = aΩ (v,v) = aΩ j (v|Ω j
,v|Ω j

)+aΩ\Ω j
(v|Ω\Ω j

,v|Ω\Ω j
)

︸ ︷︷ ︸
≥0

.

Lemma 1. Given v∈ Vh, if there exists a splitting v= zH + z1+ · · ·+ zN such that
each local component ( j= 1, . . . ,N) satisfies a(R⊤j zj ,R⊤j zj) ≤ C1aΩ j (v|Ω j

,v|Ω j
),

then the splitting is stable in the sense of (3) for C2
0 = 2+C1k0(2k0+1).

Proof. Using the definition ofk0 we can bound the sum of the local contributions:

N

∑
j=1

a(R⊤j zj ,R
⊤
j zj)≤C1

N

∑
j=1

aΩ j (v|Ω j
,v|Ω j

)≤C1k0a(v,v).

The bound for the energy of the coarse contribution follows from R⊤HzH = v−
∑N

j=1R⊤j zj which impliesa(R⊤HzH ,R⊤HzH) ≤ 2a(v,v) + 2a
(

∑N
j=1R⊤j zj ,∑N

j=1R⊤j zj

)

and, by the definition ofk0 and the previous inequality,

a

(
N

∑
j=1

R⊤j zj ,
N

∑
j=1

R⊤j zj

)
≤ k0

N

∑
j=1

a(R⊤j zj ,R
⊤
j zj)≤C1k2

0a(v,v). (4)

Putting all of these estimates together ends the proof of thelemma. ⊓⊔

Lemma 1 also explains why we think of the coarse space as the space ofbad
components. Indeed, it states that it is enough to check thatan estimate holds on
each of the local componentszj of the splitting. Then this implies an estimate for
the coarse componentzH and in turn the stable splitting assumption is satisfied.

An important tool in building the GenEO coarse space is a family of partition
of unity operators. The particularity of these partition ofunity operators is that they
are defined at the degree of freedom level. The main consequence is that when the
partition of unity is applied to a function we do not need to reinterpolate into the
finite element space as is classically the case in partition of unity spaces where an
application of the partition of unity is a multiplication bya continuous function.

Definition 1 (Partition of unity). For each subdomain letdof(Ω j) be the set of
degrees of freedom for which the associated basis functionφk is supported inΩ j :
dof(Ω j) = {k; supp(φk) ⊂ Ω j}. Then for each degree of freedom k= 1, . . . ,n let

{µ j,k}{ j :k∈dof(Ω j )} be a family of weights
(

µ j,k ≥ 1 and ∑{ j :k∈dof(Ω j )}
1

µ j,k
= 1
)

.

Finally the local partition of unity operator for v∈ Vh written as v= ∑n
k=1vkφk is

defined by

Ξ j(v|Ω j
) := ∑

k∈dof(Ω j )

1
µ j,k

vk φk|Ω j
.

This definition gives rise to a few remarks:
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• A possible choice for the weights in the definition of the partition of unity is
to use the multiplicity of each degree of freedom (this is what we use in the
numerical section): for any degree of freedomk, 1≤ k≤ n, let µk denote the
number of subdomains for whichk is an internal degree of freedom, i.e.

µk := #{ j : 1≤ j ≤ N andk∈ dof(Ω j)}.

Then letµ j,k = µk for every subdomainj for whichk∈ dof(Ω j).
• Other more coefficient adapted choices similar to those in [3] could be made.
• The family of operators{Ξ j} j=1,...,N indeed forms a partition of unity since

∑N
j=1R⊤j Ξ j(v|Ω j

) = v for any v ∈ Vh. This provides an obvious splitting ofv
onto the local subspaces.

• The partition of unity operatorΞ j takes the restriction of a function to subdo-
mainΩ j and returns a function inVh,0(Ω j) (which is supported inΩ j ).

• If a degree of freedomk belongs to only one subdomainj then µ j,k = 1 and(
Ξ j(v|Ω j

)
)

k
=
(

v|Ω j

)
k
. This is the reason why the overlap plays a special role

in the generalized eigenvalue problem which separatesgoodandbad compo-
nents. More detail is given in the proof of the final theorem.

Next we introduce the GenEO coarse space.

Definition 2 (GenEO coarse space).

(i) For each subdomainΩ j (1≤ j ≤ N), let the overlap be given by

Ω ◦j =
⋃
{τ ⊂Ω j : ∃ j ′ 6= j such that τ ⊂Ω j ′}.

(ii) For each j= 1, . . . ,N, solve the following generalized eigenvalue problem: find
the eigenpairs(pk

j ,λ k
j ) ∈ {v|Ω j

;v∈Vh}×R+ of

aΩ j (p
k
j ,v|Ω j

) = λ k
j aΩ◦j (Ξ j(p

k
j),Ξ j(v|Ω j

)) for all v ∈Vh. (5)

(iii) Given a thresholdK j for each j= 1, . . . ,N, let the GenEO coarse space be
defined as

VH := span{R⊤j Ξ j(p
j
k) : λ k

j ≤K j ; j = 1, . . . ,N}.

Assumption: An additional technical assumption is
needed for the proof of Theorem 2. In [7] this is given
rigorously in the abstract framework but here since we
do not go into the details of the proof we will relie on
the figure on the right. We assume that given data for
the degrees of freedom in the overlap that do not lie
on the boundary (i.e. the dots) we can build a discrete
harmonic w.r.t.aΩ j (·, ·) extension to the whole ofΩ j .

In the next theorem we give our main result which is an estimate for the condi-
tion number. It relies solely on the stable splitting property. We provide a suitable
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decomposition that allows to complete the proof along with the main steps of the
proof.

Theorem 2 (Stable Splitting and Final Estimate).For any j= 1, . . . ,N, suppose
that the pkj ∈ VH have been normalized w.r.t. aΩ◦j (Ξ j(·),Ξ j(·)) and letΠ j be the

projection operator:Π j(v|Ω j
)=∑{k:λ k

j ≤K j}aΩ◦j (Ξ j(pk
j),Ξ j(v|Ω j

))pk
j . Then, for any

v∈Vh, the splitting zH := ∑N
j=1 Ξ j

(
Π j(v|Ω j

)
)

and zj := Ξ j

(
v|Ω j
−Π j(v|Ω j

)
)

sat-

isfies Lemma 1 for C1 = max1≤ j≤N

(
1+ 1

K j

)
so, by Theorem 1, the condition num-

ber of the preconditioned operator is bounded by

κ(M−1
AS,2A) ≤ (1+k0)

[
2+k0(2k0+1) max

1≤ j≤N

(
1+

1
K j

)]
,

Proof. The only thing that we need to check isa(R⊤j zj ,R⊤j zj) ≤
(

1+ 1
K j

)
a(v,v).

Here we only give the key ideas of the proof, the whole proof ina more general set-
ting can be found in [7]. The most important ingredient in theproof is that, because
they were obtained through a generalized eigenvalue problem, thepk

j form a basis
of {v|Ω j

;v∈Vh} with the additional orthogonality type properties:

aΩ◦j (Ξ j(p
k
j),Ξ j(p

l
j)) = 0 and aΩ j (p

k
j , p

l
j) = 0 for all k 6= l . (6)

Using these properties we obtain

v|Ω j
−Π j(v|Ω j

) = ∑
{k:λ k

j >K j}
αk

j pk
j , for anyv|Ω j

written asv|Ω j
= ∑

k

αk
j pk

j ,

where the coefficientsαk
j ∈ R. Then we make appear the overlap term:

a(R⊤j zj ,R
⊤
j zj) = aΩ j (zj ,zj) = aΩ◦j (zj ,zj)+aΩ j\Ω◦j (zj ,zj).

In the interiorΩ j \Ω ◦j we have thatΞ j is identity sozj = v|Ω j
−Π j(v|Ω j

) and be-

causeaΩ j\Ω◦j (·, ·)≤ aΩ j (·, ·): aΩ j\Ω◦j (zj ,zj)≤ aΩ j (v|Ω j
−Π j(v|Ω j

),v|Ω j
−Π j(v|Ω j

)).

Then by an orthogonality argumentaΩ j\Ω◦j (zj ,zj)≤ aΩ j (v|Ω j
,v|Ω j

).
For the other term, we write

aΩ◦j (zj ,zj) = aΩ◦j


 ∑
{k:λ k

j >K j}
αk

j Ξ j(p
k
j), ∑
{k:λ k

j >K j}
αk

j Ξ j(p
k
j)




= ∑
{k:λ k

j >K j}
αk

j
2
aΩ◦j (Ξ j(p

k
j),Ξ j(p

k
j)) (Orthogonality (6))

≤ 1
K j

∑
{k:λ k

j >K j}
αk

j
2
aΩ j (p

k
j , p

k
j) (Definition of eigenproblem (5))
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≤ 1
K j

∑
{all k}

αk
j
2
aΩ j (p

k
j , p

k
j) =

1
K j

aΩ j (v|Ω j
,v|Ω j

).

⊓⊔

3 Numerical results

We run a simulation for the Darcy equation−∇ · (α∇v) = 1 in Ω = [0,1]2 with
homogeneous Dirichlet boundary conditions on the whole of∂Ω . The mesh is
200×200 square elements further subdivided into triangles and the finite element
discretization uses standardP1 basis functions. All the finite element data is gen-
erated using Freefem++ [5]. The coefficient distribution israther random since it
is given by a QR code. This is shown on the left hand side of Figure 1 where in
the yellow (or light) partsα = 1 and in the pink (or dark) partsα = 1000. The de-
composition into subdomains is the 100 subdomain partitionobtainedvia Metis [6]
where we add one layer of overlap to each subdomains. This is plotted in the mid-
dle of Figure 1. The results are shown on the right hand side ofFigure 1 where we
have plotted the condition number versus the coarse space size for different values
of the thresholdK j which is used to select modes for the coarse space. We observe
that the coarse space grows roughly linearly with the threshold but the condition
number stabilizes quickly. What this illustrates is that there is a good compromise
to be found between the size of the coarse space and the efficiency of the method.
An automatic optimal choice forK j is a subject for future research. More thorough
numerical experiments can be found in [7, 8] including threedimensional examples
and results for elasticity.

Fig. 1 Left: coefficient distribution (pink or dark is high conductivity) – Middle: Metis par-
tition of the 200× 200 mesh into 100 subdomains – Right: We plot the condition number
with respect to the coarse space size when the threshold successivelytakes the valuesτ ∈
[0.01;0.05;0.1;0.2;0.3;0.4;0.5;0.6;0.7;0.8;0.9]. As a matter of comparison: without any coarse
space the condition number is 9661. With just the weighted constant Ξ j (1|Ω j

) per floating subdo-
main the condition number is 7324: this 62 dimensional coarse spaceis what we get for GenEO
with a barely positive thresholdτ = 0+ (not shown on the graph simply because of scaling issues).
We observe that the most troublesome eigenmodes are identified for quite a small value of the
threshold and a reasonable size of the coarse space, then the condition number stagnates.
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Conclusion

We have introduced the GenEO coarse space which is a way to automatically make
the two level Schwarz method robust. The construction of this coarse space is based
on solving generalized eigenvalue problems which isolategoodandbad modes in
each subdomain. We have presented the steps which lead to thechoice of this gen-
eralized eigenvalue problem starting with the abstract Schwarz theory and the key
ideas of the proof for the condition number estimate. The whole proof and a more
general setting can be found in [7]. Although the eigenvalueproblems are local, can
be solved in parallel and only the smallest eigenvalues are needed, this setup phase
could be costly and the study of the overall cost of the algorithm is still work in
progress. The related methods in [2, 4] have been extended toa multilevel setting
by [3, 12]. Moreover, this strategy was further applied by some of the authors in the
BDD and FETI frameworks [9, 10].

References
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Optimized Schwarz algorithms in the
framework of DDFV schemes

Martin J. Gander1, Florence Hubert2, and Stella Krell3

1 Introduction

We are interested in this paper in anisotropic diffusion problems of the form

−div(A∇u) = f on Ω ; u= 0 on∂Ω . (1)

A discretization of the Schwarz algorithm using Discrete Duality Finite Volume
methods (DDFV for short) for such problems was developed in [3]. The DDFV
method needs a dual set of unknowns located on both vertices and “centers” of the
primal control volumes, which leads to two meshes, the primal and the dual one, and
permits the reconstruction of two-dimensional discrete gradients located on a third
partition of Ω , called the diamond mesh, and also a discrete divergence operator
defined by duality. The DDFV method is particularly accuratein terms of gradient
approximation, see the benchmark [11] for problem (1) and anextensive bibliog-
raphy. DDFV methods are also very robust, see [6, 2] for theoretical justifications,
and [5] for applications. It is therefore of great interest to develop parallel solvers
for such discretizations.

A non-overlapping Schwarz method using Robin transmissionconditions was
first proposed at the continuous level by Lions in [12]. For the model problem (1),
the algorithm with two non-overlapping subdomains,Ω = Ω1∪Ω2, and interface
Γ = ∂Ω1∩∂Ω2, computes for iteration indexl ∈ N∗ the subdomain solutions

−div(A∇ul
j) = f on Ω j , ul

j = 0 on∂Ω j ∩∂Ω ,
A∇ul

j ·n ji + pul
j = −A∇ul−1

i ni j + pul−1
i onΓ , j 6= i,

(2)

wheren ji is the unit normal fromΩ j to Ωi , andp is a parameter that one can choose
to accelerate convergence. Choosingp such that the algorithm converges as fast as
possible leads to a so called optimized Schwarz method [8].

The non-overlapping algorithm ((2)) at the discrete level is interesting for cou-
pling non-matching grids, see for example [1], [4] and [9] for isotropic diffusion
problems or [10], [7] for general diffusion. It has also beenanalyzed in [3] in the
case of highly anisotropic operators, and on a wide range of meshes. Numerical
experiments in [3] showed however that the DDFV discretization chosen at the in-
terfaces leads to a convergence factor of 1−O(h) of the algorithm (h denotes the

1 University of Geneva, 2-4 rue du Lièvre CP 64 1211 Genève Switzerland e-mail:martin.
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Valrose 28 avenue Valrose 06108 Nice Cedex 2 FRANCE e-mail:krell@unice.fr
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mesh size), when the parameterp was chosen numerically such that convergence
was fastest. This contraction factor is much worse than the optimal contraction fac-
tor 1−O(

√
h) of ((2)) for other discretizations, see [8]. The purpose of this short

paper is to investigate why the classical DDFV discretization leads to such a slow
convergence of the optimized Schwarz method, and to developa new discretization
of the transmission conditions in order to restore the optimal convergence rate. We
show our results for the Poisson equation,A= Id, but the extension to anisotropic
tensorsA can be obtained similarly. In Section (2), we show for the case of the
Poisson equation and square meshes on half spaces that the traditional DDFV dis-
cretization leads to a mass matrix in the term with the Robin parameter. This mass
matrix couples the primal and dual grids, and destroys the good convergence behav-
ior of the optimized Schwarz method. In Section (3), we then show how to discretize
the transmission conditions differently in the context of DDFV in order to recover
the optimal convergence factor 1−O(

√
h). We then extend the algorithm to gen-

eral meshes and prove convergence. Finally, in Section (4),we present numerical
experiments which illustrate our analysis.

2 DDFV discretization of the optimized Schwarz algorithm

We decomposeΩ := R2 into two non-overlapping half planesΩ1 := (−∞,0)×R
andΩ2 := (0,∞)×R, with the interfaceΓ := ∂Ω1∩ ∂Ω2. We use a regular grid
of squares, so that the DDFV discretization away from the interfaceΓ leads to two
interlaced five point finite difference schemes. The mesh size is denoted byh. We
use for the scheme aligned with the interface star indices, and for the other one
indices without stars, see Figure (1). The DDFV Schwarz algorithm proposed in [3]
solves at each iterationl ∈ N∗, on each domainj on interior primal cells

u j,l
m+1,n−2u j,l

m,n+u j,l
m−1,n+u j,l

m,n+1−2u j,l
m,n+u j,l

m,n−1 = 0, m> 0. (3)

In order to obtain (3) form= 1, we introduceu j,l
0,n which is linked with the interface

primal unknownsu j,l
1
2 ,n

by

u j,l
1
2 ,n

=
1
2
(u j,l

1,n+u j,l
0,n). (4)

On interior dual cells, the algorithm solves

u j,l
m∗+1,n∗ −2u j,l

m∗,n∗ +u j,l
m∗−1,n∗ +u j,l

m∗,n∗+1−2u j,l
m∗,n∗ +u j,l

m∗,n∗−1 = 0, m∗ > 0, (5)

whereas on boundary dual cells, the additional fluxesϕ j,l
n,n∗ are used,

u j,l
1∗,n∗ −u j,l

0∗,n∗ +
1
2
(u j,l

0∗,n∗+1−2u j,l
0∗,n∗ +u j,l

0∗,n∗−1)+
h
2
(ϕ j,l

n−1,n∗ +ϕ j,l
n,n∗) = 0. (6)
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Domain 1 Domain 2

u1,l
m,n

m∗ = 2 m∗ = 1 m∗ = 0 m∗ = 0 m∗ = 1 m∗ = 2

n+1

n

u1,l
m∗,n∗ u2,l

m∗,n∗

u2,l
m,n

m= 1
2

n−1

n∗+2

n∗+1

n∗
ϕ1,l

n,n∗ ϕ2,l
n,n∗

m= 2m= 0 m= 0m= 2 m= 1 m= 1m= 1
2

Γ

Fig. 1 The unknownsu j,l
m,n are associated with the primal cells, whose centers are bullets•; the

unknownsu j,l
m∗,n∗ are associated with the dual cells shown in dashed, whose centers are diamonds

�, or ♦ for boundary cells. The centers of the dual cells� are the vertices of the primal cells,
and similarly the centers of the primal cells• are the vertices of the dual cells. Additional primal
unknownsu j,l

1
2 ,n

, located at◦, and also additional flux unknownsϕ j,l
n,n∗ are needed on the interfaceΓ .

The indicesj andl stand for the domain and the iteration.

The Robin transmission condition onΓ can now be expressed using the fluxesϕ j,l
n,n∗ ,

ϕ j,l
n,n∗ +

p
2
(u j,l

0∗,n∗ +u j,l
1
2 ,n

) =−ϕ i,l−1
n,n∗ +

p
2
(ui,l−1

0∗,n∗ +ui,l−1
1
2 ,n

). (7)

Finally, a consistency condition is required for the fluxes,namely

1
2
(ϕ j,l

n,n∗ +ϕ j,l
n,n∗+1) =

2
h
(u j,l

1
2 ,n
−u j,l

1,n). (8)

Equations (3)-(8) completely describe the original DDFV Schwarz algorithm from
[3]. In order to analyze the DDFV discretization of the optimized Schwarz algo-
rithm (3) and (5), we perform a discrete Fourier transform inthe n index, which
corresponds to they variable, aligned with the interface. Settingu j,l

m,n = û j,l
m,ke

iknh,

u j,l
m∗,n∗ = û j,l

m∗,ke
ikn∗h, bothû j,l

·,k andû j,l
(·)∗,k satisfy the recurrence relation

Xm+1−2Xm+Xm−1+αkXm = 0, (9)

with αk = 2coskh−2. The general solutions of (3) and (5) are bounded solutions
of (9), which implies that

û j,l
m,k =C j,l

k λ m, û j,l
m∗,k =C∗, j,lk λ m∗ , λ :=

2−αk−
√
(2−αk)2−4
2

.

In order to determine the constantsC j,l
k andC∗, j,lk from the transmission conditions

(6) and (8), we eliminate the fluxes from the interface conditions using (7):
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1
h
(u j,l

0∗,n∗ −u j,l
1∗,n∗)−

1
2h

(u j,l
0∗,n∗+1−2u j,l

0∗,n∗ +u j,l
0∗,n∗−1)+ pγn∗(u

j,l )

=−1
h
(ui,l−1

0∗,n∗ −ui,l−1
1∗,n∗)+

1
2h

(ui,l−1
0∗,n∗+1−2ui,l−1

0∗,n∗ +ui,l−1
0∗,n∗−1)+ pγn∗(u

i,l−1),

and
2
h
(u j,l

1
2 ,n
−u j,l

1,n)+ pγn(u
j,l ) =−2

h
(ui,l−1

1
2 ,n
−ui,l−1

1,n )+ pγn(u
i,l−1),

with traces

γn∗(u
j,l )=

1
4
(u j,l

1
2 ,n

+2u j,l
0∗,n∗+u j,l

1
2 ,n−1

), γn(u
j,l )=

1
4
(u j,l

0∗,n∗+2u j,l
1
2 ,n

+u j,l
0∗,n∗+1). (10)

We then obtain for the iteration of the constants using (4),

(
C j,l

k

C∗, j,lk

)
=B

(
Ci,l−1

k

C∗,i,l−1
k

)

with the iteration matrixB= M−1N, where

M =

( 1
h(1−λ )+ p

4(1+λ ) p
4(1+eikh)

p
8(1+λ )(1+e−ikh) 1

h(1−λ )− αk
2h +

p
2

)

N =

(
−1

h(1−λ )+ p
4(1+λ ) p

4(1+eikh)
p
8(1+λ )(1+e−ikh) −1

h(1−λ )+ αk
2h +

p
2

)
.

Proposition 1. The optimized parameter in the DDFV discretized Schwarz algo-
rithm ((3)-(8)) satisfies popt = Argminpmaxk(ρ(B)) = 4

h, and the associated opti-

mized contraction factor is1− 1
2kminh+O(h2).

Proof. The proof of this result is based on two observations: the minimum is ob-
tained when both eigenvalues are the same, which is achievedwith the given choice
of p, and then the maximum is attained for the lowest modek = kmin. The compu-
tations are however too long and technical for this short paper.

3 A new DDFV Discretization of the Transmission Conditions

A careful comparison with the convergence results in [8] suggests that the mass ma-
trices appearing in the tracesγn(u j,l ) introduce an additional coupling, which pre-
vents the optimized DDFV Schwarz algorithm from convergingrapidly. Modifying
the tracesγn∗(u j,l ) in (10) to be lumped, i.e.

γnew
n∗ (u j,l ) = u j,l

0∗,n∗ , γnew
n (u j,l ) = u j,l

1
2 ,n

, (11)

the iteration matrix becomes diagonal:Bnew= (Mnew)−1Nnew, where
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ΓΓ

u2,l
K ′

u2,l
K∗

O2O1

u2,l
L∗

mσ∗K
u∗K

uK

uL∗

uK ′

uL

u1,l
L∗

u2,l
L

mσL

mσK

mσ∗

D a diamond

mσ ′K

u1,l
L

u1,l
K

u1,l
K∗ ψ2,l

K∗ψ1,l
K∗

Fig. 2 Notation around a diamond. The new unknowns needed to describethe DDFV scheme on
Ω as the limit of the Schwarz algorithm

Mnew=

(1
h(1−λ )+ p

2(1+λ ) 0
0 1

h(1−λ )− αk
2h + p

)

Nnew=

(
−1

h(1−λ )+ p
2(1+λ ) 0

0 −1
h(1−λ )+ αk

2h + p

)
,

and we obtain a much better convergence result.

Proposition 2. The optimized parameter in the DDFV Schwarz algorithm ((3)-(8))

with modified traces(11)satisfies popt = Argminpmaxk(ρ(Bnew))∼ 23/4√kmin√
h

, and

the associated optimized contraction factor is1−21/4√kmin
√

h+O(h).

Proof. The proof of this result is based on equioscillation of the first eigenvalue
of Bnew at k = kmin and the second eigenvalue ofBnew at k = kmax≈ π

h , using
asymptotic analysis. The details are however too long for this short paper.

We now describe the DDFV Schwarz algorithm for general subdomains and de-
compositions using the notation from [3]. DDFV schemes can be described by two
operators: a discrete gradient∇D and a discrete divergence(divK ,divK∗), which are
dual to each other, see [2] or [3]. We refer to the primal unknowns byu j,l

K or u j,l
L ,

to the dual unknowns byu j,l
K∗ or u j,l

L∗ and to the set of unknowns byu j,l . The primal
mesh onΩ j is calledM j , the dual mesh onΩ j is M∗j for the interior cells,∂M∗j,Γ
for the dual boundary cells related toΓ and the diamond mesh onΩ j is calledD j .

We further need additional unknownsu j,l
L on the edges ofΓ denoted by∂M j,Γ , and

additional fluxesψ j,l
K∗ for K∗ ∈ ∂M∗j,Γ as shown in Figure (2). We denote byDK∗

the set of diamonds such thatD ∩ K∗ 6= /0 for K∗ ∈ ∂M∗j,Γ . The DDFV Schwarz
algorithm then computes forl ∈ N∗, j = 1,2, i = 2,1

−divK

(
∇Du j,l

)
= 0, ∀ K ∈M j , −divK∗

(
∇Du j,l

)
= 0, ∀ K∗ ∈M∗j , (12a)
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− ∑
D∈DK∗

mσ∗
(

∇Du j,l ,nσK∗

)
−mσK∗ψ

j,l
K∗ = 0, ∀ K∗ ∈ ∂M∗j,Γ , (12b)

(
∇Du j,l ,n ji

)
+ puj,l

L =−
(

∇Dui,l−1,ni j

)
+ pui,l−1

L , ∀ L ∈ ∂M j,Γ , (12c)

ψ j,l
K∗ + puj,l

K∗ =−ψ i,l−1
K∗ + pui,l−1

K∗ , ∀ K∗ ∈ ∂M∗j,Γ . (12d)

Using the same discrete Fourier transform for (12) as in Section (2), we obtain
Bnew. Well-posedness of the algorithm can be proved using classical a priori esti-
mates with the discrete duality property.

Theorem 1 (Convergence of the new Schwarz algorithm).For all p> 0, the solu-
tion of the new Schwarz algorithm(12)converges as l tends to infinity to the solution
of the classical DDFV scheme for the Laplace equation onΩ .

Proof. We first rewrite the classical DDFV scheme for the Laplace equation onΩ
as the limit of the Schwarz algorithm. To this end, we introduce new unknowns near
the boundaryΓ , see Figure (2):

• for all K ∈M j , we setu j,∞
K = uK and for allK∗ ∈M∗ j , we setu j,∞

K∗ = uK∗ ,

• for all L ∈ ∂M j,Γ chooseu j,∞
L = ui,∞

L =
mσ

K′ uK+mσK uK′
mσ∗

,

• for all K∗ ∈ ∂M∗j,Γ chooseu j,∞
K∗ = ui,∞

K∗ = uK∗ and

ψ j,∞
K∗ =−ψ i,∞

K∗ =− 1
mσK∗

∑
D∈DK∗

mσ∗
(
∇Du j,∞,nσK∗

)
.

By linearity it suffices to prove the convergence of the new DDFV Schwarz algo-
rithm (12) to zero. An a priori estimate using discrete duality leads to

2∑
D∈D j

mD‖∇Du j,l+1‖2−∑
L∈∂M j,Γ

mσL (∇
Du j,l+1,nσL )u

j,l+1
L −∑

K∗∈∂M∗
j,Γ

mσK∗ψ
j,l+1

K∗ u j,l+1
K∗ = 0.

We now rewrite the last two terms as

−∑
L∈∂M j,Γ

mσL (∇
Du j,l+1,nσL )u

j,l+1
L =

1
4p ∑

L∈∂M j,Γ

mσL

(
−(∇Du j,l+1,nσL )+ puj,l+1

L

)2

− 1
4p ∑

L∈∂Mi,Γ

mσL

(
−(∇Dui,l ,nσL )+ pui,l

L

)2
,

and using (12b)

− ∑
K∗∈∂M∗

j,Γ

mσK∗ψ
j,l+1

K∗ u j,l+1
K∗

=
1

4p ∑
K∗∈∂M∗

j,Γ

mσK∗

(
puj,l+1

K∗ −ψ j,l+1
K∗

)2
− 1

4p ∑
K∗∈∂M∗

i,Γ

mσK∗

(
pui,l

K∗ −ψ i,l
K∗

)2
.
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Fig. 3 Asymptotic behavior of the numerically optimized parameterp on the left, and number of
iterations to reduce the error by a factor of 10−10 on the right

Summing overl = 0, · · · , lmax−1 and j = 1,2, we get

2
lmax−1

∑
l=0

∑
j=1,2

∑
D∈D j

mD‖∇Du j,l+1‖2+ 1
4p ∑

j=1,2
∑

L∈∂M j,Γ

mσL

(
puj,lmax

L − (∇Du j,lmax,nσL )
)2

+
1

4p ∑
j=1,2

∑
K∗∈∂M∗

j,Γ

mσK∗

(
−ψ j,lmax

K∗ + puj,lmax
K∗

)2

= ∑
j=1,2

1
4p


 ∑

L∈∂M j,Γ

mσL

(
−(∇Du j,0,nσL )+ puj,0

L

)2
+ ∑
K∗∈∂M∗

j,Γ

mσK∗

(
−ψ j,0

K∗ + puj,0
K∗

)2


 .

This shows that the total energy stays bounded as the iteration l goes to infinity, and
hence the algorithm converges.

4 Numerical experiments

We show results for Laplace’s equation onΩ = (−1,1)2 with two subdomainsx> 0
andx< 0. We first simulate in Figure (3) the error equations, i.e. using homogeneous
data, and starting with a random initial guess. On the left, we show thep that worked
best ash is refined, both for a conforming square mesh (2i × 2i squares onΩ j ,
j = 1,2), and for a non-conforming square mesh (2i ×2i squares onΩ1 and 3i ×3i

squares onΩ2). On the right, we show the number of iterations needed to getan
error reduction of 10−10. These experiments illustrate well our theoretical results.

We next show a case with exact solutionu(x,y) = cos(2.5πx)cos(2.5πy). Start-
ing with a random initial guess, Figure (4) shows the convergence history of the
algorithms for various parametersp on the left, and snapshots of the error at itera-
tion 10 on the right. We clearly see that forp too small, high frequencies dominate
the error, and forp large low frequencies. In the old algorithm, the theoretically
optimized choicep = 90.5, and in the new algorithm the theoretically optimized
choicep= 14.18 will work best in the long run. Finally, a priori knowledgeof the
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Fig. 4 Left: convergence history on a conforming 32×32 square mesh. Right: snapshots of the
error at iteration 10, left column for the old version andp= 5,15,90.5, right column for the new
version andp= 5,10,14.18

frequency content of the solution can be used to choose ap that gives very rapid
convergence early on in the iteration (herep = 5, good for low frequencies). This
choice becomes however very bad in the long run, once other error frequencies be-
come important.
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A Time-Dependent Dirichlet-Neumann Method
for the Heat Equation

Bankim C. Mandal1

1 Introduction

We introduce a new Waveform Relaxation (WR) method based on the Dirichlet-
Neumann algorithm and present convergence results for it inone space dimension.
To solve time-dependent problems in parallel, one can either discretize in time to
obtain a sequence of steady problems to which the domain decomposition algo-
rithms are applied, or apply WR to the large system of ordinarydifferential equa-
tions (ODEs) obtained from spatial discretization. The credit of WR method goes
to Picard [14] and Lindelöf [9] for the solution of ODEs in the late 19th century.
Lelarasmee, Ruehli and Sangiovanni-Vincentelli [8] were the first to introduce the
WR as a parallel method for the solution of ODEs. The main advantage of the WR
method is that one can use different time steps in different space-time subdomains.
The authors of [6] and [7] then generalized WR methods for ODEsto solve time-
dependent PDEs. Gander and Stuart [6] showed linear convergence of overlapping
Schwarz WR iteration for the heat equation on unbounded time intervals with a
rate depending on the size of the overlap; Giladi and Keller [7] proved superlinear
convergence of the Schwarz WR method with overlap for the convection-diffusion
equation on bounded time intervals.

The Dirichlet-Neumann method, which belongs to the class ofsubstructuring
methods, is based on a non-overlapping spatial domain decomposition. The iteration
involves subdomain solves with Dirichlet boundary conditions, followed by subdo-
main solves with Neumann boundary conditions. The Dirichlet-Neumann algorithm
was first considered for elliptic problems by P. E. Bjørstad &O. Widlund [1] and fur-
ther discussed in [2], [11] and [12]. In this paper, we propose the Dirichlet-Neumann
Waveform Relaxation (DNWR) method, a new Dirichlet-Neumannanalogue of WR
for the time-dependent problems. For presentation purposes, we derive our results
for two subdomains in one spatial dimension. We discuss the method in the contin-
uous setting to ensure the understanding of the asymptotic behavior of the method
in the case of fine grids.

We consider the following initial boundary value problem (IBVP) for the heat
equation as our guiding example on a bounded domainΩ ⊂ R,0< t < T,

∂u
∂ t = ∆u+ f (x, t), x∈Ω ,0< t < T,

u(x,0) = u0(x), x∈Ω ,
u(x, t) = g(x, t), x∈ ∂Ω ,0< t < T.

(1)

1 Department of Mathematics, University of Geneva, Geneva, Switzerland, e-mail:Bankim.
Mandal@unige.ch
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2 The Dirichlet-Neumann Waveform Relaxation algorithm

To define the Dirichlet-Neumann iterative method for the model problem (1) on
the domain(−b,a)× (0,T), we split the spatial domainΩ = (−b,a) into two non-
overlapping subdomains, the Dirichlet subdomainΩ1 = (−b,0) and the Neumann
subdomainΩ2 = (0,a), for 0< a,b< ∞. The Dirichlet-Neumann Waveform Relax-
ation algorithm consists of the following steps: given an initial guessh0(t), t ∈ (0,T)
along the interfaceΓ = {x= 0} and fork= 0,1,2, . . ., do





∂tu
k+1
1 −∂xxu

k+1
1 = f (x, t), x∈Ω1,

uk+1
1 (x,0) = u0(x), x∈Ω1,

uk+1
1 (−b, t) = g(−b, t),

uk+1
1 (0, t) = hk(t),





∂tu
k+1
2 −∂xxu

k+1
2 = f (x, t), x∈Ω2,

uk+1
2 (x,0) = u0(x), x∈Ω2,

∂xu
k+1
2 (0, t) = ∂xu

k+1
1 (0, t),

uk+1
2 (a, t) = g(a, t),

(2)
with the updating condition

hk+1(t) = θuk+1
2 (0, t)+(1−θ)hk(t), (3)

θ being a positive relaxation parameter. The parameterθ is chosen in(0,1] to ac-
celerate convergence. As the main goal of the analysis is to study how the error
hk(t)− u(0, t) converges to zero, by linearity it suffices to consider the homoge-
neous problem,f (x, t) = 0, g(x, t) = 0, u0(x) = 0 in (1), and examine howhk(t)
goes to zero ask→ ∞.

3 Convergence analysis and main results

We analyze the DNWR algorithm using the Laplace transform method. The Laplace
transform of a functionw(t), defined for all real numberst ∈ [0,∞), is the function
ŵ(s), defined by

ŵ(s) = L {w(t)} :=
∫ ∞

0
e−stw(t)dt,

(if the integral exists)s being a complex variable. IfL {w(t)} = ŵ(s), then the
inverse Laplace transform of ˆw(s) is denoted by

L −1{ŵ(s)} := w(t), t ≥ 0,

which maps the Laplace transform of a function back to the original function. For
more information on Laplace transforms, see [3, 13]. We use hats to denote the
Laplace transform of a function in time in the rest of the paper.

Analysis by Laplace transforms.Applying a Laplace transform in time to (2) and

solving the resulting ODEs yields the solutions: ˆuk+1
1 (x,s)= ĥk(s)

sinh(b
√

s) sinh{(x+b)
√

s}
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andûk+1
2 (x,s) = ĥk(s) coth(b

√
s)

cosh(a
√

s) sinh{(x−a)
√

s}. Now, evaluating ˆuk+1
2 (x,s) atx= 0

and inserting it into the transformed updating condition (3), we get fork= 0,1,2, . . .
ĥk+1(s) = {1−θ −θ tanh(a

√
s)coth(b

√
s)} ĥk(s). Therefore, by induction we get

ĥk(s) =
{

1−θ −θ tanh(a
√

s)coth(b
√

s)
}k

ĥ0(s), k= 1,2,3, ... (4)

Theorem 1.For the symmetric case, a= b in (2)-(3), the DNWR algorithm con-
verges linearly for0< θ < 1. Moreover, forθ = 0.5, it converges to the exact solu-
tion in two iterations, independent of the size of the time window.

Proof. For a = b, the equation (4) reduces toĥk(s) = (1−2θ)kĥ0(s), which upon
back transforming giveshk(t) = (1−2θ)kh0(t). Thus, the convergence is linear for
θ 6= 0.5. On the other hand, forθ = 0.5, h1(t) = 0. Therefore, one more iteration
produces the desired solution on the whole domain. ⊓⊔

The main area of concern for the rest of the paper is the analysis of the DNWR
algorithm fora 6= b. If we define

G(s) := tanh(a
√

s)coth(b
√

s)−1=
sinh((a−b)

√
s)

cosh(a
√

s)sinh(b
√

s)
,

then the recurrence relation (4) reduces to

ĥk(s) =

{
{q(θ)−θG(s)}k ĥ0(s), θ 6= 1/2

(−1)k2−kGk(s)ĥ0(s), θ = 1/2,
(5)

whereq(θ) = 1− 2θ . Note that for Re(s) > 0, G(s) is1 O(s−p) for every pos-
itive p. Therefore, by [3, p. 178],G(s) is the Laplace transform of an analytic
function F1(t) (in fact this is the motivation in definingG). In general, define
Fk(t) := L −1

{
Gk(s)

}
for k = 1,2,3, . . .. For θ not equal to 1/2, hk cannot be

expressed as a simple convolution ofh0 and an analytic function; thus, different
techniques are required to analyze its behavior. This case will be treated in a future
paper. Forθ = 1/2 andt ∈ (0,T) we get from (5)

∣∣hk(t)
∣∣=
∣∣∣∣2−k

∫ t

0
(−1)kh0(t− τ)Fk(τ)dτ

∣∣∣∣≤ 2−k ‖ h0 ‖L∞(0,T)

∫ T

0

∣∣∣Fk(τ)
∣∣∣dτ . (6)

So, we need to bound
∫ T

0

∣∣Fk(τ)
∣∣dτ to get anL∞ convergence estimate. We concen-

trate on showing thatF1(t) does not change signs both for the caseb< a, in which
F1(t) ≥ 0, and forb≥ a, for which F1(t) ≤ 0. Before we proceed further with the
proof we need the following lemmas.

Lemma 1. Let, w(t) be a continuous and L1-integrable function on(0,∞) with
w(t)≥ 0 for all t ≥ 0. Assume W(s) = L {w(t)}. Then, forτ > 0,

1 Assumings= reiϑ , z=
√

s, we can write forb≥ a,
∣∣spG(s)

∣∣≤
∣∣ sp

cosh(az)

∣∣≤ 2r p

|ea
√

r/2−e−a
√

r/2|
→ 0,

asr → ∞; and fora> b,
∣∣spG(s)

∣∣≤
∣∣ sp

sinh(bz)

∣∣≤ 2r p

|eb
√

r/2−e−b
√

r/2|
→ 0, asr → ∞.
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∫ τ

0
|w(t)|dt ≤ lim

s→0+
W(s).

Proof. Using the definition of Laplace transform, we have

∫ τ

0
|w(t)|dt =

∫ τ

0
w(t)dt ≤

∫ ∞

0
w(t)dt

=
∫ ∞

0
lim

s→0+
e−stw(t)dt = lim

s→0+

∫ ∞

0
e−stw(t)dt (by Dominated Conv. Theorem)

= lim
s→0+

W(s). ⊓⊔

Lemma 2. Let β > α ≥ 0 and s be a complex variable. Then, for t∈ (0,∞)

ϕ(t) := L −1
{

sinh(α
√

s)
sinh(β

√
s)

}
≥ 0 ; ψ(t) := L −1

{
cosh(α

√
s)

cosh(β
√

s)

}
≥ 0.

Proof. First, let us consider the following IBVP for the heat equation on (0,β ):
ut −uxx = 0, u(x,0) = 0, u(0, t) = 0, u(β , t) = g(t). Therefore, forg non-negative,
u(α, t) is also non-negative for allt > 0, thanks to the maximum principle. Now
using the Laplace transform method, we get the solution along x= α as

û(α,s) = ĝ(s)
sinh(α

√
s)

sinh(β
√

s)
=⇒ u(α, t) =

∫ t

0
g(t− τ)ϕ(τ)dτ .

We prove the result by contradiction: supposeϕ(t0) < 0 for somet0 > 0. Then by
continuity ofϕ, there existsδ > 0 such thatϕ(τ)< 0, for τ ∈ (t0−δ , t0+δ ). Now
for t > t0+δ , we chooseg as

g(ς) =

{
1, ς ∈ (t− t0−δ , t− t0+δ )
0, else.

Then u(α, t) =
∫ t0+δ
t0−δ g(t − τ)ϕ(τ)dτ =

∫ t0+δ
t0−δ ϕ(τ)dτ < 0, a contradiction. This

provesϕ to be non-negative. Forψ, applying the Laplace transform method to the
IBVP for the heat equationut−uxx = 0, u(x,0) = 0, u(−β , t) = g(t), u(β , t) = g(t)

yields the solution alongx= α as:û(α,s) = ĝ(s) cosh(α
√

s)
cosh(β

√
s) . Thus, a similar argument

as in the first case proves thatψ is also non-negative. ⊓⊔
Theorem 2. (Linear convergence bound for the Heat equation)Let θ = 1/2. For
T > 0, the error of the Dirichlet-Neumann Waveform Relaxation (DNWR) algorithm
satisfies

‖ hk ‖L∞(0,T)≤
( |b−a|

2b

)k

‖ h0 ‖L∞(0,T) .

We therefore have a contraction if a< 3b.

Proof. By virtue of (6), it is sufficient to bound
∫ T

0

∣∣Fk(τ)
∣∣dτ for both b≥ a and

a > b, whereFk(t) = L −1
{

Gk(s)
}

. Supposeb≥ a > 0. We haveL {−F1(t)} =
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sinh((b−a)
√

s)
sinh(b

√
s) · 1

cosh(a
√

s) . So by Lemma 2 and the fact that the convolution of two

positive functions is positive,−F1(t) is positive. Thus, by induction and with the
same arguments,(−1)kFk(t)≥ 0 for all t. Therefore by Lemma 1

∫ T

0

∣∣(−1)kFk(τ)
∣∣dτ ≤ lim

s→0+
(−1)kGk(s) =

(
b−a

b

)k

. (7)

Now let a > b > 0. We claim thatF1(t) is positive. If a− b≤ b, then we get the
positivity by Lemma 2. If this is not the case, then take the integerm= ⌊a/b⌋ so
thatmb< a≤ (m+1)b. Then, recursively applying the identity

sinh((a− jb)
√

s)
sinh(b

√
s)

=
sinh((a− ( j +1)b)

√
s)

sinh(b
√

s)
cosh(b

√
s)+cosh((a− ( j +1)b)

√
s)

for j = 1, . . . ,m−1, we obtain

sinh((a−b)
√

s)
cosh(a

√
s)sinh(b

√
s)

=
sinh((a−mb)

√
s)

sinh(b
√

s)
.
coshm−1(b

√
s)

cosh(a
√

s)

+
m−2

∑
j=0

coshj(b
√

s)cosh((a− ( j +2)b)
√

s)
cosh(a

√
s)

.

Applying the binomial theorem to coshθ =
(
eθ +e−θ)/2 we have the power-

reduction formula

coshn θ =





2
2n

n−1
2

∑
l=0

(n
l

)
cosh((n−2l)θ) , n odd,

1
2n

( n
n/2

)
+ 2

2n

n
2−1

∑
l=0

(n
l

)
cosh((n−2l)θ) , n even,

so that we can write coshn θ =
n

∑
l=0

An
l cosh(lθ) with

n

∑
l=0

An
l = 1 andAn

l ≥ 0. Therefore,

we have

G(s) =
sinh((a−b)

√
s)

cosh(a
√

s)sinh(b
√

s)
=

sinh((a−mb)
√

s)
sinh(b

√
s)

m−1

∑
l=0

Am−1
l

cosh(lb
√

s)
cosh(a

√
s)

+
m−2

∑
j=0

j

∑
l=0

A j
l

2

{
cosh((a− ( j + l +2)b)

√
s)

cosh(a
√

s)
+

cosh((a− ( j− l +2)b)
√

s)
cosh(a

√
s)

}
,

where coshj θ =
j

∑
l=0

A j
l cosh(lθ). Note thata−mb≤ b, ( j− l +2)b≤mb< a and

|a− ( j + l +2)b| < a for 0≤ j, l ≤ m− 2 and cosh is an even function. Thus by
Lemma 2, each term in the above expression is the Laplace transform of a posi-
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tive function. HenceF1(t) is positive, and therefore the convolution ofk F1’s (i.e.

Fk(t)) is also positive. We have lim
s→0+

G(s) = lim
s→0+

sinh((a−b)
√

s)
cosh(a

√
s)sinh(b

√
s) =

a−b
b , and so by

Lemma 1

∫ T

0

∣∣Fk(τ)
∣∣dτ =

∫ T

0
Fk(τ)dτ ≤ lim

s→0+
Gk(s) =

(
lim

s→0+
G(s)

)k

=

(
a−b

b

)k

. (8)

The result follows by inserting the estimates (7) and (8) into (6). ⊓⊔

4 Numerical Experiments

We perform experiments to measure the actual convergence rate of the DNWR al-
gorithm for the problem





∂u
∂ t − ∂ 2u

∂x2 =−e−t−x2
, x∈ (−3,2),

u(x,0) = e−2x, x∈ (−3,2),

u(−3, t) = e−2t = u(2, t), t > 0.

To solve the equation using the Dirichlet-Neumann algorithm, we discretize the
Laplacian using centered finite differences in space and backward Euler in time on
a grid with ∆x = 2×10−2 and∆ t = 4×10−4. For the numerical experiments we
split the spatial domain into two non-overlapping subdomains [−3,0] and[0,2], so
thatb= 3 anda= 2 in (2)-(3). Thus this is the case when the Dirichlet subdomain is
bigger than the Neumann subdomain. The numerical results are similar for the case
when the Neumann domain is larger than the Dirichlet one. We test the algorithm by
choosingh0(t) = t, t ∈ (0,T] as an initial guess. Figure 1 gives the error reduction
curves for different values of the parameterθ for T = 2 in (a) andT = 200 in(b).
Note that, for a small time window, we get linear convergencefor all the parameters,
except forθ = 0.5 which corresponds to superlinear convergence.
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(a) Short time window
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(b) Large time window

Fig. 1 Convergence for various parameters; left: short time window, right: large time window.
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For a large time window, we always observe linear convergence. We now plot the
linear bound for the convergence rate in case ofθ = 1/2 as shown in Theorem 2.
The theorem provides aT-independent theoretical bound of the error for this special
relaxation parameter and this is also valid for large time windows. Eventually, a
more refined analysis will give a superlinear bound shown in (9)-(10), dependent on
T and the lengths of the subdomains (see [5]). Figure 2 gives a comparison between
the theoretical error for the continuous model problem (calculated using inverse
Laplace transforms), numerical error for the discretized problem, linear bound and
the superlinear bound fora= 2,b= 3 and variousT ’s. We can observe that the error
curves seem to approach the linear bound asT increases.

0 5 10 15 20 25
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0

iteration

 

 

Numerical error
Theoretical error
Superlinear bound
Linear bound
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iteration

 

 

Numerical error
Theoretical error
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Linear bound

Fig. 2 Bounds for various times,b≥ a; in particulara< 3b. Left: T = 2, right:T = 200

5 Conclusions and further results

We proved convergence of the proposed DNWR algorithm in the symmetric case.
For unequal subdomain lengths and for a particular choice ofrelaxation parameter,
we presented a linear error estimate that is valid for both bounded and unbounded
time intervals. In fact, Figure 2 suggests that the method converges superlinearly.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

t
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Fig. 3 Fk(t),k= 1,2,3.

To prove this, one has to consider
two different cases: Dirchlet subdo-
main bigger than Neumann subdomain
(b≥ a) and the other way around. Fig-
ure 3 showsFk(t) for k= 1,2,3; we see
that the curves shift to the right and at
the same time, the peak decreases ask
increases. So, if one only considers a
small time window, the peak will even-
tually exit the time window fork large
enough and its contribution will be vanishingly small in theexpression (5). This
is the intuitive idea to get superlinear convergence forθ = 1/2 in small time win-



406 Bankim C. Mandal

dows. A detailed analysis, which is too long for this short paper, in [5] leads to the
following superlinear convergence estimates for the smalltime window(0,T):

‖ hk ‖L∞(0,T)≤
(

b−a
b

)k

erfc

(
ka

2
√

T

)
‖ h0 ‖L∞(0,T), for b≥ a, (9)

and

‖ h2k ‖L∞(0,T)≤
{ √

2

1−e−
2k+1

σ

}2k

e−k2/σ ‖ h0 ‖L∞(0,T), for b< a, (10)

whereσ = T/b2. We are also working on a generalization of the algorithm to higher
dimensions.
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Hierarchical model (Hi-Mod) reduction in
non-rectilinear domains

Simona Perotto1

1 Introduction and motivations

In [2, 1] we have proposed an approach for the numerical modeling of second-order
elliptic problems exhibiting a dominant direction in theirbehaviour: the solution
of interest can be regarded as a main component aligned with the centerline of the
domain with the addition of local perturbations along the transverse directions. Ref-
erence application is given, e.g., by advection-diffusion-reaction problems in pipes
(like drug transport in the circulatory system). The basic idea of the approach is to
perform a finite element discretization along the mainstream and a spectral modal
approximation for the transverse components. The rationale is that the transverse
components are reliably captured by few modes (usually< 10). In addition, the
number of modes can locally vary along the centerline to properly fit the transverse
behaviour of the solution. Thus we get an actual hierarchy ofreduced models: they
are essentially locally-enriched 1D models and differ for the level of detail in de-
scribing the transverse behaviour of the full problem. For this reason, we defined
this approach Hierarchical Model (Hi-Mod) reduction.
So far we have essentially applied the Hi-Mod approach to rectilinear domains
[1, 2, 4]. This implies significant simplifications in the computation of the reduced
model. Nevertheless, domains with a curved centerline are clearly of paramount
interest for practical applications. Aim of this paper is toperform a complete devel-
opment of the Hi-Mod reduction in a generic non-rectilineardomain.

2 The geometrical setting

A Hi-Mod reduction procedure relies upon a specific shape of the computational
domainΩ ⊂ IRd, with d = 2,3. More precisely, we assumeΩ to coincide with
a d-dimensionalfiber bundle, where we distinguish a supporting one-dimensional
curved domainΩ1D (aligned with the mainstream), and a set of(d−1)-dimensional
transverse fibersγ ⊂ IRd−1 (associated with the transverse components of the so-
lution). Following [1, 2], we map the current domainΩ into a reference domain,
Ω̂ = Ω̂1D× γ̂d−1, with Ω̂1D a straight line and̂γd−1 a reference (transverse) fiber of
the same dimension asγ. For this purpose, we introduce the mapΨ : Ω → Ω̂ and
we denote byz= (x,y) ∈Ω andẑ= (x̂, ŷ) ∈ Ω̂ a generic point inΩ and the corre-

1 MOX, Dipartimento di Matematica “F. Brioschi”, Politecnico diMilano, Piazza Leonardo da
Vinci 32, I-20133 Milano, Italy e-mail:simona.perotto@polimi.it
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Fig. 1 Sketch of the main geometrical quantites involved in the Hi-Mod procedures (d = 3)

sponding point inΩ̂ , respectively so that̂z=Ψ(z) = (Ψ1(z),Ψ2(z)), with x̂=Ψ1(z)
and ŷ = Ψ2(z). Likewise, we introduce the inverse mapΦ : Ω̂ → Ω , defined as
z = Φ(ẑ) = (Φ1(ẑ),Φ2(ẑ)), with x = Φ1(ẑ) andy = Φ2(ẑ) (see Fig. 1). Without
loss of generality, we assumeΩ1D to coincide with the centerline ofΩ , and analo-
gously forΩ̂1D. We assume that bothΨ andΦ are differentiable with respect toz.
Then, we define the Jacobian associated with the mapΨ

I (z) =
∂Ψ
∂z

=




∂Ψ1

∂x
∇yΨ1

∂Ψ2

∂x
∇yΨ2


 ∈ IRd×d, (1)

where∇y is the gradient with respect toy. Notice that the first row in (1) accounts
for the centerline deformation and it is not trivially the first row of the identity matrix
as in the rectilinear case ([2]).

3 The Hi-Mod reduction procedure

Let us first introduce the model we aim at reducing, i.e., the so-calledfull problem.
In particular, we consider directly the weak formulation, given by

find u∈V : a(u,v) = F(v) ∀v∈V, (2)

with V a Hilbert space,a(·, ·) : V×V→ IR a continuous and coercive bilinear form
andF(·) : V → IR a continuous linear functional. Since we deal with second-order
elliptic problems, we haveV ⊆ H1(Ω).

The Hi-Mod reduction strongly relies upon the fiber structure of Ω . The idea
is to tackle the dominant and transverse components of the solution in different
ways. In particular, with reference tôΩ , we introduce a one-dimensional spaceVΩ̂1D
of functions compatible with the boundary conditions assigned along the extremal
faces ofΩ , and a modal basis{ϕk}k∈IN+ of functions orthonormal with respect
to theL2-scalar product on̂γd−1 and taking into account the boundary conditions
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imposed on the lateral faces ofΩ . A suitable combination of the spaceVΩ̂1D
with

the modal basis allows us to introduce a so-calledhierarchically reduced model. In
particular, in the following, we focus on two possible Hi-Mod reduction procedures
proposed in [1, 2] and here generalized to the non-rectilinear case.

3.1 Uniform Hi-Mod reduction

The reduced spaceVm characterizing a uniform Hi-Mod reduction essentially coin-
cides with the set of the linear combinations of the modal functions whose coeffi-
cients belong to the one-dimensional spaceVΩ̂1D

, i.e.,

Vm =
{

vm(z) =
m

∑
k=1

vk(Ψ1(z))ϕk(Ψ2(z)), with vk ∈VΩ̂1D

}
. (3)

The mapΨ plays a crucial role since all the functions involved are defined on the
reference framework. SpaceVm establishes an actualhierarchyof reduced models
marked by the modal indexm, i.e., by the different level of detail in describing the
transverse behaviour of the full solution. The uniform Hi-Mod reduced formulation
for (2) reads: given a modal indexm∈ IN+, find um∈Vm, such that

a(um,vm) = F(vm) ∀vm∈Vm. (4)

To guarantee the well-posedness and the convergence ofum to u, we introduce a con-
formity (Vm⊂V,∀m∈ IN+) and a spectral approximability (limm→+∞(infvm∈Vm‖v−
vm‖V) = 0,∀v∈V) assumptions onVm ([1, 2]).

Let us detail now the uniform Hi-Mod reduction procedure on aspecific dif-
ferential problem. In particular, we select the full model (2) as a standard linear
scalar advection-diffusion-reaction (ADR) problem completed with full homoge-
neous Dirichlet boundary conditions, so thatV = H1

0(Ω),

a(u,v) =
∫

Ω
µ∇u·∇vdΩ +

∫

Ω

(
b ·∇u+σu

)
vdΩ , F(v) =

∫

Ω
f vdΩ , (5)

and where the following choices are made for the problem datato ensure the well-
posedness of the weak form (2):f ∈ L2(Ω), µ ∈ L∞(Ω), with µ ≥ µ0 > 0 a.e. in
Ω , σ ∈ L∞(Ω), b = (b1,b2)

T ∈ L∞(Ω)× [L∞(Ω)]d−1, with ∇ ·b ∈ L∞(Ω) and such
that−1

2∇ ·b+σ ≥ 0 a.e. inΩ .
Now we consider the reduced model (4); we replaceum with the corresponding
modal representationum(z) = ∑m

j=1u j(Ψ1(z))ϕ j(Ψ2(z)) and vm with the product

ϑ(Ψ1(z))ϕk(Ψ2(z)), whereϑ ,u j ∈VΩ̂1D
= H1

0(Ω̂1D) for j = 1, . . . ,m, to get

m

∑
j=1

[ ∫

Ω
µ(z)∇

(
u j(Ψ1(z))ϕ j(Ψ2(z))

)
·∇
(
ϑ(Ψ1(z))ϕk(Ψ2(z))

)
dΩ (6)
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+
∫

Ω
b(z) ·∇

(
u j(Ψ1(z))ϕ j(Ψ2(z))

)
ϑ(Ψ1(z))ϕk(Ψ2(z))dΩ

+
∫

Ω
σ(z)u j(Ψ1(z))ϕ j(Ψ2(z))ϑ(Ψ1(z))ϕk(Ψ2(z))dΩ

]

=
∫

Ω
f (z)ϑ(Ψ1(z))ϕk(Ψ2(z))dΩ ,

where∇ denotes the gradient with respect toz. The actual unknowns of the Hi-Mod
reduced formulation (4) are the modal coefficientsu j ∈VΩ̂1D

. We expand separately
the four integrals, by exploiting the gradient expansion

∇(w(Ψ1(z))ϕs(Ψ2(z))) =

w′(Ψ1(z))ϕs(Ψ2(z))




∂Ψ1(z)
∂x

∇yΨ1(z)


+w(Ψ1(z))ϕ ′s(Ψ2(z))




∂Ψ2(z)
∂x

∇yΨ2(z)


 ,

wherew′(Ψ1(z)) = dw/dx̂|x̂=Ψ1(z), ϕ ′s(Ψ2(z)) = dϕs/dŷ|ŷ=Ψ2(z) and withw∈VΩ̂1D
.

The idea is to rewrite each term on the reference domain by properly exploiting the
mapsΨ , Φ . Let us first consider the diffusive contribution in (6):

∫

Ω̂
µ(Φ(ẑ))

{[(∂Ψ1(Φ(ẑ))
∂x

)2
+
(
∇yΨ1(Φ(ẑ))

)2
]
ϕ j(ŷ)ϕk(ŷ)u

′
j(x̂)ϑ ′(x̂)

+
[∂Ψ1(Φ(ẑ))

∂x
∂Ψ2(Φ(ẑ))

∂x
+∇yΨ1(Φ(ẑ))∇yΨ2(Φ(ẑ))

]
(7)

[
ϕ j(ŷ)ϕ ′k(ŷ)u

′
j(x̂)ϑ(x̂)+ϕ ′j(ŷ)ϕk(ŷ)u j(x̂)ϑ ′(x̂)

]

+
[(∂Ψ2(Φ(ẑ))

∂x

)2
+
(
∇yΨ2(Φ(ẑ))

)2
]
ϕ ′j(ŷ)ϕ ′k(ŷ)u j(x̂)ϑ(x̂)

}
|I −1(Φ(ẑ))|dΩ̂ ,

with I the Jacobian defined in (1). The convective term is changed into

∫

Ω̂

{ [
b1(Φ(ẑ))

∂Ψ1(Φ(ẑ))
∂x

+b2(Φ(ẑ))∇yΨ1(Φ(ẑ))
]
ϕ j(ŷ)ϕk(ŷ)u

′
j(x̂)ϑ(x̂)

[
b1(Φ(ẑ))

∂Ψ2(Φ(ẑ))
∂x

+b2(Φ(ẑ))∇yΨ2(Φ(ẑ))
]
ϕ ′j(ŷ)ϕk(ŷ)u j(x̂)ϑ(x̂)

}

|I −1(Φ(ẑ))|dΩ̂ , (8)

while, for the reactive term, we have
∫

Ω̂
σ(Φ(ẑ))ϕ j(ŷ)ϕk(ŷ)u j(x̂)ϑ(x̂)|I −1(Φ(ẑ))|dΩ̂ . (9)

Finally, for the source term in (6), we simply obtain
∫

Ω̂
f (Φ(ẑ))ϕk(ŷ)ϑ(x̂)|I −1(Φ(ẑ))|dΩ̂ . (10)
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From (7) we notice that the treatment of the diffusive term generates advective and
reactive contributions in the reduced setting. Similarly,the reduced convection term
(8) features also a reactive contribution. A straightforward combination of (7)-(10)
leads to the following Hi-Mod reduced formulation for the ADR problem defined in
(5): findu j ∈VΩ̂1D

with j = 1, . . . ,m, such that, for anyϑ ∈VΩ̂1D
andk= 1, . . . ,m,

m

∑
j=1

{ ∫

Ω̂1D

[
r̂ 1,1
k j (x̂)u′j(x̂)ϑ ′(x̂) + r̂ 1,0

k j (x̂)u′j(x̂)ϑ(x̂)+ r̂ 0,1
k j (x̂)u j(x̂)ϑ ′(x̂) (11)

+ r̂ 0,0
k j (x̂)u j(x̂)ϑ(x̂)

]
dx̂
}
=

∫

Ω̂1D

[ ∫

γ̂d−1

f (Φ(ẑ))ϕk(ŷ)|I −1(Φ(ẑ))|dŷ
]
ϑ(x̂)dx̂,

where

r̂ s,t
k j (x̂) =

∫

γ̂d−1

r s,t
k j (x̂, ŷ) |I −1(Φ(ẑ))|dŷ, s, t = 0,1, k= 1, . . . ,m, (12)

with

r 1,1
k j (ẑ) = µ(Φ(ẑ))α1(ẑ)ϕ j(ŷ)ϕk(ŷ), r 0,1

k j (ẑ) = µ(Φ(ẑ))δ (ẑ)ϕ ′j(ŷ)ϕk(ŷ),

r 1,0
k j (ẑ) = µ(Φ(ẑ))δ (ẑ)ϕ j(ŷ)ϕ ′k(ŷ)+β1(ẑ)ϕ j(ŷ)ϕk(ŷ), (13)

r 0,0
k j (ẑ) = µ(Φ(ẑ))α2(ẑ)ϕ ′j(ŷ)ϕ ′k(ŷ)+β2(ẑ)ϕ ′j(ŷ)ϕk(ŷ)+σ(Φ(ẑ))ϕ j(ŷ)ϕk(ŷ),

and

αi(ẑ) =
(∂Ψi(Φ(ẑ))

∂x

)2
+
(
∇yΨi(Φ(ẑ))

)2
i = 1,2,

βi(ẑ) = b1(Φ(ẑ))
∂Ψi(Φ(ẑ))

∂x
+b2(Φ(ẑ)) ·∇yΨi(Φ(ẑ)) i = 1,2, (14)

δ (ẑ) =
∂Ψ1(Φ(ẑ))

∂x
∂Ψ2(Φ(ẑ))

∂x
+∇yΨ1(Φ(ẑ)) ·∇yΨ2(Φ(ẑ)).

In the reduced model (11) the dependence of the solution on the dominant and on
the transverse directions is split. The Hi-Mod reduction procedure yields aspecial
one-dimensional modelassociated with the main curved stream, whose coefficients,
r̂ s,t
k j , are properly enriched to include the effects of the transverse components. In

particular, the coefficients in (13) reduce to the ones in [1]for rectilinear domains,
where∂Ψ1/∂x= 1 and∇yΨ1 = 0. From a computational viewpoint, the solution to
(11) requires solving a system ofm coupled one-dimensional problems instead of a
full d-dimensional problem. Following [1, 2], we discretize these 1D problems by
introducing a finite element discretization alonĝΩ1D, while preserving the modal
expansion in correspondence with the transverse directions. We are led to solve a
linear system with anm×m block matrix, where each block is anNh×Nh matrix
with the sparsity pattern of the selected finite element spaceXh, with dim(Xh) = Nh.
An appropriate choice of the modal indexm in (3) is certainly a critical issue of
the uniform Hi-Mod reduction. In [2] a “trial and error” approach is suggested:
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we move from the computationally cheapest choicem= 1 and then we gradually
increase such a value until the addition of the successive modal function does not
significantly improve the accuracy of the reduced solution.This strategy may be
sometimes speeded up, e.g., when a partial physical knowledge of the phenomenon
at hand is available, so that the initial guess can be properly calibrated.

3.2 Piecewise Hi-Mod reduction

The uniform approach may become really uneffective when themeaningful trans-
verse components of the solution are strongly localized: a large number of modal
functions is employed on the wholeΩ , even though it would be strictly necessary
only where significant transverse components are present. This justifies the proposal
of a new formulation, where a different number of modes is employed in different
parts ofΩ : many modes where the transverse components are important,few modes
where these are less significant. The modal indexm becomes therefore a piecewise
constant vector: this justifies the name of this approach. Inmore detail, let us assume
to locatessubdomainsΩi in Ω such thatΩ = ∪s

i=1Ω i , with Σi = Ω i ∩Ω i+1 the in-
terface betweenΩi andΩi+1, and let{Ω̂i}si=1 be the corresponding partition on̂Ω ,

with Σ̂i =Ψ(Σi) = Ω̂ i ∩ Ω̂ i+1 (see Fig. 1). In particular, we employmi modal func-
tions onΩi , for i = 1, . . . ,s. Following [3], the piecewise Hi-Mod reduced formula-
tion for (2) reads: given a modal multi-indexm = {mi}si=1 ∈ [IN+]s, find um ∈Vb

m,
such that

aΩ (um,vm) = FΩ (vm) ∀vm ∈Vb
m, (15)

whereaΩ (um,vm) = ∑s
i=1 ai(um|Ωi ,vm|Ωi ), FΩ (vm) = ∑s

i=1 Fi(vm|Ωi ) with ai(·, ·)
andFi(·) the restriction toΩi of the bilinear and of the linear form in (2), respec-
tively. The reduced space in (15) is a subset of the broken Sobolev spaceH1(Ω ,TΩ )
associated with the partitionTΩ = {Ωi}si=1, and it is defined by

Vb
m =

{
vm ∈ L2(Ω) : vm|Ωi (z) =

mi

∑
k=1

vi
k(Ψ1(z))ϕk(Ψ2(z)) ∈ H1(Ωi)

∀i = 1, . . . ,s, with vi
k ∈ H1(Ω̂1D, i) and s.t.,∀k= 1, . . . ,mj

⊥ with j = 1, . . . ,s−1,∫

γ̂d−1

[
vm|Ω j+1(Φ(Σ̂ j))−vm|Ω j (Φ(Σ̂ j))

]
ϕk(ŷ)dŷ = 0

}
,

with mj
⊥ = min(mj ,mj+1) andΩ̂1D, i = Ω̂1D∩Ω̂i . The integral condition weakly en-

forces the continuity of the solution in correspondence with the minimum number of
modes employed on the wholeΩ . This does not guaranteea priori the conformity
of the reduced solutionum (see section 4.2.2 in [2] for more details). According to
[3], we resort to a relaxed iterative substructuring Dirichlet/Neumann method to im-
pose the weak continuity at the interfaces. From a computational viewpoint, at each
iteration of the Dirichlet/Neumann scheme, we apply a uniform Hi-Mod reduction
on each subdomainΩi , i.e., we solves systems of coupled 1D problems which are
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Fig. 2 Full solution and uniform Hi-Mod reduced solutionsu3, u5, u7 (top-bottom, left-right)

suitably approximated via a finite element discretization along Ω̂1D, analogously
to the uniform case. The choice of the modal multi-indexm in (15) is hereafter
based on ana priori approach, driven by some knowledge of the solutionu. The
generalization of the approach proposed in [3] for rectilinear domains, where ana
posteriorimodeling error estimator drives the automatic selection ofboth theΩi ’s
andm is a possible follow up of this work.

4 Numerical results

We numerically assess the two proposed Hi-Mod reduction procedures in a two-
dimensional setting. In particular, we use affine finite elements to discretize the
problem alongΩ̂1D, while employing sinusoidal functions to model the transverse
components. We evaluate the integrals of the sine functionsvia Gaussian quadrature
formulas, with, at least, four quadrature nodes per wavelenght. Of course, different
choices are possible for the modal basis (Legendre polynomials, wavelets, suitable
eigenfunctions).

We reduce the ADR problem defined in (5) on the annular regionΩ between
the two concentric circlesx2+ y2 = 1 andx2+ y2 = 9. We selectµ = 1, the circu-
lar clockwise advective fieldb =

(
30sin(atan2(y,x)),−30cos(atan2(y,x))

)T
, with

−π ≤ atan2(y,x)≤ π, σ = 30χ+ with χ+ = {(x,y)∈Ω : x> 0}, and the source term
f = 1000χD localized in the small circular regionD = {(x,y) : (x+2)2+(y−1)2 <
0.05}. Finally, full homogeneous Dirichlet boundary conditionscomplete the prob-
lem. The choice of the data identifies a full solution characterized by a peak inD; it
is convected by the fieldb and damped by the reaction (see Fig. 2, top-left).
Figure 2 gathers the reduced solutions provided by the uniform Hi-Mod reduction
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Fig. 3 Piecewise Hi-Mod reduced solutionsu{5,1} (left) andu{7,3} (right)

for different choices of the modal indexm and when a uniform finite element dis-
cretization of sizeh = π/40 is employed on̂Ω1D. Solutionu3 clearly fails in de-
tecting the peak inD. At least seven modal functions are demanded to get a reliable
reduced model: the peak ofu is well captured for this choice, while the successive
modes essentially do not improve the accuracy ofum.

The most significant localization of the transverse components in the left part of
Ω suggests us employing a higher number of modes in this part ofthe domain, ac-
cording to a piecewise Hi-Mod reduction. We splitΩ into two subdomains via the
interfaceΣ1 = {0}×(1,3); then we make two different choices for the modal multi-
index,m = {5,1} andm = {7,3}, while preserving the finite element partition of
the uniform approach. Concerning the domain decompositionalgorithm, we set the
convergence tolerance for the relative error to 10−3 and the relaxation parameter to
0.5. Moreover, to guarantee the well-posedness of the ADR subproblems, we assign
the Dirichlet and the Neumann condition on the right- and on the left-hand side of
Σ1, respectively. The algorithm converges after ten iterations for both choices ofm.
Figure 3 shows the reduced solutionsu{5,1} (left) andu{7,3} (right) at the last iter-
ation. As expected,u{7,3} provides a better approximation of the full solution; in
particular, by comparing the color maps, we can state thatu{7,3} essentially coin-
cides withu7 in Fig. 2, bottom-right. Finally, according to [2], bothu{5,1} andu{7,3}
areH1-conforming approximations: the model discontinuity acrossΣ1 is therefore
consequence of the truncation of the iterative domain decomposition algorithm.
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The Origins of the Alternating Schwarz Method

Martin J. Gander1 and Gerhard Wanner1

1 Introduction

Schwarz methods are nowadays known as parallel solvers, andthere are many vari-
ants: alternating and parallel Schwarz methods at the continuous level, additive and
multiplicative Schwarz methods at the discrete level, alsowith restricted variants,
which in the additive case build the important bridge between discrete and continu-
ous Schwarz methods, see [4]. But where did these methods come from? Why were
they invented in the first place? We explain in this paper thatHermann Amandus
Schwarz invented the alternating Schwarz method in [18] to close an important gap
in the proof of the Riemann mapping theorem, which was based on the Dirichlet
principle. The Dirichlet principle itself addresses the important question of exis-
tence and uniqueness of solutions of Laplace’s equation on abounded domain with
Dirichlet boundary conditions, and in the 19th century, this equation appeared inde-
pendently in many different areas. It was therefore of fundamental importance to put
the Dirichlet principle on firm mathematical grounds, and this is one of the major
achievements of Schwarz.

2 Laplace’s equation

In his Principia in 1687, Newton presented among many results also his famous
inverse square law for celestial bodies [15, end of proof of Prop. XI] 1:

see also [20] for a comprehensive treatment of the influence of Kepler and Newton
on numerical analysis. In modern notation, if we denote byf the force between two
celestial bodies, thenf is proportional to1

r2 , wherer :=
√
(x−ξ )2+(y−η)2+(z−ζ )2,

using the notation in Figure 1. Writingf = ( f1, f2, f3) component-wise, we obtain
for the components

f1≈
x−ξ

r3 , f2≈
y−η

r3 , f1≈
z−ζ

r3 .

1University of Geneva, Section of Mathematics, 2-4 rue du Lièvre, CP 64, CH-1211 Geneva 4,
e-mail:{Martin.Gander}{Gerhard.Wanner}@unige.ch

1 The centripetal force is inverse toL×SP2, it is inversely proportional to the squared distanceSP.
Q.E.I.
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earth

sun
r

f (x,y,z)

(ξ ,η ,ζ )

Fig. 1 The sun and our planet earth, for which Newton’s inverse square law holds

This very elegant and simple law is at first only valid for point masses. Laplace
then, from 1785 onwards, was wondering how these forces looklike if the body
is not a point, but a three dimensional irregular object occupying a domainV ⊂
R3. A clear exposition of his ideas only appeared in hisMécanique Ćelestefrom
1799, see [9]. He imagined that the body is composed of molecules, see the original
reproduced in Figure 2. In that case, one would need to sum thecontributions of all
the infinitesimally small body parts (“molecules”) making up the entire volume, and
would thus obtain for example for the first component of the force

f1 =
∫

V
ρ(ξ ,η ,ζ )

x−ξ
r3 dξ dη dζ , (1)

whereρ denotes the density of the body. The key idea of Laplace was now to intro-
duce the potential function

u=
∫ ∫ ∫

ρ(ξ ,η ,ζ )
1
r

dξdηdζ . (2)

Let x, y, z, be the coordinates of the at-
tracted pointm; let dM be a molecule of
a spherical body with coordinatesx′, y′,
z′; if we call ρ the density, function ofx′,
y′, z′, independent ofx, y, z, we get

The action ofdM onm, decomposed par-
allel to thex-axis, and directed towards
its origin, is

and hence it will be equal to

denoting byV the integral

extended to the entire mass of the spher-
ical body, we will have−( dV

dx ), for the
total action of the spherical body on the
point m, decomposed in parallel to thex-
axis and directed towards their origin.

Fig. 2 Generalization of Laplace of the inverse square law of Newton to the case of a spherical
body, arguing with molecules. Copied from the 1799 publication of Laplace’sMécanique Ćeleste
[9, page 136].
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Fig. 3 Laplace equation by Euler in 1752 (top left), by Laplace in 1799 (top right), by Fourier in
1822 (bottom left), and by Kelvin in 1847 (bottom right)

Taking a derivative with respectx, and using∂
∂x

1
r =−

x−ξ
r3 , we obtain by comparing

with (1), after a similar computation fory andz,

f =−
(

∂u
∂x

,
∂u
∂y

,
∂u
∂z

)
. (3)

Differentiating once more, we obtain∂∂x
x−ξ
r3 = r3−3(x−ξ )2r

r6 , and therefore, perform-
ing the same steps fory andzas well, that the potential function satisfies

∆u=
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂z2 = 0, Laplace’s equation! (4)

This equation appeared already in Euler’sPrincipia motus fluidorum[2] (E258,
written 1752, published 1756) see Figure 3, but Euler could not really use it. It
appeared again in the theory of heat transfer, published by Fourier [3] in 1822, see
Figure 3. Fourier also argued with molecules, and Newton’s law of cooling, in order
to derive the equation.

Laplace’s equation turned out to be absolutely fundamental, it appeared again in
the theory of magnetism proposed by Gauss and Weber in Göttingen in 1839, in
the theory of electric fields put forward by W. Thomson (the later Lord Kelvin, pub-
lished in the Liouville Journal from 1847 on pages 256 and 496), in conformal maps
(Gauss 1825), in the irrotational motion of fluids in two dimensions (Helmholtz
1858), and finally in complex analysis, in particular in Riemann’s PhD Thesis in
1851, which is available in a modern typeset version in [17].

3 The Riemann Mapping Theorem

Riemann was a prodigy already in high-school, and his mathematical talent im-
pressed everybody:

“Ein Lehrer, der Rektor Schmalfuss, lieh ihm Legendres Zahlentheorie (Th́eorie des Nom-
bres), ein schwieriges Werk von 859 Quartformat-Seiten, bekamsie aber schon eine Woche
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“Die von Herrn Riemann eingere-
ichte Schrift legt ein b̈undiges Zeug-
niss ab von den gründlichen und
tief eindringenden Studien des Verf.
in demjenigen Gebiete, welchem der
darin behandelte Gegenstand angeört;
von einem strebsamen̈acht mathe-
matischen Forschungsgeiste, und von
einer rühmlichen productiven Selb-
sttḧatigkeit. Der Vortrag ist umsichtig
und concis, theilweise selbst elegant:
der grösste Theil der Leser m̈ochte in-
dess wohl in einigen Theilen noch eine
grössere Durchsichtigkeit der Anordung
wünschen. Das Ganze ist eine gediegene
werthvolle Arbeit, das Maass der An-
forderungen, welche man gewöhnlich an
Probeschriften zur Erlangung der Doc-
torwürde stellt, nicht bloss erfüllend,
sondern weiẗuberragend .

Das Examen in der Mathematik werde ichübernehmen. Unter den Wochentagen ist mir Sonnabend
oder Freitag am passendsten und, wenn eine Nachmittagsstunde gewählt werden soll, um 5 oder 5
1/2 Uhr. Ich ẅurde aber auch nichts gegen die Vormittagsstunde 11h zu erinnern haben. Ich setze
übrigens voraus, dass das Examen nicht vor der nächsten Woche statt finden wird”.

Fig. 4 Handwritten Laudatio of Gauss on Riemann’s PhD thesis, copied from Remmert [16]

sp̈ater zur̈uck und fand, als er Riemann im Abiturüber dieses Werk weiẗuber dasÜbliche
hinaus pr̈ufte, dass Riemann sich dieses Buch vollständig zu eigen gemacht hatte.”2

Riemann’s PhD supervisor was Gauss, who rarely praised the work of other mathe-
maticians. We show the laudatio on Riemann’s thesis in the original handwriting of
Gauss in Figure 43. Riemann build in his thesis the foundation of analytic function
theory, and gave toward the end an example, which became the famous Riemann
Mapping theorem:

2 “A teacher, Professor Schmalfuss, lend him Legendre’s book on number theory, a very difficult
work of 859 pages in quarto format, and he got it back already after a week. When he tested Rie-
mann in his final high-school exam on this subject much more thoroughly than usual, he realized
that Riemann had completely mastered the content of the book.”
3 The manuscript submitted by Riemann is a testament of the thorough and deep studies by the
author in the area to which the treated subject belongs; of an aspiring and truly mathematical
research spirit, and of a glorious, productive self-activity. The presentation is comprehensive and
concise, partly even elegant: the major part of the readers would however in some parts still wish
for more transparency and better arrangement. As a whole, it is adignified valuable work, which
does not only satisfy the requirement one usually imposes on a manuscript to obtain a PhD degree,
but goes very far beyond.
The mathematics exam I will do myself. I prefer Sunday or Friday, and in the afternoon at 5 or 5:30
pm. I would also be available in the morning at 11am. I assume that the exam will not be before
next week.
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“Zwei gegebene einfach zusammenhängende Fl̈achen k̈onnen stets so aufeinander bezogen
werden, dass jedem Punkte der einen ein mit ihm stetig fortrückender Punkt entspricht...;”4

Riemann also gave a constructive proof of this theorem. In modern notation, we
need to find an analytic functionf which mapsΩ to the unit disk and one point
z0 ∈Ω into 0. We thus setf (z) := (z−z0)eg(z), g= u+ iv an analytic function to be
determined, in order to ensure thatz0 is the only point mapped into zero. In order
to arrive from the boundary∂Ω on the boundary of the disk with the mapping, we
must have for allz∈ ∂Ω that| f (z)|= 1, which implies that

1= | f (z)|= |(z−z0)e
u+iv|= |(z−z0)|eu =⇒ u(z) =−log|z−z0|, ∀z∈ ∂Ω . (5)

Sinceg is analytic, the real partu of g satisfies Laplace’s equation∆u = 0 on Ω ,
with boundary values given in (5). It thus suffices to solve for u, constructv using
the Cauchy-Riemann equations, and then the construction off is complete.

Riemann’s PhD thesis was very well received by the mathematical world of
that time, and widely studied. Among the first readers were also Weierstrass and
Helmholtz:

“Weierstrass hatte die Riemannsche Dissertation zum Ferienstudium mitgenommen und
klagte, dass ihm, dem Funktionentheoretiker, die RiemannschenMethoden schwer verständlich
seien. Helmholtz bat sich die Schrift aus und sagte beim nächsten Zusammentreffen, ihm
schienen die Riemannschen Gedankengänge v̈ollig naturgem̈ass und selbstverständlich zu
sein.” (Funktionentheorie 1 von Reinhold Remmert, Georg Schumacher)5

Nevertheless, an important question remained: Riemann hadused that au satisfying
Laplace’s equation on an arbitrary domain with given boundary conditions exists.
But was this really true ? When Riemann was challenged with this, he replied

“Hierzu kann in vielen F̈allen . . . ein Princip dienen, welches Dirichlet zur Lösung dieser
Aufgabe f̈ur eine der Laplace’schen Differentialgleichung genügende Function. . . in seinen
Vorlesungen. . . seit einer Reihe von Jahren zu geben pflegt.” (Riemann 1857,Werkep. 97)6

The idea, which became known under the name of “Dirichlet principle”, is to choose
among all the functions defined on a given domainΩ with the prescribed boundary
values the one that minimizes the integral

J(u) =
∫ ∫

Ω

1
2

(
u2

x +u2
y

)
dxdy which is always non-negative.

But is the Dirichlet principle correct for an arbitrary, non-negative functional?
Weierstrass gave in (1869, Werke 2, p. 49) a counter example:for the non-negative

4 Two simply connected surfaces can always be mapped one to the other, such that each point on
the former moves continuously with the point on the latter...
5 Weierstrass had taken Riemann’s PhD thesis as vacation reading,and complained that for a
function theorist like him, the methods of Riemann were hard to understand. Helmholtz then also
borrowed the thesis, and said on their next meeting, that for him, Riemann’s thoughts seemed to
be completely natural and self-evident.
6 To this end, one can often invoke a principle for finding a function that solves Laplace’s equation,
which Dirichlet has been using in his lectures over the past fewyears.
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functional ∫ 1

−1
(x ·y′)2dx→min y(−1) = a, y(1) = b,

the functiony(x) must have a small derivative whenx is large, to make the func-
tional small. Hence the derivative can only be large whenx is close to zero, and
the minimum is achieved for the step function, which is not differentiable atx= 0.
Weierstrass concludes

“Die Dirichlet’sche Schlussweise führt also in dem betrachteten Falle offenbar zu einem
falschen Resultat.”7

But Riemann only answered “... meine Existenztheoreme sindtrotzdem richtig”8

and Helmholtz commented “Für uns Physiker bleibt das Dirichletsche Prinzip ein
Beweis”9.

4 The Schwarz Alternating Method

The entire mathematical world stood now in front of a big challenge, namely to
show rigorously that for an arbitrary domainΩ , Laplace’s equation∆u = 0 with
prescribed boundary conditionsu= g on ∂Ω has a unique solution. For special do-
mains, the answer had been known for quite some time: Poisson(1815) had found
the solution formula for circular domains, and Fourier (1807) for rectangular do-
mains using Fourier series. But the existence of solutions of Laplace’s equation on
arbitrary domains appeared hopeless !

It is at this moment, where Schwarz invented the first ever domain decomposition
method [18]. His paper starts with the paragraph

10

Schwarz then invents the famous alternating Schwarz methodto prove existence and
uniqueness of the solution of Laplace’s equation on a domaincomposed of a disk
and a rectangle, as shown from the original publication in Figure 5 on the left. His
alternating method is given by

7 Dirichlet’s reasoning apparently leads to an incorrect result in this case [8].
8 ... my existence theorems nevertheless hold [8].
9 For us physicists the Dirichlet principle remains a proof [8].
10 The method of conclusion, which became known under the name Dirichlet Principle, and which
in a certain sense has to be considered to be the foundation of thetheory of analytic functions de-
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Fig. 5 Original drawing of Schwarz from 1870 on the left to explain his alternating method, and
his physical interpretation of the method using a two level vacuum pump on the right

∆un
1 = 0 in T1, ∆un

2 = 0 in T2,
un

1 = g onL0, un
2 = g onL3,

un
1 = un−1

2 onL2, un
2 = un

1 onL1.
(6)

Since the method only uses solutions of Laplace’s equation on the disk and the
rectangle, for which the proof of the Dirichlet principle did not pose any difficulties,
the method is well defined. Schwarz then proved the convergence of his method
to a limit that satisfies Laplaces equation as well in the composed domain. Adding
other circles or rectangles Schwarz then proved recursively the Dirichlet principle
for more and more complicated domains. This closed the gap inRiemann’s proof.

Schwarz also gave an analogy of his alternating method with aphysical device,
as indicated on the right in Figure 5: a vacuum pump with two cylinders. In order to
create a vacuum in the inner chamber, one has to alternatingly pump with the two
cylinders, similar to the subdomain solves in the alternating method.

5 The Schwarz method as a computational tool

At the beginning of the 20th Century, Hilbert (see [6, 7]) finally managed, after a
hard struggle, to establish a theory fordirect methods of variational calculus, which
later led to the Ritz-Galerkin method (see e.g. [5]). The Schwarz method thus lost
completely its importance as a theoretical tool. Curiously, some other decades later,
its importance forpractical computationswas discovered: in 1965, Miller states
[14]:

“Schwarz’s method presents some intriguing possibilities for numerical methods. Firstly,
quite simple explicit solutions by classical methods are often known for simple regions
such as rectangles or circles. Also, better numerical solutions, from the standpoint of the
computational work involved, are often known for certain types of regions than for others.
By Schwarz’s method, we may be able to extend these classical results and these computa-
tional advantages to more complicated regions.”

veloped by Riemann, is subject to, like it is generally admittednow, very well justified objections,
whose complete removal has eluded all efforts of mathematicians to the best of my knowledge.
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Fundamental early contributions to the theory were by Sobolev [19], who gave a
variational convergence proof for the case of elasticity, Mikhlin [13], with a varia-
tional proof for convergence for general elliptic operators, and then the sequence of
publications by Lions [10, 11, 12]. The complete breakthrough as a computational
method came with the introduction of the two level additive Schwarz method [1].
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Solving large systems on HECToR using the
2-Lagrange multiplier methods

Anastasios Karangelis1, Sébastien Loisel1, and Chris Maynard2

1 Introduction

We consider the model problem,

−∆ ũ= f̃ in Ω and ũ= 0 on ∂Ω . (1)

In order to solve the problem numerically we discretize it bysome suitable
method1 and as a result we get the system,

Au= f , (2)

whereA is a large symmetric and positive definite sparse matrix,f is the load vector
andu is the desired discrete solution of our problem. Note that weuse the nota-
tion ũ = ũ(x) for the solution ˜u ∈ H1

0(Ω) andu for corresponding finite element
coefficient vector.

We decompose our square model domainΩ into nonoverlapping rectangular sub-
domainsΩ1, . . . ,Ωp and we define the artificial interfaceΓ = Ω ∩ (⋃p

i=1 ∂Ωi), such
thatΩ = Γ ∪

(⋃p
k=1 Ωk

)
with disjoint unions. Although our numerical experiments

are on a square, the analysis in [3, 5] applies to more general“shape-regular” do-
main decompositions and grids such as described in [8].

The local Robin subproblems are,



−∆ ũk = f̃ in Ωk,
ũk = 0 on∂Ωk∩∂Ω ,

(a+Dν)ũk = λ̃k on ∂Ωk∩Γ ;
(3)

wherea > 0 is the Robin parameter,k = 1, . . . , p andDν denotes the directional
derivative in the direction of the unit outwards normal vector ν of ∂Ω , andλ̃k is the
Robin data imposed on the “artificial interface”∂Ωk∩Γ .

We now discretize system (3) using the finite element method.This leads to linear
systems of the form,

[
AIIk AIΓ k

AΓ Ik AΓ Γ k+aI

][
uIk

uΓ k

]
=

[
fIk
fΓ k

]
+

[
0

λk

]
. (4)

1 Dept. of Mathematics, Heriot-Watt University, Edinburgh EH144AS, United Kingdom, e-mail:
{ak411}{S.Loisel}@hw.ac.uk ·2 EPCC, University of Edinburgh, Edinburgh EH9 3JZ,
United Kingdom, e-mail:c.maynard@ed.ac.uk and Met Office, FitzRoy Road, Exeter, EX1
3PB, e-mail:christopher.maynard@metoffice.gov.uk

1 In general this could be by finite elements or finite differences.
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Here, the subscriptI denotes nodes that are Interior toΩk, while the subscriptΓ
denotes nodes onΓ ∩ ∂Ωk; this notation is consistent with existing literature, see
[5], [8]. Using a Schur complement, we eliminate the interior nodes of equation(4)
to get the equivalent system,

(S+aI)uG = g+λ , (5)

whereS= diag{S1, . . . ,Sp} with symmetric and semidefinite Schur complements
Sk = AΓ Γ k−AΓ IkA−1

IIk AIΓ k; the column vectoruG = [uT
Γ 1, . . . ,u

T
Γ p]

T is the multi-
valued trace (with one value per interface vertex per adjacent subdomain), the Robin
data areλ = [λ T

1 , . . . ,λ T
p ]

T and the “accumulated fluxes” aregk = fΓ k−AΓ IkA−1
IIk fIk.

We define the scaled “Robin-to-Dirichlet” mapQ = diag{Q1, . . . ,Qp}, where
Qk = a(Sk+aIk)−1 and(5) can be rewritten as,

auG = Q(g+λ ). (6)

The multi-valued traceuG can be interpreted as the multi-valued trace of a finite
element function ˜u(x) which has jump discontinuities alongΓ . For each vertexx j ∈
Γ on the interface, we definemj to be the number of subdomains adjacent tox j .
A vertex withmj = 2 is called a regular interface point while a vertex withmj > 2
is called a cross point. The solution of (1) is continuous andso we must impose
continuity onũ(x) (or equivalently, on its finite element trace vectoruG). To that
end, we defineK to be the orthogonal projection matrix which averages the function
values for each interface vertexx j ; note that the range ofK is precisely the space of
continuous many-sided traces. Hence,uG is continuous if and only if,

KuG = uG. (7)

Additionally we require the “fluxes” to match which is equivalent to

K(SuG) = Kg. (8)

1.1 Obtaining the S2LM and 2LM systems

From (5) and (7) we get that,

KQ(λ +g) = Q(λ +g), (9)

and from (8) we get,
K(g+λ −Q(g+λ )) = Kg. (10)

We add (9) and (10) to get thesymmetric 2-Lagrange multiplier system
(S2LM) ,

(Q−K)λ =−Qg. (11)
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Multiplying both sides of(11) on the left by(I − 2K), we get the corresponding
nonsymmetric 2-Lagrange system(2LM),

(I −2K)(Q−K)λ =−(I −2K)Qg. (12)

We now briefly summarize some known results about the 2-Lagrange methods
and refer to [4], [5], [3] for details.

Theorem 1.We define E to be the orthogonal projection onto the kernel of S. As-
sume that‖EK‖< 1. Then(11) is equivalent to(2).

Theorem 2. [4] The nonsymmetric 2-Lagrange system,(I −2K)(Q−K) is an Opti-
mised Schwarz Method (at least for two subdomains)

The 2-Lagrange multiplier methods also have a coarse grid preconditioner,

P= I −EKE, (13)

leading to the 2-level methods,

P−1(Q−K)λ = −P−1Qg, (14)

P−1(I −2K)(Q−K)λ = −P−1(I −2K)Qg. (15)

Theorem 3.The optimized Robin parameter a=
√

sminsmax, where smin and smax

are the extremal eigenvalues of S. Moreover,
The condition number for the 1-level methods is O(h−1/2H−3/2)
The condition number for the 2-level methods is O(H/h)1/2

2 Implementation of symmetric and nonsymmetric 2-Lagrange
multiplier and large scale experiments on HECToR

The numerical experiments were run on HECToR, a Cray XE6 with2816 compute
nodes each comprising of two 16-core AMD Opeteron Interlagos processors. Each
of the 16-core socket is coupled with a Cray Gemini routing and communications
chip.

2.1 Implementation

We have implemented the symmetric and nonsymmetric 2LM methods in C using
the PETSc library [1]. We implemented three matricesK, Q and the coarse grid
preconditionerP. The matricesP,Q are implemented as PETSc shell matrices while
theK matrix is assembled into aseqaij matrix. In other words, the matrixK is as-
sembled into PETSc’s parallel compressed row storage sparse matrix format, while
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the matricesP andQ are not assembled but instead a matrix-vector multiplication
routine is provided to PETSc. The matricesP andQ are not assembled because they
are not sparse.

We use a PETSc parallel Krylov space solver on (14) or (15) as an “outer iter-
ation”. Each step of the outer iteration requires multiplying a given vector by the
matricesP,Q,K. The matrix-vector productKλ is a straightforward sparse matrix-
dense vector product. The matrix-vector productQλ requires solving subdomain
problems as per (4). These subdomain problems can in principle become large.
Thus, (4) is solved using a PETSc sequential Krylov space solver (ie. a single-
processor solver) on (4); this is an “inner iteration” whichoccurs at each step of
the outer iteration. Hence the overall algorithm has an inner-outer iteration struc-
ture. In our test implementation, we use a finite difference implementation with a
square domain and rectangular subdomains, with one domain assigned per MPI task
with affinity to a single core.

2.1.1 The matrixK

The solutionλ to the linear systems,(11) or (12) is a multi-valued trace, with one
function value per artificial interface point per subdomain. In PETSc, the rows of
λ are distributed such that the indices of the same domain are assigned to a single
processor,

λ =




λ1

λ2
...
λp


 .

Each entry inλ corresponds to an artificial interface grid point. When two ormore
subdomains are adjacent, then some entries ofλ correspond to the same artificial
interface point.

Each processor lists the physical grid points on its artificial interface; this infor-
mation is shared with neighboring subdomains using MPI explicitly. When solv-
ing subdomain problems, we work with small-dimensional local vectors. The Robin

dataλ j on subdomainΩ j has lengthnΓ j ; we writeλ j = (λ ( j)
i )

nΓ j
i=1. Mapping from the

“local index” i to a “global offset” is achieved with the functionFj(i) = i+∑k< j nΓ k.
The size of the matrixK is ∑p

k=1nΓ k. Given this information, each processor is able
to assemble its own rows ofK.

2.1.2 The matrixQ

We begin by showing that the matrix-vector productλk 7→ Qkλk can be computed
by solving a local sparse problem. Settingf = 0 (and henceg = 0) in (4) and (5)
shows thatQkλk = auΓ k, whereuΓ k is defined by,
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[
AIIk AIΓ k

AΓ Ik AΓ Γ k+aI

][
uIk

uΓ k

]
=

[
0

λk

]
. (16)

Thus, in order to calculate the matrix-vector productQλ , each processor solves the
Robin local problem (16) and outputsQkλk = auΓ k.

The local problem (16) can in principle be solved using eg. a Cholesky decom-
position. However, we found that using a Cholesky decomposition leads to large
amounts of fill-in and poor performance. Thus, we solve the local problem(16) us-
ing the Conjugate Gradient method with relative convergence tolerance 1e-10 and
absolute convergence tolerance 1e-9. For the local problem(16), we use the incom-
plete Cholesky ICC(ℓ) preconditioner [2]. The incomplete Cholesky preconditioner
is a compromise between higher fill-in (leading in the limit to a direct solver) and
lower fill-in (leading in the limit to a diagonal preconditioner). We found that a
“factor level” ℓ= 10 gives better overall performance for our problem sizes.

2.1.3 The preconditionerP

The coarse grid preconditioner matrixP defined in(13) is in principle an enor-
mous parallel matrix. Nevertheless, we will describe an efficient way to compute the
matrix-vector productλ 7→P−1λ efficiently on a single processor (with some global
communication). Forj = 1, . . . , p we denotenΓ j the number of vertices on the artifi-
cial interface∂Ω j ∩Γ and we define the matrixJ := diag( 1√

nΓ 1
1nΓ 1, . . . ,

1√nΓ p
1nΓ p)

where1 j denotes thejth dimensional column vector of ones. The columns ofJ span
the “coarse space” of piecewise constant functions, which are constant on each local
artificial interfaceΓk = ∂Ωk∩Γ . The coarse space for the preconditioner (13) is the
kernel ofS, which is contained in the column span ofJ. Thus, we defineE := JJT

and,

P−1 := (I −EKE)−1 = I −JJT −J(

L︷ ︸︸ ︷
JTKJ− I)−1JT .

Note that althoughP−1 is dense, we can computeλ 7→P−1λ efficiently, in a matrix-
free way, via the formulaP−1λ = λ −J(JTλ )−J(L−1(JTλ )).

Given the assembled parallel sparse matrixJ and its transposeJT and the assem-
bled (sparse) local matrixL, the algorithm for computing the matrix-vector product
λ 7→ P−1λ in a matrix-free way is as follows:

(i) Given λ , compute thep-dimensional “coarse” vectorλc = JTλ and collect its
entries on a single processor as a sequential vector.

(ii) Defineuc by solving the local, sparse linear problemLuc = λc.
(iii) Output P−1λ = λ − Jλc− Juc. Note that multiplication byJ involves broad-

casting the small local vectorsλc anduc to large parallel vectorsJλc andJuc.
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Table 1: Iteration counts for S2LM.

Domain size
# Procs. 1002 3002 10002 30002

64 216 409 952 2472
256 173 316 782 1753
1024 144 220 411 1090
4096 - - 301 665

Table 2: Iteration counts for 2LM.

Domain size
# Procs. 1002 3002 10002 30002 100002

64 30 58 114 229 -
256 37 35 72 135 -
1024 47 44 42 76 -
4096 - - 53 50 82

2.1.4 The outer solve

The implementations of the shell matricesP andQ and the assembly of the sparse
matrix K have been described. Building on these base implementations, we fur-
ther form the shell matricesλ 7→ (Q− K)λ (implemented asQminKmul ) and
λ 7→ (I −2K)(Q−K)λ (implemented asImin2KQminKmul ). The PETSc library
enables us to use a variety of different solvers. For the outer iteration we experi-
mented with the Generalized Minimal ResidualKSPGMRESand the Flexible Gen-
eralised Minimal Residual methodKSPFGMRESon shell matricesQminKmul and
Imin2KmulQminK , with the preconditionerP. For theKSPFGMRESsolver we set
the relative convergence tolerance 1e− 7 and the absolute convergence tolerance
1e−6.

Recall that GMRES is an iterative method that computes the approximate solu-
tion xk ∈ x0+span{r0,Ar0, . . .Akr0}which minimizes the residual norm‖b−Axk‖2.
The efficient implementation of the least-squares problem relies on the identity

AVk =Vk+1H̃k, (17)

whereVk is an orthonormal basis of the Krylov space andH̃k. is an upper Hessenberg
matrix; cf. [7] for details. The Flexible GMRES algorithm[6] replaces(17) by,

AZm =Vk+1H̃k, (18)

and allows one to vary the preconditioner at each iteration,which required testing
since our matrix-vector products are inexact.

2.1.5 Experiments at large scale

Results for the iteration counts of the S2LM and 2LM methods are presented. In
both cases the Flexible GMRES algorithm for the outer solverand the Conjugate
Gradient algorithm for the inner solver were used. The preconditioner for the outer
solve is the shell matrixP, while the preconditioner for the inner solve is the in-
complete Cholesky ICC(10) of (16). The other parameters forthe solvers have been
specified in sections 2.1.2 and 2.1.4.
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Fig. 1: Scaling of S2LM.
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Fig. 2: Scaling of 2LM.

The implementation used here is limited to a square domain intwo dimensions
using a finite difference discretization. This choice was made entirely for the sim-
plicity of implementation. The domains vary from 1002 to 100002 grid points (and
hence the largest problem has 108 degrees of freedom). These domains are parti-
tioned into 64 to 4096 subdomains, which again is limited to asquare number. This
domain decomposition is mapped to the MPI decomposition on HECToR.

The symmetric(11) and nonsymmetric systems(12) are solved, with tolerances
as in section 2.1.4; the outer iteration counts are reported in Tables 1 and 2. The
computational cost per outer iteration for a fixed domain andsubdomain is constant.
The inner iterations are not reported as the ICC preconditioner is used for simplicity
rather than the optimal multigrid which would be used as firstchoice in a production
implementation. In addition to these raw iteration counts,we also plot the scaling of
the methods against the ratioH/h in Figs. 1 and 2.

The S2LM performance is well explained by the condition number estimate of
Theorem 3. Indeed, the S2LM matrix is symmetric and indefinite and for such sys-
tems, one can show that the number of iterations is bounded bya quantity propor-
tional to the condition number. This bound is only sharp whenthe spectrum of the
matrix is perfectly symmetric about the origin. We find that some of our smaller
systems perform slightly better than this theoretical estimate.

The 2LM performance appears to be betweenO(H/h)1/3 andO(H/h)1/2. The
2LM matrix is nonsymmetric. For nonsymmetric matrices, thecondition number
does not necessarily predict the performance of the GMRES algorithm. However,
in our case, we find that the condition number explains well the performance of the
algorithm and that we further get “Krylov acceleration” – the performance may be
almost as good asO(H/h)1/3.
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3 Conclusions

We have provided a large-scale implementation of the 2-Lagrange multiplier meth-
ods with cross points and a coarse grid correction, which we have tested on the
HECToR supercomputer. Our experiments confirm the good scaling properties of
the 2-Lagrange multiplier methods. In the future, we intendto improve our imple-
mentation to further explore the scaling to the largest systems.
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Coupled Finite and Boundary Element Methods
for Vibro–Acoustic Interface Problems

Arno Kimeswenger1, Olaf Steinbach1, and Gerhard Unger1

1 Vibro–Acoustic Interface Problem

As a vibro–acoustic interface model problem we consider a three–dimensional elas-
tic body, e.g., a submarine, which is completely immersed ina full space acoustic
region, e.g., water [5]. Other applications that we have in mind are the sound radi-
ation of passenger car bodies, where the acoustic region is bounded, or of partially
immersed bodies such as ships, where the acoustic region is ahalf space [2].

In this paper, we consider both a direct simulation of the interface problem by us-
ing a symmetric coupled finite and boundary element approach, and an eigenvalue
analysis to determine the eigenmodes of the coupled system.The time–harmonic
vibrating structure inΩs is modeled by the Navier equations in the frequency do-
main, while the acoustic fluid in the unbounded exterior domain Ω f is described by
the Helmholtz equation,

−ρsω2u−µ∆u− (λ +µ)graddivu = f in Ωs, κ2p+∆ p= 0 in Ω f . (1)

In (1), λ andµ are the Laḿe parameters,ρs andρ f are the densities of the structure
and of the acoustic fluid, respectively,ω is the frequency, andκ = ω/c ∈ R is
the wave number. Note thatΩs⊂ R3 is in general a bounded, multiple connected
domain with an interior boundaryΓI = Γ D ∪Γ N, ΓD ∩ΓN = /0, see Fig. 1, where
boundary conditions of Dirichlet and Neumann type are given,

u = gD onΓD, Tu := λ (divu)n+2µ
∂

∂n
u+µ n×curlu = gN onΓN. (2)

Fig. 1 Computational domain
and boundary conditions

In addition to the partial differential equations (1) and the boundary conditions (2)
we consider transmission conditions onΓ = Ω s∩Ω f ,

Tu+ pn = 0, ρ f ω2u ·n = n ·∇p onΓ . (3)

1 Institut für Numerische Mathematik, TU Graz, Steyrergasse 30, 8010 Graz, Austria, e-mail:
{arno.kimeswenger}{o.steinbach}{gerhard.unger}@tugr az.at
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Finally, p has to satisfy a radiation condition at infinity,

lim
r→∞

∫

|x|=r

∣∣∣∣
∂

∂nx
p(x)− iκ p(x)

∣∣∣∣
2

dsx = 0. (4)

For complex wave numbersκ ∈ C with Im(κ) < 0, instead of (4) one has to use
a radiation condition in terms of spherical Hankel functions in order to describe
outgoing waves, see [12].

The aim of this paper is to derive and to discuss a symmetric coupled finite and
boundary element formulation which is stable for almost allfrequenciesω ∈R, and
to characterize all eigenfrequenciesω ∈ C which imply non–trivial solutions of the
homogeneous transmission problem (1)–(4), i.e. forf = 0, gD = 0, gN = 0. In fact,
in this case only one of the three following situations may appear [9]:

i. A real eigenfrequencyω ∈ R implies p= 0, and any non–trivial solutionu is a
so–called Jones mode satisfyingTu = 0 andu ·n = 0 onΓ [6].

ii. A complex valueω ∈ C with Im(ω)> 0 impliesu = 0 andp= 0.
iii. If ω ∈ C\R is an eigenfrequency, then Im(ω)< 0.

In the low frequency regime one may consider an approximation of the Helmholtz
equation in (1) by the Laplace equation, for related coupledfinite and boundary
element formulations, see [10].

2 Coupled finite and boundary element methods

The symmetric coupling [4] of finite and boundary elements for the transmission
boundary value problem (1)–(4) relies on the standard variational formulation of the
Navier equations inΩs, and the use of the exterior Calderon projection of boundary
integral equations [13] to describe the solution of the Helmholtz equation inΩ f .
The resulting variational formulation is to findu ∈ [H1(Ωs)]

3, u = gD on ΓD, such
that

∫

Ωs

[
2µ e(u) : e(v)+λ divu divv

]
dx−ρsω2

∫

Ωs

u ·vdx (5)

−ρ f ω2〈Vκ [u ·n],v ·n〉Γ + 〈(1
2

I +Kκ)p,v ·n〉Γ =
∫

Ωs

f ·v dx+
∫

ΓN

gN ·v dsx

is satisfied for allv ∈ [H1(Ωs)]
3, v = 0 on ΓD, wherep∈ H1/2(Γ ) is a solution of

the hypersingular boundary integral equation

1
ρ f ω2 Dκ p+(

1
2

I +K′κ)[u ·n] = 0 onΓ . (6)

The boundary integral operators are defined as, forx∈ Γ ,
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(Vκq)(x) =
∫

Γ
U∗κ (x,y)q(y)dsy, (Kκ p)(x) =

∫

Γ

∂
∂ny

U∗κ (x,y)p(y)dsy,

(K′κq)(x) =
∫

Γ

∂
∂nx

U∗κ (x,y)q(y)dsy, (Dκ p)(x) = − ∂
∂nx

∫

Γ

∂
∂ny

U∗κ (x,y)p(y)dsy,

where the Helmholtz fundamental solution is

U∗κ (x,y) =
1

4π
eiκ |x−y|

|x−y| for x,y∈ R3.

For the mapping properties of all boundary integral operators, see, for example,
[13]. In particular, the hypersingular integral operatorDκ : H1/2(Γ )→ H−1/2(Γ )
is coercive and injective, ifκ2 is not an eigenvalue of the related interior Neumann
eigenvalue problem of the Laplace operator inR3\Ω f . However, since we are using
a direct approach we find(1

2I +K′κ)[u ·n] ∈ ImDκ even in the case whenκ2 is an
eigenvalue of the interior Neumann eigenvalue problem witha related eigensolution
pκ2|Γ ∈ H1/2(Γ ) [14], i.e.

−∆ pκ2 = κ2pκ2 in R3\Ω f ,
∂
∂n

pκ2 = 0 onΓ .

The general solution of the hypersingular boundary integral equation (6) is then
given by

p=−ρ f ω2D−1
κ (

1
2

I +K′κ)[u ·n]+α pκ2, (7)

whereD−1
κ has to be understood as a pseudoinverse. Note thatα ∈R is an arbitrary

constant. However, when inserting the solutionp as given in (7) into the variational
formulation (5), we have to evaluate

(
1
2

I +Kκ)p = −ρ f ω2(
1
2

I +Kκ)D
−1
κ (

1
2

I +K′κ)[u ·n]+α(
1
2

I +Kκ)pκ2

= −ρ f ω2(
1
2

I +Kκ)D
−1
κ (

1
2

I +K′κ)[u ·n]

due to kerDκ = ker(1
2I +Kκ). In fact, the Poincaré–Steklov operator

Tκ :=Vκ +(
1
2

I +Kκ)D
−1
κ (

1
2

I +K′κ) : H−1/2(Γ )→ H1/2(Γ )

is well defined for all frequenciesω. Hence we conclude the variational problem to
find u ∈ [H1(Ωs)]

3, u = gD onΓD, such that
∫

Ωs

[
2µ e(u) : e(v)+λ divu divv

]
dx (8)

−ω2
[

ρs

∫

Ωs

u ·vdx+ρ f 〈Tκ [u ·n],v ·n〉Γ
]
=
∫

Ωs

f ·v dx+
∫

ΓN

gN ·v dsx
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is satisfied for allv∈ [H1(Ωs)]
3, v= 0onΓD. Since the bilinear form which is related

to the variational formulation (8) is coercive, injectivity ensures unique solvability
of the variational problem (8), see also [8, 9].

Theorem 1.Assume thatω ∈R is not a Jones frequency. Then there exists a unique
solutionu of the variational problem (8).

Remark 1.Although boundary value problems of the exterior Helmholtzequation
are unique solvable, related boundary integral equations may suffer from spurious
modes which correspond to solutions of related interior eigenvalue problems for
the Laplacian. Formulations which are stable for all frequencies, are usually based
on complex linear combinations of different boundary integral operators, see, e.g.,
[2, 9]. However, when using a direct boundary integral approach as presented here,
this also leads to a stable formulation, see [14] for a further discussion.

In what follows we consider a frequencyω ∈ R which is not a Jones mode. If the
displacement fieldu is known as the unique solution of the variational problem (8),
we may use the boundary integral equation (6) to determine the pressurep. In the
case whenκ2 is an eigenvalue of the interior Neumann eigenvalue problem, the
solutionp as given in (7) is not unique. However, using the transmission conditions
(3) we find

p=−Tu ·n, (9)

in fact (u, p) is the unique solution of the coupled variational formulation (5). The
representation (9) can be used to modify the boundary integral equation (6) to obtain
a formulation which admits a unique solutionp for all frequencies, for example we
may consider the boundary integral equation

[ 1
ρ f ω2 Dκ + iηD̃0

]
p+(

1
2

I +K′κ)[u ·n]+ iηD̃0(Tu ·n) = 0 onΓ ,

whereD̃0 is the stabilized hypersingular boundary integral operator of the Laplacian
[13], andη ∈ R is some parameter to be chosen. For simplicity of the presenta-
tion we only consider the discretization of the variationalformulation (8) by using
piecewise linear finite elements which are defined with respect to some admissible
triangulation ofΩs, and by using piecewise linear boundary elements onΓ . This
leads to the linear system



KFEM
h −ω2[ρsMFEM

h +ρ f N⊤h VBEM
h Nh] N⊤h (1

2MBEM
h +KBEM

h )

(1
2MBEM,⊤

h +K′h
BEM)Nh

1
ω2ρ f

DBEM
h



(

u

p

)
=

(
f

0

)
.

Here,KFEM
h andMFEM

h are the finite element stiffness and mass matrices, respectively,
andVBEM

h , MBEM
h , KBEM

h , andDBEM
h are the Galerkin boundary element matrices, see,

e.g., [11], andNh corresponds to the application of the normal component,u · n.
From the standard theory, e.g., [13], we expect a second order of convergence when
measuring the error‖u−uh‖L2(Ωs). Although the pressurep on the boundaryΓ may
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not be unique, the computation of the pressurep in Ω f by means of the exterior
representation formula

p̃(x) =−ρ f ω2
∫

Γ
U∗κ (x,y)[uh(y) ·ny]dsy+

∫

Γ

∂
∂ny

U∗κ (x,y)ph(y)dsy for x∈Ω f

is unique, and we conclude a second order convergence of the pointwise error [13].
As a numerical example for the direct simulation we considerthe Neumann

boundary value problem (1)–(4) with

Ωs :=
{

x∈ R3 : 0.8< |x|< 1
}
, Ω f :=

{
x∈ R3 : 1< |x|

}
,

where the exact solution is given by,r = |x|,

p(x) =
eiκr

r
for r > 1, u(r) = [c1u1(r)+c2u2(r)]er for r ∈ (0.8,1),

and

u1(r) = −

√
λ +2µ cos r

√ρsω√
λ+2µ

r
√ρsω

+
(λ +2µ)sin r

√ρsω√
λ+2µ

r2ρsω2 ,

u2(r) = −

√
λ +2µ sin r

√ρsω√
λ+2µ

r
√ρsω

−
(λ +2µ)cos r

√ρsω√
λ+2µ

r2ρsω2 .

Note that the constantsc1 andc2 have to be chosen accordingly to satisfy the trans-
mission conditions (3). The material constants are given asE = 105· 109N/m2,
ν = 0.34, while the densities of the structure and of the fluid are chosen as
ρs= 1000kg/m3 andρ f = 4500kg/m3, respectively. Recall that the speed of sound
is c= 1484m/s. As frequency we have chosenω = 3090s−1 which corresponds to
an eigenfrequency of the hypersingular boundary integral operatorDκ . In Table 1
we present the relative errors of the displacement field bothin the L2(Ω) and in
the energy norm, where we observe quadratic and linear convergence, as predicted.
In addition, we also give the pointwise error for the pressure which is evaluated in
x̂= (2,0,0)⊤, again we observe a quadratic convergence as predicted [13].

Table 1 Convergence of the FEM/BEM approach for direct simulation

NFEM
‖u−uh‖L2(Ωs)

‖u‖L2(Ω)

‖u−uh‖H1(Ωs)

‖u‖H1(Ω)

|p(x̂)− p̃(x̂)|

1948 9.93 –2 2.56 –1 5.37 –2
15584 2.71 –2 1.45 –1 1.44 –2
124672 7.27 –3 7.62 –2 3.69 –3
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3 Eigenvalue analysis

In this section we discuss the solution of the eigenvalue problem which is related
to the transmission problem (1)–(4). Based on the coupled formulation (8) of the
transmission problem the following related eigenvalue problem is considered: Find
(ω,u, p) with (u, p) 6= (0,0) such that

A(ω)

(
u
p

)
:=

(
−ω2ρSMS+KS−ρ f ω2N∗VκN N∗(1

2I +Kκ)

(1
2I +K′κ)N

1
ω2ρ f

Dκ

)(
u
p

)
=

(
0
0

)
,

(10)
whereMS represents the mass term andKS the stiffness term of the structure, and
Nu = u|Γ ·n. The boundary integral operators depend nonlinearly on thewave num-
berκ = ω/c, hence (10) is a nonlinear eigenvalue problem inω. For the eigenvalue
problem (10), in addition to the requested eigenvalues we also obtain eigenvalues
which correspond to the Laplacian with a Neumann boundary condition. However,
in practice the latter can be filtered out very easily.

A Galerkin finite and boundary element discretization of (10) results in a nonlin-
ear matrix eigenvalue problem of the form

Ah(ωh)

(
u
p

)
=

(
0
0

)
. (11)

A rigorous numerical analysis of the Galerkin eigenvalue problem (11) can be car-
ried out within the framework of the concept of eigenvalue problems for holomor-
phic Fredholm operator-valued functions [15] and will be addressed in a forthcom-
ing paper. This concept provides comprehensive convergence results which include
error estimates for the eigenvalues and eigenspaces.

For the numerical solution of (11) we use the contour integral method [1]. This
method is suitable for the extraction of all eigenvalues which lie inside of a pre-
defined contour in the complex plane. An alternative approach for the numerical
solution of the nonlinear eigenvalue problem (11) which is based on polynomial
interpolation is presented in [3].

As a numerical example we consider the Neumann eigenvalue problem for the
spherical shellΩS := {x∈R3 : 4.95< |x|< 5} and for the fluid domainΩ f := {x∈
R3 : |x|> 5}. For this example analytical approximations of the eigenvalues are de-
rived in [7]. The material constants for the shell areE = 207· 109N/m2, ν = 0.3
andρS = 7669kg/m3. For the surrounding fluid, we choosec = 1483.24m/s. As
ansatz spaces for the Galerkin eigenvalue problem (11) we use piecewise linear fi-
nite elements and piecewise linear boundary elements as in the previous section.
The eigenvalues of practical interest are those which are lying close to the real axis,
since the imaginary part of an eigenvalue corresponds to thedamping of the related
eigenfunction in time. As domain of interest for the eigenfrequenciesf = ω/(2π)
we have chosen the strip{ f ∈C : 1<Re( f )< 90, −5< Im( f )< 5}. In this domain
two analytical approximations are given in [7]. The resultsof the contour integral
method are presented in Table 2 for different meshes. The approximations of the
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eigenvalues on the two finest mesh levels match well with the analytical approxima-
tions.

Table 2 Approximations of the two smallest non–zero eigenvaluesf = ω/(2π)

h/dof 0.5/8794 0.25/36792 0.15/109455 anal. approx.

(58.19,-1.44) (55.82,-1.18) (55.65,-1.16) 56.02
(58.26,-1.45) (55.84,-1.18) (55.66,-1.16)
(58.50,-1.48) (55.84,-1.18) (55.66,-1.16)
(58.62,-1.50) (56.03,-1.20) (55.78,-1.18)
(58.96,-1.54) (56.04,-1.21) (55.78,-1.18)

(83.61,-1.00) (71.47,-0.32) (70.45,-0.31) 70.52
(83.73,-1.03) (71.53,-0.32) (70.53,-0.31)
(84.51,-1.08) (71.63,-0.32) (70.53,-0.31)
(85.10,-1.14) (71.63,-0.32) (70.54,-0.31)
(85.47,-1.16) (71.72,-0.33) (70.60,-0.31)
(85.94,-1.18) (71.74,-0.33) (70.61,-0.31)
(87.96,-1.37) (71.80,-0.34) (70.62,-0.32)

4 Conclusions

The symmetric formulation of finite and boundary element methods for vibro–
acoustic interface problems turns out to be stable for almost all freqencies. If we
exclude Jones frequencies, no spurious modes appear. In fact, we can avoid the use
of combined boundary integral equation formulations such as Brakhage/Werner and
Burton/Miller, see, e.g., [2, 14], which require sufficientsmoothness of the cou-
pling interface. For the acceleration of the numerical simulations one may use fast
boundary element methods such as the adaptive cross approximation [11] or the
fast multipole method [2]. In addition, the design of appropriate preconditioned it-
erative solvers is a challenging task not only for the directsimulation. In fact, the
contour integral method allows an reliable and accurate computation of eigenval-
ues within a given domain of interest, without any knowledgeon the number and
on the position of eigenvalues. Applications of the proposed methodologies include
the simulation and eigenvalue analysis of ships, see Fig. 2 for a simplified model
of a submarine made of titanium. The length is 12m, its diameter 2m, and its wall
thickness 0.1m. The first eigenfrequency isf = 52.12−0.007i, the related eigenso-
lution is given in Fig. 2. This simulation was done by using 67.145 tetrahedral finite
elements and 17.372 triangular boundary elements, which results in 74.523 global
degrees of freedom.
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Fig. 2 Real and imaginary part of an eigensolution of a simplified submarine
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Optimized Schwarz Methods for Maxwell
Equations with Discontinuous Coefficients

Victorita Dolean1, Martin J. Gander1, Erwin Veneros1

1 Introduction

After the development of optimized Schwarz methods for the Helmholtz equation
[3, 4, 2, 12, 14], extensions to the more difficult case of Maxwell’s equations were
developed: for curl-curl formulations, see [1]. For first order formulations without
conductivity, see [7], and with conductivity, see [5, 11]. For DG discretizations of
Maxwell’s equations, optimized Schwarz methods can be found in [8, 9, 6], and for
scattering problems with applications, see [15, 16].

We present here optimized Schwarz methods for Maxwell’s equations in hetero-
geneous media with discontinuous coefficients, and show that the discontinuities
need to be taken into account in the transmission conditionsin order to obtain effec-
tive Schwarz methods. For diffusive problems, it was shown in [10] that jumps in the
coefficients can actually lead to faster iterations, when they are taken into account
correctly in the transmission conditions. We show here thatfor the case of Maxwell’s
equations with jumps along the interfaces, one can obtain a non-overlapping opti-
mized Schwarz method that converges independently of the mesh parameter; this is
not possible without coefficient jumps.

2 Schwarz Methods for Maxwell’s Equations

The time dependent Maxwell equations are

−ε
∂E

∂ t
+∇×H = J , µ

∂H

∂ t
+∇×E = 0, (1)

whereE = (E1,E2,E3)
T is the electric field,H = (H1,H2,H3)

T is the magnetic
field, ε is theelectric permittivity, µ is themagnetic permeability, andJ is the
applied current density. We assume that the applied currentdensity is divergence
free, divJ = 0.

The time dependent Maxwell equations (1) are a system of hyperbolic partial dif-
ferential equations, see for example [7]. This hyperbolic system has for any interface
two incoming and two outgoing characteristics. Imposing incoming characteristics
is equivalent to imposing the impedance condition

1 Section de math́ematiques, Université de Geǹeve, 1211 Geǹeve 4 e-mail:{victorita.
dolean}{martin.gander}{erwin.veneros}@unige.ch
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Bn(E ,H ) :=
E

Z
×n+n× (H ×n) = s. (2)

We consider in this paper the time-harmonic Maxwell equations,

−iωεE+∇×H = J, iωµH +∇×E = 0, ∈Ω , (3)

and study the heterogeneous case where the domainΩ consists of two non-overlapping
subdomainsΩ1 andΩ2 with interfaceΓ , with piecewise constant parametersε j and
µ j in Ω j , j = 1,2. A general Schwarz algorithm for this configuration is





−iωε1E1,n+∇×H1,n= J in Ω1,
iωµ1H1,n+∇×E1,n = 0 in Ω1,

(Bn1+S1Bn2)(E
1,n,H1,n) = (Bn1+S1Bn2)(E

2,n−1,H2,n−1) onΓ ,
−iωε2E2,n+∇×H2,n= J in Ω2,
iωµ2H2,n+∇×E2,n = 0 in Ω2,

(Bn2+S2Bn1)(E
2,n,H2,n) = (Bn2+S2Bn1)(E

1,n−1,H1,n−1) onΓ ,

(4)

whereS j , j = 1,2 are tangential, possibly pseudo-differential operators, and

Bnj (E
j,n,H j,n) =

E j,n

Z j
×n j +n j × (H j,n×n j)

with Z j =
√

µ j/ε j , j = 1,2. Different choices ofS j , j = 1,2 lead to different
Schwarz methods [7].

3 The Classical Schwarz Method

The classical Schwarz method is exchanging characteristicinformation at the inter-
faces between subdomains, which meansS j = 0. For the case of discontinuous
coefficients and the domainΩ = R3, with the Silver-M̈uller radiation condition
limr→∞ r (H×n−E) = 0, and the two subdomainsΩ1 = (−∞,0)×R2, Ω2 =
(0,∞)×R2, the classical Schwarz method does not converge in the presence of
coefficient jumps:

Theorem 1.For any(E1,0,H1,0)∈ (L2(Ω1))
6 and(E2,0,H2,0)∈ (L2(Ω2))

6, if µ1ε2 6=
µ2ε1 the classical Schwarz algorithm diverges in(L2(Ω1))

6× (L2(Ω2))
6.

Proof. Performing a Fourier transform in theyz plane with Fourier variablesk :=
(ky,kz), |k|= k2

y +k2
z, we obtain after a lengthy calculation similar to the one found

in [7] the convergence factor

ρcla(k,ω1,ω2,Z) = max{ρ1(k,ω1,ω2,Z),ρ2(k,ω1,ω2,Z)}

with ω1 = ω√ε1µ1, ω2 = ω√ε2µ2, Z =
√

µ1ε2
µ2ε1

and
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ρ1(k,ω1,ω2,Z) =

∣∣∣∣∣∣∣

(√
|k|2−ω2

1− iω1Z
)(√

|k|2−ω2
2− iω2/Z

)

(√
|k|2−ω2

1 + iω1

)(√
|k|2−ω2

2 + iω2

)

∣∣∣∣∣∣∣

1
2

, (5)

ρ2(k,ω1,ω2,Z) =

∣∣∣∣∣∣∣

(√
|k|2−ω2

1− iω1/Z
)(√

|k|2−ω2
2− iω2Z

)

(√
|k|2−ω2

1 + iω1

)(√
|k|2−ω2

2 + iω2

)

∣∣∣∣∣∣∣

1
2

. (6)

The conditionµ1ε2 6= µ2ε1 is equivalent toZ 6= 1. To show divergence, we consider
3 cases: ifω1 > ω2, we obtain for|k|= ω1

ρ4
1(k,ω1,ω2,Z)= 1+

(ω2
1−ω2

2)(Z
2−1)

ω2
1

, ρ4
2(k,ω1,ω2,Z)= 1− (ω2

1−ω2
2)(Z

2−1)

ω2
1Z2

,

and hence ifZ > 1 we haveρ2 > 1, and ifZ < 1 we haveρ1 > 1. Therefore, the
algorithm diverges forω1 > ω2. Similarly if ω1 < ω2 we get for|k|= ω2

ρ4
1(k,ω1,ω2,Z)= 1− (ω2

2−ω2
1)(Z

2−1)

ω2
2Z2

ρ4
2(k,ω1,ω2,Z)= 1+

(ω2
2−ω2

1)(Z
2−1)

ω2
2

,

and we obtain divergence as in the first case. Finally, ifω1 = ω2, we find

ρ1(k,ω1,ω2,Z)= ρ2(k,ω1,ω2,Z)=

∣∣∣∣∣∣∣

(√
|k|2−ω2

1− iω1Z
)(√

|k|2−ω2
1− iω1/Z

)

(√
|k|2−ω2

1 + iω1

)2

∣∣∣∣∣∣∣

1/2

.

Setting now|k|=
√

2ω1, we get after some simplifications that

ρ4
1 =

1
4
(Z2+1)2

Z2 ,

andρ4
1 > 1 is equivalent to

ρ4
1 > 1 ⇐⇒ (Z2+1)2 > 4Z2 ⇐⇒ (Z2−1)2 > 0,

which always holds, because by assumptionZ 6= 1. So we also have divergence for
the caseω1 = ω2. ⊓⊔

The case of continuous coefficients is analyzed in [7]. In this case,ρ1 = ρ2, and
ρcla(|k|)< 1 for the propagative modes,|k|< ω j , j = 1,2, andρcla(|k|) = 1 for the
evanescent modes,|k| > ω j , j = 1,2, so the algorithm is stagnating for all evanes-
cent modes. This is also the case ifµ1ε2 = µ2ε1 which was excluded in Theorem 1 .

Having seen that the classical Schwarz method for Maxwell’sequations in three
dimensions diverges for most cases in the presence of coefficient jumps, we ana-
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lyze now the special case of the two dimensional transverse magnetic (TMz) and
transverse electric (TEz) Maxwell equations. In the TMz case, the unknowns are
independent ofz, and we haveE = (0,0,Ez) andH = (Hx,Hy,0). In the TEz case,
E = (Ex,Ey,0) andH = (0,0,Hz). Since we obtain identical results in the TMz case
and the TEz case (one just has to exchange the roles ofε with µ), we only show the
TMz case. Our results are again based on Fourier transforms,here in they direction
with Fourier variablek. After a similar computation as in the proof of Theorem 1,
we obtain for the classical Schwarz algorithm for the TMz case the convergence
factor

ρcla(k,ω1,ω2,Z) =

∣∣∣∣∣∣∣

(√
k2−ω2

1− iω1Z
)(√

k2−ω2
2− iω2/Z

)

(√
k2−ω2

1 + iω1

)(√
k2−ω2

2 + iω2

)

∣∣∣∣∣∣∣

1
2

. (7)

For the TMz formulation, the classical Schwarz algorithm can be convergent in the
presence of coefficient jumps:

Theorem 2.Let µ1 = µ2. If ε1 < ε2 and
√

ε1
ε2

> C0, or if ε1 > ε2 and
√

ε2
ε1

> C0,

C0 = 0.3213357548..., then the classical Schwarz algorithm for the TMz case is
convergent.

Proof. We can only give an outline of the proof: without loss of generality, we can
assume thatω1 < ω2. We then proceed in three steps: first, we show that for the
evanescent modes,k > ω j , j = 1,2 we haveρcla < 1 if ε1 6= ε2. Second, we show
thatρcla at k = 0 andk = ω1 is strictly less than one, and finally we show that the
maximum of those two values boundsρcla for all the propagative modesk < ω j ,
j = 1,2, where the restriction involvingC0 comes in.

Theorem 3. If ε1 = ε2 and µ1 6= µ2, then the classical Schwarz algorithm for the
TMz case is divergent.

Proof. The proof is based on divergence of the evanescent modes, as in Theorem 1.

Theorem 4. If µ1 6= µ2, ε1 6= ε2 and Z< ω2
ω1

<
√

2
2 , then the classical Schwarz algo-

rithm for the TMz case is divergent.

Proof. The proof is based again on divergence of the evanescent modes.

4 Optimized Schwarz Methods

We have seen that the classical Schwarz method is not an effective solver for
Maxwell’s equations in the presence of coefficient jumps. Wedevelop now more ef-
fective transmission conditions in order to obtain optimized Schwarz methods which
take the coefficient jumps into account. Using again Fourieranalysis, we can show
that if S j , j = 1,2 have the constant Fourier symbol
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Ŝ1 =−
s2− iω2Z−1

s2+ iω2
, Ŝ2 =−

s1− iω1Z
s1+ iω1

, (8)

then the optimized Schwarz method for the TMz case has the convergence factor

ρopt(ω1,ω2,µ1,µ2,s1,s2,k) =

∣∣∣∣∣∣∣

(√
k2−ω2

1−s1

)(√
k2−ω2

2−s2

)

(√
k2−ω2

1 +s2
µ1
µ2

)(√
k2−ω2

2 +s1
µ2
µ1

)

∣∣∣∣∣∣∣

1
2

. (9)

In order to have a more efficient algorithm, we have to choosesj , j = 1,2 such
that ρopt is as small as possible for all numerically relevant frequenciesk ∈ K :=
[kmin,kmax], wherekmin is a constant depending on the geometry andkmax= cmax/h,
with cmax a constant andh denoting the mesh size, see for example [13]. We search
for sj of the formsj = c j(1+ i) such thatc j , j = 1,2 will be the solutions of the
min-max problem

ρ∗ = min
c1,c2≥0

(
max
k∈K

ρopt(ω1,ω2,µ1,µ2,k,c1(1+ i),c2(1+ i))

)
. (10)

The proofs of the following theorems are based on asymptoticanalysis, and are too
long and technical for this short paper; they will appear elsewhere.

Theorem 5. If µ1 < µ2 and µ2
µ1

>
√

2, and r=
√
|ε1µ1− ε2µ2|, then the asymptotic

solution of the min-max problem for h small is

c∗1 =
1
2

cmaxµ1(µ2+2µ1−
√

µ2(4µ1+3µ2))

(2µ2
1−µ2

2)h
, c∗2 = ωr, (11)

ρ∗ = 4

√
1
2
− 23/4

4
ω(µ2

2−2µ2
1)r

(µ2+2µ1−
√

µ2(4µ1+3µ2))
h+O(h2). (12)

If µ2
µ1
≤
√

2, then the asymptotic solution of the min-max problem is

c∗1 =
1
2h

cmax(µ2−µ1)

µ2
, c∗2 =

ωrµ2

2

µ2+
√

2µ2
1−µ2

2

µ2
1−µ2

2

(13)

ρ∗ =
√

µ1

µ2
−
√

µ1

µ2

23/4

4

ωr(µ2+
√

2µ2
1−µ2

2)

µ2−µ1
h+O(h2). (14)

Theorem 6. If µ1 = µ2 andε1 6= ε2, and r=
√
|ε1µ1− ε2µ2|, then the asymptotic

solution of the min-max problem for h small is given by

c∗1 =
( cmax

h

)3/4(ωr
2

)1/4
, c∗2 =

1
4

(
2cmax

h

)1/4
(ωr)3/4, (15)

ρ∗ = 1− ( ωr
2cmax

)1/4h1/4+O(h1/2). (16)
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Theorem 7. If µ1 > µ2 and µ1
µ2

>
√

2, and r=
√
|ε1µ1− ε2µ2|, then the asymptotic

solution of the min-max problem for h small is

c∗1 =
1
2

cmaxµ2(µ1+2µ2−
√

µ1(4µ2+3µ1))

(2µ2
2−µ2

1)h
, c∗2 = ωr, (17)

ρ∗ = 4

√
1
2
− 23/4

4
ω(µ2

1−2µ2
2)r

(µ1+2µ2−
√

µ1(4µ2+3µ1))
h+O(h2), (18)

and if µ1
µ2
≤
√

2 then the asymptotic solution of the min-max problem is

c∗1 =
1
2h

cmax(µ1−µ2)

µ1
, c∗2 =

ωrµ1

2

µ1+
√

2µ2
2−µ2

1

µ2
2−µ2

1

(19)

ρ∗ =
√

µ2

µ1
−
√

µ2

µ1

23/4

4

ωr(µ1+
√

2µ2
2−µ2

1)

µ1−µ2
h+O(h2). (20)

Theorem 5 and Theorem 7 contain the surprising result that inthe presence of
jumps in the coefficients, it is possible to obtain an optimized Schwarz method for
Maxwell’s equations with convergence factor that does not deteriorate when the
mesh parameterh goes to zero, even without overlap. In the first parts of each the-
orem, we even see the convergence is independent of the jump in the coefficients.
In the case ofµ1 = µ2 in Theorem 6 however, the convergence factor depends onh
and deteriorates ash goes to zero, as in the case in [7] when alsoε1 = ε2.

5 Numerical Results

We now present some numerical results to illustrate the performance of the algo-
rithms. We partition the domainΩ = (−1,1)× (0,1) into two subdomainsΩ1 =
(−1,0)× (0,1) andΩ2 = (0,1)2. In each subdomain we select constant coefficients
ε j , µ j , j = 1,2. We discretize the TMz Maxwell’s equations using a finite volume
method, and we impose for the test on the outer boundary the impedance boundary
condition E

Z j
×n j +n j × (H×n j) = 0, j = 1,2.

We first show in Figure 1 convergence histories for the classical Schwarz algo-
rithm. On the left, we show in blue the case whenµ1 6= µ2 andε1 = ε2, and in red
the case whenµ1 6= µ2 andε1 6= ε2 andZ < 1√

2
, and the algorithm diverges as pre-

dicted by Theorem 3 and Theorem 4. On the right in Figure 1 we show in blue the
case whenε1 6= ε2 andµ1 = µ2, and in red the case whenµ1 6= µ2 andε1 6= ε2 and
Z > 1√

2
, and we observe convergence, as predicted by Theorem 2.

We next show the performance of the optimized Schwarz algorithms. We call the
first parts of Theorems 5 and 7 case 1, the result in Theorem 6 case 2, and the last
part of Theorems 5 and 7 case 3. In Figure 2, we show scaling experiments obtained
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Fig. 1 Convergence histories for the classical Schwarz algorithm. On the right two cases of diver-
gence, one whereε is continuous and one whereε is not continuous, and on the right two cases of
convergence, one forµ continuous and one forµ not continuous
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Fig. 2 Number of iterations against the mesh sizeh, to attain an error of 10−6 with the 3 cases of
the optimized Schwarz algorithm

whenh is refined. Clearly case 1 and 3 lead to convergence independent of the mesh
size, as predicted by Theorem 5 and Theorem 7, whereas the convergence in case
2 deteriorates, as predicted by Theorem 6. We use here the parametersω = 2π,
ε1 = µ1 = 1 for all the cases. For the first case we setε2 = 2 andµ2 = 2, for the
secondε2 = 2 andµ2 = 1 and for the thirdε2 = 1 andµ2 = 1.4<

√
2.

6 Conclusions

We proved that in the presence of jumps in the coefficients, the classical Schwarz
method for Maxwell’s equations in 3d is not convergent, and unlessµ1ε2 = µ2ε1,
the algorithm actually diverges. In the 2d case of TMz and TEzmodes, it is possi-
ble to obtain convergence for specific configurations of jumps. Optimized Schwarz
methods on the other hand can take coefficient jumps into account and are always
convergent, sometimes even better than without jumps. One can even get conver-
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gence independent of the mesh parameter in the non-overlapping case, something
which is impossible without coefficient jumps.
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Lower Dimensional Coarse Spaces for Domain
Decomposition

Clark R. Dohrmann1 and Olof B. Widlund2

1 Introduction

Coarse spaces are at the heart of many domain decomposition algorithms. Building
on the foundation laid in [8], we have an ongoing interest in the development of
coarse spaces based on energy minimization concepts [1]. Several different areas
have been investigated recently, including compressible and almost compressible
elasticity [3, 4], subdomains with irregular shapes [2, 11], problems inH(curl) [6],
and problems inH(div) [12]. We also comment that there has been much recent
complementary work to address problems having multiple materials in individual
subdomains (see, e.g., [10, 9]).

The purpose of this study is to investigate a family of lower dimensional coarse
spaces for scalar elliptic and elasticity problems. The basic idea involves the use of
certain equivalence classes of nodes on subdomain boundaries. Coarse degrees of
freedom are then associated with these classes, and the coarse basis functions are
obtained from energy-minimizing extensions of subdomain boundary data into the
subdomain interiors. We note in the context of a cube, domaindecomposed into
smaller cubical subdomains, that these classes are simply the subdomain vertices.

An analysis for scalar elliptic problems reveals that significant reductions in the
coarse space dimension can often be achieved without sacrificing the favorable con-
dition number estimates for larger coarse spaces. This can be important when the
the memory and computational requirements associated withlarger coarse spaces
are prohibitive due to the use of large numbers of processorson a parallel computer.
A multi-level approach could be used in such cases, but this may not always be
possible or the best solution.

In the next section, we describe the nodal equivalence classes that are used in
the construction of the coarse spaces. We then present algorithms for generating the
coarse basis functions for different problem types in§3. An analysis for a scalar
elliptic equation is provided in§4, and numerical examples are presented in§5.

1 Computational Solid Mechanics and Structural Dynamics, Sandia National Laboratories,
Albuquerque, New Mexico, 87185, USA. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000. e-mail:
crdohrm@sandia.gov ·2 Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 10012, USA. This work was supported in part by the National Science Foun-
dation Grant DMS-1216564 and the U.S. Department of Energy under contracts DE-FG02-
06ER25718. e-mail:widlund@cims.nyu.edu,http://cs.nyu.edu/cs/faculty/
widlund/index.html
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2 Coarse Nodes

Consider a domainΩ partitioned into non-overlapping subdomainsΩ1, . . . ,ΩN. The
set of all nodes common to two or more subdomains, excluding those with essential
boundary conditions, is denoted byΓn. Let Sn denote the index set of subdomains
containing noden. Two nodesn j ,nk ∈ Γn are related ifSn j = Snk. As with FETI-
DP or BDDC methods, we partitionΓn into nodal equivalence classes based on this
relation. Notice that for a decomposition of a cube into cubical subdomains that the
nodal equivalence classes consist of faces (groups of nodesshared by the same two
subdomains), edges (groups of nodes shared by the same four subdomains), and
vertices (individual nodes shared by eight subdomains). For economy of words, we
will henceforth use the abbreviation nec for nodal equivalence class.

Let SN denote the index set of subdomains for any node of necN . A necN j is
said to be a child of necNk if SN j ⊂SNk

. Likewise,Nk is called a parent ofN j in
this case. A nec is designated a coarse node if it is not the child of any other nec, and
its coordinates are chosen as the centroid of its constituent nodes. LetMi denote the
set of all necs forΩi . Notice that each nec inMi is either a coarse node or the child
of at least one coarse node. Further, a coarse nodec of Ωi is also a coarse node of
Ω j for all j ∈Sc.

Notice that for the example decomposition described in the first paragraph of this
section the coarse nodes are the subdomain vertices. If all necs are used as in [1],
then there are approximately(6/2+12/4+8/8)N = 7N necs associated with the
coarse space. Likewise, if only subdomain edges and vertices are used as in [4], then
there are approximately(12/4+8/8)N = 4N necs. In contrast, the coarse space of
this study is based on only aboutN coarse nodes.

3 Coarse Basis Functions

In this section, we describe how to construct coarse basis functions for scalar elliptic
and elasticity problems in three dimensions. These coarse basis functions are fully
continuous between adjacent subdomains, and we focus our attention on a single
subdomainΩi . The support of a coarse basis function associated with coarse nodec
is the interior of the union of all̄Ω j with j ∈Sc.

The first step is to obtain a partition of unity for the nodes ofΓi := ∂Ωi \∂Ω . Let
CN denote the set of parent coarse nodes for necN . If N is itself a coarse node,
then we takeCN = N . For the simplest case, the partition of unity associated with
noden∈N and coarse nodec∈ CN is chosen as

pnc = 1/|CN |. (1)

One can easily confirm that∑c∈CN
pnc = 1.

Notice from (1) thatpnc is the same for alln∈N andc∈ CN . This feature can
cause abrupt changes in the coarse basis functions near nec boundaries, typically
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resulting in a logarithmic factor log(Hi/hi) in estimates for the energy of the coarse
basis functions. Here,Hi is the diameter ofΩi andhi is the diameter of its smallest
element.

In an attempt to avoid the logarithmic factor, we also consider a partition of unity
originating from linear functions rather than constants. Define

a(n) :=
[

1 xn1 · · · xnd
]
,

wherexn j is the j-coordinate of noden andd is the spatial dimension. Let the matrix
AN denote the row concatenation ofa(n) for all coarse nodes inCN . Notice that
the number of rows ofAN is the number of parent coarse nodes forN and that the
number of columns isd+1. The origin is chosen as any one of the parent coarse
nodes. With reference to (1),pnc is now chosen as

pnc = a(n)A†
N ec, (2)

where † denotes the Moore-Penrose pseudo-inverse andec is a row vector with a
single nonzero entry of 1 in the row ofAN corresponding to the coarse nodec. As
before, one can confirm that∑c∈CN

pnc = 1. We note ifa(n) is replaced by only its
first column, then (2) simplifies to (1).

The energy ofΩi is defined asEi(ui) := uT
i Aiui , whereui is a vector of nodal

degrees of freedom (dofs) forΩi andAi is the stiffness matrix forΩi . Let Rin select
the rows ofui for the dofs of noden ∈N . That is,Rinui is the vector of dofs for
noden. Let Nic denote the set of nodes onΓi which havec as a parent coarse node
and define

Ψic := ∑
n∈Nic

pncR
T
inNnc,

where the matrixNnc is specified later for different problem types.
Let RiΓ andRiI select the rows ofui for the nodal dofs onΓi and the interior of

Ωi , respectively, and define

AiΓ Γ := RiΓ AiR
T
iΓ , AiI Γ := RiI AiR

T
iΓ , AiII := RiI AiR

T
iI , etc.

The coarse basis function associated with the coarse nodec is given by

Φic =Ψic−RT
iI A
−1
iII AiI Γ (RiΓΨic).

We note that the first term on the right hand side of this expression is the boundary
data for the coarse basis function, while the second term is its energy-minimizing
extension into the interior ofΩi .

For scalar elliptic equations like the Poisson equation, wechoose

Nnc =
[

1
]
.

Remark 1.The coarse space in [2] is obtained by choosing the subdomainvertices
andedges as the coarse nodes, and using the partition of unity given in (1). Similarly,



450 Clark R. Dohrmann and Olof B. Widlund

the smaller coarse space of [5] is obtained by choosing only the subdomain vertices
as the coarse nodes and using the partition of unity given in (2).

For elasticity problems,Nnc is chosen as

Nnc =




1 0 0 0 xc
n3 −xc

n2
0 1 0−xc

n3 0 xc
n1

0 0 1 xc
n2 −xc

n1 0


 ,

wherexc
n j is the j-coordinate of noden with the origin at the coarse nodec. The

first three columns ofNnc correspond to rigid body translations, while the final three
columns correspond to rigid body rotations aboutc. We note the expression forNnc

can be adapted easily to accommodate finite element models with shell elements
simply by adding three more rows toNnc.

4 Analysis

In this section, we develop estimates for the energy of a coarse interpolant ofui for
a scalar elliptic equation. The diffusion coefficientρi > 0 is assumed constant inΩi

(see§4.2 of [13] for additional details). We will use the symbolui for both a finite
element function and its vector representation in terms of nodal values. Similarly,
φic is the finite element function counterpart ofΦic.

For simplicity, we assume shape regular tetrahedral subdomains. In this case, the
coarse basis functions forΩi based on (2) are identical to those for the standard
P1 linear tetrahedral element onΓi . Consequently, the coarse basis functions are
also identical to the standard shape functions throughoutΩi since a linear function
minimizes energy for boundary data given by a linear function. We have the standard
estimate

Ei(φic)≤CHiρi . (3)

Let ūi , ūF , ūE denote the mean of a finite element functionu over the subdomain
Ωi , a subdomain faceF , and a subdomain edgeE , respectively. For a faceF of
Ωi , it follows from the a trace theorem and a Poincaré inequality that

ρiHi |ūF − ūi |2≤CEi(ui). (4)

Similarly, for an edgeE of Ωi , we find using a discrete Sobolev inequality (see, e.g.,
Lemma 4.16 of [13]) that

ρiHi |ūE − ūi |2≤C(1+ log(Hi/hi))Ei(ui). (5)

Assumption 1: Let c be any vertex ofΩi andSc the index set of all subdomains
containingc. Pick jc ∈Sc such thatρ jc ≥ ρ j for all j ∈Sc. There exists a sequence
{i = j0c, j1c, ..., j p

c = jc} such thatρi ≤Cρ jℓc
andΩ jℓ−1

c
andΩ jℓc

have a face in common
for all ℓ= 1, . . . , p andi = 1, . . . ,N.
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In other words, Assumption 1 means there is a face connected path betweenΩi

andΩ jc such that the diffusion coefficientρi is no greater than a constant times the
diffusion coefficient of any subdomain along the path. This assumption appears to
be essentially the same as the quasi-monotone assumption in[7].
Assumption 2: Using the same notation as in Assumption 1, there exists a sequence
{i = j0c, j1c, ..., j p

c = jc} such thatρi ≤ Cρ jℓc
and Ω jℓ−1

c
and Ω jℓc

have an edge in
common for allℓ= 1, . . . , p andi = 1, . . . ,N.

Notice that Assumption 2 is weaker than Assumption 1 since wehave more op-
tions to continue at every step in the construction of a path.Our coarse interpolant
of ui for Ωi is chosen as

uic = ∑
c∈Mic

ū jcφic, (6)

whereMic is the set of subdomain vertices forΩi . LetFi j denote the face common
to Ωi andΩ j . Since the coarse basis functions forΩi can approximate constants
exactly onΓi and also minimize the energy, it follows from a Poincaré inequality
that

Ei( ∑
c∈Mic

ūiφic)≤CEi(ui). (7)

We next establish bounds forEi(uic). Starting with

ūi− ū jc = (ūi− ūF
j0c j1c

)+
p−1

∑
ℓ=1

(ūF
jℓ−1
c jℓc
− ūF

jℓc jℓ+1
c

)+(ūF
j p−1
c j pc

− ū jc),

rewriting the term in the summation as

ūF
jℓ−1
c jℓc
− ūF

jℓc jℓ+1
c

= (ūF
jℓc jℓ−1

c
− ū jℓc

)− (ūF
jℓc jℓ+1

c
− ū jℓc

),

and using Assumption 1 and (4), we find

ρiHi |ūi− ū jc|2≤C ∑
j∈Sc

E j(u j).

It then follows from (3) that

Ei((ūi− ū jc)φic)≤C ∑
j∈Sc

E j(u j).

Finally, from (6), (7), and the triangle inequality, we obtain

Ei(uic)≤C ∑
j∈Mi

E j(u j),

whereMi is the index set of all subdomains adjacent toΩi . Summing contributions
from all subdomains and noting that|Mi |<C, we see that the energy of our coarse
interpolant is uniformly bounded by the energy ofu. That is, under Assumption 1,
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N

∑
i=1

Ei(uic)≤C
N

∑
i=1

Ei(ui). (8)

By using (5) instead of (4) in the previous development, we find under the less
restrictive Assumption 2 that

N

∑
i=1

Ei(uic)≤C(1+ log(H/h))
N

∑
i=1

Ei(ui), (9)

whereH/h := maxi(Hi/hi).
If the coarse basis functions originate from (1) rather than(2), then it follows

from elementary estimates and Lemma 4.25 of [13] that an additional factor of 1+
log(Hi/hi) will appear on the right-hand-side of (3). Thus, this additional factor will
also be present in (8) and (9). The same also holds for hexahedral subdomains even
when (2) is used since a linear function cannot interpolate afunction at all four
nodes of a quadrilateral planar face.

With the estimates for our coarse interpolants in hand, we may now perform a
local analysis for an overlapping additive Schwarz algorithm using basically the
same approach as in [2] or [5]. This involves a partition of unity {ϑi}Ni=1 with 0≤
ϑi ≤ 1, |∇ϑi | ≤C/δi , andϑi supported in the closure of the overlapping subdomain
Ω ′i . Here,δi is the thickness of the part ofΩ ′i which is common to its neighbors.
Given an estimate of the form

N

∑
i=1

Ei(uic)≤C f(H/h)
N

∑
i=1

Ei(ui),

the resulting condition number estimate for the preconditioned operator is given by

κ(M−1A)≤C f(H/h)(1+H/δ ), (10)

whereH/δ := maxi Hi/δi . Comparing (10) with (8) and (9), we thatf (H/h) is 1
and 1+ log(H/h) under Assumptions 1 and 2, respectively.

5 Numerical Examples

We consider a unit cube domain decomposed into either smaller cubical subdomains
or irregular-shaped subdomains obtained from a mesh partitioner for a scalar elliptic
equation; an analysis and results for elasticity will appear in a forthcoming study.
The numbers of iterations and condition number estimates from the conjugate gra-
dient algorithm appear under the headingsiter andcondin the tables. All results are
for homogeneous essential boundary conditions on one face of the cube, a random
right-hand-side vector, and a relative residual solver tolerance of 10−8.

The results in Table 1 are for 64 cubical subdomains and a fixeddimensionless
overlapH/δ . By plotting condition numbers versus log(H/h), it appears that the
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line segment slopes are bounded above by constants asH/h increases for both the
constant and checkerboard material properties. Moreover,these line segment slopes
for constant material properties and the linear partition of unity in (2) appear to de-
crease with increasingH/h, while those for (1) appear to approach a constant value.
These observations are consistent with the analysis. We note for a vertex coarse
space, as used in this example, a much less favorable condition number estimate of
C(H/h)(1+ log(H/h))2 holds for FETI-DP and BDDC algorithms (cf. Algorithm A
in §6.4.2 of [13]).

Table 1 Results for constant and checkerboard arrangements of subdomainmaterial properties
(ρi = 1 orρi = 104) for partitions of unity based on (1) and (2). The overlapH/δ ≈ 4 is held fixed
while H/h varies.

constant checkerboard
pnc (1) pnc (2) pnc (1) pnc (2)

H/h iter cond iter cond iter cond iter cond

8 40 29.0 37 25.2 37 39.9 35 29.7
12 43 33.3 38 27.7 40 46.4 37 32.5
16 45 36.4 39 29.3 40 50.9 38 34.4
20 45 38.8 39 30.5 41 54.1 38 35.7

For the final example, we consider a mesh of 483 elements decomposed into
different numbers of subdomains using a mesh partitioner. Results in Table 2 show
that the present coarse space dimensions are significantly smaller than those for
the richer coarse space in [1]. Smaller dimensional coarse spaces result in reduced
computational requirements for the coarse problem, and extend the range of problem
sizes that can be solved effectively using a two-level method.

Table 2 Results for constant coefficients and a mesh with 483 elements decomposed using a mesh
partitioner. The coarse space dimension is denoted bync and the overlap is for two layers of
additional elements. The final row in the table is for a regular mesh decomposition into 64 identical
subdomains.

Ref. [1] pnc (1) pnc (2)
N nc iter cond nc iter cond nc iter cond

63 831 45 21.3 166 46 22.5 166 40 15.7
64 863 45 21.5 174 46 22.5 174 41 16.4
65 916 46 21.1 189 46 21.7 189 40 16.6
64⋆ 279 40 24.9 27 43 33.3 27 38 27.7
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Robust Preconditioners for DG-Discretizations
with Arbitrary Polynomial Degrees

Kolja Brix1, Claudio Canuto2, and Wolfgang Dahmen1

1 Introduction

Discontinuous Galerkin (DG) methods offer an enormous flexibility regarding local
grid refinement and variation of polynomial degrees rendering such concepts pow-
erful discretization tools which have proven to be well-suited for a variety of differ-
ent problem classes. While initially the main focus has been on transport problems
like hyperbolic conservation laws, interest has meanwhileshifted towards diffusion
problems. Specifically, we focus here on the efficient solution of the linear systems
of equations that arise from the Symmetric Interior PenaltyDG method applied
to elliptic boundary value problems. [1] The principal objective is to develop ro-
bust preconditioners for the full “DG-flexibility” which means to obtain uniformly
bounded condition numbers for locally refined meshes and arbitrarily (subject to
mild grading conditions) varying polynomial degrees at theexpense of linearly scal-
ing computational work. A first step towards that goal has been made in [3] treating
the case of geometrically conforming meshes but arbitrarily large variable polyno-
mial degrees which already exposes major principal obstructions. In this paper we
complement this work by detailed studies of several issues arising in [3].

To our knowledge the only concept yielding full robustness with respect to poly-
nomial degrees is based onLegendre-Gauß-Lobatto(LGL) quadrature. Specifically,
in the framework ofauxiliary space methodslow order finite element discretiza-
tions on LGL-grids can be used to precondition high order polynomial discretiza-
tions. However, when dealing with variable degrees the possible non-matching of
such grids at element interfaces turns out to severely obstruct in general the de-
sign of efficient preconditioners. To overcome these difficulties we propose in [3] a
concatenation of auxiliary space preconditioners. In the first stage the spectral DG
formulation (SE-DG) is transferred to a spectral continuous Galerkin formulation
(SE-CG). In the second stage we proceed from here to a finite element formulation
on a specific dyadic grid (DFE-CG) which is associated with an LGL-grid but be-
longs to a nested hierarchy. The latter problem can then be tackled by a multilevel
wavelet preconditioner presented in forthcoming work. Theoverall path of our it-
erated auxiliary space preconditioner therfore isSE-DG→ SE-CG→ DFE-CG. It
should be noted that a natural alternative is to combine the first stage with a domain
decomposition substructuring preconditioner as proposedin [6] admitting a mild
growth of condition numbers with respect to the polynomial degree.

1 Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056
Aachen, Germany, e-mail:{brix}{dahmen}@igpm.rwth-aachen.de ·2 Dipartimento di
Scienze Matematiche, Politecnico di Torino, Corso Duca degliAbruzzi 24, 10129 Torino, Italy,
e-mail:claudio.canuto@polito.it
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We are content here for most part of the paper with brief pointers to the detailed
analysis in [3], [4] and [2] to an extent needed for the present discussion.

Section 2 introduces our model problem, the LGL technique isexplained in Sec-
tion 3. The auxiliary space method is detailed in Section 4, while Sections 5 and 6
consider stages 1 and 2 of our preconditioner. Finally in Section 7 we give some
numerical experiments that shed light on the constants thatarise in four basic in-
equalities used in the second stage.

2 Model problem and Discontinuous Galerkin formulation

Given a bounded Lipschitz domainΩ ⊂ Rd with piecewise smooth boundary we
consider as a simple model problem the weak formulation: findu ∈ H1

0(Ω) such
that

a(u,v) :=
∫

Ω
∇u·∇v dx= 〈 f ,v〉 , v∈ H1

0(Ω)

of Poisson’s equation−∆u= f onΩ with zero Dirichlet boundary conditionsu= 0
on ∂Ω . For simplicity, we assume that̄Ω is the union of a collectionR of finitely
many (hyper-)rectangles, which at most overlap with their boundaries. More com-
plex geometries can be handled by isoparametric mappings. By Fl (R) we denote
thel -dimensional facets of a (hyper-)rectangleRand byFl =∪R∈RFl (R) the union
of all these objects. LetHk(R) be the side length ofR in thek-th coordinate direction.

The polynomial degrees used in each cellRare defined asp= (pk)
d
k=1, wherepk

is the polynomial degree in thek-th coordinate direction. We introduce the piecewise
constant functionδ = (H, p) that collects thehp approximation parameters. Onδ
we impose mild grading conditions, see [3] for the details.

For the spectral discretization of our model problem, we choose the DG spectral
ansatz spaceVδ :=

{
v∈ L2(Ω) : v|R∈Qp(R) for all R∈R

}
, whereQp(R) is the

tensor space of all polynomials of degree at mostp on the (hyper-)rectangleR.
We employ the standard notation of DG methods for jumps and averages on the

mesh skeleton and on∂Ω . TheSymmetric Interior Penalty Discontinuous Galerkin
method (SIPG)aδ (u,v) = 〈 f ,v〉 for all v∈Vδ with the SIPG bilinear form

aδ (uδ ,vδ ) := ∑
R∈R

(∇uδ ,∇vδ )R+ ∑
F∈F

(−({∇uδ} , [vδ ])F − ([uδ ] ,{∇vδ})F)

+ ∑
F∈F

γωF([uδ ] , [vδ ])F = ( f ,vδ )Ω , vδ ∈Vδ

with ωF := max
{

ωF,R− ,ωF,R+

}
for internal facesF andωF,R± := pk(R

±)(pk(R
±)+1)

Hk(R±)
.

For boundary facesF ⊂ ∂Ω we setωF,R := pk(R)(pk(R)+1)
Hk(R)

.
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3 Legendre-Gauß-Lobatto (LGL) grids

Denoting by(ξi)
p−1
i=1 the zeros of the first derivative of thep-th Legendre polyno-

mial Lp, (in ascending order), and settingξ0 = −1 andξp = 1, Gp = (ξi)0≤i≤p

is the Legendre-Gauß-Lobatto (LGL) grid of degreep on the reference interval
Î = [−1,1], see e.g. [5]. In combination with appropriate LGL weights(wi)0≤i≤p the
LGL points of orderp can be interpreted as quadrature points of a quadrature rule
of exactness 2p− 1. In [4] we prove quasi-uniformity of the LGL-grids(Gp)p∈N,

i.e., hi+1,p
hi ,p

remains uniformly bounded independent ofp, wherehi = |ξi − ξi−1| for
1≤ i ≤ p−1.

The particular relevance of tensor product LGL-grids for preconditioners for
spectral element discretizations lies in the two norm equivalences (see [5])

∥∥ϕ
∥∥

H i(R) h
∥∥I R

h,pϕ
∥∥

H i(R) for all ϕ ∈Qp(R), i ∈ {0,1}, (1)

which hold uniformly for anyd-dimensional hypercubeR=×d
k=1 Ik whereI R

h,p is
the piecewise multi-linear interpolant on the tensor product LGL-grid.

4 Abstract theory: Auxiliary Space Method

The auxiliary space method (ASM) [9, 11, 10] is a powerful concept for the con-
struction of preconditioners that can be derived from thefictitious space lemma
[8, 7, 9].

Given a problema(u,v) = f (v) for all v ∈ V on the linear spaceV equipped
with a bilinear forma(·, ·) : V ×V → R, we seek anauxiliary spaceṼ with an
auxiliary formã(·, ·) : Ṽ×Ṽ→ R that is in some sense close to the original one but
easier to solve. Note that we neither requireV ⊂ Ṽ nor Ṽ ⊂ V which is important
in the context of non-conforming discretizations. Therefore on the sum̂V =V + Ṽ
we need in general another version ˆa(·, ·) : V̂ × V̂ → R as well as a second form
b(·, ·) : V̂× V̂ → R which dominatesa onV and plays the role of a smoother. The
required closeness of the spacesV andṼ is described with the aid of two linear
operatorsQ : Ṽ → V andQ̃ : V → Ṽ. Specifically, these operators have to satisfy
certain direct estimates involving the above bilinear forms. For the details on the
ASM conditions see [9].

Lemma 1 (Stable Splitting [9]). Under the assumptions of the ASM, we have the
following stable splitting

a(v,v)∼ inf
w∈V,ṽ∈Ṽ: v=w+Qṽ

(b(w,w)+ ã(ṽ, ṽ)) for all v ∈V.

The main result of the ASM is given in the following theorem [9].

Theorem 1 (Auxiliary Space Method).Let CB and CÃ be symmetric precondi-
tioners forB and Ã, respectively. LetS be the representation of Q: Ṽ → V. Then
CA := CB +SCÃST is a symmetric preconditioner forA. Moreover, there exists a
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uniform constant C such that the spectral condition number of CAA satisfies

κ(CAA)≤Cκ(CBB)κ(CÃÃ).

For a given practical application it remains to identify a suitable auxiliary space
Ṽ, the bilinear forms ˜a : Ṽ×Ṽ→ R andâ,b : V̂×V̂→ R, as well as the two linear
operatorsQ and Q̃, such that ASM conditions are satisfied. In addition efficient
preconditioners for the “easier” auxiliary problemsCÃ andCB need to be devised.
Of course, the rationale is that the complexity to applyCÃ andCB should be much
lower than solving the original problem.

Note that the operator̃Q neednot be implemented but enters only the analysis.

5 Stage 1: ASM DG-SEM→ CG-SEM

In the first stage, we choose the largest conforming subspaceṼ := Vδ ∩H1
0(Ω) of

V := Vδ as auxiliary space so thatQ can be taken as the canonical injection. The
definition of the operator̃Q can be found in [3].

The main issue in this stage is the choice of the auxiliary form b(·, ·). Using LGL-
quadrature combined with an inverse estimate for the partial derivatives in the form
a(·, ·) we arrive at

b(u,v) := ∑
R∈R

∑
ξ∈Gp(R)

u(ξ )v(ξ )cξWξ , Wξ :=

(
d

∑
k=1

w−2
ξ ,k

)
wξ ,k.

Here the weightscξ ∼ 1 are chosen as

cξ :=

{
β1(c2

1+ γρ1ωFwF,R/Wξ ), ξ ∈ Gp(F,R), F ∈Fd−1(R), R∈R,
β1c2

1, else,

wherewF,R± is the LGL quadrature weight onF seen as a face ofR± and the param-
etersβ ,ρ1 can be used to “tune” the scheme. The resulting matrixB is diagonal so
that the application ofCB := B−1 requires onlyO(N) operations. It is shown in [3]
that all ASM conditions are satisfied for this choice ofb(·, ·). Numerical experiments
show that the parametersβ1 andρ1 can by and large be optimized independently of
the polynomial degrees.

6 Stage 2: CG-SEM→ CG-DFEM

The second stage involves three major ingredients, namely

(1) the choice of spaces of piecewise multi-linear finite elements on hierarchies of
nestedanisotropic dyadic grids, to permit a subsequent application of efficient
multilevel preconditioners,

(2) the construction of the operatorsQ andQ̃, and
(3) the construction of the auxiliary bilinear formb(·, ·).
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As for (1), the non-matching of LGL-grids for different degreesp at interfaces pre-
vents us from taking low order finite element spaces as auxiliary space for the high
order conforming problem resulting from the first stage. Instead, with each LGL-
grid Gp we associate a dyadic gridGD,p, which is roughly generated as follows:
starting with the boundary points{−1,1} as initial guess we adaptively refine the
grid. A subinterval in the grid is bisected into two parts of equal size, if the small-
est of the overlapping LGL-subintervals is longer thanα times its length. The pa-
rameterα therefore controls the mesh size of the dyadic grid. However, for input
LGL-grids of different polynomial degrees the resulting dyadic grids are not nec-
essarily nested yet. How to ensure nestedness while keepingthe grid size under
control is shown in [3]. The key quality of the associated dyadic gridsGD,p is that
mutual low order piecewise multi-linear interpolation between the low order finite
element spaces onGp(R),GD,p(R) is uniformly H1-stable, see [3] for the proofs.
Denoting byVh,D,p(R) the space of piecewise multi-linear conforming finite ele-
ments onGD,p(R), we now takeV := Vδ ∩H1

0(Ω) andṼ := Vh,D ∩H1
0(Ω), where

Vh,D = {v∈C0(Ω) : ∀R∈R , v|R := vR∈Vh,D,p(R)}.
Concerning (2), the operatorQ is defined element-wise as follows. For a given

element vertexz∈ F0(R) let p∗ denote the polynomial degree vector whosekth
entry is the minimum of thekth entries of all degree vectors associated with elements
R′ sharingzas a vertex. Here a grading of the degrees is important. LetΦz∈Q1(R)
the multi-linear shape function onR satisfying conditionsΦz(y) = δy,z for all y ∈
F0(R). Then, we define

ṽ∗z := I R
h,D,p∗z (ΦzṽR) ∈Vh,D,p∗z(R) and v∗z = I R

p∗z ṽ∗z ∈Qp∗z(R) , (2)

where I R
h,D,p∗z

,I R
p∗z

are the dyadic piecewise multilinear and high order LGL-
interpolants on the respective grids. Summing-up over the vertices ofR, we define

ṽ∗R := ∑
z∈F0(R)

ṽ∗z ∈Vh,D,p(R) and QRṽR := v∗R := ∑
z∈F0(R)

v∗z ∈Qp(R) . (3)

The operatorQ̃ is defined analogously with the roles of dyadic and LGL-gridsex-
changed, see [3].

To finally address (3), for the structure of the formb(·, ·) from the first stage the
direct estimates in the ASM conditions are no longer valid. It has to be suitably
relaxed along the following lines. We make an ansatz of the form

b(v,w) := ∑
R∈R

d

∑
k=1

(
∑

Sℓ∈T0,k(R)

b0
R,k,Sℓ

(v,w)+ ∑
Sℓ∈T1,k(R)

b1
R,k,Sℓ

(v,w)
)
, (4)

whereT0,k(R) is the collection of those LGL-subcellsSℓ, ℓ ∈×d
k=1{1, . . . , pk(R)}

with side lengthsh(ℓl )
l in the LGL-gridGp(R) that arestrongly anisotropicaccording

to (maxl 6=k h(ℓl )
l )/h(ℓk)

k > Caspect for a fixed constantCaspect> 0, while T1,k(R) is
comprised of the remaining “isotropic” cells. On the isotropic cells inT1,k(R) we
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use an inverse estimate applied to piecewise multi-linear LGL-interpolants ofv and
w. On the remaining anisotropic cells we retain integrals over the variable involving
the partial derivative and use quadrature in the remaining variables. For this auxiliary
form b(·, ·) and the above operatorsQ andQ̃ we can verify all ASM conditions, see
[3]. Note that the GramianB is no longer diagonal and we refer to [3] for efficient
realizations ofCB.

7 Numerical experiments: Constants in the basic interpolation
inequalities

A fundamental role in the proof of the ASM-conditions in the second stageSE-CG→
DFE-CG is played by four basic interpolation estimates. In particular, knowing the
size of the constants arising in these inequalities and their dependence on the poly-
nomial degrees helps understanding the quantitative effects observed in more com-
plex situations later on.

As before, letΦz denote the affine shape function now on the reference interval
Î = [−1,1]⊂R satisfyingΦz(x) = δx,z for x,z∈ {−1,1}. By Iq we denote the poly-
nomial interpolation operator on the LGL-gridGq for polynomial degreeq and by
Ih,D,q the piecewise affine interpolation operator on the dyadic grid GD,q associated
with Gq.

A major tool for proving the ASM conditions is given by the following theorem.

Theorem 2.Assume that cp≤ q≤ p for some fixed constant c> 0. Then we have

|Iq(Φzv)|Hm(Î) . ‖v‖Hm(Î) for all v ∈Qp(Î), z∈ {−1,1}, m∈ {0,1}, (5)

and

|Ih,D,q(Φzṽ)|Hm(Î) . ‖ṽ‖Hm(Î) for all ṽ∈Vh,D,p(Î), z∈ {−1,1}, m∈ {0,1}. (6)

We determine nextnumericallythe smallest constants that fulfill the inequalities
(5) and (6). This can be obtained by solving generalized eigenvalue problems for the
largest generalized eigenvalue. For all dyadic grids we choose the grid generation
parameterα = 1.2, which balances two effects: on the one hand, the generated
auxiliary space is rich enough for a good approximation while on the other hand, to
keep the solution of the auxiliary space feasible, the dyadic grid does not have too
many degrees of freedom. Figure 1 shows the dependence of thesmallest possible
constants on the polynomial degreesp andq in the range 1≤ p,q≤ 64.

We observe that the constants in (5) and (6) become large form= 0 when the
quotient p/q increases, but eventually stay bounded as long ascp≤ q≤ p for a
fixed c > 0. For m= 1 we find uniform moderate constants in (5) and (6) for ar-
bitrary choices ofp andq. While the nodes in the LGL-grids move gradually with
increasing degree the associated dyadic grids change more abruptly which explains
the jumps in the graph in Figure 1(c).

We are particularly interested in the behavior of the constants when the quo-
tient of p andq is fixed, i.e., we restrict ourselves to a cross section through the
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Fig. 1 Dependance of the constants in (5) and (6) onp andq.

3-dimensional plots along a line in thepq-plane. As an example, we choosep= 2q
representing strongly varying degrees on adjacent elements. The smallest constants
in the inequalities for polynomial degreesq up to 128 are displayed in Figure 2.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

q

(a) m=0

0 20 40 60 80 100 120
0

0.5

1

q

1

(b) m=1

Fig. 2 Constants in the basic interpolation inequalities forp= 2q (dashed line: (5), solid line: (6)).

While for m= 0 the constants quickly approach an asymptotic value for both
(5) and for (6), this is not true for (5) andm= 1. In this case we observe a very
slow monotonic convergence to its asymptotic limit. Thus for moderate polynomial
degrees one still observes a significant growth. Since this estimate is relevant for the
ASM conditions on the operator̃Q in the second stage, this leads to some growth
of the condition number of the preconditioned problem for moderate polynomial
degrees and significant inter-element jumps, although it eventually stays uniformly
bounded independent of the polynomial degreeq.
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8 Summary and outlook

In this paper we sketch a preconditioner for the spectral symmetric interior penalty
discontinuous Galerkin method that, under mild grading conditions, is robust in
variably arbitrarily large polynomial degrees, announcing detailed results given in
[3]. The concept is based on the LGL-techniques for spectralmethods combined
with judiciously chosen nested dyadic grids through an iterated application of the
auxiliary space method. A detailed exposition of a multiwavelet preconditioner for
the dyadic grid problem, an extension to locally refined grids with hanging nodes,
strategies for parallel implementations, and the treatment of jumping coefficients
will be presented in forthcoming work.
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preconditioners of spectral Discontinuous Galerkin methods for elliptic boundary value problems’
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ASM-BDDC Preconditioners with variable
polynomial degree for CG- and DG-SEM

C. Canuto1, L. F. Pavarino2, and A. B. Pieri3

1 Introduction

Discontinuous Galerkin (DG) methods for partial differential equations are well
suited to treat nonconforming meshes and inhomogeneous polynomial orders re-
quired by hp-adaptivity. Their elementwise formulation permit us to consider com-
plex meshes and the relaxation of the continuity constraints allows the polyno-
mial order to be refined locally. However, DG discretizations lead to large and
ill-conditioned algebraic systems. In this paper, we studya quasi-optimal precon-
ditioner for the spectral element version of DiscontinuousGalerkin methods. In
particular, we focus on the interior penalty formulation ofsuch DG schemes. For
a review of the different classes of DG methods, the reader isreferred to [2].

Recent endeavors in the domain decomposition community have lead to the de-
velopment of additive [7] and multiplicative [1] Schwarz preconditioners for DG.
Among additive Schwarz solvers, nonoverlapping methods such as BDDC (Balanc-
ing Domain Decomposition by Constraints) or FETI-DP (Dual-Primal Finite Ele-
ment Tearing and Interconnecting) for DG have been designed[6] considering only
variations on the subdomain sizeH or the element sizeh in a finite element context.
Based on the pioneer work by [5, 9] and later [10], the BDDC algorithm was re-
cently generalized to CG-SEM (continuous Galerkin spectral elements) in [12, 8].
Following the work in [11], and more recently [3], we make useof the ASM (Auxil-
iary Space Method) to derive a preconditioner for DG-SEM. The paper is organized
as follows.

First, we generalize the BDDC preconditioners for CG-SEM studied in [12] to
inhomogeneous polynomial distributions, where polynomial degrees is allowed to
vary in different elements but we enforce the polynomial degree of the basis func-
tions to match at the interface between elements.

Second, the ASM is presented and applied to derive a solver for DG-SEM based
on the previous continuous solver. Once the Schur complement for the continuous
problem is solved, the global continuous solution is readily obtained using exact
local solvers. The discontinuous solution is then obtainedsolving the ASM problem.
The resulting preconditioner is proved to have the same performances of the BDDC
preconditioners for CG-SEM if the polynomial jumps are smooth enough.

1 Politecnico di Torino, e-mail: ccanuto@calvino.polito.it ·2 Univer-
sità di Milano e-mail: luca.pavarino@unimi.it ·3 Ecole Centrale de Lyon
alexandre.pieri@ec-lyon.fr
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In the last section, we present numerical simulations showing the robustness of
the extended BDDC preconditioner with respect to polynomial jumps. The ASM-
BDDC is finally tested by varying the number of spectral elements per subdomain
H/h, the polynomial degreep and the viscosity coefficients.

The present work is an extension of [4].

2 Balancing Domain Decomposition by Constraints with
inhomogeneous polynomial degrees

We consider the second-order elliptic problem with homogeneous Dirichlet bound-
ary conditions

−∇ · (µ∇u) = f in Ω , u= 0 on∂Ω , (1)

whereΩ ⊂ Rd (d = 2,3) is a bounded domain with Lipschitz boundary. Problem
(1) admits a unique weak solution inH1

0(Ω) if we assume thatf ∈ L2(Ω) and
µ ∈ L∞(Ω), with µ ≥ µ0 a.e. inΩ for a suitable constantµ0 > 0.

2.1 CG-SEM discretization for elliptic problems

Given a partition ofΩ =
⋃N

k=1 Ωk into spectral elements, we define the continuous
Galerkin spaceV C

δ = {v : Ω → R | ∀k, v|Ωk
∈ Ppk(Ωk), v ∈C0(Ω)} , that is the

space of continuous elementwise polynomial functions. Problem (1) in its weak
form is then:
Find u∈ H1

0(Ω) such that

ac(u,v) = L(v) ∀v∈ V C
δ , (2)

where
ac(u,v) = ∑

k

∫

Ωk

µ(x)∇u·∇vdx, L(v) = ∑
k

∫

Ωk

f vdx.

Considering elliptic coefficientsµ that are constant on each spectral elementi.e.
µ|Ωk

= µk, the bilinear form of problem (2) can be written

ac(u,v) = ∑
k

µka
k
c(u,v). (3)
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2.2 CG-SEM with locally varying polynomial degrees

The definition ofV C
δ allows the polynomial degree to vary inside an element. How-

ever, the continuity constraint forces the polynomial degrees to match at the inter-
face between two spectral elements, in the direction parallel to the interface. There-
fore, the polynomial degree at the interface is enforced by the spectral element car-
rying the lowest polynomial degree. For a given polynomial order p on Ωk, we
introduce the nodal basis functions{ψin}in=0···pn

formed by the(pn+1) Lagrange
interpolants at the Gauss-Legendre-Lobatto (GLL) nodes{xin}in=0···pn

in the n-th
dimension. Considering a nodex ∈Ωk, the following two configurations can occur:

• x ∈ Ωk/∂Ωk. In this case the basis functionφj relative tox is obtained by ten-
sorial product of one-dimensional basis functions andφj (x) = Πd

n=1 ψ jn(xn).
• x ∈ ∂Ωk. In this case,x lies on a faceF = Ωk ∩Ωk′ normal to, lets say,

the q-th dimension. The basis functionφj relative to x is built as φj (x) =

ψ jq(xq)Πn6=qψ⊥jn(x
⊥
n ). The functions

{
ψ⊥jn
}

— defined as the Lagrange inter-

polants at the GLL nods
{

x⊥n
}

— are obtained by linear combinations of the{
ψ jn

}

ψ⊥jn(x) = ∑
im

ψ⊥jn(xm)ψim(x) = ∑
im

C k
nmψim(x).

The nodes
{

x⊥n
}

are given by the lowest GLL quadrature on the faceF :
pF = min(pk, pk′).

Problem (2) is now brought into the algebraic form

Au = f , (4)

whereA= ∑N
n=1P t

nAnPn and{An} are the matrices representing the bilinear forms
an

c(., .) of problem (3). The{Pn} are defined in terms of the coefficient{C n
i j }

Pn =

[
I 0
0 C n

]
,

provided that internal unknowns are all ordered before those of the interface. In the
next section, we present the continuous solver relative to this algebraic system.

2.3 BDDC as a preconditioner for the Schur complement

In this section, we assume that the domainΩ is decomposed into nonoverlapping
subdomainsΩ =

⋃
k Ω (k). Each subdomainΩ (k) has diameterHk and is composed

of several spectral elementsΩ (k) =
⋃Nk

m=1 Ω m having diameterhk — we assume
without loss of generality that the partition is spatially uniform inside a subdomain
— so thatHk/hk quantifies the number of spectral elements along a subdomainedge.
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By partitioning the local degrees of freedom into interior (I) and interface (Γ ) sets,
and by further partitioning the latter into dual (∆ ) and primal (Π ) degrees of free-
dom, then the matrixA(n) relative to the restriction ofac(., .) to then-th subdomain
Ω (n) can be written as

A(n) =

[
A(n)

II A(n)T

Γ I

A(n)
Γ I A(n)

Γ Γ

]
=




A(n)
II A(n)T

∆ I A(n)T

Π I

A(n)
∆ I A(n)

∆∆ A(n)T

Π∆
A(n)

Π I A(n)
Π∆ A(n)

ΠΠ


 . (5)

The choice of primal and dual variables is discussed in [12].In two dimensions,
the primal variables reduce to the vertices of the subdomains while the dual ones
correspond to the unknowns lying on an interface between twosubdomains. Using
the scaled restriction matrices defined in [12] and keeping the same notations, the
BDDC preconditioner for the Schur complement of system (4) can be written as

M−1 = R̃T
D,Γ S̃−1

Γ R̃D,Γ , (6)

where

S̃−1
Γ = RT

Γ ∆




N

∑
n=1

[
0 R(n)T

∆

][
A(n)

II A(n)T

∆ I

A(n)
∆ I A(n)

∆∆

]−1[
0

R(n)
∆

]
RΓ ∆ +ΦS−1

ΠΠ ΦT , (7)

with the coarse matrix

SΠΠ =
N

∑
n=1

R(n)T

Π


A(n)

ΠΠ −
[

A(n)
Π I A(n)

Π∆

][
A(n)

II A(n)T

∆ I

A(n)
∆ I A(n)

∆∆

]−1[
A(n)T

Π I

A(n)T

Π∆

]
R(n)

Π

and a matrixΦ mapping interface variables to primal degrees of freedom, given by

Φ = RT
Γ Π −RT

Γ ∆

N

∑
n=1

[
0 R(n)T

∆

][
A(n)

II A(n)T

∆ I

A(n)
∆ I A(n)

∆∆

]−1[
A(n)T

Π I

A(n)T

Π∆

]
R(n)

Π .

Equation (7) means that we solve on each subdomain a problem with Neumann
data for the dual variables and a coarse problem with matrixSΠΠ for the primal
variables.

Theorem 1.The condition numberκ2 of the BDDC and FETI-DP preconditioned
systems in 2D, using at least one primal vertex for each subdomain edge FΩ ⊆ Γ ,
satisfies the following bound:

κ2(M
−1Ŝ)≤C

(
1+ log

(
H max

FK⊆Γ

p2
FK

hFK

))2

, (8)
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where pFK is the polynomial degree over an element edge FK (we recall that if
FK = ∂K

⋂
∂K′, then pFK = min(pK , pK′) and the constant C> 0 is independent

of pFK ,hFK ,H and the values of the coefficientµ of the elliptic operator.

This result (see [4] for a proof) states in particular that the preconditioned problem
is scalable in the number of subdomains and robust with respect to jumps in the
elliptic coefficients. Once we have a preconditioner for theSchur complement of
the CG-SEM problem, we are able to build a global preconditioner for DGvia the
Auxiliary Space Method. This is the object of the next section.

3 Preconditioning DG with ASM-BDDC

3.1 DG-SEM discretization for elliptic problems

We recall that the weak form of problem (1) obtained choosingas Galerkin space
Vδ = {v : Ω → R | ∀k, v|Ωk

∈ Ppk(Ωk), v∈ L2(Ω)} , that is the space of discontin-
uous elementwise polynomial functions is given by:
Find u∈ H1

0(Ω) such that

a(u,v) = L(v) ∀v∈ Vδ , (9)

where the bilinear form defined onVδ ×Vδ is

aδ (u,v) = ∑
K∈K

∫

K
µ ∇u·∇v− ∑

F∈F

µF

∫

F
{{∇u}}F [[v]]F +{{∇v}}F [[u]]F

+ ∑
F∈F

ηF µF

∫

F
[[u]]F [[v]]F ,

as well as the linear formF(v) =
∫

Ω f v defined onVδ . The jump[[.]]F and average
{{.}}F operators are the standard ones defined e.g. in [2] and the coefficients ηF

andµF are defined as in [6]. Choosing an appropriate basis ofVδ , problem (9) is
brought into its algebraic form and we are ready to apply the ASM preconditioning
technique.

3.2 The auxiliary space method (ASM)

The Auxiliary Space Method (ASM) [11] gives a general framework for design-
ing preconditioners of nonconforming discretizations, provided preconditioners for
some related conforming discretizations are available. Hereafter, we recall the ASM
formulation tailored to the current situation of interest,referring e.g. to [3] for the
most general setting. We assume there exists a symmetric bilinear formbδ (u,v) on
Vδ ×Vδ and a linear operatorQc

δ : Vδ →Vc
δ such that
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aδ (v,v). bδ (v,v) ∀v∈Vδ (10)

and
bδ (v−Qc

δ v,v−Qc
δ v). aδ (v,v) ∀v∈Vδ . (11)

Here and in the sequel, the symbol. means≤ c for a constantc bounded indepen-
dently of δ in the admissible range of variability ofδ . This implies the following
algebraic results. LetA andB denote the matrices associated with the formsaδ and
bδ once a basis inVδ has been chosen; similarly, letA denote the matrix associ-
ated with the forma= aδ restricted toVc

δ , once a basis inVc
δ has been chosen. Let

Z be the matrix representing the inclusionVc
δ ⊂ Vδ in the chosen bases. In addi-

tion, assume thatP−1
B is a symmetric preconditioner forB andP−1

A is a symmetric
preconditioner forA, such that the following eigenvalue bounds hold:

λmax(P
−1
B B), λmax(P

−1
A A) ≤ Λmax, λmin(P

−1
B B), λmin(P

−1
A A) ≥ Λmin .

Then,
P−1
A := P−1

B +ZP−1
A ZT (12)

is a symmetric preconditioner forA, such that

κ2(P
−1
A A)≤ Λmax

Λmin
. (13)

Now, we choose forP−1
A the global BDDC-based preconditioner defined according

to [13]

P−1
A =

(
I −A−1

II AIΓ
0 I

)(
A−1

II 0
0 M−1

)(
I 0

−AΓ I A
−1
II I

)
, (14)

whereM−1 is the BDDC preconditioner of equation (6). The subscriptΓ means
that we consider the unknowns lying on the Schur skeleton while the subscriptI is
linked to internal unknowns (inside a subdomain). In the last section, we present
some numerical results showing the robustness of preconditioners (6) and (12).

4 Numerical results and conclusion

We present two test cases that illustrate the robustness andquasi-optimality of both
preconditionersP−1

A andP−1
A . First, the number of spectral elements is fixed and we

consider both jumping elliptic coefficients and polynomialdegrees, see Figure 1.
The results are presented in Table 1, where it is shown that the condition number
κ2(P

−1
A A) is quite insensitive to moderate jumps in the polynomial degree such as

p→ p+ 2→ p+ 4. Discontinuities in the elliptic coefficients are managedquite
well by the ASM-BDDC preconditioner for minor variations inthe polynomial de-
gree. We also study the sensitivity ofκ2 to simultaneous variations inh and p. In
particular, settingH = 1 (that is the continuous solver is exact), Table 2 shows that



ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM 469

the condition number of the ASM-BDDC remainsO(1) in agreement with bound
(8) in Theorem 1. Lastly, a case with rectangular spectral elements is investigated,
see Figure 2. We consider a diadic evolution of spectral elements widthh as 2−i for
i = 1, · · · ,5 with a uniform polynomial degree. The results are presented in Figure 2
for bothk2(P

−1
A A) andκ2(P

−1
A A).

As a conclusion, this paper presents a new way of preconditioning DG-SEM
systems based on an available preconditioner for CG-SEM. The ASM applied to
such a global BDDC-based preconditioner provides a solver for DG that is still

0(H log(maxp2
K

hK
)) but it also introduces a dependence on the maximal polynomial

jump and elliptic coefficients. However, we show numerically that for moderate
polynomial jumps, the preconditioner is scalable and quasi-optimal.

Fig. 1 Test case with 5×5
subdomains. Polynomial de-
grees and elliptic coefficients
obey a pyramidal distribution,
where p increases toward
the center of the domain
(a), the elliptic coefficientµ
decreases (b).

(a) (b)

Table 1 Condition numbers for increasing polynomial degreep with nonuniform (uniform in
brackets) polynomial distribution and jumping elliptic coefficients given in Fig. 1, with 5×5 sub-
domains andH/h= 1.

Degreep BDDC κ2(P
−1
A A) ASM-BDDC

κ2(P
−1
A A)

2 2.34 (1.47) 5.95 (5.09)
4 3.37 (2.64) 6.31 (5.71)
6 4.20 (3.56) 6.54 (6.20)
8 4.89 (4.33) 6.70 (6.50)
10 5.49 (4.99) 6.83 (6.70)
12 6.02 (5.56) 6.94 (6.82)
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Table 2 Condition number of the preconditioned DG matrix for increasing polynomial degree
p with uniform polynomial distribution and increasingh, so that the ratiop2/h is maintained
approximatively constant. Uniform elliptic coefficientsµK = 1. Results for one subdomainH = 1.

Degreep # elements p2

h ASM κ2(P
−1
A A)

2 252 100 5.10
3 102 90 5.44
4 62 96 5.82
5 42 100 6.07
6 32 108 6.25

Fig. 2 Test case with uniform
polynomial degree and diadic
mesh inh. The ratioH/h
is kept equal to 1, meaning
one element per subdomain.
Condition number of the
preconditioned DG matrix for
this configuration. Uniform
elliptic coefficientsµK = 1.
Results for one element per
subdomainH/h= 1.
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Domain decomposition in shallow-water
modelling for practical flow applications

Mart Borsboom1, Menno Genseberger1, Bas van ’t Hof2, and Edwin Spee1

1 Introduction

For the simulation of flows in rivers, lakes, and coastal areas for the executive
arm of the Dutch Ministry of Infrastructure and the Environment the shallow-water
solver SIMONA is being used [1]. Applications range from operational forecasting
of flooding of the Dutch coast [3] and big lakes [7], to the assessment of primary
water defences (coast, rivers, and lakes). These applications require a robust and ef-
ficient modelling framework with extensive modelling flexibility and good parallel
performance.

About two decades ago, a parallel implementation of SIMONA was developed
[10, 11] based on domain decomposition with maximum overlap. In the same pe-
riod, non-overlapping domain decomposition with optimized coupling was consid-
ered for Delft3D-FLOW [2], a shallow-water solver that is numerically very similar
to SIMONA. More recently, ideas of the latter were adapted for incorporation in
SIMONA for enhanced modelling flexibility and parallel performance. This will be
the subject of the present paper.

The paper is organized as follows. The numerical approach for modelling shal-
low-water flow as implemented in SIMONA is outlined in section 2. In section 3
we show how domain decomposition has been incorporated and which refinements
have been made. The parallel performance of the modified method is illustrated in
section 4 for two practical flow problems from civil engineering.

2 ADI-type shallow-water solvers

The shallow-water equations consist of a depth-integratedcontinuity equation and
two horizontal momentum equations. Vertical momentum is replaced by the hydro-
static pressure assumption, i.e., the vertical variation of the pressure is assumed to
depend solely on hydrostatic forces as determined by the position of the free sur-
face. For the numerical solution of the shallow-water equations SIMONA applies
a so-called alternating direction implicit (ADI) method tointegrate the equations
numerically in time, using an orthogonal staggered grid with horizontal curvilinear
coordinatesξ andη [1].

1 Deltares, Delft, The Netherlands, e-mail: {Mart.Borsboom}{Menno.
Genseberger}{Edwin.Spee}@deltares.nl ·2 VORtech Computing, Delft, The
Netherlands, e-mail:bas.vanthof@vortech.nl
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In the ADI method, each time step is split in two stages of halfa time step. In
the first stage, the water-level gradient is taken implicitly in theξ -momentum equa-
tion and explicitly in theη-momentum equation. The mass fluxes in the continuity
equation are taken implicitly/explicitly inξ - andη-direction as well, allowing the
implicit terms to be combined to uncoupled tridiagonal systems of equations inξ -
direction for the water level at the intermediate time level. In contrast, the evaluation
of the horizontal convection terms and viscosity terms are respectively explicit and
implicit in the ξ - andη-momentum equation. In the second stage of the time step,
the implicit and explicit discretisations are interchanged. For stability, derivatives in
vertical direction and the bottom friction term are always integrated implicitly.

The ADI method requires the use of fairly small time steps to avoid excessive
splitting errors:

u∆ t
∆xξ

≤O(1) ,
v∆ t
∆xη

≤O(1) ,

√
gh∆ t
∆xξ

≤O(10) , and

√
gh∆ t
∆xη

≤O(10) . (1)

Here,∆xξ , ∆xη are the grid sizes andu, v the velocities in the two horizontal curvi-
linear coordinate directionsξ andη , ∆ t is the time step,h the local water depth, and
g the acceleration due to gravity (

√
gh is the shallow-water wave celerity). Because

of the conditions (1), the discretized equations to be solved have a fairly high diago-
nal dominance horizontally. This enables the use of semi-explicit iterative methods
horizontally, such as red-black Jacobi to solve implicit convection and viscosity.
For the same reason, horizontal domain decomposition with explicit coupling, if de-
signed properly, can be very efficient. We remark that in the vertical direction grid
sizes≪ ∆xξ , ∆xη are used and the systems of equations are much stiffer. Vertical
derivatives are therefore always integrated implicitly intime.

3 Domain decomposition techniques for ADI-type shallow-water
solvers

About two decades ago, a parallel implementation of SIMONA was developed
[10, 11] using a multi-domain version of the ADI method with Dirichlet-Dirichlet
coupling and maximum overlap to ensure fast convergence. This approach is still
applied in the 2006 version of SIMONA. Later on, for modelling flexibility, the
possibility to use different grid resolutions per subdomain has been introduced. For
such a situation it is not that easy to deal with an overlap between subdomains.
Therefore, the overlap was removed. This concerns the overlap of the physical area
of the subdomains, i.e., the area containing the inner grid cells. For the implementa-
tion of boundary conditions and coupling conditions, virtual grid cells were added
outside the physical areas along boundaries and DD interfaces. So although the
subdomains do not overlap, the subdomain grids do. Unfortunately, a Dirichlet-
Dirichlet coupling with minimal overlap (only the virtual grid cells overlap) has
a very slow rate of convergence. See also panel (b) of Fig. 1. By re-using ideas
from a non-overlapping domain decomposition approach withoptimized coupling
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for Delft3D-FLOW [2], the good convergence behavior has been restored. This ap-
proach is implemented since 2010 in SIMONA.

To illustrate how convergence errors due to domain decomposition propagate
from one subdomain to another in a multi-domain ADI-type shallow-water solver,
we consider a uniform grid of size∆xξ , a uniform depthh, and assume a small
surface elevationζ and flow velocityu. The implicit systems in theξ -direction at
the first half time step fromtn to tn+1/2 are then of the form (discretized continuity
equation and momentum equation):

ζ n+1/2
i −ζ n

i

∆ t/2
+h

un+1/2
i+1/2 −un+1/2

i−1/2

∆xξ
= . . . ,

un+1/2
i+1/2 −un

i+1/2

∆ t/2
+g

ζ n+1/2
i+1 −ζ n+1/2

i

∆xξ
= . . . .

(2)
At the second half time step fromtn+1/2 to tn+1, equations inη-direction (j-index)

are obtained. By eliminatingun+1/2
i+1/2 , the two equations (2) can be combined to:

ζ n+1/2
i −CFL2

(
ζ n+1/2

i+1 −2ζ n+1/2
i +ζ n+1/2

i−1

)
= . . . , (3)

with CFL numberCFL=
√

gh∆ t/(2∆xξ ).
To study the behavior of (3) in a DD framework, we consider thehomogeneous

equation that is satisfied by the DD convergence errorδζ n+1/2,m
i = ζ n+1/2,m

i −
ζ n+1/2

i , with ζ n+1/2
i the solution that is sought andζ n+1/2,m

i its iteratively deter-
mined approximation at iterationm:

δζ n+1/2,m
i −CFL2

(
δζ n+1/2,m

i+1 −2δζ n+1/2,m
i +δζ n+1/2,m

i−1

)
= 0 . (4)

The inhomogeneous perturbation ofδζ n+1/2,m
i comes from the boundaries of the

subdomains where information is updated explicitly (Schwarz algorithm). Equation
(4) determines how that information spreads across a subdomain and reaches the
opposite subdomain boundary. This becomes clear from the solution of (4), which
is of the form:

δζ n+1/2,m
i =CLRλ i +CRLλ−i , (5)

with λ = (CFL2+1/2−
√

CFL2+1/4)/CFL2. The solution consists of the super-
position of two modes: one decaying from left to right and onedecaying from right
to left. Panel (a) in Fig. 1 illustrates this for a subdomain of 8 grid cells atCFL= 2
(green),CFL= 5 (red), andCFL= 10 (blue). ForCFL≪ 1, we haveλ ≈ 1/CFL2.
At such a high decay rate per grid cell, which is due to the large diagonal dominance
of (4), a Dirichlet-Dirichlet coupling is efficient. ForCFL≫ 1, however, we have
λ ≈ 1−CFL−1 and hence a much lower decay rate. A Dirichlet-Dirichlet coupling
is then not efficient anymore, unless a large overlap is used to compensate for the
low decay rate. This is illustrated in panel (b) and (c) of Fig. 1.

A much larger DD convergence speed is obtained by only transfering from left to
right (right to left) the information that is moving in that direction. This is realized
by the coupling:



474 Mart Borsboom, Menno Genseberger, Bas van ’t Hof, and Edwin Spee

(a)

(b)

(c)

(d)

Fig. 1 Behavior of convergence errorδζ n+1/2,m
i in subdomains consisting of 8 inner grid cells

(white) and 1, 2, or 3 added virtual grid cells (grey) that overlap with inner grid cells of neighbour-
ing subdomains: (a) inside a subdomain atCFL= 2 (green),CFL= 5 (red), andCFL= 10 (blue);
(b) across 3 subdomains atCFL = 5 with Dirichlet boundary condition left, Neumann boundary
condition right, and multiplicative Schwarz Dirichlet-Dirichlet coupling with minimal overlap in
between (red, blue, green indicate subsequent DD iterations);(c) enhancement of DD convergence
with Dirichlet-Dirichlet coupling when using a larger overlap (increasingly longer dotted lines
indicate error reduction for 1-, 2-, and 3-cell overlap); (d) across 3 subdomains with optimized
multiplicative Schwarz based on the decomposition of the convergence error (red lines) in its two
solution modes (blue and green lines), cf. (5). Note that in (b, c) the arrows indicate the transfer of
Dirichlet values from an inner grid cell to a virtual grid cell; in (d) the arrows indicate the transfer
of optimized coupling information from interface to interface.

(CFL+1/2)δζ n+1/2,m+1
iR

− (CFL−1/2)δζ n+1/2,m+1
iR+1

= (CFL+1/2)δζ n+1/2,m
iL−1 − (CFL−1/2)δζ n+1/2,m

iL
, (6)

with iR the index of the left virtual grid cell of the subdomain rightof the DD inter-
face under consideration, and withiL the index of the right virtual grid cell of the
subdomain left. Notice the explicit nature of the coupling:the solution of domainL
at previous iterationmdetermines the value (right-hand side of (6)) of the condition
to be imposed at the left boundary of domainRduring next iterationm+1 (left-hand
side of (6)). An equivalent procedure is used for the transfer of coupling information
in the other direction, from domainR to domainL.
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Panel (d) of Fig. 1 illustrates the high DD convergence rate that can be obtained
with an optimized coupling; the convergence speed is about as high as would be
obtained with a Dirichlet-Dirichlet coupling with maximumoverlap (of half a sub-
domain, cf. panel (c)). However, because of the overlap, theamount of work per
iteration in the latter would be twice as large. Furthermore, as mentioned before, it
can not be combined easily with local grid refinements for which the grid cells in
the overlap do not coincide, contrary to the situation in panel (c).

The fast DD convergence speed that for diagonally dominant problems can be
obtained with an optimized explicit local DD coupling (optimized Schwarz), and
the link with absorbing boundary conditions, is well known [8, 5, 4, 9, 6]. Because
the splitting applied in the ADI method leads to independent1D problems, we have
the advantage that the optimized coupling can not only easily be determined for
constant∆xξ andh, as we did here, but also for the general case, by means of the
LU decomposition of the resulting tridiagonal systems thatare of the form (3), but
with space- and time-varying coefficients. The bidiagonal L-matrices describe the
decay of the solution in increasingi- (or j-) direction. Their last rows determine
the combinations of pairs ofζ ’s at the subdomain interface (oneζ in a virtual grid
cell, the otherζ in the adjacent inner grid cell) that do not specify this partof the
solution, and hence only specify solution modes decaying indecreasingi- (or j-)
direction. Transfering these combinations in decreasingi- (or j-) direction across
DD interfaces (the variable-coefficient generalization of(6)) therefore ensures max-
imum DD convergence speed. Likewise for the bidiagonal U-matrices and the ex-
change of coupling information in the other direction.

4 Applications

There are many application areas of SIMONA. Here we present two examples. First
we show the effect of the optimized coupling without overlapfor a schematic model
of the river Waal in the Netherlands. This schematic model has a simple geomet-
ric shape such that load balancing is straightforward. Second we show the parallel
performance of the approach for DSCM, a huge real-life hydrodynamic model in
which both load balancing and number of unknowns are an issue.

For the experiments we considered the following hardware:

• H4 linux-cluster at Deltares, nodes interconnected with Gigabit Ethernet, each
node contains 1 AMD dual-core Athlon X2 5200B processor with2.7 GHz per
core,

• H4+ linux-cluster at Deltares, nodes interconnected with Gigabit Ethernet, each
node contains 1 Intel quad-core i7-2600 processor with 3.4 GHz per core and
hyperthreading (so effectively 8 threads are used on 4 cores), and

• Lisa linux-cluster at SURFsara, nodes interconnected withInfiniband, each
node contains 2 Intel quad-core Xeon L5520 processors with 2.3 GHz per core.

On the H4 linux-cluster both the 2006 and 2010 version of SIMONA were used.
On the H4+ and Lisa linux-cluster the 2010 version of SIMONA was used. Recall



476 Mart Borsboom, Menno Genseberger, Bas van ’t Hof, and Edwin Spee

(see section 3) that the 2006 version uses Dirichlet-Dirichlet coupling and maximum
overlap where the 2010 version uses optimized coupling without overlap.

4.1 Schematic model of river Waal
To study the effect of lowering the groynes on design flood level, in [12] a schema-
tised river reach was used that was based on characteristic dimensions of river Waal
in the Netherlands. Here, for the performance tests we will use the detailed model
of [12] in which the groynes are represented as bed topography (see Fig. 2).

The detailed model is a symmetrical compound channel of 30 kmlength includ-
ing floodplain (width of 1200 m) and main channel (width of 600m). We apply a
depth averaged version of SIMONA. The floodplain is schematised with grid cells
of 2 m x 4 m and the main channel with grid cells of 2 m x 2 m, resulting in more
than 9 million unknowns. A time step of 0.015 minutes is used,resulting in 12000
time steps for the 3 hour simulation that we consider here forthe performance tests.

From Fig. 2 it can be observed that, in general, SIMONA scaleswell. Further-
more, on the H4 linux-cluster the 2010 version of SIMONA is about 20-30 % faster
than the 2006 version. This additional work can be explainedfrom the overlap in
the 2006 version which is not in the 2010 version (see section3). The difference in
performance for the 2010 version of SIMONA on H4, Lisa, and H4+ linux-cluster
is because of the different hardware.

4.2 Next generation Dutch Continental Shelf Model (DCSM)
The current generation of nested SIMONA models used for predicting water levels
along the Dutch coast in an operational mode (see [3]) already require high per-
formance computing. At the Lisa linux-cluster parallel performance of the 2010
version of SIMONA was tested for a next generation version ofthe DCSM (North
Sea and adjacent region of the North Atlantic). This 3D (10 layer) higher resolution
model includes salinity and temperature stratification processes which are essential
for simulating among others the spread of the freshwater Rhine plume along the
Dutch coast. This new model requires a huge computational effort but simulation
times cannot increase for operational purposes. Although the North Sea model has
an irregular geometry which is not ideal for scalability, performance tests at Lisa
showed linear scalability up to 100 processors. The left panel of Fig. 3 shows the
partitioning of the domain in 96 subdomains of (about) the same number of grid
cells that is obtained by applying orthogonal recursive bisection (ORB). The right
panel shows the parallel performance on the Lisa linux-cluster as a function of the
number of subdomains and cores, for partitionings in stripsand by means of ORB.
The results show an optimal speed-up for the ORB partitioning and a small decay
in performance for the larger strip decompositions. The latter is due to the shape of
the strips. The strips become very thin with widths of less than a dozen grid cells
as the number of domains increases, which affects the validity of the applied local
coupling optimization.
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Fig. 2 Schematic model of river Waal: an excerpt of the model includingpart of the floodplain
(top), parallel performance for different versions of SIMONAand on different hardware (bottom).

Acknowledgements We thank SURFsara (www.surfsara.nl) for their support in using the Lisa
linux-cluster.
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Fig. 3 DCSM. Left: partitioning of computational domain in 96 subdomains using the orthogonal
recursive bisection (ORB) method. Right: parallel performanceon Lisa linux-cluster for partition-
ings in vertical strips and ORB partitionings.
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Space-Time Domain Decomposition with Finite
Volumes for Porous Media Applications

Paul-Marie Berthe1, Caroline Japhet2, and Pascal Omnes1

1 Introduction

In the context of simulating flow and transport in porous media (e.g. for the assess-
ment of nuclear waste repository safety), two main challenges must be taken into
account : the heterogeneity of the medium with physical properties ranging over
several orders of magnitude, and widely differing space-time scales. Solving these
features accurately requires very fine meshes or well-adapted and highly noncon-
forming meshes. On the one hand, one possible approach is to use non-overlapping
domain decomposition which leads to efficient parallel algorithms with local adapta-
tion in both space and time. The Optimized Schwarz Waveform Relaxation method
(OSWR) [3, 2] with the Discontinuous Galerkin (DG) scheme in time [4] is a solu-
tion procedure which allows local time stepping. On the other hand, the finite vol-
ume schemes of DDFV type (Discrete Duality Finite Volumes) for diffusion prob-
lems [5] allow highly nonconforming meshes. Finally, [6] presents a strategy which
is well adapted to domain decomposition for coupling upwinddiscretization of the
convection with diffusion in the context of a finite volume method. In this paper, we
extend the OSWR method to the DDFV scheme for advection-diffusion problems,
using the strategy of [6]. The method is proven to be well posed and we prove the
convergence of the iterative algorithm.

We consider the following transport equation in a porous medium :

L c= ω∂tc−∇ · (KKK∇c−bbbc) = f , in Ω × (0,T), (1)

c(.,0) = c0, in Ω ,

whereΩ is an open bounded polygonal subset ofR2, c is the concentration (e.g.
of radionuclides) andf the source term. Equation (1) is supplemented with ho-
mogeneous Dirichlet boundary conditions. We assume thatΩ is decomposed into
non-overlapping subdomains. For the sake of simplicity, wepresent the method in
the case of two polygonal subdomainsΩL andΩR with interfaceΓ := ∂ΩL∩∂ΩR

(the method can be extended to the many subdomain case). We assume that the
possible discontinuities of the porosity coefficientω, the tangential component of
the advection velocitybbb and the anisotropic diffusion matrixKKK are alongΓ . In the
sequel, the subscripts and superscriptsL (resp.R) refer toΩL (resp.ΩR).

1 CEA, DEN, DM2S-STMF, F-91191 Gif-sur-Yvette Cedex, France.Universit́e Paris 13, LAGA,
F-93430, Villetaneuse, France. e-mail:{berthe}{omnes}@math.univ-paris13.fr ·
2 Universit́e Paris 13, LAGA, UMR 7539, F-93430, Villetaneuse, France. INRIA Paris-
Rocquencourt, BP 105, 78153 Le Chesnay, France, e-mail:Caroline.Japhet@inria.fr
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The initial problem (1) is equivalent to a system of subproblems defined onΩL

and ΩR with the following physical transmission conditions onΓ : [c]Γ = 0 and
[(KKK∇c−bbbc) ·nnn]Γ = 0, where[v]Γ denotes the jump ofv throughΓ andnnn a normal
vector toΓ . These interface conditions can also be written, through Robin interface
operatorsBL andBR, under the equivalent form

[BLc]Γ = [BRc]Γ = 0, (2)

with BL = (KKK∇c−bbbc) ·nnnL +λL , BR = (KKK∇c−bbbc) ·nnnR+λR, (3)

wherennnL (resp.nnnR) is the outward normal toΩL (resp.ΩR) and λL (resp.λR) a
strictly positive function inL∞(Γ ).

Then, an OSWR algorithm [3, 2] for solving problem (1) is:




L c(ℓ+1)
L = f in ΩL× (0,T)

c(ℓ+1)
L (.,0) = c0 in ΩL

BLc(ℓ+1)
L = BLc(ℓ)R on Γ × (0,T)





L c(ℓ+1)
R = f in ΩR× (0,T)

c(ℓ+1)
R (.,0) = c0 in ΩR

BRc(ℓ+1)
R = BRc(ℓ)L on Γ × (0,T)

(4)

whereλL andλR optimize the convergence factor of (4), see [2, 8, 9].
In Section 2, we present the DDFV scheme for the advection–diffusion problem

in the global domainΩ . Then, in Section 3, we describe the multidomain DDFV
scheme. Section 4 is devoted to the OSWR algorithm for the DDFVscheme. Finally
in Section 5, we present numerical results.

2 The DDFV scheme for advection-diffusion problems

In this part, we present the DDFV scheme for Problem (1). Thisscheme uses un-
knowns at the centers of the cells of a primal mesh and at theirvertices. These
vertices are considered as the centers of dual cells, obtained by joining the cen-
ters of the surrounding primal cells through the edge midpoints. This construction
is sufficiently general to be able to treat non-conforming meshes, see Fig. 1 (left)
where the primal (resp. dual) nodes are in black (resp. red),andTi1 (resp.Pk1) is
an example of primal (resp. dual) cell. Using these supplementary vertex unknowns
is the price to pay to be able to use arbitrary meshes [5]. We split (0,T) into time
intervalsIn := (tn−1, tn) and define∆ tn := tn− tn−1. We denote bycn

i1
(resp.cn

k1
) an

approximation ofc at timetn in the cellTi1 (resp.Pk1). Restricting the presentation
to the lowest order DG scheme in time, equation (1) can be discretized on each time
interval and on each primal cellTi1 by

ωi1

cn
i1
−cn−1

i1

∆ tn
− 1
|Ti1| ∑

A j⊂∂Ti1

|A j |Fn
i1 j = f n

i1 :=
1

∆ tn|Ti1|

∫

In

∫

Ti1

f (xxx, t)dxxxdt, (5)

and on each inner dual cellPk1 by
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Fig. 1 DDFV primal (solid lines), dual (dashed lines) and half-diamond cells (filled triangles):
interior (left) and interface (right) cells.

ωk1

cn
k1
−cn−1

k1

∆ tn
− 1
|Pk1|

∑
A′j,α⊂∂Pk1

|A′j,α |Fn
k1 j,α = f n

k1
:=

1
∆ tn|Pk1|

∫

In

∫

Pk1

f (xxx, t)dxxxdt. (6)

In (6), the subscriptα ∈ {1,2} refers to the local numberingi1, i2, andωk1 is defined
by

|Pk1|ωk1 = |Pk1 ∩ΩL|ωL
k1
+ |Pk1 ∩ΩR|ωR

k1
. (7)

In order to lighten the notations, we leave out the exponentsn in this section.
For any primal edgeA j = [k1k2] and its associated dual edgesA′j,α , the fluxesFi1 j

andFk1 j,α are sums of a diffusive and a convective contribution. The diffusive part
is evaluated as in [5] using a gradient defined by two directions, on each triangle
k1iαk2 =: D j,α (also called “half-diamond cell”), see Fig. 1 (left):

{
(∇hc)iα j ·

−−→
iα σ = cσ −ciα

(∇hc)iα j ·
−−→
k1k2 = ck2−ck1

, (8)

whereσ is the midpoint ofA j . Formulas (8) are equivalent to

(∇hc)iα j =
1
|D j,α |

(
(ck2−ck1)|A

′
j,α |nnn

′
k1 j,α +(cσ −ciα )|A j |nnni1 j

)
, (9)

wherennni1 j is the outward normal toTi1 onA j andnnn
′
k1 j,α the outward normal toPk1 on

A
′
j,α . The unknowncσ is introduced both to deal with possibly discontinuous tensors

KKK and to be able to write a local discretization adapted to domain decomposition,
as will be shown in Section 3. The gradient(∇hc)iα j is used in the diffusive part of
Fiα j and in the diffusive part ofFk1 j,α andFk2 j,α . Let us denote by[a]+ and[a]− the
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positive and negative part ofa such thata= [a]−+[a]+. The convective part of the
flux on the primal mesh is discretized with an upwind scheme which is local to the
half-diamond cellD j,α :

(bbbc·nnn)iα j := [(bbb·nnn)iα j ]
+ciα +[(bbb·nnn)iα j ]

−cσ . (10)

This upwinding usingcσ ensures that the discretization of the convection flux is
local to a subdomain. This is the idea borrowed from [6]. On the dual mesh, we use
a standard upwind scheme:

(bbbc·nnn′)k1 j,α := [bbb j,α ·nnn
′
k1 j,α ]

+ck1 +[bbb j,α ·nnn
′
k1 j,α ]

−ck2. (11)

In (10),(bbb·nnn)iα j is defined by (recall thatbbb·nnn is continuous through primal edges)

(bbb·nnn)iα j :=
1
|A j |

∫

A j

bbb·nnniα j(ξ )dξ . (12)

In (11),bbb j,α is the mean-value ofbbb overA
′
j,α . The fluxes are then defined as follows:

Fiα j := [KKK iα j(∇hc)iα j ] ·nnniα j − (bbbc·nnn)iα j , (13)

Fk1 j,α := [KKK j,α(∇hc)iα j ] ·nnn
′
k1 j,α − (bbbc·nnn′)k1 j,α . (14)

In (13) and (14),KKK iα j andKKK j,α are the mean-values ofKKK|Tiα
over A j and A

′
j,α ,

respectively (we recall thatKKK may be discontinuous through primal edgesA j ). In
order to complete the definition of the scheme, we still need an equation for eachcσ ,
and one equation for each boundary dual cell. Ifσ is not on∂Ω , cσ is eliminated
by requiring the flux conservation through the common interface∂Ti1 ∩∂Ti2:

Fi1 j +Fi2 j = 0. (15)

Formula (15) defines a uniquecσ that we replace in (9) and (10). For nodesσ andk
located on the Dirichlet boundary, we set

cσ = ck = 0 , ∀σ ∈ ∂Ω , ∀k∈ ∂Ω . (16)

Theorem 1.We suppose that∇ ·bbb ≥ 0 and that KKK is a bounded, uniformly defi-
nite positive matrix. Then, the discrete convection-diffusion problem in the global
domainΩ , defined by formulas (5) to (16) is well-posed.

3 The multidomain DDFV scheme

In this part we describe the local DDFV scheme in a subdomain together with the
discretization of the Robin conditions (2)–(3).
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The subdomain scheme is not modified for primal cells : we still use (5) and (13)
with the superscriptL (resp.R) for ΩL (resp.ΩR), cL,R

σ = 0 on the Dirichlet boundary
and (15) whenσ is not on∂Ω nor onΓ . Moreover, whenσ , midpoint of a primal
edgeA j , is onΓ , we discretize the Robin conditions (2)–(3) onA j by

FL,n
i1 j +λL, j cL,n

σ = −FR,n
i2 j +λL, j cR,n

σ , (17)

FR,n
i2 j +λR, j cR,n

σ = −FL,n
i1 j +λR, j cL,n

σ , (18)

whereλL, j andλR, j are discrete counterparts ofλL andλR defined on each primal
edgeA j . In (17) and (18), we use the convention thati1 is in ΩL andi2 in ΩR. We
remark that (17)–(18) are equivalent tocR,n

σ = cL,n
σ andFL,n

i1 j +FR,n
i2 j = 0.

On interior dual cells, the scheme is not modified: we still use (6) with the super-
scriptL (resp.R) for ΩL (resp.ΩR). Moreover,cL,R

k = 0 if k is a node located on the
Dirichlet boundary. Finally, ifk1 belongs toΓ \ ∂Ω , then we denote byPL

k1
(resp.

PR
k1

) the boundary dual cell inΩL (resp.ΩR) to whichk1 is associated (see Fig. 1,

right). The cellPL
k1

(resp.PR
k1

) has two types of edges: the edgesA
′
j,α that belong to

∂PL
k1
\Γ (resp.∂PR

k1
\Γ ) and the edges on∂PL

k1
∩Γ (resp.∂PR

k1
∩Γ ). Integrating (1)

onPL
k1

and overIn yields the approximation

ωL
k1
|PL

k1
|
(

cLn
k1
−cLn−1

k1

∆ tn

)
− ∑

A′j,α⊂∂PL
k1

|A′j,α |Fn
k1 j,α −|∂PL

k1
∩Γ |FLn

k1,Γ = |PL
k1
| f Ln

k1
, (19)

whereFLn
k1,Γ is an approximation of 1

∆ tn |∂PL
k1
∩Γ |

∫
In

∫
∂PL

k1
∩Γ (KKK∇c−bbbc) ·nnnL and f Ln

k1
is

defined similarly tof n
k1

in (6) in whichPk1 is replaced byPL
k1

. In the same way, we

defineFRn
k1,Γ and f Rn

k1
, and we obtain the following approximation of (1) onPR

k1

ωR
k1
|PR

k1
|
(

cRn
k1
−cRn−1

k1

∆ tn

)
− ∑

A′j,α⊂∂PR
k1

|A′j,α |Fn
k1 j,α −|∂PR

k1
∩Γ |FRn

k1,Γ = |PR
k1
| f Rn

k1
. (20)

Equations (19) and (20) introduce new flux unknownsFLn
k1,Γ and FRn

k1,Γ which are

related to the boundary unknownscLn
k1

andcRn
k1

by the following dual approximations
of the Robin boundary conditions (2)–(3)

FLn
k1,Γ +λL,k1cLn

k1
= −FRn

k1,Γ +λL,k1cRn
k1
, (21)

FRn
k1,Γ +λR,k1cRn

k1
= −FLn

k1,Γ +λR,k1cLn
k1
, (22)

whereλL,k1 andλR,k1 are discrete counterparts ofλL andλR defined on each dual
intersection∂PL

k1
∩ Γ = ∂PR

k1
∩ Γ . We remark that (21) and (22) are equivalent

to cLn
k1

= cRn
k1

andFLn
k1,Γ +FRn

k1,Γ = 0. With these equalities for all time steps, adding

(19) and (20) and using (7) yields (6) onPk1 = PL
k1
∪PR

k1
, the inner dual cell of the

global domainΩ .
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In order to study the well-posedness of the subdomain problems, we restrict our-
selves to one subdomain, e.g.ΩL. Recalling that(bbb ·nnn)iα j is defined by (12) and
defining(bbb·nnn)L

k1
by

(bbb·nnn)L
k1,Γ :=

1
|∂PL

k1
∩Γ |

∫

∂PL
k1
∩Γ

bbb·nnnL(ξ )dξ ,

we can prove the following theorem

Theorem 2.Under the hypothesis of Theorem 1, ifλL, j >
1
2(bbb ·nnn)i1 j for all j such

that Aj ⊂ Γ and if λL,k1 > 1
2(bbb ·nnn)L

k1,Γ for all k such that∂PL
k ∩Γ 6= /0, then the

discrete problem inΩL, defined by formulas (5)-(6) and (13) to (16) with the super-
script L, formula (19) for boundary dual cells, and the Robin conditions

FL,n
i1 j +λL, j cL,n

σ = gL,n
j (on primal edges Aj ⊂ Γ )

FLn
k1,Γ +λL,k1cLn

k1
= gL,n

k1
(on dual edges∂PL

k1
∩Γ ),

with gL,n
j and gL,n

k1
given real numbers, is well-posed.

4 The Schwarz algorithm

Let S denote the superscriptL or R. The discrete Schwarz algorithm is defined as

follows: let (cSn(ℓ)
i ,cSn(ℓ)

k ,cSn(ℓ)
σ ) and(FSn(ℓ)

i j , FSn(ℓ)
k j,α , FSn(ℓ)

k,Γ ) be given approxima-

tions, at stepℓ, of c at nodesi, k, σ and(KKK∇c−bbbc) ·nnn at edgesA j , A
′
j,α , ∂PS

k ∩Γ .

Then we compute(cSn(ℓ+1)
i ,cSn(ℓ+1)

k ,cSn(ℓ+1)
σ ) and (FSn(ℓ+1)

i j , FSn(ℓ+1)
k j,α , FSn(ℓ+1)

k,Γ )

as the solution of (5)-(6) and (13) to (16) with the superscript L (resp.R), formula
(19) (resp. (20)) and the following Robin conditions for interface primal and dual
cells:

FLn(ℓ+1)
i1 j +λL, j cLn(ℓ+1)

σ = −FRn(ℓ)
i2 j +λL, j cRn(ℓ)

σ ,

FLn(ℓ+1)
k1,Γ +λL,k1cLn(ℓ+1)

k1
= −FRn(ℓ)

k1,Γ +λL,k1cRn(ℓ)
k1

,

FRn(ℓ+1)
i2 j +λR, j cRn(ℓ+1)

σ = −FLn(ℓ)
i1 j +λR, j cLn(ℓ)

σ ,

FRn(ℓ+1)
k1,Γ +λR,k1cRn(ℓ+1)

k1
= −FLn(ℓ)

k1,Γ +λR,k1cLn(ℓ)
k1

.

Theorem 3.Under the hypothesis of Theorem 2, ifλR,k1 − λL,k1 − (bbb ·nnn)L
k1,Γ = 0

for all k such that∂PL
k ∩Γ 6= /0 and if λR, j −λL, j − (bbb ·nnn)i1 j = 0 for all j such that

A j ⊂Γ , then the discrete Schwarz algorithm converges to the solution of the discrete
convection-diffusion problem in the domainΩ , defined by formulas (5) to (16).

Remark 1.Following [8, 9], the Robin parameters are chosen in the form
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λL, j = (−(bbb·nnn)i1 j + pL, j)/2 , λR, j = ((bbb·nnn)i1 j + pR, j)/2, (23)

λL,k1 = (−(bbb·nnn)L
k1,Γ + pL,k1)/2 , λR,k1 = ((bbb·nnn)L

k1,Γ + pR,k1)/2, (24)

wherepL, j , pR, j andpL,k1, pR,k1 are the primal and dual parameters which optimize
the convergence factor of the continuous algorithm (4). This optimization is per-
formed by a numerical minimization process. With the form given by (23)-(24), the
hypothesis in Theorem 3 reduces topL, j = pR, j andpL,k1 = pR,k1.

Remark 2.The scheme we proposed here is different from the one developed in [1].
On the other hand, it is shown independently in [7], using an analysis of the con-
vergence factor at the discrete level, that our method leadsto a faster convergence
than the approach in [1]. In our simulations, we observed that using the optimized
parameters at the discrete level does not improve significantly the convergence.

5 Numerical Results

Here, the Robin parameter forΩL/R is taken as the mean value of allλL/R, j and
λL/R,k1

and is denotedλ ∗L/R. Moreover,bbb·nnn= 0 onΓ in our tests, thusλ ∗L/R= p∗, the
same value for all primal and dual (L andR) interface cells. Its discrete counterpart
p∗h is obtainded in the same way but with an optimization of the discrete convergence
factor, denotedρh. We assume thatKKK = νIII whereIII is the identity matrix.

In the first test case, we takeΩL =(0,2.5)×(0,5) andΩR=(2.5,5)×(0,5), with
T = 1, ωL = ωR= 1,bbb=000, ν|ΩL

= 0.06, andν|ΩR
= 1. The mesh size and time step

areh= 5
100 and∆ t = 1

70 respectively. On Fig. 2 we show a section along the diagonal
(wm,km)− (wM,kM) of ρh (top left), where(wm,wM)× (km,kM) is the frequencies
interval over whichρh is optimized, withwm = π

T , wM = π
∆ t , km = π

5 , kM = π
h , and

the error versus the number of iterations for the Schwarz algorithm (top right) with
p∗ andp∗h. We simulate directly the error equations,f = 0 and use a random initial
guess so that all the frequency components are present. We observe that usingp∗h or
p∗ give similar results. We also observe the equioscillation property [2] with p∗h.

In the second test case, we takeΩL = (0,0.5)× (0,1) andΩR = (0.5,1)× (0,1),
with T = 1, ωL = 0.2, ωR = 1, ν|ΩL

= 0.005,ν|ΩR
= 0.01, and a rotating velocity

field bbb= (−sin(π(y− 1
2))cos(π(x− 1

2)),cos(π(y− 1
2))sin(π(x− 1

2))). We takeh=
1

100 and∆ t = 1
50. On Fig. 2 we show the computed solution at timet = 0.4 (bottom

left) and the error versus the number of iterations (bottom right) for different values
of the Robin parameterp, taken constant along the interface. We takef = 0 and a
random initial guess. We observe thatp∗ is close to the optimal numerical value.
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Block Jacobi relaxation for plane wave
discontinuous Galerkin methods

T. Betcke1, M.J Gander2, and J. Phillips1

1 Introduction

Nonpolynomial finite element methods for Helmholtz problems have seen much at-
tention in recent years in the engineering and mathematics community. The idea is
to use instead of standard polynomials Trefftz-type basis functions that already sat-
isfy the Helmholtz equation, such as plane waves [17], Fourier-Bessel functions [8]
or fundamental solutions [4]. To approximate the inter-element interface conditions
between elements several possibilities exist, such as the ultra-weak variational for-
mulation (UWVF [6]), plane wave discontinuous Galerkin methods (PWDG [15]),
partition of unity finite elements (PUFEM [3]), least-squares methods [18, 5], or
Lagrange-multiplier approaches [10].

The advantage of Trefftz methods is that they often require fewer degrees of
freedom than standard polynomial finite element methods since the basis functions
already oscillate with the correct wavenumber. The disadvantage is that the result-
ing linear systems are often significantly ill-conditioned, making direct solvers or
efficient preconditioning for iterative solvers necessary. For very large problems,
especially in three dimensions, direct solvers become prohibitively expensive, and
preconditioning iterative solvers is a difficult problem for the Helmholtz equation as
demonstrated in [9].

Domain decomposition methods, in particular optimized Schwarz methods, have
proven to still be effective iterative solvers for finite elements and discontinuous
Galerkin methods with polynomial basis functions; for the Helmholtz equation, see
[11, 12], and for Maxwell’s equation, see [1, 7].

In this paper we consider block Jacobi relaxation methods for the PWDG method.
In the classical finite element case a block Jacobi relaxation is equivalent to a clas-
sical Schwarz method with Dirichlet transmission conditions, see for example [13].
This is however not necessarily the case for discontinuous Galerkin methods, see
[14]. We investigate in this short paper what kind of domain decomposition meth-
ods one obtains when simply performing a block Jacobi relaxation in a PWDG
discretization of the Helmholtz equation, and also show howone can obtain op-
timized Schwarz methods for such discretizations. Motivated by the block Jacobi
relaxation we present a simple algebraic decomposition approach of the system ma-
trix in PWDG methods and demonstrate for an example problem with plane wave
basis functions its performance for iterative solvers.

1Department of Mathematics, University College London, UK, e-mail: t.betcke@ucl.ac.
uk,joel.m.phillips@gmail.com ·2 Section of Mathematics, University of Geneva,
Switzerland,martin.gander@unige.ch
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While in this paper we focus on plane wave basis functions the results are cer-
tainly more generally applicable for other Trefftz basis functions, and also for stan-
dard polynomial basis functions.

We consider the following model problem: findu∈ C 2(Ω)∩H1(Ω), such that

−∆u−k2u= f in Ω ,
∂u
∂n
−Su= g on ∂Ω . (1)

Here,Ω ⊂ Rd, d = 2,3, is a bounded domain with Lipschitz boundaryΓ := ∂Ω
and g ∈ H−1/2(Γ ). The operatorS is often an exact or approximate Dirichlet to
Neumann (DtN) map, e.g.S= ik.

We will use the following notation: the triangulation into finite elements of max-
imum diameterh is denoted byTh. Let K ∈ Th be an element of the triangulation.
The outward normal direction toK is denoted byn. On an edgee between two ele-
mentsK− andK+ we define for a scalar quantityv the jumps[[v]] := v−n−+v+n+

and averages{{v}} := 1
2 (v
−+v+). Similarly, for a vector quantityσ we define

[[σ ]] := σ− · n−+σ+ · n+ and{{σ}} := 1
2 (σ

−+σ+). On boundary edges we de-
fine [[v]] = vn and{{σ}}= σ .

The set of all interior edges is denoted byE (int) and the set of all eges is denoted
by E . Also, letΩ̃ be defined byΩ̃ :=

⋃
K∈Th

K.

2 Plane Wave Discontinuous Galerkin Methods

In the following we give a brief overview of the Plane Wave Discontinuous Galerkin
Method (PWDG). For a more detailed introduction and convergence results see
[15, 16]. For each elementKi ∈ Th we define a local approximation spaceVi :=

span{Ψ (i)
1 , . . . ,Ψ (i)

Ni
}, whereΨ (i)

ℓ ∈ C 2(Ki)∩H1(Ki) and satisfies∆Ψ (i)
ℓ +k2Ψ (i)

ℓ =

0, ℓ = 1, . . . ,Ni . A frequent choice is the plane wave basis setPW(Ni)
i defined by

Ψ (i)
ℓ (x) := eikdℓ·x, where thedℓ are direction vectors with‖dℓ‖2 = 12. In two dimen-

sions, typicallydℓ =
2π(ℓ−1)

Ni
, that is we take equally spaced directions on the unit cir-

cle. In three dimensions several possibilities exist to choose approximately equally
spaced directions on the unit sphere (see e.g. [17]). ByV := {v ∈ L2(Ω) : v|Ki ∈
Vi ∀Ki ∈Th} we denote the global approximation space.

Let K ⊂ Th. By multiplying (1) with a test functionv⊂V on K and integrating
by parts we obtain

∫

K
∇u·∇vdV−k2

∫

K
uvdV−

∫

∂K
∇u·nvdS=

∫

K
f vdV.

A further integration by parts yields
∫

K
(−∆v−k2v)u+

∫

∂K
u·∇v·ndS−

∫

∂K
∇u·nvdS=

∫

K
f vdV.
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Defineσ := 1
ik ∇u and note that−∆v−k2v= 0. It follows that

∫

∂K
u·∇v·ndS− ik

∫

∂K
σ ·nvdS=

∫

K
f vdV.

Using the DG summation formula, see [2],

∑
K∈Th

∫

∂K
qKφK ·nK =

∫

E
[[q]] · {{φ}}dS+

∫

E (int)
{{q}} [[φ ]]dS,

whereq is a scalar andφ a vector quantity we obtain
∫

E
[[u]] ·

{{
∇v
}}

dS+
∫

E (int)
{{u}}

[[
∇v
]]

dS− ik
∫

E
{{σ}} · [[v]]dS

− ik
∫

E (int)
[[σ ]]{{v}}dS=

∫

Ω̃
f vdV. (2)

We now approximateu andσ on the edges in terms of their numerical fluxes ˆuh and
σ̂h, defined by

σ̂h :=
1
ik
{{∇huh}}−α [[uh]]−

τ
ik
[[∇huh]] , ûh := {{uh}}+τ · [[uh]]−

β
ik
[[∇huh]] (3)

for interior edges, and by

σ̂h :=
1
ik

∇huh−
(1−δ )

ik
(∇huh−Suhn−gn) , ûh := uh−

δ
ik
(∇huh ·n−Suh−g)

(4)
for boundary edges. Choices for the parametersα, β , τ and δ are discussed in
[15]. In particular, it is shown there that with the choiceα = β = δ = 0.5, τ =
0 the PWDG is equivalent to the UWVF. By replacingu andσ in (2) with their
corresponding numerical fluxes, noting that

{{ûh}}= ûh, {{σ̂h}}= σ̂h, [[ûh]] = [[σ̂h]] = 0,

on interior edges and using[[ûh]] = ûhn, {{σh}} = σ̂h on boundary edges we arrive
at the following variational problem: finduh ∈V, such that

a(uh,vh) = ℓ(vh)−b(g,vh) ∀vh ∈V, (5)

where

a(uh,vh) :=
∫

E (ext)
uh∇hvh ·ndS− δ

ik

∫

E (ext)
∇huh ·n∇hvh ·ndS+

δ
ik

∫

E (ext)
Suh∇hvh ·ndS

+
∫

E (int)
{{uh}}

[[
∇hvh

]]
dS+

∫

E (int)
τ · [[uh]]

[[
∇hvh

]]
dS− β

ik

∫

E (int)
[[∇huh]]

[[
∇hvh

]]
dS

− δ
∫

E (ext)
∇huh ·nvhdS− (1−δ )

∫

E (ext)
SuhvhdS−

∫

E (int)
{{∇huh}} · [[v]]dS
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+ α ik
∫

E (int)
[[uh]] · [[vh]]dS+

∫

E (int)
[[∇huh]]τ · [[vh]]dS,

b(g,vh) :=
δ
ik

∫

E (ext)
g∇vh ·ndS− (1−δ )

∫

E (ext)
gvhdS,

ℓ(vh) :=
∫

Ω̃
f vhdV.

3 A natural Schwarz iteration for the UWVF

In this section we show that a simple block relaxation of the UWVF gives rise
to a Schwarz algorithm with Robin transmission conditions,and not the classical
Schwarz algorithm with Dirichlet transmission conditions. We consider a simple
example problem of a domainΩ decomposed into two subdomainsΩ1 and Ω2

with interfaceΓ12= Ω1∩Ω2. We start by defining the following optimized Schwarz
iteration with Robin transmission conditions and optimization parameterp:

−∆u(n+1)
1 −k2u(n+1)

1 = f in Ω1,

−∆u(n+1)
2 −k2u(n+1)

2 = f in Ω2,
∂u(n+1)

1
∂n1

+ pu(n+1)
1 =

∂u(n)2
∂n1

+ pu(n)2 onΓ12,
∂u(n+1)

2
∂n2

+ pu(n+1)
2 =

∂u(n)1
∂n2

+ pu(n)1 onΓ12,
∂u(n+1)

1
∂n1

+ iku(n+1)
1 = g onΓ ∩∂Ω1,

∂u(n+1)
2

∂n2
+ iku(n+1)

2 = g onΓ ∩∂Ω2.

(6)

Discretizing each of the subproblems with the PWDG and UWVF fluxparameters,
and settingp= ik gives the sequence of discrete equations

a1(u
(n+1)
h,1 ,vh) = ℓ1(vh)−bΓ∩∂Ω1

(g,vh)−bΓ12

(
∂u(n)2

∂n1
+ iku(n)2 ,vh

)
, vh ∈V(h)

1 ,

a2(u
(n+1)
h,2 ,vh) = ℓ1(vh)−bΓ∩∂Ω2

(g,vh)−bΓ21

(
∂u(n)1

∂n2
+ iku(n)1 ,vh

)
, vh ∈V(h)

2 .

Theorem 1.A classical block-Jacobi relaxation applied to the global variational
problem (5) discretized with PWDG and UWVF flux parameters, i.e. setting

σ̂n+1
1 ·n1 =

1
ik
{{∇u}}n+1,n ·n1−

1
2
[[u]]n+1,n ·n1, (7)

σ̂n+1
2 ·n2 =

1
ik
{{∇u}}n+1,n ·n2−

1
2
[[u]]n+1,n ·n2, (8)

ûn+1
1 = {{u}}n+1,n− 1

2ik
[[∇u]]n+1,n , (9)
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ûn+1
2 = {{u}}n+1,n− 1

2ik
[[∇u]]n+1,n ,

(10)

where

{{∇u}}n+1,n :=
1
2
((∇u−)n+1+(∇u+)n), [[u]]n+1,n :=

1
2
((u−)n+1n−+(u+)nn+),

leads precisely to the optimized Schwarz method (6) discretized with PWDG and
UWVF, provided the optimization parameter is set to p= ik.

Proof. The classical Robin condition for the Helmholtz equation inthis formulation
uses the flux term

σ̂n+1
1 =

1
ik

∇un+1
1 − 1

ik
(1−δ )

(
∇un+1

1 + ikun+1
1 ·n1− (∇un

2+ ikun
2 ·n1)

)
,

and similarly for the second flux term. We have to show that this is precisely the flux
(7) given by natural algebraic relaxation. We calculate

σ̂n+1
1 ·n1 =

δ
ik

∇un+1
1 ·n1− (1−δ )un+1

1 +
1−δ

ik
∇un

2 ·n1+(1−δ )un
2

=
δ
ik
[[∇u]]n+1,n− (1−δ ) [[u]]n+1,n ·n1+

1
ik

∇un
2 ·n1

and choosingδ = 1
2, and using the relation

∇un
2 ·n1 = {{∇u}}n,n ·n1−

1
2
[[∇u]]n,n

we obtain

σ̂n+1
1 ·n1 =

1
2ik

[[∇u]]n+1,n− 1
2
[[u]]n+1,n ·n1+

1
ik
({{∇u}}n,n ·n1−

1
2
[[∇u]]n,n)

=
1
ik
{{∇u}}n,n ·n1−

1
2
[[u]]n+1,n ·n1+

1
2ik

[[∇u]]n+1,n− 1
2ik

[[∇u]]n,n

=
1
ik
{{∇u}}n+1,n ·n1−

1
2
[[u]]n+1,n ·n1

and the proof for̂σn+1
1 is complete. The proof for the other flux terms follows along

the same lines.

The choicep = ik corresponds to a low frequency approximation of the optimal
transmission condition, see for example [11]. Optimized Schwarz methods use how-
ever a different value for the complex parameterp, in order to obtain fast geometric
convergence of the method [11, 12]. The question is how to modify the natural re-
laxation in order to obtain an optimized Schwarz method. In the following this is
described for thêσ -flux parameter. The result for the ˆu-flux follows similarly.
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Theorem 2.Performing the modified algebraic relaxation

σ̂n+1
1 ·n1 =

1
ik
{{∇u}}n+1,n ·n1−

1
2
[[u]]n+1,n ·n1+

1
2
(1− p

ik
)(un+1

1,r −un
2), (11)

σ̂n+1
2 ·n2 =

1
ik
{{∇u}}n+1,n ·n2−

1
2
[[u]]n+1,n ·n2+

1
2
(1− p

ik
)(un+1

2,l −un
1), (12)

where we needed to introduce for subdomainΩ1 the additional variable un+1
1,r to

represent the quantity from the other side of the interface corresponding to u2, and
onΩ2 the additional variable un+1

2,l which represents the quantity from the other side
of the interface corresponding to u1, we obtain a discretization of the transmission
conditions

∂u(n+1)
1

∂n1
+ pu(n+1)

1 =
∂u(n)2

∂n1
+ pu(n)2 , (13)

∂u(n+1)
2

∂n2
+ pu(n+1)

2 =
∂u(n)1

∂n2
+ pu(n)1 . (14)

Proof. With the new variables before relaxation, we can write the flux at the inter-
face as

σ̂n+1
1 =

1
ik

∇un+1
1 − 1

ik
(1−δ )

(
∇un+1

1 + ikun+1
1 ·n1− (∇un+1

1,r + ikun+1
1,r ·n1)

)
.

In order to substitute the Robin condition from the right, wecompute from (13) by
adding and subtracting the same term

∂u(n+1)
1,r

∂n1
+ iku(n+1)

1,r =
∂u(n)2

∂n1
+ pu(n)2 +(ik− p)u(n+1)

1,r ,

which we insert into the flux to obtain

σ̂n+1
1 ·n1 =

δ
ik

∇un+1
1 ·n1− (1−δ )un+1

1 +
1−δ

ik
∇un

2 ·n1+(1−δ )
p
ik

un
2+(1−δ )

ik− p
ik

un+1
1,r

=
δ
ik
[[∇u]]n+1,n− (1−δ ) [[u]]n+1,n ·n1+

1
ik

∇un
2 ·n1+

1
2
(1− p

ik
)(un+1

1,r −un
2)

=
1
ik
{{∇u}}n+1,n ·n1−

1
2
[[u]]n+1,n ·n1+

1
2
(1− p

ik
)(un+1

1,r −un
2),

where we used the same simplification as in the proof of Theorem 1 to complete the
proof for σ̂n+1

1 . The proof forσ̂n+1
2 is analogous.
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Fig. 1 Left: Convergence of GMRES for the solution of (15) for various wavenumbersk. Right:
GMRES convergence for the solution of (16) for variousk.

4 Discrete system and numerical results

In this section we present preliminary results for the natural decomposition accord-
ing to Theorem 1. Results for optimized flux parameters are inpreparation. We
consider as example a problem partitioned into two subdomains. The global system
matrix can be decomposed in the following form.




Ae1,e1 Ae1,e2 Ae1,i1 0
Ae2,e1 Ae2,e2 0 Ae2,i2
Ai1,e1 0 Ai1,i1 0

0 Ai2,e2 0 Ai2,i2







ue1

ue2

ui1
ui2


=




ge1

ge2

gi1
gi2


 . (15)

Here,e1, ande2 denote degrees of freedom associated with the interface elements
from both sides, andi1 andi2 denote the interior degrees of freedom. Assume that
a fast direct solver is available on each subdomain. Eliminating interior degrees of
freedom we arrive at the Schur complement system
[

Ae1,e1−Ae1,i1A−1
i1,i1

Ai1,e1 Ae1,e2

Ae2,e1 Ae2,e2−Ae2,i2A−1
i2,i2

Ai2,e2

][
ue1

ue2

]
=

[
ge1

ge2

]
−
[

Ae1,i1A−1
i1,i1

gi1

Ae2,i2A−1
i2,i2

gi2

]
.

(16)
From Theorem (1) it follows that a classical block Jacobi method applied to (15) re-
covers the Schwarz iteration with Robin transmission conditions for the casep= ik.
Instead of iterating this system via block Jacobi we apply a Krylov subspace iter-
ation and demonstrate the performance of this simple algebraic decomposition at
the example of the solution of a Helmholtz equation−∆u− k2u = 0 on the unit
square[0,1]2. The mesh is a regular triangular mesh with 200 elements. Theba-
sis on each mesh consists of 16 equally spaced plane wave directions leading to an
overall system size ofn= 3200. On the boundary of the domain impedance condi-
tions are applied, such that the exact solution is a Hankel sourceH0(k|x− ŷ|) with
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ŷ = (−1,−1). The GMRES convergence for the solution of the full system (15)
for various wavenumbersk is shown in the left plot of Figure 1. The convergence
tolerance is set to 10−5. For the simple algebraic decomposition approach in (16)
the results become significantly better. The right plot of Figure 1 shows the results
for various wavenumbers for the solution of (16). The subdomain solves were per-
formed with UMFPACK as fast sparse direct solver. The overall system size of (16)
is n = 320. As expected the results deteriorate for higher wavenumbers, which is
due top= ik only being a good parameter for low-frequency problems.
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Optimized Schwarz Methods for curl-curl
time-harmonic Maxwell’s equations

Victorita Dolean1,2, Martin J. Gander2, St́ephane Lanteri3, Jin-Fa Lee4, and Zhen
Peng4

1 Introduction

Like the Helmholtz equation, the high frequency time-harmonic Maxwell’s equa-
tions are difficult to solve by classical iterative methods.Domain decomposition
methods are currently most promising: following the first provably convergent
method in [4], various optimized Schwarz methods were developed over the last
decade [2, 3, 10, 11, 1, 6, 13, 14, 16, 8]. There are however twobasic formulations
for Maxwell’s equation: the first order formulation, for which complete optimized
results are known [6], and the second order, or curl-curl formulation, with partial
optimization results [1, 13, 16]. We show in this paper that the convergence factors
and the optimization process for the two formulations are the same. We then show
by numerical experiments that the Fourier analysis predicts very well the behavior
of the algorithms for a Yee scheme discretization, which corresponds to Nedelec
edge elements on a tensor product mesh, in the curl-curl formulation. When using
however mixed type Nedelec elements on an irregular tetrahedral mesh, numerical
experiments indicate that transverse magnetic (TM) modes are less well resolved
for high frequencies than transverse electric (TE) modes, and a heuristic can then be
used to compensate for this in the optimization.

2 Optimized Schwarz algorithms

We consider the curl-curl problem in a bounded domainΩ , with boundary condi-
tions on∂Ω such that the problem is well posed [12]. A general Schwarz algorithm
then solves forn= 1,2. . . and the decompositionΩ =Ω1∪Ω2 the subdomain prob-
lems

−ω2E1,n+∇×
(
∇×E1,n

)
= −iωZJ in Ω1

Tn1(E
1,n) = Tn1(E

2,n−1) on ∂Ω1∩Ω2,
−ω2E2,n+∇×

(
∇×E2,n

)
= −iωZJ in Ω2

Tn2(E
2,n) = Tn2(E

1,n−1) on ∂Ω2∩Ω1,

(1)
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where Γ12 = ∂Ω1 ∩Ω2, Γ21 = ∂Ω2 ∩Ω1, and Tn j are transmission conditions.
The classical Schwarz method uses for example the impedanceconditionTn(E) =
(∇×E×n)×n+ iωE×n, wheren denotes the unit outward normal.

The transmission conditions in [6] for the first order formulation, for which com-
plete optimization results are available, can be written for the curl-curl formulation
in the form

T DGG
n (E)= (I+γ1(STM+STE))(∇×E×n)×n+ iω(I−γ1(STM+STE))(E×n),

(2)
whereSTM = ∇τ ∇τ ·, STE = ∇τ ×∇τ× and τ denotes the tangential direction.
These transmission conditions are a particular case of the more general formulation

T 1
n (E) = (I +ν1(δ1STM +δ2STE))(∇×E×n)×n

+ iω(I −ν2(δ3STM +δ4STE))(E×n),
(3)

since by choosingδ1 = δ2 = δ3 = δ4 = 1, ν1 = ν2 = γ1 in (3) we obtain (2).
Rawat and Lee proposed in [16] a transmission condition of the form

T RL
n (E) = n×∇×E+αn× (E×n)+β∇τ ×∇τ × (n×E×n)+ γ∇τ∇τ ·n× (∇×E)

= (I + γSTM)(n×∇×E)+(α +βSTE)(n× (E×n)),
(4)

and analyzed the performance for the case of plane waves traveling in theyzplane
and with the interface in thexyplane. A different choice of transmission conditions
was proposed in [13],

T TETM
n (E) = (I − γ2(δ1STM +STE))(n×∇×E)

+ iω(−I + γ2(STM +δ4STE))(n× (E×n)).
(5)

Both transmission conditions (4) and (5) are a particular case of the more general
formulation

T 2
n (E) = (I +ν1(δ1STM +δ2STE))(n×∇×E)

+ iω(−I +ν2(δ3STM +δ4STE))(n× (E×n)),
(6)

since by takingδ1 = δ4 = 1, δ2 = δ3 = 0, ν1 = γ, ν2 = β in (6) we obtain (4), and
choosingδ2 = δ3 = 1, ν1 =−γ2, ν2 = γ2 in (6) we obtain (5).

Thus, at first sight, it seems that there are two different classes of optimized
algorithms, the ones with transmission conditions (3), andthe ones with (6). One
can show however that the optimized algorithm with the special form (2) of the
transmission conditions (3) has identical convergence properties to the algorithm
with transmission conditions (6) when takingδ1 = δ2 = δ3 = δ4 = 1, ν1 = ν2 =−γ1

in (6), see [5]. In the following we will thus simply denoteT 2
n by Tn and only study

that case.



Optimized Schwarz Methods for curl-curl time-harmonic Maxwell’s equations 497

3 Convergence analysis using the TE-TM decomposition

We use Fourier analysis, and thus assume that the coefficients are constant, and the
domain on which the original problem is posed isΩ =R3, in which case we need the
Silver-Müller radiation condition limr→∞ r (∇×E×n+ iωE) = 0, wherer = |x|,
n= x/|x|, in order to obtain well-posed problems [12]. The two subdomains are now
half spaces,Ω1 = (0,∞)×R2, Ω2 = (−∞,L)×R2, the interfaces areΓ12= {L}×R2

andΓ21 = {0}×R2, and the overlap isL ≥ 0. Let the Fourier transform iny andz
directions beFE(x,y,z) =

∫
R2 E(x,y,z)ei(kyy+kzz)dydz, where we denote byky and

kz the Fourier variables and|k|2 = k2
y + k2

z. We first compute the local solutions of
the homogeneous counterparts of (1), which corresponds to the equation that the
error satisfies at each iteration.

Lemma 1 (Local solutions).The local solutions of (1) withJ = 0, computed in
Fourier space, are given by

F (E1)= eλx
(
− i(A2kz+A4ky)

λ
,A4,A2

)T

, F (E2)= e−λx
(

i(A1kz+A3ky)

λ
,A3,A1

)T

(7)
whereλ =

√
|k|2−ω2 and the coefficients A1,2,3,4 may depend on ky, kz.

The expressions of the solutions in Lemma 1 suggest a different formulation in
another basis, which we call the TE-TM decomposition. It caneasily be obtained by
splitting the solution in (7) into combinations of solutions verifyingA2kz+A4ky =
0, A2,A4 6= 0 (TE modes) andA2ky = A4kz, A2,A4 6= 0 (TM modes).

Lemma 2 (Local solution decomposition into TE-TM modes).The local solu-
tions in (7) can be re-written as

F (E j) = ATMF (E j,TM)+ATEF (E j,TE), j = 1,2, (8)

where

F (E1,TE) = eλx
(

0,− kz
ky
,1
)T

, F (E1,TM) = eλx
(
− i|k|2

kyλ ,1, kz
ky

)T
,

F (E2,TE) = e−λx
(

0,− kz
ky
,1
)T

, F (E2,TM) = e−λx
(

i|k|2
kyλ ,1, kz

ky

)T
.

(9)

To derive the convergence factors, we compute the action of the interface operators
from (6), and then replace them into the interface iterations of (1). This calculation
is greatly simplified with the decomposition into TE-TM modes, with the differ-
ence that we now iterate on the unknownsATE andATM. The convergence factor is
again given by the spectral radius of some iteration matrix,as in [6], and this matrix
happens to be conveniently diagonal for a certain choice of the parameters.

Theorem 1 (Convergence factor for the TE-TM decomposition). In the case
δ3 = δ2, δ4 = 1

δ1
, which holds for all algorithms we consider, the interface itera-

tion can be written as
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[
ATE

ATM

]1,n

= B

[
ATE

ATM

]1,n−2

,

with the interface iteration matrix B given by

B=
λ − iω
λ + iω

[
− (λ+iω)(λν2δ2+iων1δ1)+1

(λ−iω)(−λν2δ2+iων1δ1)−1 0

0 (λ+iω)(λν1δ1δ2+iων2)+δ1
(λ−iω)(−λν1δ1δ2+iων2)−δ1

]
e−2λL. (10)

The proof can be found in [5]. The convergence factor of the algorithm is for each
Fourier mode given by the spectral radius ofB. In the following we assume that
there is no overlap,L = 0.

Corollary 1 (DGG conditions). If we chooseδ1= 1, δ2= 1, ν1= ν2=− 1
|k|2−2ω2+2iωs

in (10), where s is a complex parameter to be chosen, we obtainan iteration matrix
with the same convergence factor as in the first order formulation in [6],

ρDGG(|k|,ω,s) =

∣∣∣∣
√
|k|2−ω2−iω√
|k|2−ω2+iω

·
√
|k|2−ω2−s√
|k|2−ω2+s

∣∣∣∣ . (11)

Corollary 2 (RL conditions). If we chooseδ1 = 1, δ2 = 0, ν1 = 1
ω2+ω k̃tm , ν2 =

1
ω2+ω k̃te in (10), wherek̃tm and k̃te are real parameters to be chosen, we obtain an
iteration matrix with convergence factor as in [16],

ρRL(|k|,ω, k̃te, k̃tm) =

∣∣∣∣
√
|k|2−ω2−iω√
|k|2−ω2+iω

∣∣∣∣ ·max

(∣∣∣∣
√
|k|2−ω2−ik̃te√
|k|2−ω2+ik̃te

∣∣∣∣ ,
∣∣∣∣
√
|k|2−ω2−ik̃tm√
|k|2−ω2+ik̃tm

∣∣∣∣
)
.

(12)

Corollary 3 (TETM conditions). If we chooseδ1 = iω+ste

iω+stm , δ2 = 1, ν1 = ν2 =

− 1
|k|2−2ω2+iω(ste+stm)

in (10), where stm and ste are real parameters to be chosen,

we obtain an iteration matrix with convergence factor as in [14],

ρTETM(|k|,ω,stm,ste) =

∣∣∣∣
√
|k|2−ω2−iω√
|k|2−ω2+iω

∣∣∣∣ ·max

{∣∣∣∣
√
|k|2−ω2−ste√
|k|2−ω2+ste

∣∣∣∣ ,
∣∣∣∣
√
|k|2−ω2−stm√
|k|2−ω2+stm

∣∣∣∣
}
.

(13)

It remains to explain the choice of the parameters in the three different algorithms:
for the DGG conditions, the same choice as for the first order formulation can be
used. Minimizing the maximum over all relevant frequenciesleads for example in
[6, case 3, section 3.5] to

s= (1+ i)
√

kmax(k2
+−ω2)1/4/

√
2, kmax=

C
h

(14)

with k+ an estimate of the closest numerical frequency just aboveω.
For the RL conditions, the authors in [16, 13] recommend

k̃te =−i
√(

1
2(k

max,te+ω)
)2−ω2, k̃tm =−i

√(
1
2(k

max,tm+ω)
)2−ω2, (15)
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Fig. 1 Comparison of the theoretical contraction factors (11), (12), and (13) on the left, and con-
vergence histories of the corresponding algorithms, in the middle with a random initial guess, and
on the right with a high frequency initial guess

with the same estimateskmax,te, kmax,tm as in the TETM case, where a separate min-
imization of the maximum leads to the parameters

ste = (1+ i)
√

kmax,te(k2
+−ω2)1/4/

√
2, stm = (1+ i)

√
kmax,tm(k2

+−ω2)1/4/
√

2.
(16)

For a mixed type Nedelec elements on irregular tetrahedral meshes, numerical
observations in [15, Section 4.5.1] indicate that a good choice is kmax,te = kmax,
kmax,tm = 2

3kmax. If howeverkmax,te = kmax,tm, as it is for example the case in a Yee
discretization, then minimizing the maximum of the contraction factor in TETM
leads again to the DGG transmission conditions. Note that a separate optimization
for the TE and TM modes can also potentially be beneficial if one knows for ex-
ample a priori which TE or TM modes one wants to simulate, since one can then
optimize the performance of the algorithm for these modes.

4 Numerical results

We first show a comparison of the theoretical convergence factors ρRL, ρDGG and
ρTETM in Figure 1 on the left for the specific valuesh= 0.001 andω = 10π. From
these convergence factors, we can expect that a numerical implementation of the al-
gorithm with all error frequencies contained in the initialguess will overall converge
better with the DGG and TETM conditions than with the RL conditions. The DGG
and TETM transmission conditions have identical convergence behavior for lower
error frequencies, but for high error frequencies, the DGG conditions are better.
Even though being much less favorable in general, the RL conditions are excellent
for very high frequency evanescent error modes.

We now illustrate our convergence results with numerical experiments. We first
solve Maxwell’s equations in the curl-curl formulation on the domainΩ = (0,π)2×
(0,2π) using a Yee scheme. We decompose the domain into two subdomainsΩ1 =
(0,π)2× (0,π) andΩ2 = (0,π)2× (π,2π). We chose the frequencyω = 1 for this
experiment. We show in Figure 1 in the middle and on the right the convergence
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Fig. 2 Eigenspectra for a parallel plate waveguide,h = λ0/4, p = 2, RL (left), DGG (middle),
TETM (right)

histories for the three Schwarz algorithms we considered over 20 iterations. In the
middle, we used a random initial guess to make sure all frequencies are present in
the error. Here the DGG and TETM algorithms have identical convergence behavior,
while the RL algorithm is very slow as expected from the theoretical result in the
left plot. On the right we used the highest possible frequency that can be represented
on the mesh only as the initial guess for the error. Now, the RLconditions lead to
the fastest convergence, whereas the TETM conditions are the slowest, again as
expected from the theoretical plot on the left. This shows that one has to be careful
when doing numerical investigations: from the right panel in Figure 1, one could
conclude that the RL conditions are the best, but this only holds for one particular
error frequency. This is why one solves min-max problems to determine optimized
parameters: the algorithm needs to be good for all error frequencies uniformly, see
especially the experiments in [9, Section 5.1, Figure 5.2].

Next, we show numerical experiments for a discretization with mixed type Ned-
elec elements on irregular tetrahedral grids. We start by examining the eigenvalues
of three non-overlapping domain decomposition matrices, using the RL, DGG, and
TETM conditions. We chose a 0.5λ0 (λ0 denotes the free space wavelength) seg-
ment of a parallel plate waveguide with both ports terminated by first order absorb-
ing boundary conditions. The parallel plate waveguide is partitioned by a transverse
plane into two equally sized sub-domains. The mesh size is chosen to beλ0/4. In
Figure 2, we show the eigenvalue distributions of the three iteration matrices using
the RL, DGG, and TETM transmission conditions. All of them provide desirable
convergence properties, since all the eigenvalues are within the shifted-unit-circle.
It is clear that the spectral radius of the DGG conditions is slightly smaller than
the RL conditions, due to the fact thatρmax

DGG < ρmax
RL . We also see that for this dis-

cretization, the TETM conditions further improve the convergence factor of the TM
modes: one portion of eigenvalues moves towards the center of the unit circle.

We now present scalability studies: we denote byd the size of the sub-domains,
by D the size of the entire problem domain and byh the mesh size. A Krylov sub-
space iterative method, Generalized Conjugate Residual (GCR) [7], is used for the
solution of the matrix equation.

Scalability with respect to ωh: we simulate a 1.5λ0 segment of a parallel plate
waveguide. The waveguide is partitioned into three sub-domains, each 0.5λ0 long.
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Table 1 Number of iterations to attain a relative residual reduction of 10−8 for different transmis-
sion conditions and different mesh sizes

Cases ωh= 1.57 ωh= 0.785 ωh= 0.524 ωh= 0.393
RL conditions 23 (19) 27 (17) 34 (22) 41 (22)
DGG conditions 21 (18) 26 (21) 32 (19) 39 (20)
TETM conditions 21 (14) 25 (15) 30 (12) 36 (14)

These sub-domains are meshed independently and quasi-uniformly such that the
interface meshes do not match. The mesh size varies fromh= λ0/4 to h= λ0/16.
The numbers of iterations required using the RL, DGG, and TETM transmission
conditions are given in Table 1, for a random initial guess, and in parentheses with
the TEM mode as an excitation and a zero initial guess. Theh−refinement permits
the representation of more high frequency evanescent modeson the interface, and
we see that computing just one TEM mode solution with a zero initial guess requires
much less iterations than when all modes are present. The iteration numbers could
still substantially be lowered in the one TEM mode case by optimizing just for that
mode.

Scalability with respect to ωD: We fix the subdomain size to 0.3λ0, and we
increase the length of the waveguide by increasing the number of subdomains. The
mesh size is kept fixed as well ath= λ0/8. The performance of the methods for 10,
20, 40, and 80 subdomains is shown in Table 2, again for a random initial guess, and
then in parentheses with the TEM mode as excitation, and a zero initial guess. In
this study, the propagating modes are of pre-dominant significance since the wave
must travel from one end of the waveguide to the other. We see that all of the three
conditions show dependence on the problem size, which is expected in the absence
of a coarse space. We see that the DGG and TETM conditions perform much better
in this set of experiments than the RL condition, and also that all methods need a
substantially bigger number of iterations in the presence of all error modes, than
when just one mode is present.

5 Conclusions

We have shown that the optimized transmission conditions developed for the first
order Maxwell system in [6] can also be used for the curl-curlformulation, and

Table 2 Number of iterations to attain a relative residual reduction of 10−8 for different transmis-
sion conditions and different problem sizes

Cases ωD = 18.8 ωD = 37.7 ωD = 75.3 ωD = 150.7
RL conditions 34 (17) 63 (28) 146 (72) 363 (168)
DGG conditions 30 (18) 49 (22) 90 (33) 185 (51)
TETM conditions 31 (21) 46 (22) 85 (29) 176 (37)
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the corresponding convergence factors and hence optimizedparameters are identi-
cal. We illustrated these results with a Yee discretizationof the curl-curl formula-
tion. We then showed also numerical experiments with a mixedtype Nedelec finite
element discretization on irregular tetrahedral grids, and presented several scaling
experiments.
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4. Despŕes, B., Joly, P., Roberts, J.: A domain decomposition method for the harmonic Maxwell
equations. In: Iterative methods in linear algebra, pp. 475–484. North-Holland, Amsterdam
(1992)

5. Dolean, V., Gander, M.J., Lee, J.F., Peng, Z.: Optimized Schwarz methods for solving the
curl-curl time-harmonic Maxwell equations. submitted (2013)

6. Dolean, V., Gerardo-Giorda, L., Gander, M.J.: Optimized Schwarz methods for Maxwell equa-
tions. SIAM J. Scient. Comp.31(3), 2193–2213 (2009)

7. Eisenstat, S., Elman, H., Schultz, M.: Variational iterative methods for nonsymmetric systems
of linear equations. SIAM Journal on Numerical Analysis20(2), 345–357 (1983)

8. El Bouajaji, M., Dolean, V., Gander, M.J., Lanteri, S.: Optimized Schwarz methods for the
time-harmonic Maxwell equations with dampimg. SIAM J. Scient. Comp.34(4), 2048–2071
(2012)

9. Gander, M.J.: Schwarz methods over the course of time. Electronic Transactions on Numerical
Analysis31, 228–255 (2008)

10. Gander, M.J., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the
Helmholtz equation. SIAM J. Sci. Comput.24(1), 38–60 (2002)

11. Lee, S.C., Vouvakis, M., Lee, J.F.: A non-overlapping domain decomposition method with
non-matching grids for modeling large finite antenna arrays. J. Comput. Phys.203(1), 1–21
(2005)

12. Nedelec, J.C.: Acoustic and electromagnetic equations. Integral representations for harmonic
problems. Applied Mathematical Sciences, 144. Springer Verlag(2001)

13. Peng, Z., Lee, J.F.: Non-conformal domain decomposition method with second-order trans-
mission conditions for time-harmonic electromagnetics. J. Comput. Phys. 229(16), 5615–
5629 (2010)

14. Peng, Z., Rawat, V., Lee, J.F.: One way domain decomposition method with second order
transmission conditions for solving electromagnetic wave problems. J. Comput. Phys.229(4),
1181–1197 (2010)

15. Rawat, V.: Finite element domain decomposition with second order transmission conditions
for time-harmonic electromagnetic problems. Ph.D. thesis, Ohio State University (2009)

16. Rawat, V., Lee, J.F.: Nonoverlapping domain decomposition with second order transmission
condition for the time-harmonic Maxwell’s equations. SIAM J. Sci. Comput.32(6), 3584–
3603 (2010)



On the Origins of Iterative Substructuring
Methods

Martin J. Gander1 and Xuemin Tu2

1 The Invention of Substructuring Methods

Substructuring methods were invented in the engineering community. A very early
precursor is the so called “Moment Distribution Method”, or“Hardy Cross Method”
named after its inventor [11]. Cross states in the introduction to his paper from 1930
his motivation for the method:

The reactions in beams, bents, and arches which are immovably fixedat their ends have
been extensively discussed. They can be found comparatively readily by methods which are
more or less standard. The method of analysis herein presented enables one to derive from
these the moments, shears, and thrusts required in the design of complicated continuous
frames.

The idea is to give a precise method how to combine structuresfor which their reac-
tion to load is known (i.e. tabulated), when they interact atjoints between structures.
The method is iterative, and described in Figure 1.

In modern terms, it is a Jacobi relaxation applied to the displacement formulation
of structural analysis [39], but also a precursor to the finite element method.

Fig. 1 The Hardy Cross Method from 1930

1 Section de Math́ematiques, Université de Geǹeve, CP 64, 1211 Genève, Switzerland e-mail:
Martin.Gander@unige.ch ·2 Department of Mathematics, University of Kansas, 1460 Jay-
hawk Blvd, Lawrence, KS 66045-7594, U.S.A. e-mail:xtu@math.ku.edu
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Fig. 2 Two plane structures with non-overlapping subdomain decompositions from the original
publication of Przemieniecki in 1963

It was however at Boeing, right after the reinvention of the finite element method
for the design of aircraft [38, 9], where Przemieniecki introduced in his seminal
paper [33] the first substructuring method of the form we knowthem now. He first
explains why substructuring became necessary:

The necessity for dividing a structure into substructures arises either from the requirement
that different types of analysis have to be used on different components, or because the
capacity of the digital computer is not adequate to cope with the analysis of the complete
structure.

At the time, computational techniques for the simulation ofaircraft were rapidly
developing, and complex structures had to be simulated, as shown in the original
drawings of Przemieniecki in Figure 2. Unlike in the case of Cross, the substructures
were too complicated to have tabulated solutions, and had tobe simulated as well. At
the beginning of his paper, Przemieniecki describes the idea of his domain domain
decomposition method, which is not so different from the method of Cross, but it is
not iterative:

In the present method each substructure is first analyzed separately, assuming that all com-
mon boundaries with adjacent substructures are completely fixed: these boundaries are then
relaxed simultaneously and the actual boundary displacements are determined from the
equations of equilibrium of forces at the boundary joints. The substructures are then an-
alyzed separately again under the action of specified externalloading and the previously
determined boundary displacements.

Let us see how this can be written in mathematical terms, using the notation used
by Przemieniecki. Like for many structural engineers at that time, the reasoning was
at the discrete level: letP be the exterior forces,K the stiffness matrix, andU the
displacement vector. Then these quantities satisfy the system of equations

KU = P. (1)

We now partition the unknownsU into unknownsUi in the interior of each substruc-
ture, and the unknownsUb on the boundaries between substructures, as indicated in
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Figure 2. If we partition the matrix and right hand side accordingly, the system (1)
can be rewritten as [

Kbb Kbi

Kib Kii

][
Ub

Ui

]
=

[
Pb

Pi

]
. (2)

Now the algorithm of Przemieniecki has three steps, as we have seen above. The first
step must keep boundaries between substructures fixed, and hence an (unknown)
forceP(α) is needed to keep these boundaries fixed. Przemieniecki therefore parti-
tions the forcing vector into

P= P(α)+P(β ) =

[
P(α)

b
Pi

]
+

[
P(β )

b
0

]
. (3)

Since with the first vector on the right hand side as a load, theboundaries of the
substructures do not move, the displacements can also be written in the same de-
composition, namely

U =U (α)+U (β ) =

[
0

U (α)
i

]
+

[
Ub

U (β )
i

]
. (4)

By linearity, we can rewrite the original system as two systems, which represent the
first two steps in Przemieniecki’s algorithm,

(α) :

[
Kbb Kbi

Kib Kii

][
0

U (α)
i

]
=

[
P(α)

b
Pi

]
,

and

(β ) :

[
Kbb Kbi

Kib Kii

][
Ub

U (β )
i

]
=

[
P(β )

b
0

]
.

In the first step of Przemieniecki’s algorithm one needs to solve the first system.
Because the interfaces between substructures are not moving, this system simplifies
to

KbiU
(α)
i = P(α)

b , KiiU
(α)
i = Pi .

Knowing the forcesPi in the interior of each substructure, we can compute the inte-

rior displacements when the interfaces are kept fixed,U (α)
i = K−1

ii Pi . Inserting this
result into the first equation uncovers the unknown force that Przemieniecki needed
to impose to keep the interfaces fixed, namely

P(α)
b = KbiK

−1
ii Pi .

We can now determine the remaining forcesP(β )
b on the interfaces,

P(β )
b = Pb−P(α)

b = Pb−KbiK
−1
ii Pi ,

and inserting this result into the second system (β ) gives
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KbbUb+KbiU
(β )
i = P(β )

b , KibUb+KiiU
(β )
i = 0.

We can now compute the second step in Przemieniecki’s algorithm, namely the

response of the structures to the interface loadingP(β )
b . The second equation gives

the internal displacementU (β )
i based on the boundary displacementUb,

U (β )
i =−K−1

ii KibUb,

and inserting this into the first equation, Przemieniecki obtains for the unknowns at
the interfaces the system

(Kbb−KbiK
−1
ii Kib)Ub = Pb−KbiK

−1
ii Pi . (5)

We see that the procedure, which Przemieniecki motivated bya strictly mechanical
argument, leads simply to the Schur complement system, where all interior variables
are eliminated! We note that the Schur complement system canalso be derived us-
ing discrete harmonic functions on the substructures. The third and last step, after
solving the Schur complement system, is to simply compute the corresponding in-
terior displacements, and the problem is solved. Historically, the Schur complement
was also known under the name capacitance matrix [25], as we will see next.

2 Capacitance Matrix Methods

The capacitance matrix method became popular in the early 1970, due to a publica-
tion by Buzbee, Dorr, George and Golub [8] that has a very short abstract:

There are several very fast direct methods which can be used to solve the discrete Poisson
equation on rectangular domains. We show that these methods can also be used to treat
problems on irregular regions.

The paper first gives a general introduction to Schur complement techniques at the
algebraic level, and then the authors show how Schur complements can be used to
solve problems on irregular domains by imbedding, and by domain splitting, with
a typical example of an L-shaped domain. As in Przemieniecki, the Schur com-
plement system (5) is solved by direct methods. A new important idea was then
introduced by Proskurowski and Widlund in [32]:

This new formulation leads to well-conditioned capacitancematrix equations which can be
solved quite efficiently by the conjugate gradient method. A highly accurate solution can,
therefore, be obtained at an expense which grows no faster thanthat for a fast Laplace solver
on a rectangle when the mesh size is decreased.

The authors explain that their method can use fast Possion solvers for a similar
purpose as for the fundamental solustions when constructing the classical integral
equations of potential theory. The key contribution is however the solution of the
Schur complement system by a Krylov method, which paved the way for iterative
substructuring methods.
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Fig. 3 Original Figure by Dryja [16] to introduce preconditioned iterative substructuring methods
on the left, and first preconditioner estimate on the right

3 Iterative Substructuring Methods

The explicit calculation of the Schur complementS is expensive and requires large
amount of memory since the matrix is much denser than the original stiffness matrix
K as defined in (1), even though it is much smaller. However the action of the Schur
complement on a vector can be calculated implicitly by solving local substructure
problems. Therefore the explicit formation of the Schur complement can be avoided
if Krylov space methods are used to solve the interface problem (5) iteratively, as
shown in [32]. To make the number of iterations however manageable, for certain
accuracy, it is crucial to construct a suitable preconditioner for the Krylov subspace
methods. In a sequence of papers [15, 16, 17], Dryja first introduced preconditioned
Krylov space methods for solving the interface problem (5).The L-shaped domain
shown in Figure 3 on the left was divided into two subdomains in [16], and the
preconditioner is selected asK−1/2, whereK is here the discrete Laplacian operator
on the subdomain interface. Dryja proved in [16] the first spectral equivalence re-
sult for preconditioning the capacitance matrix, as shown in Figure 3 on the right.
This result was proved using Fourier analysis, and the preconditioner can also be
implemented efficiently using a fast sine transform.

Golub and Mayers proposed a slightly improved version of this preconditioners
in [24]. In [1, 2], Bjørstad and Widlund explicit derived anddiagonalized the lo-
cal Schur complementS(i) and proposed two preconditioners. The preconditioner
considered by Dryja was called the “good method” and the other, the Neumann-
Dirichlet preconditioner for two subdomains, the “excellent method”. The applica-
tion of this preconditioner to a vector requires the solution of one subdomain Neu-
mann problem and one subdomain Dirichlet problem. It converges in one step if the
two subdomains come from a symmetric region cut in half and the triangulation is
regular and symmetric. If the subdomain partition allows a red-black coloring, the
Neumann-Dirichlet (Dirichlet-Neumann) algorithms can also be extended to many
subdomains.

Another type of preconditioner, the Neumann-Neumann preconditioner was in-
troduced in [22, 3, 27]. The application of this preconditioner to a vector requires the
solutions of two Dirichlet problems and two Neumann problems. Thus, it is more
expensive than the Neumann-Dirichlet preconditioner. However, it is easy to extend
to many subdomains and can be made to perform well with jump coefficients by
introducing a simple scaling operator.
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The number of iterations will increase with an increase of the number of sub-
domains for most one-level preconditioners. An additionallevel is needed to re-
move such dependence. For Dirichlet-Neumann preconditioners, when the subdo-
main partitions has cross points, a natural second, coarse level solver can be formed
using variables related to these cross points, see [19, 18].The two-level Neumann-
Neumann algorithms, known as Balancing Neumann-Neumann algorithms, where
introduced in [29, 28, 26, 21]. The coarse level solver can beconstructed us-
ing weighted counting functions. The balancing Neumann-Neumann algorithm has
been extended to several applications such as for the mixed finite element discretiza-
tions, Stokes, and almost incompressible elasticity, [10,31, 23]. Recently, the bal-
ancing domain decomposition by constraints method has beendeveloped and it has
been widely used [12, 30]; it is similar to the balancing Neumann-Neumann al-
gorithms but its coarse problems are given in terms of a set ofprimal constraints
partially enforcing contiunity across the interface.

4 Primal Iterative Substructuring Methods

There is another class of substructuring methods known as the primal iterative sub-
structuring methods. The difference between the preconditioners in this class and
the algorithms described in Section 3 is that the coupling between all pairs of faces,
edges, and vertices are eliminated in the preconditioners of this class while the cou-
pling between neighboring subdomains are eliminated in theprevious class.

The development of the primal iterative substructuring methods started with a
famous series of four papers [4, 5, 6, 7]. [4] is the first paperon iterative substruc-
turing methods to deal with cross points satisfactorily. The algorithm proposed in
that paper has a coarse level component formed in terms of thecross points and an
almost optimal condition number bound was established in two dimensions. How-
ever such a coarse level problem does not always work well in three dimensions
because of a much weaker finite element Sobolev inequality. Related methods with
a coarse solver based on the wire basket were introduced in [7] for three dimensional
problems and an almost optimal bound was obtained.

An observation on using a change of basis from a partial hierarchical basis to the
usual nodal basis for this class of algorithms was made in [37] and many precondi-
tioners of this type were introduced in [20]. These algorithms have been successfully
implemented and extended to three dimensional linear elasticity [35, 36]. Quite re-
cently, the coarse components introduced here have also been used for overlapping
domain decomposition methods to obtain algorithms independent of the coefficient
jumps [34, 13, 14].

Acknowledgements This work was supported in part by National Science Foundation Contract
No. DMS-1115759.
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Discontinuous Coarse Spaces for DD-Methods
with Discontinuous Iterates

Martin J. Gander1, Laurence Halpern2, and Ḱevin Santugini Repiquet3

1 Introduction

Basic iterative domain decomposition methods (DDM) can only transmit informa-
tion between direct neighbors. Such methods never convergein less iterations than
the diameter of the connectivity graph between subdomains.Convergence rates are
dependent on the number of subdomains, and thus algorithms are not scalable.
The use of a coarse space [16] is the only way to provide information from dis-
tant subdomains, as they enable global information transfer, ensuring scalability. In
this respect, well known methods are the two level additive Schwarz method [3],
and the FETI [13] and balancing Neumann-Neumann methods [12, 4, 14]. See
also [11] for non-symmetric problems. For complete analyses of such scalable meth-
ods, see [18, 17].

Adding an effective coarse space correction to an existing method is currently an
active area of research, for example in the case of high contrast problems [2, 15].
Combining coarse spaces with methods with discontinuous iterates, such as opti-
mized Schwarz methods (OSM [8]) is also non-trivial, see [6]and chapter 5 in [5]
which contain extensive numerical tests, and [7] for a rigorous analysis of a special
case. For restricted Additive Schwarz (RAS [1]), which alsoproduces discontinu-
ous global iterates since they are glued from local ones by the R̃ operators in RAS
in an aribirary fashion, see [9] in the present proceedings.We explain in§2 why an
effective coarse space for non-overlapping OSM (and DDMs with discontinuous it-
erates in general) should inherently be discontinuous. In§3, we present one possible
realization of a coarse grid correction based on a discontinuous coarse space, and
we show that convergence in one coarse correction step can beobtained, although
this is only practical in one dimension. For higher dimensional problems, we then
propose approximations of this optimal coarse space. In§4, we present numerical
experiments with this new algorithm, and finally give an outlook on future work
in §5.

1 Universit́e de Geǹeve, Section de mathmatiques, e-mail:Martin.Gander@unige.ch ·2
Laboratoire Analyse, Ǵeoḿetrie & Applications UMR 7539 CNRS, Université PARIS 13,
93430 VILLETANEUSE, FRANCE, e-mail:halpern@math.univ-paris13.fr ·3 Univer-
sité Bordeaux, IMB, CNRS UMR5251, MC2, INRIA Bordeaux - Sud-Ouest e-mail:Kevin.
Santugini@math.u-bordeaux1.fr
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2 Choosing a good coarse space

In this section, we explain why it makes sense to consider discontinuous coarse
space corrections. We place ourselves in a continuous setting and consider the model
problem

ηu−∆u= f in Ω , γu= 0 on∂Ω , (1)

whereΩ is a polygonal domain inRd (d≥ 1 ), andγ is a trace operator.
Let (Ωi)1≤i≤N be a non-overlapping domain decomposition ofΩ . A non-overlapping

optimized Schwarz method with a coarse grid correction is given in Algorithm 1.

Algorithm 1 (Generic)
Initialize u0

i , either by zero or using the coarse solution.
for n≥ 0 and until convergencedo

In each subdomainΩi , compute the uncorrected iteratesun+1/2
i in parallel using the optimized

Schwarz algorithm.
Compute a coarse correctionUn+1 belonging to a coarse spaceX.

Set the corrected iterates toun+1
i := un+1/2

i +Un+1.
end for
Set eitherui := un−1/2

i or ui := un
i wheren is the exit index of the above loop.

Instead of explaining in detail how the coarse correctionUn+1 is computed, we
first focus on the more important question of how to choose thecoarse spaceX.

2.1 Suboptimality of a conformal coarse space

We first explain why with a coarse spaceX ⊂H1(Ω), it is not possible to compute a
very good coarse correction for a domain decomposition method with discontinuous
iterates. A functionu, with u|Ωi

in H1(Ω), is a weak solution of (1) if

(i) u satisfies (1) inside each subdomainΩi ,
(ii) u has no jump between two adjacent subdomains,
(iii) the normal derivative ofu has no jump between two adjacent subdomains.

In an efficient domain decomposition algorithm, each step ofthe algorithm should
improve as many of these three conditions as possible. In particular, the coarse grid
correction should be such that the iteratesun+1

i are closer to satisfying these three

conditions than the uncorrected iteratesun+1/2
i . However:

(i) The uncorrected iterates already satisfy the equation inside each subdomain.
(ii) The uncorrected iterates are discontinuous, they havejumps in the Dirichlet

traces along interfaces.
(iii) The uncorrected iterates have also discontinuous normal derivatives, they have

jumps in the Neumann traces along interfaces.
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Using continuous coarse functions is suboptimal for a method that produces dis-
continuous iterates, since they can not reduce the Dirichlet jumps. Using instead
a discontinuous coarse space, for exampleP0, then the Dirichlet jumps can be im-
proved, but not the Neumann jumps. If the coarse functions are even more regular,
for exampleC 1 on the whole domain, then neither the Dirichlet jumps nor theNeu-
mann jumps can be improved.

2.2 Better coarse spaces for methods with discontinuous iterates

To be effective, a coarse space for a domain decomposition method that produces
discontinuous iterates must contain discontinuous functions. Furthermore the dis-
continuities must be aligned with the interfaces between subdomains. Suppose that
the subdomainsΩi form a conforming polygonal meshT Ω of Ω (triangles or rect-
angles in two dimensions). The local polynomial spaceP1 isP1 in the former case,
Q1 in the latter. The conforming coarse space isP1(T

Ω ) = {v∈C 0(Ω̄), ∀i, v|Ωi
∈

P1}, but a better choice is the discontinuous coarse space (or broken in the Discon-
tinuous Galerkin literature)Pdisc

1 (T Ω ) = {v, ∀i, v|Ωi
∈P1}, where the continuity

across the interfaces is no longer required.
In addition, for linear problems, it is important for the coarse shape functions to

be solutions of the homogeneous counterpart of equation (1)inside each subdomain,
because then the corrected iterates are also solutions of the interior equation inside
each subdomain. To see this, it suffices to note that the errorbetween the mon-
odomain solution and any iterates produced by the optimizedSchwarz method is
always a solution to the homogeneous equation inside each subdomain. Therefore,
in H1,disc

0 (Ω) = {u∈ L2(Ω), ∀i, u|Ωi
∈ H1(Ωi), u= 0 on∂Ω}, the space

A = {u∈ H1,disc
0 (Ω), ∀i, (η−△)u|Ωi

= 0} (2)

is an ideal candidate for a coarse space. For one-dimensional problems, the space
A is finite dimensional, and can directly be used as the coarse space. In higher
dimensions, the spaceA is infinite dimensional for the continuous problem, and
must therefore be discretized as well to be practical: a finite dimensional subspace
of A must be chosen. To do so, one only needs to choose boundary conditions on
each∂Ωi . For the particular algorithm presented in the next section, the intersection
of the coarse space withH1 should be “big enough”, for there to be enough test
functions. This can be guaranteed by constructing coarse elements with potentially
compatible Dirichlet conditions.

For these reasons we introduce the space of all discontinuous functions, whose
element shape functions are solutions to the homogeneous equation inside each sub-
domain, with Dirichlet boundary conditions:

PA
1 (T Ω ) = {u∈A , ∃û∈Pdisc

1 (T Ω ), u= û in
N⋃

i=1

∂Ωi}. (3)
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Remark 1.Other Dirichlet boundary conditions can be used to define thediscontin-
uous coarse elements. Any finite dimensional vector space ofcontinuous functions
defined over

⋃N
i=1 ∂Ωi may be used to construct finite dimensional coarse spaces

that are subsets ofA with a “big enough” continuous subset.

Now that we have chosen the coarse space, we can design an efficient algorithm
to compute a discontinuous coarse space correction. The coarse correction must
be chosen such that it diminishes both Dirichlet and Neumannjumps while not
losing too much in terms of satisfying the interior equations in each subdomain.
Using the full coarse spaceA (which is only practical in one dimension), any good
algorithm for computing the coarse correction should converge in a single coarse
iteration, because the error between the iterates and the exact solution belongs to
A . In the next section, we present such an algorithm, the DCS-DMNV algorithm
(discontinuous coarse space - Dirichlet minimizer Neumannvariational), which is
suitable for finite element methods.

3 The DCS-DMNV algorithm

We formulate the algorithm with subdomain iterates at the continuous level, with a
discrete coarse space.

Let Xd be any finite dimensional coarse space, subspace ofH1,disc
0 (Ω) (for ex-

amplePA
1 (T Ω ) defined above), andXc = Xd ∩H1(Ω), which will be non-trivial

if we use potentially compatible Dirichlet boundary conditions for the coarse ele-
ments. We define the positive quadratic form overH1,disc

0 (Ω) by

q : H1,disc
0 (Ω)→ R+, u 7→∑

i j

∫

∂Ωi∩∂Ω j

∣∣ui−u j
∣∣2dσ .

Note that the kernel ofq is H1(Ω). The DCS-DMNV algorithm is stated in Algo-
rithm 2 at page 515.

Proposition 1 (Existence of the coarse iterate).Let (un+1/2
i )1≤i≤N be the local

iterates. Then there exists a unique Un+1 in Xd that satisfies(5).

Proof. The functionV 7→ q(un+1/2+V) is quadratic, choose one minimizerUn+1
d on

Xd. By Lax-Milgram’s Lemma, there exists a uniqueUn+1
c in Xc such thatUn+1 =

Un+1
c +Un+1

d satisfies (5b). Uniqueness comes from the fact thatq is quadratic. ⊓⊔

The DCS-DMNV algorithm 2 has the important property of converging in a sin-
gle coarse step if the full coarse spaceA is used. However, it is only practical in
a one dimensional setting as the coarse space is too big in higher dimensions. We
state that theorem in the discrete case.

Theorem 1 (Convergence in a single coarse step for the full coarse space).LetΩ
be a bounded polygonal domain inRd. Let (Ωi)1≤i≤N be a domain decomposition
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Algorithm 2 (DCS-DMNV)
Initialize u0

i by either zero oru0
|Ωi

whereu0 is the coarse solution.
while no convergencedo

Compute the local iteratesun+1/2
i ∈ H1(Ωi) in parallel by

ηun+1/2
i −△un+1/2

i = f in Ωi , (4a)

∂un+1/2
i

∂ni
+ pun+1/2

i =
∂un

j

∂ni
+ pun

j on ∂Ωi ∩Ω j , (4b)

un+1/2
i = 0 on∂Ωi ∩Ω . (4c)

Define a globalun+1/2 ∈ H1,disc
0 (Ω) asun+1/2

i in Ωi . SetUn+1 as the unique function inXd
such that

q(un+1/2+Un+1) = min
v∈Xd

q(un+1/2+v), (5a)

and satisfying

η
∫

Ω
Un+1(x)v(x)dx+

∫

Ω
∇Un+1(x)∇v(x)dx

=−∑
i, j

∫

∂Ωi∩∂Ω j


∂un+1/2

i

∂ni
+

∂un+1/2
j

∂n j


vdσ , (5b)

for all test functionsv in Xc.
Setun+1

i := un+1/2
i +Un+1.

end while
Setu := un−1/2

i on Ωi for eachi in {1, . . . ,N}.

of Ω that also forms a coarse mesh ofΩ . Let Th be a simplicial or a cartesian
fine mesh onΩ which is a refinement of the(Ωi)1≤i≤N domain decomposition. Let
F be the conformal finite element space given either by P1(Th) if Th is simplicial
or by Q1(Th) if Th is cartesian. LetF disc be the set of all functions onΩ whose
restriction to eachΩi is also the restriction of a function belonging toF to Ωi , F0

be the space of functions inF vanishing on all subdomain boundaries.
Let Xd ⊂ F disc be a coarse space. Suppose all elements in Xd satisfy the ho-

mogenous variational equation for all test functions inF0. Let Xc = Xd∩F . Sup-
pose u7→ ((u(xi, j))1≤ j≤ki )1≤i≤N is from Xd onto ∏N

i=1R
ki where ki is the number

of nodes ofTh located on∂Ωi \ ∂Ω and where xi, j is the j-th node located on
∂Ωi \∂Ω . Then, for any choice of initial fine iterate(u0

i )1≤i≤N satisfying the varia-
tional equation for all test functions inF0, the DCS-DMNV algorithm 2 converges
in a single coarse step.

Proof. Let (Ui)1≤N be the coarse correction. Letu1
i = u0

i +Ui be the corrected it-
erates. The corrected iterates must satisfy the minimum jump condition (5a). Since
u 7→ ((u(xi, j))1≤ j≤ki )1≤i≤N is onto, it is possible to completely cancel the jumps,
thereforeq((u1

i )1≤i≤N) = 0 andu1 defined overΩ asu1
|Ωi

= u1
i belongs toF , i.e.

is continuous across subdomains. Moreover, since the coarse correction satisfies the
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Fig. 1 Convergence curves of the DCS-DMNV algorithm in 1D (left) and 2D (right)

homogenous counterpart of (1) inside each subdomain, the corrected iterates sat-
isfy the variational equation for all test functions inF0. By (5b), the corrected
iterates also satisfy the variational equation for all testfunctionsv in Xc. Since
u 7→ ((u(xi, j))1≤ j≤ki )1≤i≤N is onto,F = Xc+F0. Therefore, the corrected iterates
satisfy the variational equation for all test functions inF . ⊓⊔

In a practical implementation however, convergence in a single coarse iteration
would only be possible if the coarse space contains all the degrees of freedom on
the interfaces corresponding to the fine discretization of the subdomain problems,
which would be a very rich and expensive coarse space. We willsee in the next
section that a linear approximation of all the degrees of freedom on the interfaces
already leads to a very good discontinuous coarse correction.

4 Numerical results

We implemented the DCS-DMNV algorithm 2 in one and two dimensions, using
a finite element discretization based on a regular cartesiangrid. In 1D, we chose
Ω =]0,4[, η = 10 and the right hand-sidef (x) =−1. For the Robin parameter, we
usedp= 5, with 60 subdomains. Convergence curves are presented in Figure 1.

As expected, a coarse grid correction with conformingP1 finite elements already
improves convergence. Requiring the coarse shape functions to be solutions of the
homogeneous equation within each subdomain does not bring any further gain. A
striking improvement is the use of discontinuousP1 elements. Optimal convergence
(see Theorem 1) can then be reached if in addition the coarse functions solve the
homogeneous equation inside each subdomain.

In two-dimension, we choseη = 0 and iterate directly on the error equations,
i.e., we solve−∆e= 0 but start with random boundary conditions on each subdo-
main. Q1 elements discretizeΩ =]0,4[2, and the algorithm is run withp = 12.4,
5× 5 subdomains and 10× 10 cells per subdomain. It is important for the Robin
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Fig. 2 Error of the algorithm with continuous (left) and discontinuous (right) coarse grid correction
at iterations 5 and 20. Each error has been renormalized independently.

boundary conditions to be lumped, see [10]. To compute the coarse correction, we
use the Conjugate Gradient algorithm to compute the result of the multiplication of
the pseudo-inverse ofQ, q(u,v) = (Qu|v) with a right hand-side derived from the
uncorrected iterates. This gives us one minimizer inXd of theq functionnal. To sat-
isfy the variational condition, an additional continuous coarse correction can then
be computed inXc.

As in the 1D case, the convergence curves presented in Figure 1 show thatthe
discontinuous coarse space correction leads to a much faster convergence than the
continuous one. Even though the discontinuous coarse spaceis only a subset of the
optimal theoretical coarse space, the improvement over continuous coarse spaces is
substantial. In order to see in the error how the jumps slow down the convergence of
the continuous coarse correction version, we present in Figure 2 a few snapshots of
the errors. We observe the formation of a checkerboard like structure which cannot
be corrected by a continuous coarse space. Once the errors look like a checkerboard,
the convergence of the continuous coarse correction algorithm slows down consid-
erably. Using a discontinuous coarse space prevents the checkerboard like structure
from appearing.

5 Conclusion

We have shown that for domain decomposition methods with discontinuous iter-
ates, the use of a discontinuous coarse space greatly improves that of a standard
continuous one. We have designed one such discontinuous coarse space algorithm,
the DCS-DMNV algorithm, the formulation of which is well suited for finite ele-
ment discretizations. In practice, this algorithm should be used in conjunction with
Krylov acceleration. We intend to study the behavior of the Krylov accelerated DCS-
DMNV in a forthcoming paper. We are currently studying such algorithms also for
finite difference and finite volumes schemes, and investigating how the optimization
parameterp in the transmission conditions interacts with the Dirichlet boundary
conditions used in the definition of the coarse space.
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A two-level preconditioning framework based on
a Richardson iterative process

Thomas Dufaud1

1 Introduction

We focus on the solution of a general linear systemAu= f by a Krylov type iterative
method, whereA ∈ Rm×m is non-singular,u, f ∈ Rm. The major drawback of the
GCR (Generalized Conjugate Residual) [7] and the GMRES (General Minimum
Residual) [8] methods is their convergence rate that depends on the conditioning
numberκ(A) = ‖A‖ ‖A−1‖.

The convergence rate of these techniques decreases whileκ increases and the use
of such methods needs preconditioning. In the following we consider left precondi-
tioning. The goal is to solveM−1Au=M−1 f with M−1 such thatκ(M−1A)≪ κ(A).

Preconditioning can be enhanced by multilevel techniques.Multilevel techniques
are known to be robust for scalar elliptic Partial Differential Equations with standard
discretization and to enhance the scalability of domain decomposition method such
as Restricted Additive Schwarz preconditioning techniques. An issue is their appli-
cation to linear system encountered in industrial applications which can be derived
from non-elliptic PDEs. Moreover, the building of coarse levels algebraically be-
comes an issue since the only known information is containedin the operator to
inverse.

One can consider a coarse space as a space to represent an approximated solution
of a smaller dimension than the leading dimension of the system. It is possible to
build a coarse level based on a coarse representation of the solution. Drawing our
inspiration from the Aitken-SVD methodology [9] dedicatedto Schwarz methods,
we proposed to construct an approximation space by computing the Singular Value
Decomposition of a set of iterated solutions of the Richardson process associated to
a given preconditioner.

From a preconditionerM−1 associated to a Richardson process:

uk = uk−1+αM−1
(

f −Auk−1
)

with α ∈ R (1)

We propose to build a two-level additive preconditionerM−1
2L :

M−1
2L = M−1+M−1

c (2)

where for a basisUq ∈ Rm×q, M−1
c = Uq(UT

q AUq)
−1UT

q .

1 INRIA Rennes - Bretagne Atlantique, Campus universitaire de Beaulieu, 35042 Rennes Cedex
FRANCE, e-mail:thomas.dufaud@inria.fr
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The plan of the paper is the following. Section 2 describes the methodology
to compute an algebraic coarse level from successive iterations of a Richardson
process. Numerical investigations with the RAS preconditioner built for real non-
symmetric indefinite operator, are performed in section 3. Section 4 concludes the
study.

2 Methodology

The idea is to compute a coarse representation of the solution. In [9] a fully alge-
braic computation of a coarse space is proposed to perform anAitken acceleration
of vectorial sequence generated with an iterative domain decomposition method. In
[6] Aitken-SVD Schwarz algorithms were derived for the Aitken Restricted Addi-
tive Schwarz preconditioning technique [5].

The choice of constructing the coarse space with the SVD is based on the fol-
lowing properties. LetG∈ Rm×l Assume that the valuesσk,1≤ k≤ l are ordered
in decreasing order and there exists aq such thatσq > 0 while σq+1= 0. ThenG
can be decomposed in a dyadic decomposition:

G= σ1U1V
∗
1 +σ2U2V

∗
2 + . . .+σqUqV

∗
q . (3)

This means that SVD provides a way to find optimal lower dimensional approxi-
mations of a given series of data. More precisely, it produces an orthonormal base
for representing the data series in a certain least squares optimal sense. This can be
summarized by the theorem of Schmidt-Eckart-Young-Mirsky:

Theorem 1.A non-unique minimizer X∗ of the problemminX,rankX=q‖G−X‖2 =
σq+1(G), provided thatσq > σq+1, is obtained by truncating the dyadic decompo-
sition of 3 to contain the first q terms: X∗ = σ1U1V∗1 +σ2U2V∗2 + . . .+σqUqV∗q

Moreover, the SVD of a matrix is well-conditioned with respect to perturbations of
its entries. Consider the matrixG,B∈ Rm×l , the Fan inequalities writeσq+s+1(G+
B) ≤ σq+1(G)+σs+1(B) with q,s≥ 0, q+ s+1≤ l . Considering the perturbation
matrix E such that||E|| = O(ε), then |σk(G+E)−σk(G)| ≤ σ1(E) = ‖E‖2, ∀k.
This property does not hold for eigenvalues decomposition where small perturba-
tions in the matrix entries can cause a large change in the eigenvalues.

These properties allow us to search an approximation of the solution in the base
linked to the SVD of a sequence of vectors obtained by iterating a linearly conver-
gent iterative process.

Here, we propose a general framework which enables to compute algebraically
a two-level additive preconditioner from any preconditioner that can be used in a
Richardson iterative process. Algorithm 1 shows the steps to computeM−1

2L that
way. In step 1, we compute the SVD ofl successive iterations stored in a matrix
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G ∈ Rm×l of a Richardson process (1) having a linear convergence,i.e. we com-
pute a dyadic decomposition ofG, asG= Ul ΣlVT

l , with Ul ∈ Rm×l Σl ∈ Rl×l and
Vl ∈ Rm×l . In step 2,Uq is made of the first q columns ofUl with respect to the
decreasing of the singular valuesΣi,i , such thatUq is full rank. This selection is done
according to Theorem 1 whereXq ∈ Rm×q is a non-unique minimizer of the prob-
lem minX,rankX=q‖G−X‖2 = σq+1(G), such thatXq = UqΣqVT

q and rk(Uq) = q,
with Uq ∈ Rm×q, Σq ∈ Rq×q andVq ∈ Rm×q . Once this basis of the coarse space is
defined, one can compute the coarse operator (step 3) and solve the coarse problem
(step 4).

Algorithm 1 Computation ofM−1
2L with SVD of solutions of a Richardson process

Require: (uk)0≤k≤l−1, l successive iterates satisfayinguk+1−u∞ =
(
I −αM−1A

)(
uk−u∞) start-

ing from any initial guessu0

1: Compute the Singular Value Decomposition of the snapshotsG=
[
u0, . . . ,ul−1

]
= Ul ΣlVT

l
2: Set the indexq such thatq = max0≤i≤l−1{Σ(i, i) > tol}, to define the full rank matrixUq =

[U0,U1, . . . ,Uq] {ex.: tol = 10−12.}
3: Define the coarse operatorAc ∈ Rq×q such thatAc = UT

q AUq

4: Define the two-level additive preconditionerM−1
2L = M−1+UqA−1

c U
T
q

It is possible to see this approach as a way to approximate a Krylov subspace.
Basically, the solution of the linear systemAu = f defined in Section 1 con-
sists on minimizingF(uk) =

(
f −Auk, f −Auk

)
on a Krylov spaceKl

(
A, r0

)
=

{r0, Ar0, . . . , Al−1r0} = {d0, . . . , dl−1}, where from an arbitrary initial solution
u0 ∈ Rm, r0 = f −Au0.

Let chooseu0 = 0. Each iterateuk of the Richardson process can be written in a
Krylov subspace:

uk =
k

∑
i=0

βi
(
M−1A

)i
M−1 f , βi 6= 0

Following Algorithm 1, we can write that

span
(
U0, . . . ,Uq−1

)
⊂ span(U0, . . . ,Ul−1)

Then the solution of the coarse problem is an approximation of a solution in
span(Kl (M−1A,M−1 f )).

This link enable us to choose a good initial guess for the Krylov method pre-
conditioned by this two-level preconditioning approach bycomputing the solution
uc ∈ Rq of the coarse linear system:Acuc = fc, with fc = Uq f .

Then we can set the initial guess for the Krylov method such that,

u0 = Uquc
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3 Numerical experiments

In this section we propose to apply the methodology for a RAS preconditioner for
the solution of CFD problems. The considered matricesA are real, non-symmetric,
indefinite and possibly not positive.

The Additive Schwarz (AS) preconditioning is built from theadjacency graph
G = (W,E) of A, whereW = {1,2, ...,m} andE = {(i, j) : ai j 6= 0} are the edges
and vertices ofG. Starting with a non-overlapping partitionW = ∪p

i=1Wi,0 and
δ ≥ 0 given, the overlapping partition{Wi,δ} is obtained definingp partitions
Wi,δ ⊃Wi,δ−1 by including all the immediate neighbouring vertices of thevertices in
the partitionWi,δ−1. Then the restriction operatorRi,δ : W→Wi,δ defines the local
operatorAi,δ = Ri,δ ART

i,δ ,Ai,δ ∈ Rmi,δ×mi,δ onWi,δ . The AS preconditioning writes:

M−1
AS,δ =

p

∑
i=1

RT
i,δ A−1

i,δ Ri,δ . IntroducingR̃i,δ the restriction matrix on a non-overlapping

subdomainWi,0, the Restricted Additive Schwarz (RAS) iterative process [2] writes:

uk = uk−1+M−1
RAS,δ

(
f −Auk−1

)
, withM−1

RAS,δ =
p

∑
i=1

R̃T
i,δ A−1

i,δ Ri,δ (4)

When the number of subdomains increases the convergence rateof RAS decreases.
When it is applied to linear problems, the RAS has a pure linearrate of convergence.

First we study the robustness and scalability of the preconditioner on a 2D driven
cavity problem. Second we propose a test of the quality of ourcoarse space on an
2D industrial problem.

3.1 Robustness

Here, we want to study the numerical scalability of the method for the domain de-
composition preconditioner chosen. We fix the number of Richardson iteration to
perform while decreasing the convergence rate of the preconditioner, i.e. we set a
coarse space sizel and increases the number of partitionsp.

We consider a test case callede30r2000 coming from modeling 2D fluid flow in
a driven cavity proposed in the Matrix Market data collection [3] referenced under
the name DRIVCAV. The flow is modeled using the incompressible Navier Stokes
equations discretized using Finite Element Method and linearized using Newton’s
method. The unit square on what the problem is solved is dicretized by 30 elements
on the edges. The Reynolds number is set to 2000.

The matrixA is real, non-symmetric and indefinite of sizem= 9661 and has
306356 entries. The estimated condition number given by thecondest function of
MATLAB is κ∞(A) = 6.77e+11.
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We partition the operator with the METIS software for partitioning graphs with
a multilevel recursive-bisection algorithm, inp= {4, 8, 12} partitions. We compute
l = 60 iterations of a RAS iterative process starting from an initial guessu0 = 0, and
perform the SVD of the corresponding sequence of vectors.

Figure 1 (top) shows the singular values profile. Whenp increases the spectrum
coverage decreases which implies a decreasing of the quality of the solution on the
coarse space.

Figure 1 (bottom) shows the convergence to the solution of a GCR method pre-
conditioned by a RAS preconditioning technique on the left and enhanced by the
given algebraic two-level approach with initialisation ofthe Krylov method by the
solution of the coarse system written onRm. The convergence rate of the RAS
method is reduced for each choice of partitioning. Forp = 4 and p = 8 the ini-
tialization by the coarse solution is efficient and we observe an enhancement about
8 and 2 orders of convergence at the initialization respectively. For all partitioning
the accuracy is better than for the RAS,i.e. the GCR reaches greater convergences
and, although there is still a plateau due to the bad conditioning of the system, the
convergence to the solution forp= 12 can reach 10−7 instead of 10−5.

3.2 Quality

Here, we want to observe the influence of the quality of the coarse space on the
convergence rate of the preconditioned solution method.

We apply our technique on the case GT01R proposed by a CFD company called
FLUOREM, on [1], which deals with steady flow parametrization. From a steady
RANS simulation (compressible Navier-Stokes equations) on a reference configu-
ration they obtain linear systems with real, square and indefinite matrices. Those
matrices, generated through automatic differentiation ofthe flow solver around a
steady state, correspond to the Jacobian with respect to theconservative fluid vari-
ables of the discretized governing equations (finite-volume discretization). The right
hand side represents the derivative of the equations with respect to a parameter (of
operation or shape).

The CASE004 GT01 operator comes from a 2D inviscid case in the context of
a linear cascade turbine. The solution of the discrete system is defined over five
variables per node. The discretisation is done among 1596 nodes, describing one
inter-blade channel. The stencil involved by the convective scheme uses nine nodes.
Thus, there are nine non-zero blocks for each node in the matrix. The peculiarity
is that the computational domain is periodic, which introduces some non-zero ele-
ments far away from the diagonal. The resulting matrix is real, non-symmetric and
not positive definite, of sizem= 7980.

Figure 2 shows the singular values (left) obtained after 20,40 or 60 iterations of
a RAS iterative process withp = 8. For l = 60, σ covers 15 orders of magnitude,
while it covers 10 orders of magnitude forl = 40 and 5 forl = 20. For each we
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Fig. 1 Solving 2D driven cavity, Re=2000, n=9661, with GCR preconditioned by RAS (left) and
ML RAS svd(60) (right). Singular values of RAS solutions to computeM−1

c for p = 4, 8, 12 (top).

choosel = q. As expected, the convergence of the GMRES (right) is betterwhen
q increases. Nevertheless, the convergence plots for 20 and 40 singular values kept
are similar.

Table 1 shows the coarse solution accuracy compared to a solution given using
LU factorization. The greater the number of iterations of a Richardson process is,
the better the coarse solution accuracy is.

Those results shows that, although the quality of the coarsespace is increasing
with the number of Richardson iterations, it is not necessary to compute a lot of
singular values to enhance the convergence with this technique.
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Fig. 2 Solving 2D case, GT01, n=7814, with GMRES preconditioned by RAS and
ML RAS svd(q), p = 8 (right), Singular values of RAS solutions to computeM−1

c (left)

modes 20 40 60
‖uex−UT

q uc‖ 7.23 e-01 5.99 e-02 8.39 e-03

Table 1 Coarse solution accuracy for the GT01 case, compared to a solutiongiven usingLU
factorization.

4 Conclusion

As in [9] and [6] the principle of using the SVD of successive solutions of an it-
erative process enables to compute a coarse solution without the knowledge of the
underlying equations but it not used to accelerate a sequence of vectors but to con-
struct a Krylov subspace. Then it can also be used to construct algebraic coarse
levels for a two-level preconditioning technique based on any preconditioner which
can be used in an iterative Richardson process.

Numerical results have been shown for the RAS preconditioning technique on
two fluid flow problems. The algebraic framewok enables to deal with real, non-
symmetric and not positive definite operators. The two-level preconditioners pro-
duced are numerically scalable for domain decomposition technique such as RAS
and the coarse space enables to compute an approximation of the solution which is
used to initialize the chosen Krylov method.

Further work concerns the study of the non-singularity of the coarse operators
built with this approach [4]. Moreover, a discussion about the choice of the SVD
algorithms and the quality of the coarse space produced should be studied.
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Distributed Nonsmooth Contact Domain
Decomposition (NSCDD): algorithmic structure
and scalability

V. Visseq1, A. Martin2, D. Dureisseix3, F. Dubois1, and P. Alart1

1 Introduction

Numerical simulations of the dynamics of discrete structures in presence of numer-
ous impacts with frictional contacts leads to CPU-intensive large time computations.
To deal with these problems (e.g. granular materials, masonry structures), numerical
tools have been developed, such as the nonsmooth contact domain decomposition
(NSCDD), presented Sec 2. We focus herein on a distributed version with parallel
detection of fine contacts (Sec. 3) and on two possible communication schemes to
solve the interface problem (Sec. 4). Those improvements allow to study scalability
and numerical performances of the method for 2D and 3D granular media (Sec. 5).

2 The nonsmooth contact domain decomposition

2.1 Nonsmooth contact dynamics reference problem

In this section we recall briefly the background theory of nonsmooth contact dy-
namics in the context of time-stepping schemes before an analysis of the main steps
of the NSCDD method.

With a time-stepping scheme, no event detection is performed. Once the solu-
tion is known at the beginning of a time slab[ti , ti+1], whose known quantities are
denoted with a superscript (−), the quantities at the end of the time slab (without a
superscript) have to be determined.

Grain nonsmooth dynamics.Considering a rigid model for the grains, the dynam-
ics of the granular medium is written as the vector equation [4]:

1 LMGC – UMR 5508, Universit́e Montpellier II / CNRS, CC 048 Place Eugène Bataillon, F-
34095 Montpellier Cedex 5, France e-mail:{FirstName}.{Name}@univ-montp2.fr ·2
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Clamart Cedex, France e-mail:alexandre-externe.martin@edf.fr ·3 David Dureisseix
LaMCoS – Universit́e de Lyon, UMR 5259 INSA Lyon / CNRS, B̂atiment Jean d’Alembert,
18-20 rue des Sciences, F-69621 Villeurbanne Cedex, France e-mail: David.Dureisseix@
insa-lyon.fr
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MV−R= Rd, (1)

where the prescribed right-hand side isRd = RD +MV−. V is the velocity of the
grain (it contains the translational degrees of freedom – dof, and the rotational ones);
R is the resultant impulse on the grain due to interactions with other grains andRD

are the external prescribed impulses. The matrixM contains both the mass (for
the translational dof) and the inertia (for the rotational dof). The assembly of these
equations (independent for each grain) is formally writtenin the same way (1).

Contact interaction. For a unilateral contact Moreau proved via a viability lemma
[4], that we can use a velocity-impulse complementary law:

R(v, r) = 0, (2)

v is the velocity jump at the contact point between the two interacting grains,r is
the impulse at the same contact point.R is usually a non linear and multivalued
relationship between the previous two dual quantities. Both v andr are expressed in
the local coordinate basis to the contacts between the interacting grains. Therefore,
they are linked to the global kinematic and static quantities with compatibility con-
ditionsv= HTV andR= Hr.

Reduced dynamics.Taking the dynamics (1) and the compatibility conditions into
account, the reduced dynamics involving material variables can be obtained:

Wr−v=−vd, (3)

whereW is the Delassus operator:W = HTM−1H, andvd = HTM−1Rd. To close
the problem, one adds the constitutive relation (2), and thereference problem reads:

{
Wr−v=−vd

R(v, r) = 0
. (4)

The difficulty to solve this problem is at least two-folds: onone hand, the number
of unknowns (number of interaction quantitiesr andv) may be large (for instance,
an average of 6.5 105 unknowns for the 3D problem illustrating this paper), and the
Delassus operatorW is not well conditioned. On the other hand, the constitutive
relation is nonsmooth (e.g. it is non linear, and not differentiable). To address the
nonsmoothness issue, the NSCD (nonsmooth contact dynamics) method with a non-
linear Gauss-Seidel (NLGS) solver [4, 2] is used. To addressthe large size of the
problem, a substructuring approach is proposed.

2.2 Sub-structuring

The proposed sub-structuring may be seen as a FETI-like domain decomposition.
Indeed, after the partition of the sample (step detailed in section 3) constraints are
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added on the interface grain velocities, with E the index of asubdomain:

ns

∑
E=1

AΓEVE = 0, (5)

ns is the number of subdomains,AΓE is a signed boolean matrix selecting interface
grains among subdomains to construct their velocity jumps.This step consists of
a perfect gluing procedure, which is quite different from the approach proposed in
[3]. The dynamics per subdomain reads:

MEVE−RE = Rd
E−AT

ΓEFΓ, (6)

whereFΓ are the Lagrange multipliers associated to the previous constraints. One
shows that combining equation (5) and (6) the interface problem reads:

XFΓ =
ns

∑
E=1

AΓEM−1
E

(
RE+Rd

E

)
, (7)

with X = ∑ns
E=1AΓEM−1

E AT
ΓE the interface operator [5]. The reduced dynamics prob-

lem per subdomain has the same structure that the global one provided the addition
of Lagrange multipliers as additional external impulses onthe given right hand side:

{
WErE−vE =−vd

E+vΓ
E

R(vE, rE) = 0,
, (8)

wherevΓ
E = HT

E M−1
E AT

ΓEFΓ. To close the problem, the interface behavior (5) or (7)
should be added.

2.3 NSCDD algorithmic structure in the LMGC90 platform

The NSCDD method has been implemented into the LMGC90 platform1 [1] for
time-evolution problems (N is the number of time steps). Algorithm 1 describes its
structure. A NSCDD iteration is then composed ofnGS Gauss Seidel iterations on
the reduced dynamics and an update of interface quantities.In practicenGS is chosen
equals to 1. In the next two sections we will focus on the underlined stages (with
boldface) in the following algorithm 1.

1 www.lmgc.univ-montp2.fr/LMGC90
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Algorithm 1 NonSmooth Contact Domain Decomposition (NSCDD)
for i = 1, . . . ,N do

Contact detection (eventually parallelized) and
possible new decomposition of the domain
Initialize unknowns at timeti : (rE,vE,FΓ )
while (convergence criterion not satisfied)do

In parallel forE = 1, . . . ,ns:
Compute the velocity ¯vΓ

E
Compute (¯rE,v̄E) with nGS non-linear Gauss-Seidel iterations on:

{
WE r̄E− v̄E =−v̄d

E + v̄Γ
E

R(v̄E, r̄E) = 0
(9)

Update(rE,vE)← (r̄E, v̄E)
ComputeR̄E and correct the velocity on interface grains to getAΓ EV̄E

In sequential, but may be possibly parallelized (DCS version):
Compute ∆FΓ as:X∆FΓ = ∑ns

E=1 AΓ EV̄E and update interface impulsesFΓ
end while
Update grain positions in parallel

end for

3 Contact detection

At the beginning of a time step, positions and velocities of grains are known and
the contact network between bodies has to be computed. Contact detection is a CPU
time consuming task, especially for a large number of bodies—this is directly re-
lated to the number and the shape of the elements considered.Usually, an efficient
solution is to proceed to a two-level detection, i.e. a rough(and cheap) detection fol-
lowed by an elimination of loose contact predictions and thecomputation of contact
frame (the fine detection).

3.1 Partitioning based on “rough” contact network

Once a rough detection has been performed, the interaction graph consists in nodes
associated to grains and edges associated to interactions.We choose to distribute
interactions among subdomains as in [5] (we proceed by distributing the middle
points between the centers of mass of interacting grains, according to their coordi-
nates, using an arbitrary regular underlying grid, Figure 1(a)). Indeed, with such a
choice, the “boundary” grains are duplicated in the subdomains. If a grain indexed
with i is connected withmi subdomains,mi is called its multiplicity number. For
consistency for the rigid model of the grains, the masses andmoments of inertia
are distributed among the neighboring subdomains according to their multiplicity
number, in a partition of unity manner. We remark that rough detection, and so the
domain partitioning, does not have to be done at each time step, but at a user-defined
frequency (fixed at 10 time steps for numerical tests of section 5).
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Fig. 1 Rough (a) and fine (b)
interaction network and their
associated domain partition-
ing. Striped grains represent
grains of multiplicitymi > 1;
dashed lines represent interac-
tions roughly detected which
vanishes in effective contact
network.

(a) (b)

3.2 Parallelized fine detection

Once the domain decomposition has been performed, data can be distributed among
the processors and a fine contact detection can be performed in parallel on each
substructure local data. Nevertheless contacts roughly detected may disappear at the
end and the multiplicity number of the grains may have been incorrectly predicted
(Figures 1(a) and 1(b) show cases we may encountered). In particular, predicted
boundary grains could turn out not to belong to the minimal interface (computed
thanks to the fine contact graph). Their adding to the interface gluing step does not
change the problem to solve but increases the size of data to transfer between pro-
cessors. A future optimization should be to correct interface structures and material
parameters to take this phenomenon into account.

4 Communication schemes for solving interface problem

In this section we present two communication schemes associated to centralized
and distributed interface problem solving procedure. As one has to solve the in-
terface problem for each NSCDD iterations, to define an appropriate algorithmic
formulation, minimizing the data exchanges between processes, is a key issue for
the performances of the proposed method.

4.1 Centralized communication scheme (CCS)

At a first glance, the interface gluing step (7) is defined as a global linear equation
linking all the subdomains. This is replaced in the iterative algorithm by requiring
communications between the subdomains such that one process gathers all the ve-
locity contributions to the vector of velocity jumps. The value of the Lagrange mul-
tipliersFΓ computed sequentially is then distributed such that subdomain E receives
its minimal data amountAT

ΓEFΓ.
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4.2 Decentralized communication scheme (DCS)

Due to the structure of the interface operatorX, extensively studied in [5], each
distributed database (per process related to subdomain E∗) is sufficient to construct
the elementary contribution to the interface operator:

XΓE∗ =
ns

∑
E=1

AΓE∗EM−1
E AT

ΓE∗E, (10)

AΓE∗E is a signed boolean matrix, mapping grains of subdomain E to velocity jumps
of the elementary interfaceΓE∗ (restriction of the global interface to the boundary
of subdomain E∗). Then, an elementary interface problem can be defined as:

XΓE∗∆FΓE∗ =
ns

∑
E=1

AΓE∗EVE. (11)

Finally, the data gathering of∑ns
E=1AΓE∗EVE on each process corresponds to data

exchanges over an unstructured topology. Indeed discrete element methods, such
contact dynamics, may deal with large/elongated bodies, possibly related to all sub-
domains. A common example of such bodies is a wall which support contacts on a
large range. With the computation of the assembling of localcontributions, it is easy
to show that this is the expected iterated vector:

∆FΓ =
ns

∑
E=1

BΓEDEBT
ΓEE∆FΓE, (12)

BΓE is a boolean matrix selecting interface grains among subdomains,BΓEE is a
boolean matrix selecting elementary interface grains among subdomains andDE is
a diagonal matrix with value 1/mi for entries corresponding to graini.

4.3 Performance comparison of the two communication schemes

The influence of the proposed communication schemes is studied regarding the
CPU time percentage consumed during MPI exchanges (Table 1)with respect to the
whole CPU time of a simulation. The test consists of a sample with 55000 spheres
submitted to an isotropic compaction, over 500 time steps (Figure 2).

Results presented in Table 1 show clearly the gain we may obtain considering
DCS compared to CCS. Decentralized communication scheme indeed allows to
avoid MPI collective communications (especially expensive, in our case, to scatter
updating of Lagrange multipliers) and to partially parallelize interface treatment.
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Table 1 Comparison of elapsed CPU time percentage consumed during MPI exchanges for cen-
tralized (CCS) and decentralized (DCS) communication schemes; isotropic compaction of a 55000
spheres sample.

ns Partitioning pa-
rameters (x,y,z)

CPU percentage
(CCS)

CPU percentage
(DCS)

1 1 1 1 0 % 0 %
3 3 1 1 31.3 % 14.0 %
4 2 2 1 35.6 % 9.1 %
8 2 2 2 58.3 % 18.4 %

(a) (b)

Fig. 2 Sample of 55000 spheres submitted to isotropic compaction. Subdomains indexes (a) and
multiplicity number of grains (b).

5 Scalability preliminary results

We propose to study scalability of the NSCDD method on tests consisting in sam-
ples of (2D) disks and (3D) spheres submitted to basic loadings. The speedup Sp,
function of the number of processes Np (supposed equals to the number of subdo-
mains), and the number of total iterations, over 100 time steps, are then highlighted.
On both tests, friction is considered at contact between particles. Simulations are
performed on a 48 cores AMD processor.
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Fig. 3 Speedup (a) and total number of iterations (b); biaxial loading of a 13000 disks sample.

2D – biaxial test. As shown in Figure 3, the speedup does not change drasti-
cally depending on the communication scheme for a quite small 2D sample, at least
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for a small number of processes. The number of iterations (independent from the
communication scheme) is nearly constant for all the testeddomain splittings.

3D – triaxial test. For 3D granular samples (Figure 4) the centralized communi-
cation scheme has very poor efficiency so it is not reported here. We consider a ran-
dom closed packing of 64000 spheres subjected to triaxial compaction (downward
displacement of the top wall with a constant velocity and confining stress acting on
the lateral walls). That is the hardest mechanical configuration one may encountered
because of the strong indeterminacy of the problem cumulated to the high number
of contacts unknowns (6.5×105 in average in our case), but also the most interest-
ing numerical case for the domain decomposition method proposed. We see that the
speedup has good quantitative behavior, even if the hardware and MPI library opti-
mization may be improved. Indeed, the use of about a hundred processors (for larger
problems than those studied here) implies to mobilize a supercomputing platform to
obtain reasonable speedup.

0 5 10 15
N

p

0

5

10

15

S p

NSCDD
Linear speedup

(a)
0 5 10 15

N
p

6

7

8

Ite
ra

tio
ns

 (
x1

04 )

(b)

Fig. 4 Speedup (a) and mean number of iterations (b); 64000 spheres sample.
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Integrating an N-body problem with SDC and
PFASST

Robert Speck1, Daniel Ruprecht1,5, Rolf Krause1, Matthew Emmett2,
Michael Minion3, Mathias Winkel4, and Paul Gibbon4

1 Introduction

Particle methods are an attractive approach for solving complex three-dimensional
flow problems since they are naturally adaptive [4]. In this work, we utilize a parti-
cle description based on vorticity to discretize the Navier-Stokes equations in space,
which results in a first-order initial value ODE for the particles’ positions and vor-
ticities. When highly accurate solutions to the initial value problem are required, it
is usually more efficient to use higher-order temporal integration schemes. Spectral
Deferred Correction (SDC) methods [6] are an elegant way to achieve high-order
time integration by using simple low-order schemes in an iterative fashion. While a
single time-step of an SDC method is usually more expensive in terms of computa-
tion time than a step of a classical Runge-Kutta scheme, SDC can be competitive in
terms of time-to-solution required for a fixed accuracy [3].

The temporal integration in vortex methods requires the evaluation of anN-body
problem for each function evaluation. This evaluation can be parallelized efficiently
by a spatial distribution of the particles over multiple cores. However, the strong
scalability of this approach is limited when the number of degrees-of-freedom per
core becomes too small (similar to domain decomposition techniques for mesh-
based methods). Time-parallel methods are one possible approach to speed up sim-
ulations beyond this saturation point, with early approaches dating back to [18]. A
very general scheme is Parareal [15], which allows arbitrary integration schemes to
be used in a black-box fashion. A detailed mathematical analysis of Parareal is con-
ducted in [8] and comprehensive lists of references can be found e. g. in [17, 20].
The drawback of Parareal is that the parallel efficiency is formally bounded by 1/K
whereK is the number of iterations required for convergence. TheParallel Full Ap-
proximation Scheme in Space and Time(PFASST) method for parallelizing SDC
methods in time is introduced in [7, 17]. By combining the iterations of SDC with
the iterations of Parareal, it significantly relaxes the efficiency bound of Parareal and
further enhances the competitiveness of integration schemes based on SDC.
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The present paper investigates the accuracy of integratinga particle-based dis-
cretization of the 3D Navier-Stokes equations in time usingSDC and PFASST. We
are not aware of any other studies that investigate SDC integration methods in con-
junction with particle-based spatial solvers aside from a small, one-dimensionalN-
body example in [2] forRevisionist Integral Deferred Corrections(RIDC).

Since this work focuses on the accuracy of the temporal discretization, theN-
body problem is solved directly withO(N2)-complexity, limiting the presented
studies to rather small numbers of particles. The unfavorable quadratic complex-
ity can be overcome by computing approximate interactions using e. g. Barnes-
Hut tree codes [1] or the Fast Multipole Method [11]. Resultson the strong scal-
ing of PFASST on extreme scales, simulating merely 4 millionparticles on up to
262,144 cores, are reported in [26], where the massively parallel Barnes-Hut tree
code PEPC [9, 10, 23, 24, 27] is applied. There, however, onlya very brief dis-
cussion of accuracy is given, aiming solely at identifying parameters that generate
time-parallel and time-serial solutions of comparable quality that allow for a mean-
ingful comparison in terms of runtimes. Here, accuracy of the method is addressed
in more detail, including a comparison with a standard Runge-Kutta scheme.

We briefly describe SDC and PFASST in Section 2 and present accuracy studies
in Section 3. In Section 4 we summarize our results and comment on how further
efficiency can be achieved for particle-based methods as a prelude to the large-scale
simulations performed in [26].

2 Parallel in Time Integration using Spectral Deferred
Corrections

Discretizing the vorticity-velocity formulation of the Navier-Stokes equations with
N particles results in an initial value problem of the form (see e. g. [4])

d
dt

y(t) = f (y(t)), y(0) = y0 ∈ R6N, t ∈ [0,T] (1)

where the right-hand sidef denotes the sum of all mutual particle interactions
(commonly via regularized smoothing kernels) andy ∈ R6N is a vector contain-
ing 3D positions and vorticities ofN particles. Without further approximation, di-
rectly evaluatingf is of O(N2)-complexity. This can be significantly reduced using
multipole approximations with either Barnes-Hut tree-codes [22] or the Fast Multi-
pole Method [5] at the cost of increased spatial approximation errors. In this work,
however, we focus on errors from temporal discretization, and hencef is evalu-
ated exactly with full accuracy and quadratic complexity. To solve the initial value
problem (1), classical explicit time-stepping algorithmssuch as fourth-order Runge-
Kutta schemes are commonly used, see e. g. [19]. Here, we use SDC methods [6],
which can easily produce high-order time integration schemes from simple low-
order methods and which can be parallelized in time using PFASST [7, 17].
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Let 0= t0 < t1 < t2 < .. . < tM = T denote a discretization of the time-interval
[0,T], and lettm ≤ τm

1 < τm
2 < .. .τm

J ≤ tm+1 denote a set of quadrature points in
the interval[tm, tm+1], see [14] for details on the choice of these nodes. For brevity,
we fix m and writeτ j instead ofτm

j for all j = 0, . . . ,J. Moreover, lety j denote an
approximation toy(t j), j = 0, . . . ,J. Starting from the equivalent Picard formulation
of Eq. (1), the key ingredient of SDC is the spectral approximation

Sj+1
j f =

J

∑
l=0

α j,l f (yl )≈
∫ τ j+1

τ j

f (y(τ)) dτ (2)

with quadrature weightsα j,l ∈ R. Then, thek+1 explicit update fory j+1 at node
j +1 using low-order explicit Euler is evaluated as

yk+1
j+1 = yk+1

j +∆τ j

[
f (yk+1

j )− f (yk
j)
]
+Sj+1

j f k, (3)

where∆τ j = τ j+1− τ j , k is the iteration index andy0
j is some provisional solu-

tion computed at the nodesτ j . For K iterations with a first-order propagator, SDC
formally results in aKth-order time integrator, provided the quadrature approxi-
mation is accurate enough. On the other hand, usingM Gauss-Lobatto quadrature
nodes yields a method of order 2M−2, provided the number of iterationsK is large
enough. We refer to [6, 12] for more details and properties ofthis approach.

To introduce parallel time-stepping we briefly review the Parareal approach [15].
Here, temporal parallelization of (1) is imposed by iterating over two integration
schemes, a fast and inaccurate one (the “coarse” propagator) denoted typically as
G and a slow but accurate one (the “fine” propagator) labeledF . While a classical
time-marching scheme computes a sequence of solutions

ym+1 = F (ym), tm∈ [0,T], (4)

Parareal replaces (4) by the iteration

yk+1
m+1 = G (yk+1

m )+F (yk
m)−G (yk

m), m= 0, . . . ,M−1 (5)

wherek≥ 0 is again the iteration index. The key here is that if the solution from
iteration k is known, the expensive evaluation of the termsF (yk

m) can be done
in parallel for multiplem. Then, a correction is propagated fromt0 to tM through
the cheap yet serial computation of the termsG (yk+1

m ). The Parareal iteration (5)
converges to a solution of the same accuracy as obtained by running F in serial
(i. e. by computing (4)). ForNit iterations of Parareal andNp processors, the speedup
achievable is bound byNp/Nit , see [17].

To improve parallel efficiency, the PFASST algorithm intertwines SDC inte-
grators of different accuracy forG andF with the iterations of Parareal. In ad-
dition to multiple levels in time, PFASST can benefit from spatial coarsening,
as used in e. g. multi-grid techniques. Furthermore, PFASSTemploys Full Ap-
proximation Scheme (FAS) corrections to increase the accuracy of SDC iterations
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on coarse levels. Many details of SDC, Parareal and PFASST have been omit-
ted here for brevity, and the reader is referred to the more detailed discussions in
e. g. [6, 7, 15, 17, 20, 26].

3 Numerical Results

To test SDC and PFASST in the framework of particle simulations we use a standard
spherical vortex sheet setup as discussed e. g. in [21, 25] with N = 10,000 particles
(i. e. 60,000 degrees-of-freedom), a sixth-order algebraic kernel for the regulariza-
tion, and final timeT = 32. For convenience, the direct evaluation off has been
parallelized in space using 64 processors of the Intel Cluster JUROPA at J̈ulich Su-
percomputing Centre [13]. Reported errors are computed using a reference solution
generated by an 8th-ordered SDC method with 2,048 time-steps.

Figure 1(a) shows the relative maximum error against the number of evaluations
of f for the standard RK4 method (denoted RK(4)) and SDC with different num-
bers of iterations and Gauss-Lobatto quadrature nodes (denoted SDC(X,Y) for X
iterations andY Gauss-Lobatto nodes). The left-most markers correspond to8 time-
steps, the rightmost to 2,048. Here, the order of convergence of SDC equals the num-
ber of performed iterations, since the number of quadraturenodes is high enough,
see [6]. Increasing the order of SDC (i. e. increasing the number of iterations) re-
duces the error substantially for a given number of functionevaluations. Hence, if
solutions of moderate or high accuracy are sought, e. g. below 10−7, higher-order
SDC methods are more efficient in terms off evaluations than RK4 or lower-order
SDC methods.

Although fourth-order SDC (realized here by SDC(4,3) in Figure 1(a)) is more
expensive than the classical RK4, one advantage of SDC methods is that the or-
der of convergence can be easily controlled by the interplayof quadrature nodes
and iterations. Implementing Runge-Kutta schemes of higher-order, on the other
hand, involves tedious and error-prone code re-implementations. Moreover, SDC
can easily treat stiff and non-stiff parts of the right-handside separately and/or with
differing time-steps accuracy [16]. More importantly for the present study is that
SDC methods can be parallelized in time using PFASST.

In Figure 1(b), we show the relative maximum error of two-level PFASST
runs on four time-processes, i. e. with four times more processors than the space-
parallel/time-serial SDC runs. Here, thex-axis depicts the maximum number off
evaluations performed by one process (maximum is typicallyattained on the last
time-rank), counting evaluations off in F as well as inG , see also the discussion
on Figure 2 below. We do not employ spatial coarsening, i. e. the propagatorsF
andG differ only in the number of temporal quadrature nodes. We also compare
the PFASST runs to a serial SDC run with 8 iterations on 7 Gauss-Lobatto nodes.
PFASST, while being more expensive in terms off evaluations, also yields a higher
accuracy for a given number of iterations and quadrature nodes in our case. This is
due to the fact that each iteration contains sweeps at both fine and coarse levels, so
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Fig. 1 Error versus number of evaluations of the right-hand sidef for SDC(X,Y) and the max-
imum number of f evaluations performed by one process (typically on the last time-rank) for
PFASST(X,Y) on 4 time-processes. Direct particle simulation of a spherical vortex sheet with
10,000 particles, sixth-order algebraic kernel, and up to 2,048 time-steps.

that effective number of SDC sweeps is higher than the numberof iterations. Note
again that higher-order schemes show much better efficiencyin terms of accuracy
versusf evaluations.

Besides providing higher accuracy, PFASST also introducesan additional layer
of parallelism. Provided that the spatial parallelizationis already saturated, the ap-
plication of PFASST can push the strong-scaling limit further by distributing the
temporal integration across multiple time-processes, as shown in [26]. To shed
more light on this concept, Figure 2 shows the number off evaluations required by
PFASST(8,7) on one to eight time-processors with 16 time-steps. As a reference,
we choose SDC with 12 iterations on 7 quadrature nodes to obtain a comparable ac-
curacy to PFASST(8,7) when tested against a very fine resolved reference solution:
Both schemes provide an accuracy of approx. 10−13 with 16 time-steps. The num-
ber of f evaluations inG are highlighted in blue and hatched, the ones inF in red.
Note that there is no coarse propagator in the single-level SDC scheme. The second
bar, denotedP(8,7,1), corresponds to PFASST with 8 iterations and 7 quadrature
nodes on one time-processor. When run on one time-processors, PFASST reduces
to a multi-level SDC scheme. Comparing SDC(12,7) and PFASST(8,7,1) we note
that by switching from a single-level SDC scheme of a given order to a multi-level
SDC scheme with comparable accuracy, the number of iterations are reduced (from
12 to 8 in our case). On the other hand, significant additionalcosts are introduced
due to the additionalf evaluations required by the coarse step and the transfer oper-
ations between fine and coarse quadrature nodes. However, the extra computational
work of the multi-level SDC scheme can be distributed acrossmultiple processors
as demonstrated in the three remaining bars, which correspond to PFASST(8,7)
on two, four and eight processors. Hence, if the workload of PFASST(8,7) is dis-
tributed across sufficiently many processors, then the total runtime becomes smaller
than the time-to-solution of the serial SDC(12,7) method. This is highlighted by
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Fig. 2 Distribution of f evaluations on the coarse and fine level for SDC(12,7) (abbreviated by
S(12,7)) and PFASST(8,7,Z) with Z = 1,2,4,8 time-processes (abbrev. by P(8,7,Z)). One block
of coarse and fine evaluations corresponds to one time-step on onetime-process (SDC is serial in
time and evaluates only on the fine level). Depicted runtimes are normalized with respect to the
SDC runtime (418 sec. for our test setup with with 10,000 particles, sixth-order algebraic kernel).
All runs yield comparable accuracy for 16 time-steps.

the green line, which shows the runtime normalized by the runtime of SDC(12,7).
While PFASST(8,7,2) is still slightly slower than SDC(12,7), PFASST(8,7,4)
and PFASST(8,7,8) show significant speedup. The cost of enlarging the problem,
i. e. switching from SDC to a multi-level scheme, is compensated by the fact that
this multi-level approach is amenable to parallelization while SDC itself is not.

4 Conclusion and Outlook

In this work, we have investigated the accuracy and convergence order of Spec-
tral Deferred Correction (SDC) methods and their parallelization using the PFASST
method. SDC provides a reliable, flexible, and generic mechanism to generate high-
order and high-accuracy time integrators. We have shown that SDC and its time-
parallel variant PFASST provide the theoretically expected convergence orders and
accuracies on an example particle problem. In contrast to classical Runge-Kutta
schemes, the convergence order and/or accuracy of SDC methods can easily be con-
trolled by changing the number of iterations and/or quadrature points used, and the
use of higher-order SDC methods allows much larger time-steps and hence fewer
evaluations of the right-hand side. This is consistent withthe increase of accuracy
and also stability regions observed in [6].

Another key advantage of SDC methods is that that they can be parallelized in
time with PFASST. Here, the careful union of fine and coarse SDC iterations leads
to a high-order parallel-in-time integration scheme whichrelaxes Parareal’s bound
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on parallel efficiency and can provide significant speedup beyond space-only paral-
lelization. In our test case, PFASST is more accurate for a given number of quadra-
ture nodes and iterations, although for enough iterations both SDC and PFASST
eventually provide the same solution. Moreover, we have demonstrated how the
principle of “doing more to be faster” paves the way for temporal parallelism: the
introduction of (possibly multi-level) coarsening in space and time increases the
number of f evaluations significantly but also allows work to be distributed across
many time-processors.

Here PFASST is used with temporal coarsening only, while considerably more
parallel efficiency can be obtained by introducing both spatial and temporal coars-
ening. While grid-based spatial coarsening by multi-grid techniques is well under-
stood, spatial coarsening of particles systems is less straightforward. One possibility
is to control the quality of the approximation off using multipole methods instead of
direct summation [26]. Thus, the use of fast summation algorithms not only allows
extreme-scale simulations as demonstrated in [27], but also introduces a promising
way of particle-based spatial “coarsening”.
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Hybrid Space-Time Parallel Solution of
Burgers’ Equation

Rolf Krause1 and Daniel Ruprecht1,2

1 Introduction

Many applications in high performance computing (HPC) involve the integration
of time-dependent partial differential equations (PDEs).Parallelization in space by
decomposing the computational domain is by now a standard technique to speed up
computations. While this approach can provide good parallelscaling up to a large
number of processors, it nevertheless saturates when the subdomains become too
small and the time required for exchanging data starts dominating. Regarding the
anticipated massive increase of available cores in future HPC systems, additional
directions of parallelization are required to further reduce runtimes. This is espe-
cially important for time-critical applications like, forexample, numerical weather
prediction, where there exists a very strict constraint on the total time-to-solution
for a forecast in order to be useful.

One possibility for providing such an additional directionof parallelization are
parallel-in-time integration schemes. A popular scheme ofthis type is Parareal, in-
troduced in [1, 7]. It has been applied successfully to a broad range of problems and
also undergone thorough analytical investigation. A largenumber of corresponding
references can be found, for example, in [6, 9].

While numerous works exist dealing with different aspects ofParareal in a purely
time-parallel approach, there seem to be few studies that address the combination
of Parareal with spatial parallelization, in particular with a focus on implementa-
tion. First results on combining Parareal with spatial domain decomposition are pre-
sented in [8]. While scaling of the algorithm is discussed, noruntimes are reported.
In [12, 13], computing times for a pure MPI-based combination of Parareal with
spatial domain decomposition for the two-dimensional Navier-Stokes equations are
given, but with ambiguous results: Either a pure time-parallel or a pure space-
parallel approach performed best, depending on the problemsize. In [4], the ca-
pability of a purely MPI-based approach to speed up simulations for the 3D Navier-
Stokes equations beyond the saturation of the spatial parallelization is shown. Ex-
tensive scaling tests for the ”revisionist deferred correction” method (RIDC) for the
linear heat equation, also in combination with domain decomposition, can be found
in [3].

The present paper investigates the performance of a combination of a shared
memory implementation of Parareal featuring explicit integrators with an MPI-
based parallelization of a stencil-based spatial discretization into a hybrid (see [10])

1Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13,
6900 Lugano, Switzerland,{rolf.krause,daniel.ruprecht }@usi.ch ·2 Mathematis-
ches Institut, Heinrich-Heine-Universität, Universiẗatsstrasse 1, 40225 Düsseldorf, Germany
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space-time parallel method. The code is an extension of the purely time-parallel,
OpenMP-based implementation used in [11]. Using shared memory for Parareal
avoids communication of volume data by message passing and thus reduces the
memory footprint of the code.

2 Algorithm and Implementation

The starting point for Parareal is an initial value problem

dq
dt

= f(q), q(0) = q0 ∈ Rd, (1)

where in the present work, the right hand sidef stems from the spatial finite dif-
ference discretization of some PDE on a rectangular domainΩ ⊂ R2. The spatial
parallelization uses a standard non-overlapping decomposition of the domain, al-
lowing for a distributed computation off(q), where every MPI-process handles the
degrees-of-freedom of one subdomain and ghost-cell valuesare exchanged at the
boundaries. The implementation described below can be usedfor all integrators that
involve only straightforward evaluations off, that is explicit methods or implicit
methods where the arising linear or nonlinear system is solved with e.g. a fixed
point iteration. For more complex solvers, e.g. a multi-grid method, a hybrid strat-
egy will be more involved, because other parts like restriction or interpolation would
have to be included in the hybrid paradigm as well.

2.1 Parareal

Parareal allows one to parallelize the integration of (1) bycombining a number of
time-steps into one coarse time-slice and performing an iteration where multiple
time-slices are treated concurrently. LetFδ t denote a numerical integration scheme
of suitable accuracy, using a time-stepδ t. A second integration scheme is required,
typically calledG∆ t , using a time-step∆ t ≫ δ t, which has to be much cheaper in
terms of computation time but can also be much less accurate.Denote by

q̃g = G∆ t(q, t̃, t), q̃f = Fδ t(q, t̃, t) (2)

the result of integrating forward in time from an initial value q at timet to a time
t̃ > t usingG∆ t or Fδ t . Parareal usesG∆ t to produce approximate solutions at nodes
(ti)i=0,...,Nc of a coarse temporal mesh (lines 2 – 4 in Algorithm 1). These guesses
are then used as initial values for runningFδ t concurrently on allNc time intervals
[ti , ti+1] (lines 6–10). A correction is then propagated sequentiallyby another sweep
of G∆ t (lines 11 – 13). The procedure is iterated and converges towards the solution
that would be obtained by runningFδ t sequentially fromt0 to tNc. For a detailed
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Algorithm 1 Parareal algorithm implemented with OpenMP usingNc threads
1: q0

0 = q0, k := 0
2: for i = 0 toNc−1 do
3: q0

i+1 = G∆ t(q0
i , ti+1, ti)

4: end for
5: repeat
6: omp parallel for
7: for i = 0 toNc−1 do
8: q̃k

i+1 = Fδ t(qk
i , ti+1, ti)

9: end for
10: omp end parallel for
11: for i = 0 toNc−1 do
12: qk+1

i+1 = G∆ t(qk+1
i , ti+1, ti)+ q̃k

i+1−G∆ t(qk
i , ti+1, ti)

13: end for
14: k := k+1
15: until k= Nit

explanation and properties of the algorithm we refer to [6] and references therein.
Note that an MPI-based implementation of Parareal requirescommunication of full
volume data in line 12, which is avoided by the shared memory parallelization in
time used here.

For a given time interval[t0, tNc], denote byNf the number of fine steps required to
integrate fromt = t0 to t = tNc, by τc andτf the execution time of one single coarse
or fine time-step and byNit the number of performed iterations. Further, assume
that G∆ t always performs one single step, so thatNc is also the number of coarse
steps betweent0 andtNc. The speedup obtainable by Parareal for a given number of
processors can be estimated by

s(Np)≈
1

(1+Nit)
Nc
Nf

τc
τf
+ Nit

Np

≤ Np

Nit
. (3)

Note that the maximum parallel efficiency is bounded by 1/Nit . Because of this
limit, Parareal is commonly considered on top of a saturatedspatial parallelization
for problems where minimizing time-to-solution is critically important. Recently,
a new scheme named PFASST, based on a combination of Pararealwith spectral
deferred correction methods, has been introduced in [5].

2.2 Implementation

For the OpenMP-based parallelization sketched in Algorithm 1 to be efficient, the
implementation of the fine propagatorFδ t has to be suitably designed for mul-
tithreading. This involves a number of technical issues like taking care of ”non-
uniform memory access” (NUMA) inside compute nodes by ensuring that the data
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Fig. 1 Sketch of a decomposition of a 4x4 cells domain (left) into 4 sub-domains with 2x2 cells
each (right). Cell-centers are marked as dots. The grey cells mark the halo values that have to be
send to the processor handling the upper left sub-domain before each evaluation off if a simple
5-point star is used. For stencils with wider support, the halos also need to be wider and commu-
nication between diagonally adjacent processors might be required. In the time-parallel OpenMp
version, halo data has to be exchanged for each thread. In the implementation used here, the master
thread handles all halo exchanges as sketched in Figure 2.

Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2

Eval f Eval f Eval f

Eval f Eval f Eval f

Eval f Eval f Eval f

Eval f Eval f Eval f

Fig. 2 Flow chart of halo exchange in funneled mode with 2 nodes, each running 3 threads: Before
each evaluation of the right hand sidef, the master thread (thread 0) exchanges up-to-date halo
values (represented by three grey bars) for all threads with the other node. The other threads are
idle during communication. After communication has finished, allthreads continue with evaluating
f. Synchronization is achieved by the OpenMpBARRIER directive while MPI calls are enclosed
in MASTER directives to ensure they are only executed by the master thread.

a core accesses while running a thread is located in the memory closest to this core.
A detailed introduction into efficient OpenMp programming can be found in [2].

2.2.1 Ghost-Cell Exchange

To combine the OpenMp implementation of Parareal with parallelization in space,
frequent exchange of boundary values between processors handling different sub-
domains is necessary: Figure 1 sketches the decomposition of a 4×4 cell domain
into 4 sub-domains. In order to evaluate e.g. a standard five-point stencil discrete
Laplacian, every processor needs to receive a ”halo” of up-to-date values before
evaluating the stencil (halo cells for the upper left sub-domain are marked in grey in
Figure 1). Communication of these halo data is done here through message passing
using MPI.

For using MPI in conjunction with OpenMp, different optionsexists for the ini-
tialization of the MPI library that govern how MPI routines can be called by different
threads. Here, we use the optionMPI THREAD FUNNELED which allows only
the master thread to make calls to the MPI library. As the ghost-cell communication
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in Fδ t takes place in the multithreaded part of the code, suitable OpenMP directives
have to be used to synchronize threads and ensure compliancewith the funneled op-
tion (OMP BARRIER andOMP MASTER). The coarse integrator is outside the
parallel OpenMp region in Algorithm 1 so that no thread synchronization is required
there. Organization of the ghost-cell exchange is sketchedin Figure 2: Prior to every
evaluation of the right hand side functionf, the master thread (thread 0) exchanges
halo data for all threads on the node. While the master thread is busy communicat-
ing, the other threads are idle. This ”idle threads problem”is one of the drawbacks
of the funneled approach pointed out in [10]. Then, after themaster thread has fin-
ished communicating, all threads continue with the computation of f and update
the solution according to the integration method used forFδ t . After every update
(in case of a Runge-Kutta method for example, that means after every stage), the
new halo values have to be exchanged again by the master thread before the next
evaluation off and so on.

3 Numerical Results

The performance of the hybrid space-time parallel approachis analyzed here for the
two-dimensional, nonlinear, viscous Burgers equation

ut +uux+uuy = ν∆u (4)

on a domain[−2,2]× [−2,2] with initial value

u(x,y,0) = sin(2πx)sin(2πy), (5)

a parameterν = 0.02, a mesh width∆x = ∆y= 1/40 and periodic boundary con-
ditions. A two-dimensional decomposition of the domain into square or rectangular
subdomains, depending on the number of MPI-processes, is performed and a carte-
sian communicator for MPI is used. Parareal uses time-steps∆ t = 2× 10−3 and
δ t = 2×10−5. ForG∆ t , the spatial discretization uses 3rd-order upwind finite differ-
ences for the advection term and 2nd-order centered differences for the Laplacian,
whileFδ t uses a 5th-order upwind stencil for the advection and a 4th-order centered
stencil for the Laplacian. Hence, a two-cell wide halo has tobe exchanged in the
coarse and a three-cell wide halo in the fine propagator. The simulations are run until
T = 0.5 andG∆ t always performs one single step per coarse interval, so the number
of restarts of Parareal depends on the number of threads assigned for the tempo-
ral parallelization. A forward Euler scheme is used forG∆ t and a Runge-Kutta-2
scheme forFδ t . To assess accuracy, a reference solution withδ t/10 is computed
sequentially. With a fixed number ofNit = 3 in Parareal, the relative‖ · ‖∞-error
of the time-parallel solution isεpara≈ 2.2× 10−8 and of the time-serial solution
εseq≈ 1.8× 10−8, so that both solutions are of comparable accuracy. The coarse
integrator run alone results inεcoarse≈ 2.9×10−2.
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# MPI-P time-serial hybrid Parareal speedup
1 59.9 s 29.5 s 2.0
2 34.6 s 15.4 s 2.2
4 21.2 s 9.4 s 2.3
8 14.2 s 6.0 s 2.4
16 9.2 s 4.2 s 2.2
20 9.5 s – –

# MPI-P time-serial hybrid Parareal speedup
1 16.4 s 7.3 s 2.2
2 10.5 s 4.9 s 2.1
4 6.9 s 3.3 s 2.1
8 4.7 s 2.2 s 2.1
16 3.3 s 1.5 s 2.2
20 4.5 s – –

Table 1 Runtimes of the time-serial code and the hybrid Parareal code using 8 threads on each
node for different numbers of spatial sub-domains, each corresponding to one MPI process. Shown
are runtimes for a grid with 160×160 cells (left) and for a grid with 80×80 cells (right). Note that
using more than 16 sub-domains no longer reduces runtime of the serial code in both cases.

The used machine is a cluster consisting of 42 nodes, each containing 2 quad-core
AMD Opteron CPUs with 2,700 MHz and 16 GB RAM per node. In the example
below, the time parallelization always uses eight threads per node, in order to utilize
one full node. The nodes are connected by an INFINIBAND network.

3.1 Runtimes and Scaling

Reported runtimes are measured with theMPI WTIME routine provided by MPI
and do not contain I/O operations.

3.1.1 Speedup from Parareal

With the used parameters, the speedup obtainable by Parareal using eight threads
is bounded bys≤ 2.57 according to (3). The ratioτc/τf = 0.35 has been deter-
mined experimentally fby runningG∆ t andFδ t serially on a single core. The value
varies when using multiple processes, but the effects of thevariation on the speedup
estimate are small. Table 1 (left) shows the runtimes of the time-serial and the hy-
brid Parareal solution for different numbers of subdomainsand corresponding MPI-
processes. To further illustrate performance of the approach, runtimes for the 80×80
cell mesh are also shown (right). Runtimes obtained for a 40×40 mesh not shown
here indicate similar speedups from Parareal using one, twoand four MPI-processes
as well as no further reduction of runtime of the time-serialcode if more than four
MPI-processes are used.

While the time-serial solution assigns each process to one core, the time-parallel
solution assigns each process to one node and uses the eight cores inside the node
for the temporal parallelization. In both cases, the speedups from Parareal actually
achieved by the hybrid implementation are between 78% and 93% of the theoret-
ical maximum, despite the overhead caused by the funneled mode, supporting the
efficiency of the hybrid space-time parallel approach.
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Fig. 3 Total speedup achieved by the space-parallel, time-serial (blue) and the hybrid space-time-
parallel scheme (red) depending on the total number of used coresfor the 160×160 cell mesh.

3.1.2 Total scaling

As discussed above, one essential motivation for time-parallel schemes is to pro-
vide an additional direction of parallelization to achievefurther reduction of time-
to-solution after spatial parallelization saturates. Figure 3 shows the total speedup,
that is compared against the time-serial solution on one core, for the time-serial
and hybrid Parareal scheme. Because the considered problemis quite small and the
underlying stencil-based discretization is comparably cheap to evaluate in terms of
computation time, the pure spatial parallelization scalesonly to 16 cores (cf. Ta-
ble 1). Beyond that point, using more cores does not further reduce runtime. Also,
near perfect scaling is seen only up to two cores, after this the parallel efficiency
is noticeable less than one. Note that the slow increase in speedup for the hybrid
scheme is caused by the efficiency bound (3) of Parareal: For lower numbers of
cores where the spatial parallelization is not yet saturated, the time-serial version
performs better, because the efficiency of the parallelization in space, although no
longer optimal, is still better than that of the time-parallel scheme. The advantage of
the space-time-parallel scheme is that it can provide a significantly greater overall
speedup. Hence, for a time-critical application where minimizing time-to-solution
is of paramount importance and a purely spatial parallelization does not provide
sufficient runtime reduction, a space-time parallel schemecan reduce runtime be-
low some critical threshold if sufficient computational resources are available. The
example clearly demonstrates the potential of the hybrid space-time parallelization
to provide runtime reductions beyond the saturation of the space parallelization.

4 Conclusions

A shared memory implementation of the Parareal parallel-in-time integration scheme
is combined with a standard distributed memory parallelization of a stencil-based
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spatial discretization. In the resulting hybrid space-time parallel scheme, each spa-
tial subdomain is handled by one MPI-process which is assigned to one compute
node. The time-slices from Parareal are assigned to different threads spawned by
the process, with each thread running on one core of the node.The capability of the
hybrid implementation to provide runtime reduction beyondthe saturation of the
spatial parallelization is documented.

Acknowledgements This work is funded by the Swiss ”High Performance and High Productivity
Computing” initiative HP2C.
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Optimized interface preconditioners for the
FETI method

Martin J. Gander1 and Hui Zhang1

1 Motivation

In the past two decades, the FETI method introduced in [10] and its variants have
become a class of popular methods for the parallel solution of large-scale finite el-
ement problems, see e.g. [11], [9], [14], [15], [8]. A key ingredient in this class
of methods is a good preconditioner for the dual Schur complement system whose
operator is a weighted sum of subdomain Neumann to Dirichlet(NtD) maps. One
choice is the so-called Dirichlet preconditioner, which isthe primal Schur comple-
ment, i.e. a weighted sum of subdomain Dirichlet to Neumann (DtN) maps. The
Dirichlet preconditioner is quasi-optimal in the sense that together with an appro-
priate coarse space, it leads to a polylogarithmic condition number inH/h, see e.g.
[14]. However, in terms of total CPU time, often a cheaper alternative called the
lumped preconditioner performs better [11, 8].

We show here that the lumped preconditioner can be further improved by intro-
ducing parameters into the tangential interface operator and optimizing them to get
condition numbers as small as possible while keeping the cost of the preconditioner
low. Since these preconditioners, like the lumped preconditioner, only involve com-
putations along the interface, and no computations in the interior of subdomains, we
call theminterface preconditioners.

We consider the model problem
{
−uxx−uyy = f , (x,y) ∈ R2

lim(x,y)→∞ u = 0,

which can be decomposed into two non-overlapping subproblems as follows:



−(u1)xx− (u1)yy = f , (x,y) ∈ (−∞,0)×R,

(u1)x = λ , (x,y) ∈ {0}×R,
lim(x,y)→∞ u1 = 0,

(1)




−(u2)xx− (u2)yy = f , (x,y) ∈ (0,∞)×R,

(u2)x = λ , (x,y) ∈ {0}×R,
lim(x,y)→∞ u2 = 0,

(2)

1
2

u1−
1
2

u2 = 0, (x,y) ∈ {0}×R. (3)

1University of Geneva, 2-4 rue du Liévre, Case postale 64, e-mail:{martin.gander}{hui.
zhang}@unige.ch
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The FETI method takes the common Neumann traceλ as unknown and the equation
to be solved forλ is defined by (3). To analyze the operator of the equation forλ ,
we let f = 0 and do a Fourier transform iny∈ R for (1), (2) and (3) to obtain




−(û1)xx−k2û1 = 0, x∈ (−∞,0),

(û1)x = λ̂ , x= 0,
limx→−∞ û1(x,k) = 0,

(4)




−(û2)xx−k2û2 = 0, x∈ (0,∞),

(û2)x = λ̂ , x= 0,
limx→∞ û2(x,k) = 0,

(5)

and
1
2

û1−
1
2

û2 = 0, x= 0. (6)

The subdomain solutions ˆui , i = 1,2 can be obtained from (4) and (5), and substitut-
ing them into the left hand side of (6) yields the equation forλ̂ ,

F̂ λ̂ :=
1√
k2

λ̂ ,

whereF̂ is the symbol of the averaged NtD operatorF . Similarly, one can obtain the
symbol of the Dirichlet preconditioner (i.e. the averaged DtN operator): it is exactly
F̂−1, which means that the Dirichlet preconditioner is an exact preconditioner for
our symmetric partition into two subdomains. However, using the Dirichlet precon-
ditioner requires to solve the Dirichlet boundary value problems on the subdomains,
which are in addition to the Neumann boundary value problemsinvolved inF .

As a cheaper alternative, Farhat and Roux introduced the lumped preconditioner
for F , see e.g. [11], which corresponds to the submatrix of the assembled matrix
for the original problem restricted to the interface. Here we explain it as an operator
at the continuous level, that isP−1

L := −∂yy+ p acting on the interface, wherep=
O(h−2). To see this, let us consider a 5-point stencil discretization of the minus
Laplacian (see the left part of the following illustration)

1
h2




−1
−1 4 −1
−1


 , 1

h2



−1

4
−1


 .

Assuming the interface is along the vertical direction, thelumped preconditioner
corresponds to a 3-point stencil along interface, shown on the right part of the above
illustration. So the symbol of the preconditioned operatorwill be

P̂−1
L F̂ :=

k2+ p√
k2

.

Note that practically|k| varies in[kmin,kmax] := [ π
H , π

h ], whereH is the domain size
andh is the mesh size, both along they direction, and that usually we have

√
p∈
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[kmin,kmax]. In this case, the spectra ofP̂−1
L F̂ are bounded by

σ(P̂−1
L F̂)⊂ [2

√
p,max{kmin+

p
kmin

,kmax+
p

kmax
}].

If we fix H and leth→ 0, we will find that the condition number ofP−1
L F is O(h−1).

So the drawback of the lumped preconditioner is that the condition number deteri-
orates at the same rate as the unpreconditioned method as themesh size tends to
zero. This is conforming to the result in [9] where it was alsopointed out that the
lumped preconditioner has a favorable spectral distribution for the Conjugate Gra-
dient method. However, in our special cases of numerical experiments, we have
not found this superiority, see Sec. 3 (in which we did use theoriginal form of the
lumped preconditioner).

Since the symbol ofF is F̂ = 1√
k2 , it is clear that an exact preconditioner forF

is the square-root of the Laplacian operator on the interface. We already know that
the Dirichlet preconditioner implements the square-root through subdomain solves.
There are also other ways to approximate the square-root or its inverse, the latter
is useful for the primal Schur complement methods. Some are based on the idea of
FFT and its extensions, see e.g. [7, 4, 13]. Two multilevel methods are proposed
in [5]. In [16], the Green’s function is used for approximating the inverse square-
root in general geometry. In the more recent approach [3, 2],a Krylov subspace
method is adopted for the approximate application of the inverse square-root. In the
context of integral equation methods for scattering problems, Pad́e approximation
is adopted for preconditioning, see e.g. [6]. Our work is more related to that of [1]1,
in which the ideas of using quadratic approximations and minimizing the condition
number were first presented. The first difference of our work from that of [1] lies in
the problems studied: the positive definite Helmholtz equation is considered in [1]
while we study the Poisson equation here. The second difference is that we propose
two new approaches, in addition to the quadratic approximation.

2 Optimized Interface Preconditioners

In this section we will introduce some approximations of thesquare-root of the inter-
face Laplacian, which define our new preconditioners. Parameters involved in these
approximations will be optimized so that condition numbersof the corresponding
preconditioned operators are as small as possible.

We first consider the preconditioner whose symbol is of the form P̂−1 := k2 +
p, the same as that of the lumped preconditioner. We now optimize however the
parameterp≥ 0 by solving the minimization problem

min
p≥0

cond(P−1F) = min
p≥0

maxk∈[kmin,kmax](k
2+ p)/

√
k2

mink∈[kmin,kmax](k
2+ p)/

√
k2

. (7)

1 We only discovered this reference when we already finished our present investigation.
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Theorem 1.The solution of problem (7) is given by p∗ = kminkmax. In particular, if
kmin = O(1) and kmax= O(h−1), we havecond(P−1F) = O(h−1/2) when p= p∗.

Remark 1.It is also possible to include the first-order derivative into the precondi-
tioner. But in that case, symmetry is destroyed, and minimizing the condition num-
ber is then not necessarily the relevant goal.

In the second approach, the symbol of the preconditioner is chosen to be of the
form

P̂−1 =
p0+ p2k2+k4

q+k2 , (8)

and we optimizep0, p2,q by solving the minimization problem

min
p0,p2,q≥0

cond(P−1F) = min
p0,p2,q≥0

maxk∈[kmin,kmax] ρ(k)
mink∈[kmin,kmax] ρ(k)

,

whereρ(k) is the symbol of the preconditioned operator, i.e.

ρ(k) :=
p0+ p2k2+k4

(q+k2)
√

k2
.

Theorem 2.Assume kmax = Ch−1 and let p0 = p2 = k4/3
max

(
2kmin+

2
kmin

)2/3
, q =

(
kmin+

1
kmin

)4/3
(kmax/2)2/3. Then we havecond(P−1F) = O(h−1/3).

Remark 2.We found numerically that the smallerkmin is, the smallerh needs to be
before the asymptotics set in. We also observed that there exist better choices of
parameters in the pre-asymptotic regime, but a formula still needs to be found.

Remark 3.There are many possible ways to implement (8) in the physicaldomain.
We found that a good way in practice is formally given by

P−1 = (−∂yy+ r0)(−∂yy+q)−1(−∂yy+ r2),

wherer0, r2 are related top0, p2 of (8) such thatk4+ p2k2+ p0 = (k2+ r0)(k2+ r2).

Now we propose a third approach for approximating the squareroot. Suppose we
have a good preconditionerÃ (e.g. Jacobi) for an operatorA such that

(i) ‖S‖< 1 whereS:= I − Ã−1A is the iteration operator,
(ii) Ã1/2 is cheap to apply,
(iii) A commutes withÃ (this can be omitted in practice).

Then, using Newton’s binomial series, we have

A1/2 = Ã1/2 (I −S)1/2 = Ã1/2
∞

∑
i=0

(1
2
i

)
(−S)i .
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Fig. 1 Values of the symbol (10) withpi the binomial coefficient in (9).

A preconditioner forA−1/2 can be obtained by truncating the infinite series,

P−1 = Ã1/2
n

∑
i=0

(1
2
i

)
(−S)i , (9)

son iterations ofSare needed in one application ofP−1. We can also consider the
more general polynomial

P−1 = Ã1/2
n

∑
i=0

pi (−S)i .

The right preconditioned operator is then

A−1/2P−1 = T
n

∑
i=0

pi (−S)i , T := A−1/2Ã1/2.

Assume the symbol ofS to be s∈ [smin,smax] ⊂ (−1,1) and the symbol ofT to
be T̂ = 1√

1−s
, which can be obtained for example by Fourier analysis. Hence, the

symbol of the preconditioned operator is

ρ(s) := Â−1/2P̂−1 =
1√

1−s

n

∑
i=0

pi (−s)i . (10)

In the case of truncation of the binomial series andn = 1, . . . ,4, the symbols are
plotted in Fig.1. This clearly shows that the symbol value tends to infinity ass goes
to one. In fact, we haveρ = O(t−1/2) for t := 1−s→ 0.

For example, whenS is Jacobi for the 1d discrete Laplacian, we haves ∈
{cos( jπ

N ), j = 1, . . . ,N−1}, where the mesh size ish= 1/N and we assumed Dirich-
let conditions on the boundary. In this case, we have max[−1,smax] ρ(s) = O(h−1) no
matter how many orders are kept in the truncation! To make things worse, the dis-
crete points insare more clustered nears=±1 than elsewhere.
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Remark 4.Since the direct truncation of the binomial series is reallygood away
from low frequencies (smallj), it is natural to approximate the low frequency part
by a coarse grid or multigrid. We will however not investigate this further here.

The idea to improve is optimizing the parameters{pi} such that the correspond-
ing condition number is minimized. We begin with the approximation of ordern= 1.

Theorem 3.Let s∈ [−1,smax] with 0< smax< 1, n= 1 and assume p1 = 1 is used
for the preconditioned operator (10). If the operator is positive definite, then the
condition number of the preconditioned operator is minimized if and only if

p0 =
2smax+

√
2−2smax

2−√2−2smax
,

in which casecond(P−1A−1/2) = O(t−1/4) as t := 1−smax→ 0.

We also tried the approximation of ordern= 2. The scaling of the condition number
whensgoes to one isnot improved for the exponentbut is improved for the constant.
We do however not have closed formulas for the optimized parameters whenn≥ 2.

3 Numerical experiments

All the numerical experiments are coded in FreeFem++ [12] with P1 elements. We
solve homogeneous equations onΩ = (0,1)2 with the zero solution. We take a ran-
dom initial guess for the CG iterations which stop when the relative preconditioned
residual norms are less than 10−15. It is worthwhile to note that the proposed precon-
ditioners involve onlyinteger-orderdifferential operators easily implementable as
matrices from standard discretization (FFT is unnecessary). So in methodology, they
are applicable to general geometry though the optimal parameters could change.

First, we solve the Laplace equation in two equal subdomains. The maximum
errors of the iterates to the exact zero solution are illustrated in Fig. 2 against the
iteration numbers, from which we can see that with the optimized interface precon-
ditioners the iterations converge faster than without or with the lumped precondi-
tioner, and the optimized rational preconditioners eventually outperform the others
in terms of iteration numbers as the mesh sizeh becomes small.

Next, we consider a diffusion problem with smoothly varyingcoefficient,

−∇ · (a(x,y)∇u) = 0, (x,y) ∈ (0,1)2,
u = 0, if xy(1−x)(1−y) = 0,

(11)

wherea= ν x2y2+0.1. The coefficienta is continuous but varies along the interface.
To study the effect of the variation, we take the constantν to be 1, 10, 100, and 1000.
We use a fifth-order quadrature rule to ensure accurate numerical integration in the
discretization. The results using two subdomains are shownin Fig. 3, and clearly
show the robustness of the optimized interface preconditioners, except for the one
based on the Jacobi preconditioner.
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Fig. 2 Maximum errors between iterates and the FEM solutions for the Laplacian in the unit square
for h= 1/16,1/64,1/256,1/512.
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Fig. 3 Maximum errors between iterates and the FEM solutions for (11)with h = 1/32 for ν =
1,10,100,1000.
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Remark 5.For the quadratic and the quartic/quadratic approximation, we adapted
the interface Laplacian to∂y(a(x,y)∂y) and at the same time multiplied the opti-
mized parameters witha(x,y). For the Jacobi induced preconditioner, we still use
the interface Laplacian operator, which is better than using the diffusion operator.
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Domain Decomposition method for
Reaction-Diffusion Systems

Rodrigue Kammogne1 and Daniel Loghin1

1 Introduction

Reaction diffusion systems have important applications inthe area of modern math-
ematical modeling. They can be found in a number of real-lifeproblems, ranging
from chemical and biological phenomena to medicine, for example [5, 10]. How-
ever the numerical solution to reaction-diffusion problems remains a challenge, as
they are often represented as a system of nonlinear PDEs, which are solved on a
complex domain. One approach to attempt to solve such problems is to use domain
decomposition methods(DD), which are more powerful and flexible. They deal
with the problem in a more elegant and efficient way, by dividing the domain into
subdomains and then obtaining the solution by solving smaller problems on these
subdomains.
In a recent paper, Caetano et al. [3] have introduced a non-overlapping domain de-
composition algorithm of Schwarz waveform relaxation typefor semilinear reaction-
diffusion equations. For solving the interface problem they proposed a new type
of nonlinear transmission, using Robin or Ventcell transmission conditions, which
leads to a solution technique independent of the mesh parameter. However, this has
not been extended to reaction-diffusion systems. Our aim inthis work is to present
an alternative approach to approximate the Steklov-Poincaré operators arising from
a non-overlappingDD-algorithm for reaction diffusion systems. Our approach is
related to that in [2]. The coercivity and the continuity of the Steklov-Poincaré op-
erators arising in a non-overlapping domain decompositionalgorithm for scalar el-
liptic problems with respect to Sobolev norms of index 1/2 allow us to construct a
new interface preconditioner, which leads to solution techniques independent of the
mesh sizeh. We validate the theoretical results on various numerical experiments.

2 Problem Description

Let Ω ⊂ R2 be an open bounded set. We consider the following model problem:
{
−D∆u+Mu = f in Ω ,

u = 000 on∂Ω ,
(1)

where:

u =

(
u1

u2

)
, M =

(
α1(x,y) β1(x,y)
β2(x,y) α2(x,y)

)
, f =

(
f1
f2

)
, D =

(
d1 0
0 d2

)
.

1 University of Birmingham, Edgbaston, Birmingham B15 2TT, UnitedKingdom, e-mail:
kammognr@for.mat.bham.ac.uk , e-mail:d.loghin@bham.ac.uk
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We assume thatf1 and f2 are inL2(Ω) and M satisfies the following bounds for all
(x,y) ∈Ω :

0< γmin <
ξ TMξ
ξ Tξ

for all ξ ∈ R2\{0} and ‖M‖< γmax. (2)

The weak formulations of problem (1) reads:
{

Find u ∈ H1
0(Ω)×H1

0(Ω) such that for allz ∈ H1
0(Ω)×H1

0(Ω)
B(u,z) =< f,z>,

(3)

where:

B(w,z) =
∫

Ω
D∇w : ∇z+(Mw) ·z dx, and < f,z>=

∫

Ω
f ·z dx.

For the weak form (3), it can be shown that the conditions of the Lax-Milgram
lemma are satisfied (see [4] for more details). In particular,

B(u,z) ≤max{1,γmax}‖u‖1‖z‖1, ∀u,z∈ H1
0(Ω)×H1

0(Ω), (4)

B(z,z) ≥min{1,γmin}‖z‖21, ∀z∈ H1
0(Ω)×H1

0(Ω) (5)

LetVh×Vh be a finite dimensional subspace ofH1
0(Ω)×H1

0(Ω). The finite element
discretizations of the weak formulation (3) reads:

{
Find uh ∈Vh×Vh such that for allzh ∈Vh×Vh

B(uh,zh) = 〈fh,zh〉.
(6)

Since (4), (5) hold for allu, z∈ H1
0(Ω)×H1

0(Ω), the existence and uniqueness of
the solution of formulation (6) is guaranteed by the Lax-Milgram lemma for alluh,
zh ∈Vh×Vh.

3 Domain decomposition

Let Ω be partitioned intoN subdomains without overlap such that:

Ω =
N⋃

i=1

Ω i , Ωi ∩Ω j = /0 (i 6= j), Γi = ∂Ωi\∂Ω , Γ =
N⋃

i=1

Γi .

Let alsoui = u |Ωi be the restriction of the solutionu to subdomainΩi , andui |Γi=λλλ i

the trace ofu on each interface.
Problem (1) is equivalent to a set ofN subproblems:





L ui = f in Ωi ,
ui = 000 on∂Ωi ∩∂Ω ,
ui = λiλiλi onΓi ,

(7)
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whereL := −D∆ +M. If we write ui = wi +vi , then equations (7) are equivalent
to the following two sets ofN subproblems:





L wi = f in Ωi ;
wi = 000 on∂Ωi ∩∂Ω ;
wi = 000 onΓi ;

(8)





L vi = 000 in Ωi ;
vi = 000 on∂Ωi ∩∂Ω ;
vi = λiλiλi onΓi .

(9)

We can viewvi as theL -extension ofλλλ i to the domainΩi and will be denoted by
Hiλλλ i . The equation forλλλ can be shown to be of the form:

N

∑
i=1

∫

Γi

(ni ·∇Hiλλλ i) ·zi ds=−
N

∑
i=1

∫

Γi

(ni ·∇wi) ·zi ds. (10)

From (10), the Steklov-Poincaré operatorS can be defined in the following way:

〈Sλλλ ,µµµ〉 :=
N

∑
i=1

∫

Γi

(ni ·∇Hiλλλ i) ·µµµ i ds. (11)

The systems (8) and (9) together with the Steklov-Poincaré problem (10) represent
the multi-domain formulation of the problem (1).

3.1 Mixed finite element discretisation

The weak formulation of the multi-domain formulation of theproblem (1) reads:

(1)

{
Find ui ∈ H1

0(Ωi)×H1
0(Ωi) such that for allzi ∈ H1

0(Ωi)×H1
0(Ωi);

Bi(wi ,zi) = (f i ,zi).

(2)





Findλλλ ∈ H1/2
00 (Γ )×H1/2

00 (Γ ) such that for allηηη ∈ H1/2
00 (Γ )×H1/2

00 (Γ );

s(λλλ ,ηηη) := 〈Sλλλ ,ηηη〉=
N

∑
i=1

[(f i ,ηηη i)−Bi(wi ,ηηη i)].

(3)

{
Find ṽi ∈ H1

0(Ωi)×H1
0(Ωi) such that for allzi ∈ H1

0(Ωi)×H1
0(Ωi);

Bi(ṽi ,zi) = Bi(vi ,zi)−Bi(pi ,zi) =−Bi(pi ,zi).

Note that̃vi = vi −pi , wherepi is anL -extension ofλλλ i to Ωi satisfyingpi = 0 on
∂Ωi ∩∂Ω .
Let Th denote a subdivision ofΩ ⊂ R2 into simplices. We defineVh =

⋃N
i=1Vh

i a
subset ofH1

0(Ω) to be a space of piecewise polynomial functions onTh such that:

Vh
i =Vh,r

i :=
{

w∈C0(Ωi) : w|t ∈ Pr ∀t ∈ Th, w |∂Ω∩∂Ωi
= 0
}
.

Here Pr(t) is considered as the space of polynomials ind variables of degreer
defined on a sett⊂ Rd. Given a basis{φφφ k}nk=1 of Vh×Vh, such that:
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uh(x) =
2(nI+nΓ )

∑
k

ukφφφ k(x),

we obtain the following linear system:




A(1)
II A(1)

IΓ M(1)
II M(1)

IΓ
A(1)

Γ I A(1)
Γ Γ M(1)

Γ I M(1)
Γ Γ

M(2)
II M(2)

IΓ A(2)
II A(2)

IΓ
M(2)

Γ I M(2)
Γ Γ A(2)

Γ I A(2)
Γ Γ







u1I

u1Γ
u2I

u2Γ


=




f1I

f1Γ
f2I

f2Γ


 ; (12)

with A(i) := diL+αiM andM(i) := βiM. The matrixM is known as the mass matrix,
while L represents the discrete Laplacian matrix. We also denote by

SA(i) := A(i)
Γ Γ −A(i)

Γ I (A
(i)
II )
−1A(i)

IΓ the corresponding local Schur complement associ-
ated withA(i). Equation (12) can be rewritten as:

Au =

(
AII AIΓ
AΓ I AΓ Γ

)(
uI

uΓ

)
=

(
fI

fΓ

)
, (13)

where:

Aµν =

(
d1Lµν +α1Mµν β1Mµν

β2Mµν d2Lµν +α2Mµν

)
, µ ,ν ∈ {I ,Γ }.

4 A blockdiagonal interface preconditioner

Let H1/2
00 (Γ ) denote the interpolation space betweenH1

0(Γ ) andL2(Γ ), which is
equipped with the norm‖ . ‖1/2,Γ as given in [8, chapter 1]. It can be shown that the
finite element matrix representation of the norm‖ . ‖1/2,Γ is given by [1]

H1/2 := [MΓ ,LΓ ]1/2 := MΓ (M
−1
Γ LΓ )

1/2,

whereMΓ andLΓ represent respectively the Mass matrix and discrete Laplacian

matrix assembled onΓ . It has been proven in [6] that the matrixH(i)
1/2(Γ )

H(i)
1/2(Γ ) := [MΓ ,A

(i)
Γ ]1/2 := MΓ (M

−1
Γ A(i)

Γ )1/2

is spectrally equivalent toH1/2 for i = 1,2, whereA(i)
Γ := diLΓ +αiMΓ .

Consider the following eigenvalue problem:
(

AII AIΓ
AΓ I AΓ Γ

)(
uI

uΓ

)
= µ

(
AII AIΓ
0 PS

)(
uI

uΓ

)
(14)
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with S= AΓ Γ −AΓ I A
−1
II AΓ I . Thenµ = 1 or it satisfies:

SuΓ = µPSuΓ .

Using the definition ofS in equation (11), we can derive the following theorem:

Theorem 1.There exist positive constants c1,c2 such that for all

λλλ h,µµµh ∈ H1/2
00 (Γ )×H1/2

00 (Γ ):

c1‖λλλ h‖21/2,Γ ≤ 〈Sλλλ h,λλλ h〉, 〈Sλλλ h,µµµh〉 ≤ c2‖λλλ h‖1/2,Γ ‖µµµh‖1/2,Γ .

Proof. The reader should refer to [6].

From the equivalence between the continuous and the discrete interpolation norms
of index 1/2, we have:

κ1‖ηh‖1/2,Γ ≤ ‖ηηη‖H1/2
≤ κ2‖ηh‖1/2,Γ , ∀ηηη ∈ RnΓ .

Therefore we can derive the following inequalities:

Corollary 1. There exist positive constants c1,c2,κ1,κ2 such that for all
λλλ ,µµµ ∈ RnΓ :

c1

κ2
2

‖λλλ‖2
H(1)

1/2⊕H(2)
1/2

≤ 〈Sλλλ ,λλλ 〉, 〈Sλλλ ,µµµ〉 ≤ c2

κ2
1

‖λλλ‖
H(1)

1/2⊕H(2)
1/2
‖µµµ‖

H(1)
1/2⊕H(2)

1/2
.

This leads to the following two remarks:

Remark 1.It can be shown using a standard GMRES convergence based on the Field
of Values that any symmetric positive definite preconditioner PS which satisfies:

ξ2‖λλλ‖2PS
≤ 〈Sλλλ ,λλλ 〉, 〈Sλλλ ,µµµ〉 ≤ ξ1‖λλλ‖PS‖µµµ‖PS, ∀λλλ ,µµµ ∈ Rn,

leads to convergence independent of the size of the problem [9].

Remark 2.It has been shown in [6], that there exist constantsσi ,δi such that for all
λ̃ , µ̃ ∈ H1/2

00 (Γ ):

σi‖λ̃‖2
H(i)

1/2

≤ 〈SA(i) λ̃ , λ̃ 〉, 〈SA(i) λ̃ , µ̃〉 ≤ δi‖λ̃‖H(i)
1/2
‖µ̃‖

H(i)
1/2

; i = 1,2.

Then, a natural choice forPS is:

Ŝ1 =

(
SA(1) 0

0 SA(2)

)
.

Another more practical choice forPS is:

Ŝ2 =

(
H(1)

1/2 0

0 H(2)
1/2

)
.
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The implementation of this preconditioner can be achieved using sparse linear alge-

bra techniques. In particular the action of the inverse ofH(i)
1/2 on a given vectorz∈Rn

can be approximated via a generalised Lanczos algorithms (see [1, 2]), which would
only involve sparse computations with interface mass and Laplacian matrices.

5 Numerical results

In this section we present the numerical experiments obtained by solving some reac-
tion diffusion problems in two dimensions. All the problemsare solved on a square
domainΩ = (−1,1)2. The domainΩ is divided intoN = Nx×Ny subdomains of
size 2/Nx×2/Ny each, withNx = Ny ∈ {2,4,8}. Furthermore, we used a uniform
triangulation on each subdomain so that we work with a sequence of nested grids
as well as nested subdomain partitions. The GMRES method is employed with a
tolerance of 10−6 together with the following right preconditioners:

PRj =

(
AII AIΓ
0 Ŝj

)
( j = 1,2).

5.1 Test problem 1
We consider now the problem (1), with the following parameters:

d1 = d2 = 1,α1 = α2 = 10k1,β1 = β2 = 1

with f such thatuT = ((x− 1
3x3)(y− 1

3y3),(x− 1
3x3)(y− 1

3y3)+2). We showed in
Table 1 thatPR1 is an optimal preconditioner for problem (1), as the number of iter-
ations is independent of the problem size and the number of subdomains. However,
it remains computationally expensive. A more practical option is PR2. We find in-
deed that working withPR2 still gives us virtually no dependence on the size of the
problem but a dependence on the number of subdomains. However this dependence
disappears for increasingαi . This latter property is due to the fact that the problem
becomes‘easier’ to solve iteratively as the mass matrix becomes more and more
dominant. For the remaining test problems, we consider onlyPR2.

Preconditioner= PR1 PR2

k1= 1 2 3 1 2 3

domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

size = 8,450 4 4 4 4 4 4 4 4 4 14 16 19 13 13 14 11 11 11

33,282 4 4 4 4 4 4 4 4 4 14 16 20 13 13 15 11 11 12

132,098 4 4 4 4 4 4 4 4 4 14 16 20 13 14 15 11 11 12

Table 1 GMRES iterations for Problem 1.
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5.2 Test problem 2
We solve the same problem as in the previous example but withd1 = 1,d2 = 0.1
andk2 = 0. Sinced1 6= d2 two set of results have been obtained (see Table 2). The
first set of results is obtained by applying the preconditioner directly to the problem
(1). The second set of results is obtained by applying the preconditioner to a scaled
version of problem (1), namely:

−∆v+MD−1v = f, wherev = Du. (15)

In both cases we have a logarithmic dependence on the number of subdomains and
virtually no dependence on the size of the problem. However the number of itera-
tions remains higher than those seen in test problem 1. This is due to the fact that
the preconditioned matrices are no longer symmetric.

Without Scaling With Scaling

k1= 1 2 3 1 2 3

domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

size = 8,450 20 24 26 17 19 19 16 17 16 13 14 17 12 12 13 9 11 10

33,282 20 24 27 17 20 21 15 19 19 13 14 18 12 13 13 10 12 11

132,098 20 24 28 18 21 22 15 19 19 14 14 18 12 13 13 10 12 12

Table 2 GMRES iterations for Problem 2 .

Remark 3.The similarity between the second part of the results in Table 1 and Table
2 tells us that the performance of our preconditioner will not be affected if
d1 << d2. In that case the scaled version (15) of the problem is used .

5.3 Test problem 3
Finally we consider problem (1) withd1 = 1;d2 = 0.1;f = (1,1)T andu = 0 on∂Ω
together with the following jump coefficients:

α1 =

{
1 if x2+y2 < 1/4
100 otherwise

; α2 =

{
100 if x2+y2 < 1/4
1 otherwise

β1 =

{
0.1 if x2+y2 < 1/4
1 otherwise

; β2 =

{
1 if x2+y2 < 1/4
0.1 otherwise

An illustration of the final solutionu is provided in Figure 1, while the iteration
count is presented in Table 3. We observe a similar convergence behavior: indepen-
dence of the problem size and logarithmic dependence on the number of subdo-
mains.

6 Conclusion

We presented a general non-overlapping domain decomposition method for solving
a system of coupled reaction-diffusion equations (linear case only). We derived the
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domains = 4 16 64

size = 8,450 19 24 28

33,282 18 25 28

132,098 18 26 28

Table 3 GMRES iterations for Problem 3.
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Fig. 1 Solution for Problem 3.

corresponding Steklov-Poincaré operator together with the associated linear algebra
problem. In addition, by exploiting the fact that the Steklov-Poincaŕe operators aris-
ing in a non-overlappingDD-algorithm are coercive and continuous with respect to
Sobolev norms of index 1/2, an interface preconditioner for the Schur complement
problem was constructed, which is strongly related to the finite element representa-
tion of the norm‖ . ‖1/2,Γ . Its implementation can be achieved via sparse Lanczos
procedures, which do not add to the complexity of the problem. We used various nu-
merical examples to validate our theoretical results. We found that the performance
of the method is independent of the mesh sizeh, but remains at worst logarithmically
dependent on the number of subdomains. Similar performanceis obtained when us-
ing a METIS [7] partitioning of the domain, or when our approach is extended to
non-linear reaction-diffusion systems (see [6] for more details).
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Domain decomposition for the neutronSPN
equations

E. Jamelot1, P. Ciarlet, Jr.2, A.-M. Baudron1, and J.-J. Lautard1

1 Introduction

The neutron transport equation allows to describe the neutron flux density in a re-
actor core. It depends on 7 variables: 3 for the space, 2 for the motion direction, 1
for the energy (or the speed), and 1 for the time. The energy variable is discretized
using the multigroup theory [4]. ThePN transport equations are obtained by devel-
oping the neutron flux on the spherical harmonics from order 0to orderN. This
approach is very time-consuming. The simplifiedPN (SPN) transport theory [14]
was developed to address this issue. The two fundamental hypotheses to obtain the
SPN equations are that locally, the angular flux has a planar symmetry; and that the
axis system evolves slowly. The neutron flux and the scattering cross sections are
then developped on the Legendre polynomials. The orderN is odd, and the number
of SPN odd (resp. even) moments isN+1

2 .
Let R, the domain of studies, be a bounded, open subset ofR3, with a piecewise
smooth boundary. LetG+1 be the number of energy groups, and letg∈ {0, ..,G}.
In the time-independent case, the multigroupSPN equations read inR:

Solve in(pg,φg) |
{
Tg

opg+grad (Hφg ) = ∑g′ 6=gS
g′g
o pg′ ,

HT divpg+Tg
e φg = ∑g′ 6=gS

g′g
e φg′ + 1

λ χg ∑G
g′=0M

g′
f φg′ .

(1)
For each energy group:
• φg = (φg

0 ,φ
g
2 , ...)

T ∈RN+1
2 (resp.pg = (pg

1,p
g
3, ...)

T ∈ (R3)
N+1

2 ) denotes the vector
containing all the even (resp. odd) moments of the neutron flux.
• Tg

e (resp.Tg
o) ∈RN+1

2 ×N+1
2 denotes the even (resp. odd) removal matrix, such that:

Tg
e = diag

(
σg

r,0,σ
g
r,2, ...

)
, Tg

o = diag
(

σg
r,1,σ

g
r,3, ...

)
, whereσg

r,l are proportional to

the macroscopic removal cross sections.

• Sg′g
e (resp.Sg′g

o ) ∈ RN+1
2 ×N+1

2 denotes the even (resp. odd) scattering matrix, such

that:Sg′g
e = diag

(
σg′→g

s,0 ,σg′→g
s,2 , ...

)
, Sg′g

o = diag
(

σg′→g
s,1 ,σg′→g

s,3 , ...
)

, whereσg′→g
s,l

are proportional to the macroscopic group-transfer cross sections.
•Mg

f ∈R
N+1

2 ×N+1
2 is such that(Mg

f )k,l = δk,0δl ,0νgσg
f (with δk,l the Kronecker sym-

bol), so thatMg
f φg = (νgσg

f φg
0 ,0, ...)

T . νg is the number of neutrons emitted per
fission andσg

f the macroscopic fission cross section.χg is the fission spectrum.

1 CEA Saclay, DEN/DANS/DM2S/SERMA/LLPR, F-91191 Gif-sur-Yvette Cedex, e-mail:
{Erell.Jamelot}{Anne-Marie.Baudron}{Jean-Jacques.La utard}@cea.
fr ·2 POEMS Laboratory, ENSTA ParisTech, 828, bd des Maréchaux, 91762 Palaiseau Cedex,
e-mail:Patrick.Ciarlet@ensta-paristech.fr
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• H ∈ RN+1
2 ×N+1

2 is such thatHk,l = δk,l +δk,l−1.

We must fix boundary conditions (BC) on∂R, such as Dirichlet BC:φg = 0 (zero
flux), Neumann BC:pg.n = 0 (reflection), or Robin BC (void or isotropic albedo,
[2]). From now on, we set zero flux BC.
For simplicity reasons, we will focus on the one-speedSPN approximation (G+1=
1). From this study, one can easily deduce the multigroupSPN case [4], for which
we use the Gauss-Seidel method on the energy groups. The group-transfer terms
disappear and we can skip theg superscript. We haveχ0 = 1. The linear system
(1) corresponds to a set of coupled diffusion equations1. Moreover, Eqs (1) can be
written in a primal form, with the even moments of the neutronflux as unknowns:

−HTdiv
(
T−1

o grad (Hφ)
)
+Teφ =

1
λ
M f φ , in R, φ = 0, on∂R. (2)

Due to the structure of Eqs (2), we remark that Eqs (1) actually correspond to a gen-
eralized eigenproblem, whereλ acts as the inverse of an eigenvalue with associated
eigenfluxφ . One can apply the Krein-Rutman theorem [9] to Eqs (1): the physical
solution is necessarily positive, and it is the eigenfunction associated to the largest
eigenvalueke f f = maxλ λ , which is in addition simple. More precisely,ke f f char-
acterizes the physical state of the core reactor:
• if ke f f = 1: The nuclear chain reaction is self-sustaining. The reactor is critical;
• if ke f f > 1: The chain reaction races. The reactor is supercritical;
• if ke f f < 1: The chain reaction vanishes. The reactor is subcritical.

2 The one-domain algorithm

As we look for the smallest eigenvalue(ke f f)
−1, it can be computed by the inverse

power iteration algorithm. After some initial guess is provided, at iterationm+1,
we deduce(pm+1,φm+1,km+1

e f f ) from (pm,φm,km
e f f) by solving Eqs (1) with a source

term. Set in a domainR, the inverse power iteration algorithm reads:

Set(p0,φ0,k0
e f f), m= 0.

Until convergence, do:m←m+1

Solve in(pm+1,φm+1):




Topm+1+grad

(
Hφm+1

)
= 0, in R,

HT divpm+1+Teφm+1 = (km
e f f)

−1M f φm, in R,

φm+1 = 0, on∂R.

(3)

Compute:km+1
e f f = km

e f f

∫
R(νσ f φm+1

0 )2/
∫
R(νσ f φm+1

0 νσ f φm
0 ).

End

1 Note that theSP1 equations are similar to the neutron mixed diffusion equations.



DD for theSPN equations 571

Above, the Eqs (3) with unknowns(pm+1,φm+1) model the so-called source solver,
with a source term equal to(km

e f f)
−1sm

f , wheresm
f = νσ f φm

0 . The updated valuekm+1
e f f

is inferred as follows: assuming that convergence is achieved, i.e.

HT divpm+1+Teφm+1 = (km+1
e f f )

−1sm+1
f , (4)

one can write(km+1
e f f )

−1sm+1
f = (km

e f f)
−1sm

f and, multiplying this equation bysm+1
f

and integrating over the domain of computationR, we obtain the equation below
(3). The convergence criterion is usually set on|km+1

e f f − km
e f f|, and ||sm+1

f − sm
f ||.

The inverse power iterations are called the outer iterations as opposed to the inner
iterations, which correspond to the iterations of the source solver, with a sourceS.
It reads:

Solve in(p,φ) :




Top+grad (Hφ ) = 0, in R,
HT divp+Teφ = S, in R,

φ = 0, on∂R.
(5)

In the MINOS solver [1, 2], these equations are solved with Raviart-Thomas-
Néd́elec FE (RTN FE) on a Cartesian or hexagonal mesh. In order to reduce memory
size and time computation, we encoded a DD method to solve (5), studied below.

3 Optimized Schwarz method

In order to use non overlapping subdomains, we chose the Schwarz iterative al-
gorithm with Robin interface conditions to exchange information [11]. Let us
split R in two non-overlapping subdomainsR1 andR2: R = R1∪R2 such that
R1∩R2 = /0. We define the interfaceΓ = R1∩R2. Let ni be the outward unit
normal vector to∂Ri , and(pi ,φi) = (p,φ)|Ri

. The Schwarz algorithm reads [5]:

Set(p0
i ,φ0

i )i=1,2, n= 0.
Until convergence, do:n← n+1

Solve in(pn+1
i ,φn+1

i )i=1,2:





Topn+1
i +grad

(
Hφn+1

i

)
= Q, in Ri , i = 1,2,

HT divpn+1
i +Teφn+1

i = S, in Ri , i = 1,2,
φn+1

i = 0, on∂Ri ∩∂R, i = 1,2,
pn+1

1 .n1+α1φn+1
1 = −pn

2.n2+α1φn
2 , onΓ ,

pn+1
2 .n2+α2φn+1

2 = −pn(+1)
1 .n1+α2φn(+1)

1 , onΓ .

(6)

End

Here, the Robin parameters are matricesαi ∈ R
N+1

2 ×N+1
2 : hence the Robin interface

condition can couple all harmonics. The discretization of Eqs (6) with RTN FE is
described in [7] for theSP1 case. Compared to the Schur complement method [10],
this method requires less modifications, and rather easy to implement, provided one
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has at hand a subdomain solver for the source problem. One hasonly to ensure
the data transfer between the subdomains given by the interface conditions. The
n(+1) superscript indicates that we can use either the additive Schwarz method
(ASM), or the multiplicative Schwarz method (MSM). We showed in [6, 7] the
convergence of the sequences(pn+1

i ,φn+1
i )i=1,2, n≥ 0 to (p,φ)|Ri=1,2 (in the case

α1 = α2). It is well known that the convergence rate depends highly on the Robin
matrices(αi)i=1,2. In order to choose them optimally and automatically, we carried
out an asymptotic study,̀a la Nataf and Nier [12]. For theSP1 case, we obtained
that αi = (σr,0|R j

)1/2(σr,1|R j
)−1/2 [7]. We refer to [6] for the computations of the

SPN case,N > 1. In this case, the Robin matrices(αi)i=1,2 are symmetric positive
definite, and they depend on the removal cross sections values in (R j) j=2,1. In the
multigroup case, the cross sections depend moreover on the energy groups and so do
the(αi)i=1,2. Let us see next how this algorithm modifies the eigenvalue algorithm.

4 The multi-domains algorithm

Applying the Schwarz iterative method to algorithm (3), at iteration m+ 1, we
should compute the solution to the source solver iteratively, which yields in prin-
ciple nested outer (m←m+1) and inner (indexn) iterations. However, numerical
experiments show that the inverse power algorithm leads theglobal convergence:
a single inner iteration is sufficient. So, the resulting algorithm contains only one
level of iteration (with indexm). The inverse power algorithm with DD reads then:

Set((p0
i ,φ0

i )i=1,2,k0
e f f), m= 0.

Until convergence, do:m←m+1

Solve in(pm+1
i ,φm+1

i )i=1,2, with j = 2,1:





Topm+1
i +grad

(
Hφm+1

i

)
= 0, in Ri ,

HT divpm+1
i +Teφm+1

i = (km
e f f)

−1M f φm
i , in Ri ,

pm+1
i .ni +αiφm+1

i = −pm(+1)
j .n j +αiφ

m(+1)
j , onΓ ,

φm+1
i = 0, on∂Ri ∩∂R.

(7)

Compute:km+1
e f f = km

e f f ∑2
i=1
∫
Ri
(νσ f φm+1

i,0 )2/ ∑2
i=1
∫
Ri
(νσ f φm+1

i,0 νσ f φm
i,0 ).

End

At iteration m+ 1, convergence is measured on the source, expressed as a vec-
tor sf : εm+1

f = maxdo f |(sm+1
f −sm

f )do f|/( 1
N ∑do f |(sm+1

f )do f|). Iterations stop when

εm+1
f ≤ ε f , whereε f is given by the user. Let us test our method.
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5 Results

To perform computations, we use the MINOS solver [1, 2] of theAPOLLO3r2

neutronics code. The cross sections come from experimentalmeasurements. They
take constant values per unit mesh which can be very different from one mesh to
another: we face highly heterogeneous problems. We use the following notations:
• Nc: The number of cores.
• NDD: The 3D cartesian (Nx

DD, Ny
DD ,Nz

DD) decomposition.
• Nout: The number of outer iterations to achieve convergence.
• Err.: The (unsigned) difference between the computed and the converged eigen-
values, either sequentially or in parallel, times 10−5.
•CPU: The CPU time spent within the MINOS solver, given in seconds.
• E f f. (Tab. 3 and 2 only): The efficiency (in %): namely,T1/(Nc×TN), whereT1

is the total sequential CPU time with a single domain, andTN is the parallel CPU
time onNc cores withNc subdomains.

For Tab. 1 and 3, we used Intel Xeon L5640 processors with an infiniband net-
work. For Tab. 2, computations were carried out on the Titanecomputer, hosted by
the CCRT (the CEA Supercomputing Center). For each test, we report, above the re-
sults Tables, a resulting(x,y) normalized power distribution map of the calculation
(Fig. 1, 2, 3).

The results presented in Tab. 1 concern a 3D model of a pressurized water reactor
(PWR) core of capacity 900 MWe. We performed computations on amono-core, on
the diffusion approximation, with two energy groups (G+1= 2) andRTN0 FE. The
mesh is of size(289×289×60), which yields more than 40M unknowns. We set
ε f = 10−5. In order to validate our optimization choice, we ran the MSM(with N
subdomains), from 1 up to 17340 subdomains.

Fig. 1 Power distribution map
of the PWR core computation,
run with the diffusion approx-
imation, 2 energy groups,
RTN0 FE, MSM.

ForN≤ 4335, the number of outer iterations does not increase much,and more-
over the accuracy is steady. ForN≥ 1156, theCPU time increase is probably caused
by the use of a table to store the subdomains, for which the subdomain access is not

2 APOLLO3 is a trademark registered in France
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Table 1 Results of the PWR core computation (diffusion, 2 energy groups,RTN0, MSM).

N NDD (x,y,z) Nout Err.×10−5 CPU (s)

1 (1, 1, 1) 381 0.0 230
17 (17, 1, 1) 382 0.0 199
289 (17, 17, 1) 393 0.0 210
1156 (17, 17, 4) 392 0.0 252
2890 (17, 17, 10) 390 0.0 382
4335 (17, 17, 15) 394 0.0 499
8670 (17, 17, 30) 405 0.0 660
17340 (17, 17, 60) 450 0.1 1255

optimized yet. On the other hand, the method seems robust: hence, our optimized
choice of the Robin parameters is validated in the diffusioncase.

We consider now a 3D model of a plate-fuel reactor (PFR) core. We performed
computations on theSP5 approximation, with 4 energy groups (G+1= 4) andRTN0

FE. The mesh is of size 364× 364× 100, which yields 638M unknowns. We set
ε f = 510−5. We ran the ASM onNc cores withNcsubdomains.

Fig. 2 Power distribution map
of the PFR core computation,
run with theSP5 approxima-
tion, 4 energy groups,RTN0
FE, ASM.

Table 2 Results of the PFR core computation (SP5, 4 energy groups,RTN0, ASM).

Nc NDD (x,y,z) Nout Err.×10−5 CPU (s) Eff.

1 (1, 1, 1) 649 0.0 12272 100%
2 (2, 1, 1) 645 0.0 6468 95%
4 (2, 2, 1) 644 0.0 3783 81%
8 (2, 2, 2) 649 0.0 2269 67%
16 (2, 2, 4) 649 0.0 1045 73%
32 (4, 4, 2) 654 0.4 504 76%
64 (4, 4, 4) 643 0.3 303 63%
128 (8, 8, 2) 649 0.2 123 155%

Our DD method converges nicely to the sequential solution, since the error on the
eigenvalue is always smaller than 510−6. Moreover, the number of outer iterations



DD for theSPN equations 575

is quite steady: the optimized choice of the Robin parameters is validated in the
SPN case. The method scales quite well, from 67% up to 155% efficiency on 128
cores. To explain this last result, we suppose that the communication traffic was low,
second that some computations were performed in the memory cache.

In [6, 7], we give results which show that choosing random Robin matrices leads
to worse results: the number of outer iterations increases faster, and the accuracy
deteriorates: in practice, it is important to optimize the Robin matrices.

The last results concern a 2D model of the Jules Horowitz reactor (JHR) core3,
dedicated to research, which is currently under construction. We performed compu-
tations on theSP1 approximation, with 6 energy groups (G+1 = 6), andRT1 FE.
The mesh is of size 103×103, which represents more than 72M unknowns. We set
ε f = 510−4.

Fig. 3 Power distribution map
of the JHR core computation,
run with theSP1 approxima-
tion, 6 energy groups,RT1 FE,
ASM.

Table 3 Results of the JHR core computation (SP1, 6 energy groups,RT1, ASM).

Nc NDD (x,y,z) Nout Err.×10−5 CPU (s) Eff.

1 (1, 1) 639 0.0 1487 100%
2 (2, 1) 653 0.4 777 96%
4 (2, 2) 643 0.5 352 106%
8 (2, 4) 653 0.1 256 73%
16 (2, 8) 656 0.2 97 96%
32 (4, 8) 664 0.6 64 73%
64 (8, 8) 653 0.9 29 80%

For this last test, the physical geometry is not Cartesian. It probably explains why
the accuracy is not as good as for the other tests. The number of outer iterations is
quite steady while the efficiency is excellent. In the case of4 cores, the superlinear
efficiency is probably again a consequence of the amount of computations in the
memory cache.

3 http://www.cad.cea.fr/rjh/index.html
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6 Conclusions and perspectives

We presented a domain decomposition method based on the optimized Schwarz iter-
ative algorithm, to solve the mixed neutronsSPN equations with RTN FE. Numerical
experiments carried out with the MINOS solver show that the method is robust and
efficient both sequentially and in parallel, and that our optimized choice of the pa-
rameters of the Schwarz algorithm is satisfactory. Note that the number of iterations
to solve our problem increases only slightly with the numberof subdomains.
Let us finally mention some potential new research directions:
• The use of Ventcell interface conditions: introducing tangential derivatives in the
Robin interface condition [12, 8].
• The use of an overlapping DD method with a coarse grid solver,as done in [13].
Finally, let us mention that the MINOS solver can also solve source and kinetic
problems [3].
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A Stochastic-based Optimized Schwarz Method
for the Gravimetry Equations on GPU Clusters

Abal-Kassim Cheik Ahamed1 and Fŕed́eric Magoul̀es1

1 Introduction

By giving another way to see beneath the Earth, gravimetry refines geophysical ex-
ploration. In this paper, we evaluate the gravimetry field inthe Chicxulub crater
area located in between the Yucatan region and the Gulf of Mexico which shows
strong gravimetry and magnetic anomalies. High order finiteelements analysis is
considered with input data arising from real measurements.The linear system is
then solved with a domain decomposition method, namely the optimized Schwarz
method. The principle of this method is to decompose the computational domain
into smaller subdomains and to solve the equations on each subdomain. Each sub-
domain could easily be allocated to one single processor (i.e. the CPU), each iter-
ation of the optimized Schwarz method involving the solution of the equations on
each subdomain (on the GPU). Unfortunately, to obtain high speed-up, several tun-
ings and adaptations of the algorithm should be carrefully performed, such as data
transfers between CPU and GPU, and data structures, as described in [3, 2].

The plan of the paper is the following. In Section 2, we present the gravimetry
equations. In Section 3, we introduce the optimized Schwarzmethod, followed in
Section 4 by a new idea of using a stochastics-based algorithm to determine the op-
timized transmission conditions. An overview to the GPU programming model and
hardware configuration suite is given in Section 5 for readers not familiar with GPU
programming. Section 6 shows numerical experiments which clearly confirm the
robustness, competitiveness and efficiency of the proposedmethod on GPU clusters
for solving the gravimetry equations.

2 Gravimetry equations

The gravity force is the resultant of the gravitational force and the centrifugal
force. The gravitational potential of a spherical density distribution is equal to
Φ(r) = Gm/r, with m the mass of the object,r the distance to the object andG
the universal gravity constant equal toG= 6.672×10−11m3kg−1s−2. The gravita-
tional potential at a given positionx initiated by an arbitrary density distributionρ
is given byΦ(x) = G

∫
(ρ(x′)/||x− x′||)dx′ wherex′ represents one point position

within the density distribution. In this paper, we consideronly regional scale of the

1 Ecole Centrale Paris, France, e-mail:akcheik@gmail.com,frederic.magoules@
hotmail.com
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gravimetry equations therefore we do not take into account the effects related to the
centrifugal force. The gravitational potentialΦ of a density anomaly distribution
δρ is thus given as the solution of the Poisson equation∆Φ =−4πGδρ.

3 Optimised Schwarz method

The classical Schwarz algorithm was invented more than a century ago [16] to prove
existence and uniqueness of solutions to Laplace’s equation on irregular domains.
Schwarz decomposed the irregular domain into overlapping regular ones and for-
mulated an iteration which used only solutions on regular domains and which con-
verged to a unique solution on the irregular domain. The convergence speed of the
classical Schwarz algorithm is proportional to the size of the overlap between the
subdomains. A variant of this algorithm can be formulated with non-overlapping
subdomains and the transmission conditions should be changed from Dirichlet to
Robin [6]. These absorbing boundary transmission conditions defined on the inter-
face between the non-overlapping subdomains, are the key ingredients to obtain a
fast convergence of the iterative Schwarz algorithm [5, 9].Optimal transmission
conditions can be derived but consists of non local operators and thus are not easy
to implement in a parallel computational environment. One alternative is to approx-
imate these operators with partial differential operators. This paper investigates an
approximation based on a new stochastics optimization procedure.

For the sake of clarity, the gravimetry equations are considered in the domainΩ
with homogeneous Dirichlet condition. The domain is decomposed into two non-
overlapping subdomainsΩ (1) andΩ (2) with an interfaceΓ . The Schwarz algorithm
can be written as:

−∆Φ (1)
n+1 = f , in Ω (1)

(
∂ν Φ (1)

n+1+A (1)Φ (1)
n+1

)
=
(

∂ν Φ (2)
n +A (1)Φ (2)

n

)
, on Γ

−∆Φ (2)
n+1 = f , in Ω (2)

(
∂ν Φ (2)

n+1−A (2)Φ (2)
n+1

)
=
(

∂ν Φ (1)
n −A (2)Φ (1)

n

)
, on Γ

with n the iteration number, andν the unit normal vector defined onΓ . The oper-
atorsA (1) andA (2) are to be determined for best performance of the algorithm.
Considering the caseΩ = R2, f = 0, and applying a Fourier transform, similar
calculations as in [7] lead to the expression of the Fourier convergence rate, in-
volving the quantitiesΛ (1) andΛ (2), which are the Fourier transforms ofA (1) and
A (2) operators. In this case, the choiceΛ (1) := |k|, andΛ (2) := |k| is optimal, since
with this choice the algorithm converges in two iterations for two subdomains. Dif-
ferent techniques to approximate these non local operatorswith partial differential
operators have been analyzed in recent years [5, 4, 7]. Thesetechniques consist to
define partial differential operators involving a tangential derivative on the inter-
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face such as:A (s) := p(s) + q(s)∂ 2
τ2, with s the subdomain number,p(s), q(s) two

coefficients, andτ the unit tangential vector. The first results presented in [5, 9]
use a zero order Taylor expansion of the non local operators to find p(s) andq(s).
In [8] for convection diffusion equations, in [4] for Maxwell equation, in [7, 12] for
the Helmholtz equation, and in [11, 10] for heterogeneous media, a minimization
procedure has been used. The function to minimize, i.e., thecost function, is the
maximum of the Fourier convergence rate for the frequency ranges considered, and
the approach consists to determine the free parametersp(s) andq(s) through an opti-
mization problem. Despite, analytic expressions ofp(s) andq(s) can be determined
for some specific problems, finding quasi-optimal coefficients numerically is also a
good alternative [13]. Furthemore, since the evaluation ofthe cost function is quite
fast and the dimension of the search space reasonable, a morerobust minimization
procedure could be considered, in the next section. Extension to non-regular geom-
etry can be performed as described in reference [14].

4 Stochastic-based optimised transmission conditions

The stochastic minimization technique we propose to use now, explores the whole
space of solutions and finds absolute minima; this techniqueis based on the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES). This algorithm is very
robust [1], has good global search ability and does not need to compute the deriva-
tives of the cost function. This algorithm only needs an initial search zone and a
population size, even if the solution can be found outside ofthe initial search zone.
The population size parameter is a trade-off between speed and global search. Mean-
ing that, smaller populations lead to faster execution of the algorithm but have more
chance to find a local minimum, and, larger sizes allow to avoid local minima better
but need more cost function evaluations. For our purpose, a population size of 25
has been large enough to find the global minimum in a few secondor less.

The main idea of the algorithm is to find the minimum of the costfunction by
iteratively refining a search distribution. The distribution is described as a general
multivariate normal distribution d(m,C). Initially, the distribution is given by the
user. Then, at each iteration,λ samples are randomly chosen in this distribution
and the evaluation of the cost function at those points is used to compute a new
distribution. When the variance of the distribution is smallenough, the center of
the distributionm is taken as solution. After evaluating the cost function fora new
population, the samples are sorted by cost and only theµ best are kept. The new
distribution center is computed with a weighted mean (usually, more weight is put
on the best samples). The step sizeσ is a factor used to scale the standard deviation
of the distribution, i.e., the variance of the search distribution is proportional to the
square of the step size. The step size determines the “size” of the distribution. The
covariance matrixC determines the “shape” of the distribution, i.e., it determines
the principal directions of the distribution and their relative scaling. Adapting (or
updating) the covariance matrix is the most complex part of the algorithm. While
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this could be done using only the current population, it would be unreliable espe-
cially with a small population size; thus the population of the previous iteration
should also been taken into account.

5 Overview of GPU programming model

Parallel computation was generally carried out on Central Processing Unit (CPU)
cluster until the apparition in the early 2000s of the Graphics Processing Unit (GPU)
that facing the migration of the era of GPU computing. The peak performance of
CPUs and GPUs is significanlty different, due to the inherently different architec-
tures between these processors. The first idea behind the architecture of GPU is to
have many small floating points processors exploiting largeamount of data in paral-
lel. This is achieved through a memory hierarchy that allowseach processor to opti-
mally access the requiered data. The gains of GPU computing is significantly higher
for large size problem compared to CPU, due to the differencebetween these two
architectures. GPU computing requires using graphics programming languages such
as NVIDIA CUDA, or OpenCL.Compute Unified Device Architecture(CUDA) [15]
programming model is an extension of the C language and has been used in this pa-
per.

A specific characteristic of GPU compared to CPU is the feature of memory used.
Indeed, a CPU is constantly accessing the RAM, therefore it has a low latency at the
detriment of its raw throughput. CUDA devices have four maintypes of memory: (i)
Global memoryis the memory that ensures the interaction with the host (CPU), and
is not only large in size and off-chip, but also available to all threads (also known
as compute units), and is the slowest; (ii)Constant memoryis read only from the
device, is generally cached for fast access, and provides interaction with the host;
(iii) Shared memoryis much faster than global memory and is accessible by any
thread of the block from which it was created; (iv)Local memoryis specific to each
compute unit and cannot be used to communicate between compute units.

Threads are grouped into blocks and executed in parallel simultaneously, see
Figure 1. A GPU is associated with agrid, i.e., all running or waiting blocks in the
running queue and a kernel that will run on many cores. An ALU is associated with
the thread which is currently processing. Threading is not an automated procedure.
The developer chooses for each kernel the distribution of the threads, which are
organized (gridification process) as follows: (i) threads are grouped into blocks;
(ii) each block has three dimensions to classify threads; (iii) blocks are grouped
together in a grid of two dimensions. The threads are then distributed to these levels
and become easily identifiable by their positions in the gridaccording to the block
they belongs to and their spatial dimensions. The kernel function must be called also
providing at least two special parameters: the dimension ofthe block,nBlocks, and
the number of threads per block,nThreadsPerBlock. Figure 1 presents the CUDA
processing flow. Data are first copied from the main memory to the GPU memory,
(1). Then the host (CPU) instructs the device (GPU) to carry out calculations, (2).
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Fig. 1 Gridification of a GPU. Tthread, block, grid (left); GPU computing processing (right)

The kernel is then executed by all threads in parallel on the device, (3). Finally, the
device results are copied back (from GPU memory) to the host (main memory), (4).
To cope with this difficulty the implementation proposed in this paper uses some
advanced tuning techniques developped by the authors, but the details are outside
the scope of this paper, and the reader is refeered to [3, 2] for the computer science
aspects of this tuning.

6 Numerical analysis

In this section, we report the experiments performed to evaluate the speed-up of our
implementation. The Chicxulub impact crater, formed about65 million years ago, is
now widely accepted as the main footprint of the global mass extinction event that
marked the Cretaceous/Paleogene boundary. Because of its relevance, in the last two
decades, this impact structure has been used as a natural laboratory to investigate
impact cratering formation processes and to indirectly infer global effects of large-
scale impacts. The crater is buried under 1 km of carbonate sediments in the Yucatan
platform. The crater is about 200 km in rim diameter, half on-land and half off-shore
with geometric center at Chicxulub Puerto. The internal structure of the Chicxulub
crater has been imaged by using several geophysical data sets from land, marine and
aerial measurements.

In this paper we perform a finite element analysis of the gravimetry equation us-
ing the characteristics of the region provided by the measure. The domain consists
of an area of 250×250×15 in each spatial direction, and is discretized with high
order finite element with a total of 19 933 056 degrees of freedom. This mesh is par-
tionned in the x-direction. Each subdomain is allocated to one single processor (i.e.
the CPU), each iteration of the optimized Schwarz method involving the solution of
the equations inside each subdomain is allocated to one single accelerator (i.e the
GPU). We compare the computational time of the optimised Schwarz method using
one subdomain per CPU with the optimised Schwarz method using one subdomain
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per CPU and a GPU accelerator. For this particular model we performed calculations
using our CUDA implementation of the Schwarz method with stochastics-based op-
timization procedure. The workstation used for all the experiments consists of 1 596
servers Bull Novascale R422Intel Nehalem-based nodes. Each node is composed of
2 processors Intel Xeon 5570 quad-cores (2.93 GHz) and 24 GB of memory (3Go
per cores). 96 CPU servers are interconnected with 48 compute Tesla S1070 servers
NVIDIA (4 Tesla cards with 4GB of memory by server) and 960 processing units
are available for each server.

For the subdomain problems, the diagonal preconditioner conjugate gradient
(PCG) is used and the coefficient matrices are stored in CSR format. We fix a
residual tolerance threshold ofε = 10−10 for PCG. Alinea [3, 2], our research
group library, implemented inC++ , which offers CPU and GPU solvers, is used
for solving linear algebra system. In this paper, the GPU is used to accelerate the
solution of PCG algorithm. PCG algorithm required the computation of addition
of vectors (Daxpy), dot product and sparse matrix-vector multiplication. InGPU-
implementation considered (Alinea library), the distribution of threads (gridication,
differs with these operations. The gridification ofDaxpy, dot product and sparse
matrix-vector product correspond respectively to (nBlocks= numbrows+numbth block−1

numbth block ,
nThreadsPerBlock= 256), (nBlocks= numbrows+numbth block−1

numbth block , nThreadsPerBlock=

128) and (nBlocks= (numbrows×n th warp)+numbth block−1
numbth block , nThreadsPerBlock= 256),

wherenumbrows, n th warpandnumbth blockrepresent respectively the number
of rows of the matrix, the number of threads per warp and the thread block size. We
fix for all operations 8 threads per warp. GPU is used only for solving subdomain
problems in each iteration. GPU experiment workstation Tesla S1070 has 4 GPUs
of 240 cores. The number of computing units depends both on the size of the sub-
domain problem and the gridification that use 256 threads perthreads and 8 threads
per warp as introduced in [3, 2].

In our experiments, the CMA-ES algorithm considers as the cost function the
Fourier convergence rate of the optimised Schwarz method. We consider for the
CMA-ES the following stopping criteria of : a maximum of number iterations equal
to 7200 and a residu threshold equal to 5×10−11. Fig. 2 represents the convergence
rate of the Schwarz algorithm in the Fourier space, respectively for the symmet-
ric zeroth order (top-left), unsymmetric zeroth order (bottom-left), the symmetric
second order (top-right) and unsymmetric second order (bottom-right) transmis-
sion conditions obtained from the CMA-ES algorithm. The Fourier convergence
rate of the Schwarz method with one side (respectilely two sides) transmission con-
ditions obtained from the CMA-ES algorithm is presented in Fig. 2 and Table 1.
The distribution of processors is computed as follows: number of processors=

2×number of nodes, where 2 corresponds to the number of GPU per node as avail-
able on our workstation. As a consequence, only two processors will share the band-
width, which strongly improve the communications, especially the inter-subdomain
communications. Table 2 presents the results done with double precision with a
residu threshold,i.e. stopping criterion equal to 10−6, for several number of subdo-
mains (one subdomain per processor).
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Fig. 2 Fourier convergence rate of the Schwarz algorithm

p(1) q(1) p(2) q(2) ρmax

oo0 symmetric 0.1826 0 0.1826 0 0.6823
oo0 unsymmetric 1.2193 0 0.0469 0 0.4464
oo2 symmetric 0.0471 0.7050 0.0471 0.7050 0.2143
oo2 unsymmetric 0.1081 0.3205 0.0231 1.5786 0.1101

Table 1 Optimized coefficients obtained fromCMA-ESalgorithm

#subdomains #iterations cpu time (sec) gpu time (sec) SpeedUp

32 41 11 240 1 600 7.03
64 45 5 360 860 6.23
128 92 6 535 960 6.81

Table 2 Comparison of the implementation of our method on CPU and GPU

7 Conclusion

In this paper, we have presented a stochastic-based optimized Schwarz method for
the gravimetry equation on GPU Clusters. The effectivenessand robustness of our
method are evaluated by numerical experiments performed ona cluster composed
of 1 596 servers Bull Novascale R422Intel Nehalem-based nodes where 96 CPU
servers are interconnected with 48 compute Tesla S1070 servers NVIDIA (4 Tesla
cards with 4GB of memory by server). The presented results range from 32 up-
to 128 subdomains show the interest of the use of GPU technologies for solv-
ing large size problems, and outline the robustness, performance and efficiency of
our Schwarz domain decomposition method with stochastic-based optimized con-
ditions.
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A parallel preconditioner for a FETI-DP method
for the Crouzeix-Raviart finite element

Leszek Marcinkowski∗1 Talal Rahman2

1 Introduction

In this paper, we present a Neumann-Dirichlet type parallelpreconditioner for a
FETI-DP method for the nonconforming Crouzeix-Raviart (CR) finite element dis-
cretization of a model second order elliptic problem. The proposed method is almost
optimal, in fact, the condition number of the preconditioned problem grows poly-
logarithmically with respect to the mesh parameters of the local triangulations.

In many scientific applications, where partial differential equations are used to
model, the Crouzeix-Raviart (CR) finite element has been oneof the most com-
monly used nonconforming finite element for the numerical solution. This includes
applications like the Poisson equation (cf. [11, 23]), the Darcy-Stokes problem (cf.
[8]), the elasticity problem (cf. [3]). We also would like toadd that there is a close
relationship between mixed finite elements and the nonconforming finite element
for the second order elliptic problem; cf. [1, 2]. The CR element has also been used
in the framework of finite volume element method; cf. [9].

There exists quite a number of works focusing on iterative methods for the CR
finite element for second order problems; cf. [4, 5, 10, 13, 16, 18, 19, 20, 21, 22]
and references therein. The purpose of this paper is to propose a parallel algorithm
based on a Neumann-Dirichlet preconditioner for a FETI-DP formulation of the CR
finite element method for the second order elliptic problem.To our knowledge, this
is apparently the first work on such preconditioner for the FETI-DP method for the
Crouzeix-Raviart (CR) finite element.

The FETI-DP method, which was first introduced in [12], describes a class of
fast and efficient domain decomposition solvers for systemsof algebraic equations
arising from the finite element discretization of elliptic partial differential equations,
cf. [17, 14, 15, 24] and references therein.

In a FETI-DP method one has to solve a linear system for a set ofdual variables,
formulated after eliminating the primal variables. The FETI-DP system contains
in itself a coarse problem which is associated with the primal variables, while its
preconditioner is based on solving only local problems which is fully parallel.

In this paper, we first present the Crouzeix Raviart discretization of the differ-
ential problem, a FETI-DP formulation of the problem is thenintroduced, and fi-
nally a Neumann-Dirichlet preconditioner for the FETI-DP problem is proposed.

Faculty of Mathematics, University of Warsaw, Banacha 2, 02-097Warszawa, Poland,
Leszek.Marcinkowski@mimuw.edu.pl · Department of Computer Engineering, Bergen
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We present an almost optimal bound for the condition number,showing that the
condition number of the preconditioned system grows likeC(1+ log(H/h))2, where
H is the maximal diameter of the subdomains andh is the fine mesh size parameter.

2 Discrete problem

In this section we present the Crouzeix-Raviart finite element discretization of a
model second order elliptic problem with discontinuous coefficients.

Let Ω be a polygonal domain in the plane. We assume that there exists a partition
of Ω into disjoint polygonal subdomainsΩk such thatΩ =

⋃N
k=1 Ω k with Ω k∩Ω l

being an empty set, an edge or a vertex (crosspoint). We also assume that these
subdomains form a coarse triangulation of the domain which is shape regular in
the sense of [7]. We introduce a global interfaceΓ =

⋃
i ∂Ωi \∂Ω which plays an

important role in our study.
Our model differential problem is to findu∗ ∈ H1

0(Ω) such that

a(u∗,v) =
∫

Ω
f vdx ∀v∈ H1

0(Ω), (1)

where f ∈ L2(Ω), anda(u,v) = ∑N
k=1

∫
Ωk

ρk∇u∇v dx. The coefficientsρk are posi-
tive and constant.

We assume that there exists a quasiuniform triangulation,Th = Th(Ω) = {τ}, of
Ω such that any elementτ of Th is contained in only one subdomain, as a conse-
quence any subdomainΩk inherits a local triangulationTh(Ωk) = {τ}τ⊂Ωk,τ∈Th.

Fig. 1 Illustrating the CR finite element in 2D with black dots as the CRnodal points or CR nodes.

Let h= maxτ∈Th(Ω)diam(τ) be the mesh size parameter of the triangulation, cf.
[6]. We introduce the following sets of Crouzeix-Raviart (CR) nodal points or -
nodes:ΩCR

h ,∂ΩCR
h ,ΩCR

k,h ,∂ΩCR
k,h , andΓ CR

kl,h correspond toΩ ,∂Ω ,Ωk,∂Ωk, andΓkl ,
respectively. HereΓkl is an interface, an open edge, which is shared by the two
subdomains,Ωk andΩl .

We now introduce the local finite element spaces. LetŴh(Ω) be the Crouzeix-
Raviart finite element space defined as follows,

Ŵh(Ω) = {u∈ L2(Ω) : u|τ ∈ P1(τ) for each triangleτ ∈ Th(Ω),

u is continuous at every midpointm∈ΩCR
h (2)
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andu(m) = 0 for everym∈ ∂ΩCR
h }.

HereP1(τ) is the function space of linear polynomials defined overτ. The degrees
of freedom of a functionu∈ Ŵh(Ω) overτ ∈ Th(Ω) are:{u(mj)} j=1,2,3, wheremj

is a midpoint of an edge ofτ, cf. Fig. 1.
We define the local CR spaceWh(Ωk) as the space of functions which are re-

strictions toΩk of the functions ofŴh(Ω), i.e.Wh(Ωk) = {u|Ωk
: u∈ Ŵh(Ω)}. The

standard nodal basis function,φCR
x , of Wh(Ωk), associated with the CR nodal point

x∈ΩCR
k , is a function which is equal to one atx and zero at the remaining CR nodal

points ofΩCR
k \∂ΩCR. {φCR

x }x∈ΩCR
k \∂ΩCR is the standard nodal basis ofWh(Ωk).

The discrete problem is then defined as follows: Findu∗h ∈ Ŵh(Ω) such that

ah(u
∗
h,v) = f (v) ∀v∈ Ŵh(Ω), (3)

whereah(u,v) := ∑N
k=1ak,h(u,v) with the local broken bilinear form:

ak,h(u,v) := ∑
τ∈Th(Ωk)

∫

τ
ρk∇u∇vdx.

This problem has a unique solution, and an optimal error bound is known; cf. [6].
We shall now reformulate (3) as a saddle point problem. We start by introducing

the following global space defined overΩ as follows,

Wh(Ω) := ΠN
k=1W

h(Ωk).

Note that each interfaceΓkl inherits a 1D triangulationTh(Γkl) from Th. We define
Vh(Γkl) as the space of piecewise constant functions overTh(Γkl). In FETI-DP, an
important role is played by the global interface which is defined asΓ :=

⋃N
k=1 ∂Ωk\

∂Ω . Then, let
Vh(Γ ) := ∏

Γkl⊂Γ
Vh(Γkl)

be the auxiliary interface space which will be later used as the space of La-
grange multipliers. We introduce the bilinear formb(u,ψ) : Wh(Ω)×Vh(Γ )→ R
as follows: letu = (uk)

N
k=1 ∈Wh(Ω) and ψ = (ψlk)Γkl ∈ Vh(Γ ), thenb(u,ψ) =

∑Γkl⊂Γ blk(u,ψlk) with

blk(u,ψlk) =
∫

Γkl

(uk−ul )ψlk ds k> l .

Throughout the rest of this paper, we will use the same notation to denote a
function and its vector representation with values of the degrees of freedom (dofs)
of this function as entries in the representation.

Let cr be a crosspoint, which is a subdomain vertex, not lying on∂Ω , and let
V CR(cr) be the set of CR nodal points of those triangle edges that lie on sub-
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domain boundaries and are incident tocR, e.g. the black dots in Figure 2. Let
V CR=

⋃
cr∈Γ V CR(cr).

We then introducẽWh(Ω) as the subspace ofWh(Ω) of functions which are con-
tinuous at the CR nodes ofV CR. We also introduce a reduced Lagrange multiplier
space as follows,

Ṽh(Γ ) := {λ ∈Vh(Γ ) : λ (m) = 0 ∀m∈ Γ CR
h ∩V CR} ⊂Vh(Γ ).

The discrete problem can now be reformulated as the following saddle point prob-

Fig. 2 Illustrating a four subdomain case with one crosspoint. Black dotsin the figure represent
the CR nodes ofV CR corresponding to the cross point. CR nodes (both circles and black dots)
which the degrees of freedom (dofs) ofW̃h(Ω) are associated with, are also shown.

lem: find the pair(u∗h,λ
∗) ∈ W̃h(Ω)×Ṽh(Γ ) such that

a(u∗h,v)+b(v,λ ∗) = f (v) ∀v∈ W̃h(Ω),

b(u∗h,φ) = 0 ∀φ ∈ Ṽh(Γ ).
(4)

Any vectorw corresponding to the functionw∈ W̃h(Ω) (note that we are using
the same symbol for the function and its vector representation) can be decomposed
as follows,

w= (w(i),w(c),w(r)),

wherew(i) is the vector with dofs associated with the CR nodes of the subdomain
interior,w(c) is the vector with dofs associated with the CR nodes ofV CR, andw(r)

is the vector with dofs associated with the remaining dofs.
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Analogously, letW ⊂ W̃h(Ω) be the space corresponding to the vectors with
the dofs associated withΓ , then we can decompose any vectorw of w ∈W as
w= (w(c),w(r)).

Now letWr = {w(r) : w∈ W̃h(Ω)}, in other words,Wr is the space of functions
representing the dofs associated with the CR nodes onΓ , not belonging to the set
V CR.

Note thatw(r) ∈Wr has two degrees of freedom associated with each midpoint
onΓ \V CR, for instance, ifm∈ Γ CR

kl,h then its associated two degrees of freedom are
wk(m) andwl (m).

We introduceA as a block diagonal matrix with local stiffness matrices as
the blocks, i.e.,A := diag(Ak)

N
k=1 with Ak being the stiffness matrix generated by

ak,h(·, ·) in the standard nodal basis ofWh(Ωk).
Let B = diag(B(kl))Γkl be a block diagonal matrix withB(kl) related to the edge

Γkl ⊂ Γ (for k > l ) containing only zeros, ones and minus ones as matrix entries,
andw∗h is the vector representation of the functionw∗h ∈W (denoted by the same
symbol).

We note that each blockA j associated with an inner subdomainΩ j (subdomain
not having an edge on∂Ω ), is singular and therefore cannot be inverted. As part of
our FETI-DP algorithm, we enforce continuity at the CR nodesclose to the cross-
points, i.e., at the CR nodes ofV CR, thereby remove the problem of noninvertibility.

We introduce the Schur complement matrix,S, of A, with respect to the unknowns
associated withΓ , which is obtained after eliminating the unknowns associated with
the subdomain interior. We note thatS is a block diagonal matrix.

3 FETI-DP problem

Let Ã be the matrix obtained from block diagonal matrixA by taking into account
the continuity of the degrees of freedom atV CR. Let Ã be partitioned into

Ã=




Aii Aic Air

Aci Acc Acr

Ari Arc Arr


 ,

where the subscripti and superscript(i) refer to the dofs associated with CR nodes
in the subdomain interior, the subscriptc and superscript(c) to the dofs associated
with the crosspoints, and the subscriptr and superscript(r) to the dofs associated
with the remaining CR nodes.

The matrix formulation of (4) takes the following form,




Aii Aic Air 0
Aci Acc Acr 0
Ari Arc Arr (B(r))T

0 0 B(r) 0







u(i)

u(c)

u(r)

λ ∗


=




fi
fc
fr
0


 , (5)
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whereB(r) is the submatrix ofB, associated with the CR nodes that are onΓ but not
in V CR.

Eliminating the unknowns corresponding to the subdomain interior CR nodes
and the crosspoints, i.e.,u(i) andu(c), in (5) we arrive at

S̃u(r)+(B(r))Tλ ∗ = f̃r ,
B(r)u(r) = 0,

(6)

whereS̃= Arr −
(

Ari Arc
)( Aii Aic

Aci Acc

)−1(
Air

Acr

)
.

Further eliminatingu(r), we obtain the following FETI-DP problem: findλ ∗ ∈M
such that

F(λ ∗) = d, (7)

whered :=−B(r)S̃−1 f̃r andF := B(r)S̃−1(B(r))T .

4 Parallel preconditioner

The general idea of our Neumann-Dirichlet preconditioner for the FETI-DP system
comes from [14], where the case of nonmatching grids and standard continuousP1

finite element were considered.
We start by further decomposing the vectorw(r) into its two component vectors,

i.e.,

w(r) =
(

w(r)
Γ ,w(r)

∆

)T
,

wherew(r)
Γ = (w(r)

kl,Γ )Γkl with

w(r)
kl,Γ (m) =





w(r)
k (m) i f ρk > ρl

w(r)
k (m) i f ρk = ρl , k> l ,

w(r)
l (m) otherwise

m∈ Γ CR
kl,h

i.e.,w(r)
kl,Γ is the vector with those entries ofw(r) which are related toΓkl and to the

subdomainΩs with the larger coefficientρs, s= k, l . In case of equality we pick

the ones related toΩk with k > l . The vectorw(r)
∆ corresponds to the remaining

dofs of w(r). Correspondingly, we introduceW∆ = {w(r)
∆ : w(r) ∈Wr}, which is a

subspace ofWr , consisting of functions which are defined by the values at the CR
nodes on the interfaceΓkl belonging to the subdomainΩs, s= k, l , with the smaller
coefficient. We note that dim̃Vh(Γ ) = dim W∆ , which equals the number of CR
nodes onΓ \V CR.

Let S∆ be the matrix obtained by restricting the block diagonal Schur comple-
ment matrixS: W→W to W∆ . Note that this matrix can be represented as a block
diagonal matrix with nonsingular diagonal blocksSk,∆ , i.e.
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S∆ := diag(Sk,∆ )k,

where the subscriptk runs over the subdomainsΩk such thatSk,∆ correspond to the
CR nodes of∂ΩCR

k and these CR nodes which are dofs ofw∈W∆ .
We define the nonsingular block diagonal matrixB∆ : W∆ →W∆ , as

B∆ := diag(B(r)
∆ ,Γkl

)Γkl⊂Γ ,

whereB(r)
∆ ,Γkl

is a diagonal block of the matrixB(r), corresponding toΓkl and these
CR nodes which are dofs ofw∈W∆ . Note that these blocks are nonsingular.

The parallel preconditioner is then as follows,

M−1
DN := B−T

∆ S∆ B−1
∆ ,

which is nonsingular, and its inverse isMDN := B∆ S−1
∆ BT

∆ .

5 Condition number bounds

The main result of this paper is the following theorem which yields a bound for the
condition number of the preconditioned system.

Theorem 1 (Condition number estimate).It holds that

〈MDNλ ,λ 〉 ≤ 〈Fλ ,λ 〉 ≤C

(
1+ log

(
H
h

))2

〈MDNλ ,λ 〉 ∀λ ∈M,

where H= maxk diam(Ωk) and C is a positive constant independent of the coeffi-
cients, and the mesh size parameters H and h. Here〈·, ·〉 is the standard l2 inner
product.

As a direct consequence of this theorem, we see that the condition number of the

preconditioned matrixM−1
DNF is bounded byC

(
1+ log

(
H
h

))2
.

The lower bound in the theorem is obtained by a purely algebraic argument,
while we get the upper bound by using several technical results of which the most
important one is the estimate of special trace norms of jumpsof tangential and
normal traces over the interfaceΓkl ⊂ Γ .
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An Adaptive Parallel-in-Time Method with
application to a membrane problem

Noha Makhoul Karam1, Nabil Nassif2, and Jocelyne Erhel3

1 Introduction
Assuming global existence on[0,∞) (and uniqueness) for a solution to the initial
value problem:

(S )

{
dY
dt = F(t,Y), 0< t ≤ T < ∞,

Y(0) =Y0,

we seek in this paper, computing its solutionY : [0,∞]→Rk using a parallel-in-time
method, for a given functionF : R×Rk→ Rk.
There is no natural parallelism across time since the solution on a time level must
be known before the computation of the solution at subsequent time levels can
start. However, it could be possible to compute simultaneously on many time lev-
els by providing a multi-processor architecture some initial guesses for the solu-
tion at later time levels. Such time-parallel computationsmay be superposed to
parallelism in space variables whenever(S ) results from a semi-discretization of
a time-dependent partial differential equation. Several parallel-in-time algorithms
have been proposed to tackle(S ). One of the first has been suggested by Niev-
ergelt [12] in 1964 and led tomultiple shooting methodsof which many variants
were developed [2], [3], ... In the eighties and nineties, parabolic multigrid methods
and multigrid waveform relaxation have been devised. In 2001, Lions, Maday &
Turinici proposed in [5] theparareal algorithmthat marked a turning point: since
its introduction, it was subject to many contributions ([6], [4], [1], ...), in particular
during Domain Decomposition Conferences. All those methods are based on the
principle of combining coarse and fine resolutions in time, starting with the choice
of a most oftenregular coarse gridfor the time domain, followed by prediction of
starting seed values at the lower ends of the coarse grid intervals, then iteratively
proceed with parallel computations on a fine grid within eachtime-interval yield-
ing updated values at their upper ends. Evaluation of the resulting gaps between
predicted and updated values on the coarse grid provides corrections for new seed
values. An iterative process is thus pursued until convergence occurs.
In this work, we give a parallel-in-time method that has beenfirst introduced in
[10] and experimented on a reaction-diffusion problem having a bounded solution.
Two main features are used in this method: (i) the use of an end-of-slice function,
strongly related to the behavior of the solution, that permits the automatic generation
of a non-uniform coarse grid; (ii) rescaling, within each ofthe generated slices, the
time and the solution variables thus obtaining a sequence ofrescaled initial value
problems with uniformity properties. Such approach has been used (in its two com-

1Universit́e Saint Joseph, Beyrouth e-mail:noha.makhoulkaram@usj.edu.lb ·2American
University of Beirut e-mail:nn12@aub.edu.lb ·3 INRIA, Rennes e-mail:Jocelyne.
Erhel@inria.fr

593



594 Noha Makhoul Karam, Nabil Nassif, and Jocelyne Erhel

ponents) in [8] and [11] for getting sequentially accurate solutions for stiff and ex-
plosive systems and has been exploited in [10] for parallel time integration of sev-
eral types of initial value problems. The resulting parallel in time integration is done
without numerical integration over the coarse grid as it is the case in the parareal
method: instead, a concept of similarity between the rescaled systems allows the
prediction of starting values at the onset of future slices.We refine here the similar-
ity concepts in order to tackle more problems (having non-bounded solutions) and
to increase the accuracy of the predictions thus enhancing speed-ups.
After giving, in section 2, an overview of the automatic coarse grid generation, we
define in section 3 some similarity properties that yield a prediction model which is
at the core of the adaptive parallel-in-time (APTI) algorithm presented in section 4.
Numerical results on a membrane problem are then given in section 5.

2 Automatic Coarse Grid generation
The basic principle of the method is in breaking(S ) into a sequence ofshooting
values problems. Specifically, we assume the existence of a shooting-value function
E : Rk×Rk→ R that permits the initiation of a recurrence process, starting with
a first slice of the coarse grid, obtained by seeking

{
T1,
{
Y(t) ∈ Rk,0≤ t ≤ T1

}}

such that:
(S1)





dY
dt = F(t,Y), 0< t < T1,

Y(0) =Y0,
E(Y(t),Y0) 6= 0, 0< t < T1, E(Y(T1),Y0) = 0.

Y1 = Y(T1) becomes the initial condition for a 2nd slice of the coarse grid. More
generally, we let forn> 1,Yn−1 =Y(Tn−1) and define the system on thenth slice:

(Sn)





dY
dt = F(t,Y), Tn−1 < t < Tn,

Y(Tn−1) =Yn−1,
E(Y(t),Yn−1) 6= 0, Tn−1 < t < Tn, E(Y(Tn),Yn−1) = 0.

Based on theEnd-Of-Slice (EOS) function E(., .), one getsthe coarse grid:
{0= T0 < T1 < ... < Tn < ...TN−1 < T ≤ TN},

with the corresponding sequence of starting values of the solution:
{Yn =Y(Tn)|n= 0,1, ...,N}.

Two cases of existence of a functionE(., .) have so far been identified ([7]).

a. Case of Explosive solutions
Let ||.|| = ||.||∞,Rk and assume limt→∞ ‖Y(t)‖= ∞. In that case, givenU,W ∈ Rk,

andD(W) ∈ Rk×k an invertible matrix depending onW with ||(D−1(W))(V)|| ≥
c(W)||V||, we then let forS> 0: E(U,W) = ||D−1(W)(U−W)||−S.
When applied to(Sn), such functionE(., .) determines the size of thenth slice
[Tn−1,Tn] by:

−S≤ E(Y(t),Yn−1)< 0, Tn−1≤ t < Tn andE(Y(Tn),Yn−1) = 0. (1)

b. Case of Oscillatory Problems
When the behavior of the solution is oscillatory, over a long period of time, in the
sense that there exists a two-dimensional planeP in Rk on which the projection of
the solution’s trajectory rotates about a fixed centerω, then a slice is ended when
the solution completes a full, or almost full, rotation in that plane aboutω.
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3 Parallelizing the shooting values problems{Sn}
The sequence of shooting values problems{(Sn)|n = 1, ...,N} can be computed
in a parallel way, provided one is able to predictaccurately, the coarse grid
{0,T1,T2, ...,TN} and the values of the solutionY(t) on that grid, i.e.{Y0,Y1,Y2, ...,YN}.
Rescaling and use of local time and solution:
Dealing uniformly with{(Sn)} is then done through a rescaling technique that
changes the variables{t,Y(t)} on each time-slice[Tn−1,Tn], into a new pair{s,Zn(s)}:

t = Tn−1+β (Yn−1)s, (2.1)
Y(t) =Yn−1+D(Yn−1)Zn(s). (2.2)

(2)

whereβ (Yn−1) ≡ βn > 0 andD(Yn−1) ≡ Dn ∈ Rk×k is an invertible matrix. Thus,
each (Sn) is now equivalent to a shooting value problem, whereby one seeks the
pair{sn, {Zn(s) ∈ Rk, 0≤ s≤ sn}}, such that:

(S ′
n)





dZn
ds = Gn(s,Zn), 0< s< sn

Zn(0) = 0,
Hn(Zn(s)) 6= 0, 0< s< sn Hn(Zn(sn)) = 0,where:

Gn(s,Zn) = βnD−1
n F(Tn−1+βns,Yn−1+DnZn) andHn(Zn) =E(Yn−1+DnZn,Yn−1).

Note the following:
- The rescaled times= t−Tn−1

βn
and solutionZn(s) areset to0 at the beginning of

every slice.
- The functionsGn andHn depend on the starting valuesTn−1 andYn−1.
- The solution functionZn(.) depends onβn, on eachnth slice, in the sense that
different choices ofβn lead to different functions Zn(.). However,independently of
βn and Dn, one has the following identities:

∀βn,

{
βnsn = Tn−Tn−1, (3.1)
Zn(sn) = D−1

n (Yn−Yn−1) . (3.2)
(3)

These identities are at the core of our prediction model, whereas, if the choice of
β (Yn−1) andD(Yn−1) are such that the behavior of the pair{sn,Zn(sn)} can be accu-
rately predicted, then the coarse grid{Tn} and the values{Yn} of Y(t) on that grid
can also be obtained from (3).

Similarity concepts:
The change of variables (2) and the consequent rescaled problems (S ′

n) have been
originally proposed in [8] and [11] to handle initial value problems (S ) which solu-
tions explode in a finite time. As the computation of these problems present a high
sensitivity to the sharp variations of the solution on a short time, one way to circum-
vent this issue is through appropriate choices of{βn,Dn,Hn(.)}, so that one inherits
“uniformity” on the rescaled systems{(S ′

n)}. This is done by selecting appropri-
ately the rescaling parameterβn so as to insure uniform boundedness, independently
of n, of {sn}, ‖Zn‖, ‖Gn‖ and‖JGn‖ (whereJGn is the jacobian ofGn), thus control-
ling the stiffness of the problem. In that way, placing the same fine solver on each
of the(S ′

n), provides a robust algorithm for solving (S ), as proved in [9].
Using this approach for parallel in time solving was done first in [10] and more
extensively in [7] on the basis of properties satisfied by thepair{sn,Zn(sn)}.
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Definition 1. Invariance: If the rescaling parameters{βn,Dn} are such that
∀n, Gn(., .) = G1(., .) andHn(.) = H1(.), then the rescaled systems(S ′

n) are in-
variant and are all equivalent to the shooting Problem(S ′

1).
In that case one has∀n, Zn(.) = Z1(.), sn = s1 andZn(sn) = Z1(s1). Invariance is an
ideal and rare case: one unique time-slice allows getting the solution on all time-
slices through a simple change of variables. A weaker property is given as follows.

Definition 2. Asymptotic similarity : it occurs when the rescaling parameters{βn,Dn}
are such that limn→∞ {sn,Zn(sn)} = {sL,ZL(sL)}, where{sL,ZL(sL)} are obtained
from a limit shooting value problem:

(SL)





dZL
ds = GL(s,ZL), 0< s< sL

ZL(0) = 0,
HL(ZL(s)) 6= 0, 0< s< sL HL(ZL(sL)) = 0.

In this case, the use of (3) for a prediction purpose is possible after a sequential run
on a number of slicesns, at which point one has:

max
n>ns
{max{|sn−sn−1|, ||Zn(sn)−Zn−1(sn−1)||}} ≤ tol, (4)

wheretol is a user’s computation tolerance. We finally consider, based on (4), a
weak case of similarity, which can be used in spite of the lackof any evidence of
invariance or asymptotic similarity.
Definition 3. Numerical Similarity is considered to be reached, whenever, there
exists 2 integers,n0≥ 1 andnr sufficiently large, such that:

max
n0≤n≤n0+nr

{max{|sn−sn−1|, ||Zn(sn)−Zn−1(sn−1)||}} ≤ tol, (5)

In that case, as in (4), one letsns = n0+nr .
Remark: in the case where all components ofYn are distinct from 0, then (3.2)
is equivalent toYn = Dn(e+Zn(sn)), wheree∈ Rk is a vector of 1’s, andZn(sn) =

D−1
n Yn − e can be expressed in terms of the vectorRn = D−1

n Yn = { Yn,i
Yn−1,i
}

(ratio-vector). The behavior of{Zn(sn)} is then equivalent to that of{Rn}.
Data analysis and prediction model:
The similarity properties determine the behavior of the ordered pairs{{sn,Zn(sn)}}
or {{sn,Rn}} and allow the prediction of the pairs{{Tn,Y(Tn)}}, without any in-
tegration on the coarse grid. Hence,on the basis of Asymptotic or Numerical
Similarity, let ns be the number of slices on which a sequential run has been
conducted with (5) being reached. We seek a prediction data model on the pairs
{{sn,Rn}|n > ns}. For that purpose, data analysis is carried out on the sequence:
D (0) = {{sn,Rn}|n= n0, ...,ns}. It leads to the model:

{{sn,Rn}|n> ns}= Fit (D (0)), (6)
extrapolating best onto next slices. In case of asymptotic similarity, the data model
should also take into consideration the convergence of{sn,Rn} to {sL,RL} (see [7]).
Besides, this model allows to get an estimate onN0, least number of slices such that:

N0−1

∑
n=ns

βnsn < T ≤
N0

∑
n=ns

βnsn. (7)

The case of a membrane problem:
Consider the second order IVP where one seeksy : [0,T]−→ R (T ≤ ∞) such that:{

y
′′ −b|y′ |q−1 y

′
+ |y|m−1 y= 0, t > 0, (8.1)

y(0) = y1,0, y
′
(0) = y2,0. (8.2)

(8)
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This model describes the motion of a membrane element linkedto a spring. When
b> 0, the speed-up of the motion causes a “blow-up” of the solution, case that has
been studied by Souplet et al in [13]. In [11], the rescaling method was applied to
the casem> 1 andq= 2m

m+1 where the solution explodes in finite time. We consider
now the case 0<m≤ q≤ 2m

m+1 ≤ 1. Carrying numerical integration of (8) has shown

global existence of the solution on[0,∞) with (a) limt→∞ |y(t)|= limt→∞ |y
′
(t)|=∞,

(b) y(t) andy
′
(t) admit an infinite number of roots in the interval[0,∞).

Such behavior makes the solution, in the phase-plane(y,y′), spiral outwards about
the origin toward infinity. The first step for solving (8) is towrite it as a system of
first order ODE’s. LettingY1(t) = y(t) andY2(t) = y′(t) makes problem (8) equiva-
lent to an initial value problem of the form(S ) where:

Y0=

(
Y1,0

Y2,0

)
andY(t)=

(
Y1(t)
Y2(t)

)
, with F(t,Y)=F(Y)=

(
Y2

b|Y2|q−1 Y2 − |Y1|m−1 Y1

)
.

Because of the oscillatory behav-
ior of the solution, one possible
way to end thenth slice could be
whenever the trajectory of the so-
lution, in theY1Y2 phase plane, in-
tersects the curveY2 = |Y1|

m+1
2 in

the first quadrant, thus complet-
ing an almost full rotation. The
oscillating behavior of the solu-
tion makes such EOS condition
guaranteed to be reached. Thus,
one chooses:
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2
 = |Y

1
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EOS condition for a membrane problem

∀W =

(
W1

W2

)
∈ R2, H(W) =W2−|W1|

m+1
2 , andβn = |Yn−1,1|

1−m
2 = |Yn−1,2|

1−m
m+1 .

This yields the rescaled systems:




dZn,1
ds = 1+Zn,2,

dZn,2
ds = bγn|1+Zn,2|q−1(1+Zn,2)−|1+Zn,1|m−1(1+Zn,1), 0< s≤ sn,

Zn,1(0) = Zn,2(0) = 0
H(Zn(s)) 6= 0, 0< s< sn andH(Zn(sn)) = 0,

(9)

with γn = |Yn−1,1|
m+1

2 (q− 2m
m+1) ≤ 1. Thus, one checks the following [7]:

1. If q = 2m
m+1, ∀m≤ 1, the rescaled systems (9) are invariant and equivalent to

findingZ(s) = (Z1(s),Z2(s)), such that:



dZ1
ds = 1+Z2,

dZ2
ds = b|1+Z2|q−1(1+Z2)−|1+Z1|m−1(1+Z1), 0< s≤ s1,

Z1(0) = Z2(0) = 0
H(Z(s)) 6= 0, 0< s< s1 andH(Z(s1)) = 0,

(10)

2. If 0 < m≤ q< 2m
m+1 ≤ 1, then the rescaled systems (9) are asymptotically similar

to the limit problem:
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dZL,1
ds = 1+ZL,2,

dZL,2
ds =−|1+ZL,1|m−1(1+ZL,1), 0< s≤ sL,

ZL,1(0) = ZL,2(0) = 0
H(ZL(s)) 6= 0, 0< s< sL andH(ZL(sL)) = 0,

(11)

4 Adaptive Parallel in Time (APTI) algorithm

The superscriptsp andc denote predicted and calculated values respectively.
At the core of parallel in time algorithms, one must have a finesolverF that uni-
formly handles each of the rescaled problems(S ′

n). It is a software function defined
by: (F ) [Yc

n ,T
c
n ] = F (Yp

n−1,T
p

n−1,βn,Dn,F,E, tol),
on the basis of the functionsF andE, given in (Sn), with Dn = D(Yn−1) andβn

selected to insure obtaining a prediction model on the pairs{sn,Zn(sn)}; tol is a
global user’s tolerance, the same as that used to check (4) or (5). The functionF is
designed so that:

max

{ ||Yn−1−Yp
n−1||

||Yn−1||
,
|Tn−1−T p

n−1|
|Tn−1|

}
=O(tol)⇒max

{ ||Yn−Yc
n ||

||Yn||
,
|Tn−Tc

n |
|Tn|

}
=O(tol).

(12)
Such fine solverF is discussed in [9], with a proof of (12) in the case whenE is
given byE(U,W) = ||D−1(W)(U −W)||−S; F takes in charge changing(Sn) to
(S ′

n), then uses a high order explicit Runge-Kutta method with alocal tolerance
tol1 << tol to insure (12).
Theorem 1.Assuming (12) is satisfied, then:



max

{
||Yn−1−Yp

n−1||
||Yn−1|| ,

|Tn−1−T p
n−1|

|Tn−1|

}
= O(tol)

max
{
||Yp

n −Yc
n ||

||Yp
n ||

, |T
p

n −Tc
n |

|T p
n |

}
= O(tol)

=⇒max





||Yn−Yp
n ||

||Yn||
|Tn−T p

n |
|Tn|



= O(tol).

An iterative processcan now be initiated using a parallel architecture withP pro-
cessors. For increasing the speed-up, we adopt a strategy ofduplication of sequential
tasks on all processors (that reduces communications and avoids idle time).

Initialization step duplicated on all P processors:
- Set the iteration indexl to 0.
- Solve sequentially problem{(S ′

n)} onm(0) = ns time-slices usingF .

- Obtain{(T(0)
j ,Y(0)

j )| j = 0, ...,m(0)} and letT(0) = max{T(0)
j }.

- ComputeN0 according to estimate (7).

Allocation of tasks on theP processors:At this point, the remaining time-slices
(n> m(0)) are statically allocated, based on a cyclic distribution:processorpr will
be assigned slices numbern where(n−m(0)) is congruent topr modP. This pro-
vides an optimized synchronization and aload balanced distributionof the work.

While T(l) < T (Iterative steps):
(i) All P processors duplicate the task of predicting{(T p

j ,Y
p
j )| j = m(l)+1, ...,Nl},

usingFit (D (l)) from (6).
(ii) Every processorpr ∈ {1, ...,P} executes in parallel the following:
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a. pr solves its first slicen (n≥m(l)+1) and computesYc
n andTc

n usingF .
b. Processorpr computes max{||Yp

n −Yc
n ||/||Yp

n ||, |T p
n −Tc

n |/|T p
n |}.

c. While max{||Yp
n −Yc

n ||/||Yp
n ||, |T p

n −Tc
n |/|T p

n |}≤ tol andn<Nl , processor
pr takes on its assigned next slice, based on theorem 1, and repeats 2(a) (b).

d. If max{||Yp
n −Yc

n ||/||Yp
n ||, |T p

n −Tc
n |/|T p

n |} > tol, processorpr stops the
execution (the remaining time-slices need not to be solved). It sends to the
master processor (processor 1) the indexI (pr) of the last slice having
converged, together with the new{Tc

n ,Y
c
n}n>m(l) .

(iii) Master processor synthesizes the received data and updates the following:
a. Iteration numberl := l + 1 and number of so far solved slicesm(l) :=

maxpr I (pr).
b.
{(

T(l)
j ,Y(l)

j

)
| j = 0, ...,m(l)

}
with

(
T(l)

j ,Y(l)
j

)
:=
(

T(l−1)
j ,Y(l−1)

j

)
, ∀ j =

0, ...,m(l−1)}.
c. T(l) := max{T(l)

j }, andN(l) from estimate (7), and the setD(l) to be used
by the functionFit (as set in (6)).

Then, the master processor sendsT(l), N(l) andD(l) to all other processors.
End While
Remark: In case of autonomous problemsF(t,Y)≡ F(Y), one needs not to predict
the starting values{T p

n } of the time. Given{Yp
n } only, the rescaling technique allows

solving(S′n) in a local times, thus providing in parallel{sn} and the sizeTc
n −Tc

n−1 =
∆Tc

n = βnsn of time-slices. Then,{Tc
n } is reconstituted from received{∆Tc

n }.

5 Numerical results
The table below summarizes some results obtained by the above APTI algorithm on
the membrane problem, in the case of asymptotic similarity when 0< m≤ q< 2m

m+1
and for 8 combinations of the problem parametersm andq, with b = 1. The total
number of slicesN, and therefore the interval of integration[0,T], corresponds to
the maximum (or almost) number preventing the explosive solution from exceeding
the machine capacity. The total number of iterations vary from one case to another,
but in all cases, the results show how small is this number compared to the total
number of slices. This ascertains the fast convergence of the method when applied
to this type of problems.Si represents the speed-up obtained when usingi proces-
sors (compared to the sequential run time of the same rescaling method) andSmax

i
is the corresponding maximum speed-up stated by Amdhal’s law. The following
tolerances have been used:tol = 5×10−6 (global) andtol1 = 10−14 (local).
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Case 1 2 3 4 5 6 7 8

m 0.8 0.7 0.7 0.6 0.6 0.6 0.5 0.5
q 0.84 0.74 0.77 0.66 0.69 0.72 0.55 0.60
T ≈ 1014 ≈ 1029 ≈ 1028 ≈ 1014 ≈ 1018 ≈ 1030 ≈ 1017 ≈ 1025

N 65000 65000 50000 65000 65000 65000 65000 65000

ns 1499 1143 1471 1156 1414 1993 1053 1385
nI 6 11 12 35 28 23 5 5

S2 1.88 1.93 1.93 1.96 1.94 1.91 1.96 1.94
Smax

2 1.95 1.97 1.94 1.97 1.96 1.94 1.97 1.96

S4 3.57 3.66 3.50 3.59 3.56 3.44 3.68 3.63
Smax

4 3.74 3.80 3.68 3.80 3.75 3.66 3.81 3.76

S8 6.47 6.76 6.23 6.57 6.38 6.05 6.82 6.59
Smax

8 6.89 7.12 6.63 7.11 6.94 6.59 7.19 6.96

Actually, the method has
been tested on the previous 8
cases, using 2, 3, 4, 5, 6, 7,
and 8 processors. The oppo-
site figure shows how the val-
ues of speed-up, averaged on
the 8 cases above, vary with
the number of processors and
how close it is to the maxi-
mum speed-up.

Conclusion
The application of the adaptive parallel in time algorithm we have presented is not
unconditional and requires the prior knowledge of the solution behavior and the ex-
istence of an EOS condition inducing the predictability of the end-of-slice values.
However, when applicable, APTI algorithm yields a fast convergence due to accu-
rate predictions that do not require any sequential integration on the coarse grid.
Besides, not all the remaining time-slices are solved at each iteration and communi-
cations are minimized in number and size. Our future work aims at experimenting
the method on additional application problems.
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A Schur Complement Method for DAE Systems
in Power System Dynamic Simulations

Petros Aristidou1, Davide Fabozzi1, and Thierry Van Cutsem2

1 Introduction

Power system dynamic simulations are widely used in industry and academia to
provide important information on the dynamic evolution of asystem after the oc-
currence of a disturbance. In modern dynamic simulation software there is the need
to represent complex electric equipment that interact witheach other directly or
through the network. These equipment models represent generators, motors, loads,
wind generators, compensators, etc. with all the physics involved and the required
controls. This multi-domain modeling leads to large, non-linear, stiff and hybrid
(i.e. subject to both continuous and discrete dynamics) Differential and Algebraic
Equation (DAE) systems [10].

In these dynamic simulation studies, the speed of simulation is of the utmost
importance. The observations resulting from these simulations can be critical in
scheduling corrective actions to guard the actual power system against instability.
This procedure, called real-time Dynamic Security Assessment, is performed by
many power system companies.

Triggered mainly by the developments in parallel processing technologies, some
DDMs have already been proposed to speed up simulations. They are mainly based
on Schwartz alternating methods and Waveform Relaxation methods [9, 7, 11]. Un-
like space domain decomposition, no geometrical information is given to decom-
pose a DAE system [5] and engineers have to rely on a priori information on the sys-
tem’s topology and operation for partitioning. Furthermore, alternating algorithms
demand great care in the partitioning of the system and the handling of interface
values to ensure the convergence of the methods [1, 8]. If tightly coupled unknowns
are mapped to different partitions and an alternating procedure is used, significantly
slowed down convergence rates or divergence can be experienced [2].

This paper proposes a robust, accurate and efficient parallel algorithm based on
the direct Schur Complement DDM [13]. The algorithm yields significant accelera-
tion when compared to classic, high performance, integrated (applied on the unde-
composed system) dynamic simulation algorithms. The two-fold gain comes from
utilizing the parallel potential of the method and exploiting the locality and sparsity
of power systems. Furthermore, as a direct method, convergence does not depend on
the specific partitioning of the system as the interface values are resolved accurately
at each step before solving the sub-domain problems. A connection between the

1 Department of Electrical Engineering and Computer Science, University of Liège, Lìege, Bel-
gium, e-mail:p.aristidou@ieee.org ·2 Fund for Scientific Research (FNRS) at the De-
partment of Electrical Engineering and Computer Science, University of Liège, Lìege, Belgium,
e-mail:t.vancutsem@ulg.ac.be
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proposed algorithm and quasi-Newton based integrated algorithms is demonstrated
allowing the better comprehension of the algorithm’s properties. Finally, an imple-
mentation of the algorithm using the shared-memory parallel programming model
and some numerical results are presented based on a realistic large-scale test system.

The paper is organized as follows: in Section 2 we present thepartitioning
scheme of the proposed algorithm. In Section 3, we explain the formulation of the
dynamic simulation problem and the solution using the SchurComplement method.
In Section 4, some further investigation of the algorithm ismade with the help of
quasi-Newton integrated algorithms. Implementation specifics and simulation study
are reported in Section 5 and followed by closing remarks in Section 6.

2 Power System Modeling

An electric power system, under the phasor approximation [10], can be described in
compact form by the following DAE Initial Value Problem:

0 = ΨΨΨ(x,V)
ΓΓΓ ẋ = ΦΦΦ(x,V)

x(t0) = x0,V(t0) =V0

(1)

whereV is the vector of voltages through the network,x is the expanded state vector
containing the differential and algebraic variables (except the voltages) of the system

andΓΓΓ is a diagonal matrix withΓΓΓ ℓℓ =

{
0, if the ℓ-th equation is algebraic
1, if the ℓ-th equation is differential.

The first part of system (1) corresponds to the purely algebraic network equa-
tions. The second part describes the remaining DAEs of the system. Discrete events
(caused by digital controllers, load tap changing devices,etc.) can alter the power
system equations during the simulation. The handling of these discrete events is not
presented in this paper [4].

2.1 Power System Partitioning

First, the purely algebraic equations describing the electric network are separated to
create one sub-domain. Then, each model of a component connected to the network
(such as a synchronous machine, a load, a motor or even a low-voltage distribution
network) is separated to form the remaining sub-domains. All the aforementioned
devices connected to the network will be calledinjectors. This term encompasses
devices that either produce or consume power in normal operating conditions. Each
injector is assumed to be connected to a single bus of the network and the interface
is on the physical junction between the sub-domains. Extension to two or more
connection buses is straightforward [4]. The decomposition is visualized in Fig. 1.
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Fig. 1 Decomposed Power
System:The Power System is
decomposed into the Network
and the injectors connected to
it. This reveals a star shaped
decomposition layout with
the Network sub-domain
connected to all other sub-
domains.

Network

M

M

M

M

Γiẋi =Φi(xi ,V
ext)

0=Ψ(xext,V )

V

Injectors

The network sub-domain is described by the algebraic equation system (2) while
the sub-domain of each injectori is described by the DAE system (3).

0=ΨΨΨ(xext,V)
xext(t0) = xext

0 ,V(t0) =V0
(2)

ΓΓΓ i ẋi =ΦΦΦ i(xi ,Vext)
xi(t0) = xi0,Vext(t0) =Vext

0
(3)

Sub-domains numbered 1, . . . ,M−1 relate to injectors andM relates to the network.
Vectorsxi and matricesΓΓΓ i are the projections ofx andΓΓΓ , defined in (1), on thei sub-
domain. The variables of each sub-domain are separated intointerior (int) variables
appearing only in equations of the sub-domain itself and interface (ext) variables
appearing in equations of both the Network and an injector sub-domain. Thus, for
injectorsxi = [xint

i xext
i ] and for the NetworkV = [V int Vext] (see Fig. 1).

3 DDM-based Algorithm

3.1 Local System Formulation

Each injector DAE sub-system is algebraized and the resulting non-linear systems of
equations are solved with a quasi-Newton method. The local linear systems involved
in the solution take on the form of (4) for the injectors and (5) for the network.

[
A1i A2i

A3i A4i

]

︸ ︷︷ ︸

[
△xint

i
△xext

i

]

︸ ︷︷ ︸
+
[

0 Bi
]

︸ ︷︷ ︸

[
0

△Vext

]
=

[
f int

i (xint
i ,xext

i )
f ext

i (xint
i ,xext

i ,Vext)

]

︸ ︷︷ ︸
Ai △xi B̃i f i

(4)
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[
D1 D2

D3 D4

]

︸ ︷︷ ︸

[
△V int

△Vext

]

︸ ︷︷ ︸
+∑M−1

j=1

[
0 C j

]
︸ ︷︷ ︸

[
0
△xext

j

]
=

[
gint(V int ,Vext)

gext(V int ,Vext,xext)

]

︸ ︷︷ ︸
D △V C̃ j g

(5)

whereA1i (resp.D1) represents the coupling between interior variables.A4i (resp.
D4) represents the coupling between local interface variables.A2i andA3i (resp.D2

andD3) represent the coupling between the local interface and theinterior variables
and,Bi (resp.C j ) represent the coupling between the local interface variables and
the external interface variables of the adjacent sub-domains.

3.2 Global Reduced System Formulation

To formulate the global reduced system involving only the interface variables, the
interior variables of the injector sub-domains are eliminated from (4), which yields
for the i-th injector:

Si△xext
i +Bi△Vext = f̃ i (6)

whereSi = A4i −A3iA
−1
1i A2i is the local Schur complement matrix and̃f i = f ext

i −
A3iA

−1
1i f int

i the corresponding adjusted mismatch values.
Contrary to matricesAi , which are small but dense and general, matrixD is large

but sparse and structurally symmetric. Thus, eliminating the interior variables from
(5) would destroy its sparsity and symmetry. Therefore, allthe variables of the net-
work sub-domain are included in the reduced system (7).




S1 0 0 · · · 0 B1

0 S2 0 · · · 0 B2

0 0 S3 · · · 0 B3
...

...
...

.. .
...

...
0 0 0 · · · D1 D2

C1 C2 C3 · · · D3 D4







△xext
1

△xext
2

△xext
3

...
△V int

△Vext



=




f̃ 1
f̃ 2
f̃ 3
...

gint

gext




(7)

Due to the star layout of the decomposed system (see Fig. 1), the resulting global
Schur complement matrix in (7) is block bordered diagonal. Manipulating this struc-
ture we can further eliminate all the interface variables ofthe injector sub-domains
and keep only the variables associated to the network sub-domain, as shown in (8).

The elimination factorsCiS
−1
i Bi affect only non-zero elements of sub-matrixD4

thus retaining the original sparsity pattern. This system is solved efficiently using a
sparse linear solver to updateV at each Newton iteration. Then, the network inter-
face variables (Vext) are backward substituted and the injector sub-domain variables
(xi) are updated independently and in parallel using (4).
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[
D1 D2

D3 D4−∑N−1
i=1 CiS

−1
i Bi

]

︸ ︷︷ ︸

[
∆V int

∆Vext

]

︸ ︷︷ ︸
=

[
gint

gext−∑M−1
i=1 CiS

−1
i f̃ i

]

︸ ︷︷ ︸
D̃ ∆V g̃

(8)

3.3 Exploiting Locality

The procedure can be further accelerated by exploiting the locality of the sub-
domains. Some sub-domains, described by strongly non-linear systems or with fast
changing variables, converge slower. Other sub-domains, with “low dynamic activ-
ity”, converge faster. This can be exploited in two ways.

First, subdomains with low dynamic activity are detected bymeasuring the ef-
fort (number of Newton iterations) needed for convergence at each discrete time. A
subdomain’s system is updated if that effort increases above a threshold. Second, a
subdomain is declared converged (and stops being solved within the discrete time)
if the absolute maximum normalized correction of a Newton solution of the subdo-
main system becomes smaller than a selected tolerance. Since the low dynamics are
detected numerically during the simulation and the tolerance is chosen small enough
so as not to disturb the Newton solution, the accuracy of the solution is preserved.
Figure 2 shows the full parallel algorithm.

Parallel threads

Parallel threads

Increment time

end

all sub-domains
converged?

time horizon
reached?

yes

yes

no

no

if(Injector i sub-domain hasn’t converged){
Solve local system (4) for
interface and interior variablesxi

}
Check if Injectori sub-domain converged
Check if Injectori sub-domain needs update

if(sub-domaini needs update) {
Update local system (4) or (5)
Compute contribution toD̃
of simplified reduced system (8)

}
Compute contribution tõg
of simplified reduced system (8)

if(Network sub-domain hasn’t converged){
Solve simplified reduced system (8) forV

}
Check if Network sub-domain converged
Check if Network sub-domain needs update

Initialize interior and interface variables

Fig. 2 Parallel Algorithm (P)
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4 Further Analysis of the Algorithm

To better understand its properties, Algorithm (P) in Fig. 2can reformulated into an
equivalent quasi-Newton undecomposed scheme with thek-th iteration described:
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f 1
f 2
...

f M−1
g




k

︸ ︷︷ ︸
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r1

r2
...

rM−1

rM




k

︸ ︷︷ ︸

J̃k △yk Fk rk

yk+1 = yk+△yk

where 0≤ k j ≤ k ( j = 1, ...,M) and r i =

{
f i , if i-th sub-domain has converged
0, otherwise.

The approximate JacobiañJk is used by the method at each iterationk. Every
block line i of J̃k corresponds to a sub-domain and is updated independently based
on sub-domain update criteria [4]. Thus, some block lines can be kept constant for
several iterations or even time-steps (ki ≤ k).

Furthermore, sub-domains considered to have converged arenot solved any more
(see Fig. 2). In the equivalent quasi-Newton integrated scheme this corresponds to
explicitly setting the mismatch of those sub-domains to zero by introducing some
inaccuracy to the method through the correction termrk. The inaccuracy is bounded
and controlled to avoid affecting the accuracy of the final solution.

Using this formulation for Algorithm (P) allows us to utilize a general and well
developed framework within which quasi-Newton schemes involving inaccuracy
can be described and analyzed [12, 3].

5 Implementation and Numerical Results

The Schur Complement-based DDM was implemented in the simulation software
RAMSES, developed at the University of Liège. The benchmark Algorithm (I) is a
quasi-Newton scheme applied to the undecomposed DAE system(1). It uses an ap-
proximate Jacobian which is updated and factorized if the system hasn’t converged
after three Newton iterations at any discrete time instant.This method (also referred
to as Very Dischonest Newton Method) is considered to be one of the fastestse-
quentialalgorithms and many traditional industry software use it.

A large-scale model, representative of the Western European main transmission
grid, is used. It includes 15226 buses, 21765 branches and 3483 synchronous ma-
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chines represented in detail together with their excitation systems, voltage regu-
lators, power system stabilizers, speed governors and turbines. Additionally, 7211
models are included involving induction motors, dynamically modeled loads and
equivalents of distribution systems. The resulting, undecomposed, DAE system has
146239 states. The disturbance simulated consists of a short circuit near a bus last-
ing 5 cycles (100 ms at 50 Hz), that is cleared by opening a double-circuit line. The
system is then simulated over a period of 240 s with a time stepof 1 cycle (20 ms).

Fig. 3 Speedup index:

time elapsed sequential algorithm (I)
time elapsed parallel algorithm (M cores)

This index shows how faster
is the parallel implementa-
tion when compared to the
fast sequential integrated
Algorithm (I) on the same
computer.
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The same models, algebraization method (second-order Backward Differentia-
tion Formula) and way of handling the discrete events are used in both algorithms.
For the solution of the sparse linear systems, HSL MA41 [6] isused and for the
dense injector linear systems of Algorithm (P), Intel MKL LAPACK library. The
computer used for the simulation is a 24-core, shared memory, AMD Opteron Inter-
lagos (CPU 6238 @ 2.60GHz) running Debian Linux.

Fig. 4 Real-time index:

n=
simulation elapsed time
simulated physical time

This index shows how faster
was the simulation than the
simulated time. This is an
important index for control
center applications where the
speed of computation is an
issue for operator decision.  0
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Figure 3 shows that the DDM-based algorithm is already twicefaster than the
benchmark in sequential execution. This speedup is mainly attributed to the ex-
ploitation of locality in the decomposed algorithm (Section 3.3). As we proceed to
parallel execution, the proposed algorithm performs up to 4.5 times faster. Figure 4
shows the real-time potential of the algorithm in parallel execution.
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The ratio of the interface system to the subdomain systems isvery important to
the performance of the algorithm since it corresponds to theratio between the se-
quential portion of the code and the parallel portion of the code. A higher ratio leads
to better speedup and avoids the saturation observed when increasing the number
of cores. The size of the interface system (8) is the same as ofthe network subdo-
main (5), that is approx. 30 000 for the test-system considered. At the same time, the
subdomain systems include approx. 120 000 states. Thus, thesize ratio is approx.
4, which explains why a relatively small speedup is observedafter 6 cores and the
speedup saturates at 4.5 times.

6 Conclusion

In this paper a Schur Complement-based algorithm for dynamic simulation of elec-
tric power systems has been outlined. The algorithm yields acceleration of the simu-
lation procedure in two ways. On the one hand, the procedure is accelerated numer-
ically, by exploiting the locality of the sub-domain systems and avoiding many un-
necessary computations (factorizations, evaluations, solutions). On the other hand,
the procedure is accelerated computationally, by exploiting the parallelization op-
portunities inherent to DDMs.
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5. Guibert, D., Tromeur-Dervout, D.: A Schur Complement Methodfor DAE/ODE Systems in
Multi-Domain Mechanical Design. Domain Decomposition Methods in Science and Engi-
neering XVII pp. 535–541 (2008)

6. HSL(2011): A collection of Fortran codes for large scale scientific computation. URLhttp:
//www.hsl.rl.ac.uk

7. Ilic’-Spong, M., Crow, M.L., Pai, M.A.: Transient Stability Simulation by Waveform Relax-
ation Methods. Power Systems, IEEE Transactions on2(4), 943–949 (1987)

8. Jackiewicz, Z., Kwapisz, M.: Convergence of waveform relaxation methods for differential-
algebraic systems. SIAM Journal on Numerical Analysis33(6), 2303–2317 (1996)

9. Kron, G.: Diakoptics: the piecewise solution of large-scale systems. MacDonald (1963)
10. Kundur, P.: Power system stability and control. McGraw-hill New York (1994)
11. La Scala, M., Bose, A., Tylavsky, D., Chai, J.: A highly parallel method for transient stability

analysis. Power Systems, IEEE Transactions on5(4), 1439 –1446 (1990)
12. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables.

Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1987)



Schur Complement Method for Power System Dynamic Simulations 611

13. Saad, Y.: Iterative methods for sparse linear systems, second edn. Society for Industrial and
Applied Mathematics (2003)





FETI solvers for non-standard finite element
equations based on boundary integral operators

Clemens Hofreither1, Ulrich Langer2, and Clemens Pechstein2

1 Introduction

This paper is devoted to the construction and analysis of Finite Element Tearing
and Interconnecting (FETI) methods for solving large-scale systems of linear alge-
braic equations arising from a new non-standard finite element discretization of the
diffusion equation. This discretization technique uses PDE-harmonic trial functions
in every element of a polyhedral mesh. The generation of the local stiffness matri-
ces utilizes boundary element techniques. For these reasons, this non-standard finite
element method can also be called a BEM-based FEM or Trefftz-FEM.

The FETI method was introduced by Farhat and Roux in [1] and has been gen-
eralized and analyzed by many people, see, e.g., [11] and [7]for the corresponding
references. The Boundary Element Tearing and Interconnecting (BETI) method was
later introduced by Langer and Steinbach [6] as the boundaryelement counterpart
of the FETI method. The analysis of the convergence of the BETI method is heavily
based on the spectral equivalences between FEM- and BEM-approximated Steklov-
Poincaŕe operators. Similar techniques are used for the analysis ofthe BEM-based
FETI methods considered in this paper. Due to space constraints, this analysis is
however postponed to a forthcoming article. In the present work, we derive the
solver, state the convergence results without proof, and present numerical results.

2 A skeletal variational formulation

Let Ω ⊂ Rd, d = 2 or 3, be a bounded Lipschitz domain, and let us consider the
following diffusion problem in the standard weak form: findu∈H1(Ω) such thatu
matches the given Dirichlet datagD onΓD and satisfies the variational equation
∫

Ω
α∇u·∇vdx=

∫

Ω
f vdx+

∫

ΓN

gNvds∀v∈H1
D(Ω) = {v∈H1(Ω) : v|ΓD = 0} (1)

whereα is the uniformly positive and bounded diffusion coefficient, f is a given
forcing term,ΓD ⊆ ∂Ω is the Dirichlet boundary with positive surface measure,
ΓN = ∂Ω \ΓD is the Neumann boundary with prescribed conormal derivative gN.

1 Doctoral Program “Computational Mathematics” Johannes KeplerUniversity, Linz, Aus-
tria, e-mail:clemens.hofreither@dk-compmath.jku.at ·2 Institute of Computational
Mathematics, Johannes Kepler University, Linz, Austria, e-mail:{ulanger}(clemens.
pechstein)@numa.uni-linz.ac.at
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Consider a decompositionT of the domainΩ into polytopal elementsT ∈ T .
In contrast to a standard FEM method, we allow the mesh to consist of a mixture of
rather general polygons (in 2d) or polyhedra (in 3d). We now require that the coeffi-
cient functionα is piecewise constant with respect toT , i.e.,α|T(x)≡ αT ∀T ∈T .

On every elementT, we introduce the local harmonic extension operatorHT :
H1/2(∂T) → H1(T) which maps anygT ∈ H1/2(∂T) to the unique weak solu-
tion uT ∈ H1(T) of the local PDE−div(αT∇uT) = 0 with Dirichlet boundary
condition uT |∂T = gT . Furthermore, we define the localSteklov-Poincaŕe opera-
tor ST : H1/2(∂T)→ H−1/2(∂T) by STuT = γ1HTuT , whereγ1 is the conormal
derivative operator which takes the formγ1 = n ·α∇ for sufficiently regular argu-
ments.

If we introduce theskeletonΓS :=
⋃

T∈T ∂T and denote byH1/2(ΓS) the trace
space ofH1(Ω)-functions onto the skeleton, we can formulate the skeletalvaria-
tional problem: findu∈ H1/2(ΓS) with u|ΓD = gD such that

a(u,v) = 〈F, v〉 ∀v∈WD = {v∈W = H1/2(ΓS) : v|ΓD = 0}, (2)

where the bilinear froma(u,v) and the linear form〈F, v〉 are defined bya(u,v) =

∑T∈T 〈STu|∂T , v|∂T〉 and 〈F, v〉 = ∑T∈T

[∫
T fHT(v|∂T)dx+

∫
∂T∩ΓN

gNvds
]
, re-

spectively. It is easy to see that the skeletal variational formulation (2) is equivalent
to the standard variational formulation (1) in the sense that the solution of the former
is the skeletal trace of the solution of the latter [3].

3 Approximation of the Steklov-Poincaŕe operator

It is well-known [10] that the Steklov-Poincaré operatorST can be expressed as

ST = αT(V
−1
T (1

2I +KT)) = αT(DT +(1
2I +K′T)V

−1
T (1

2I +KT))

in terms of the boundary integral operators defined on every element boundary∂T,

VT : H−1/2(∂T)→ H1/2(∂T), KT : H1/2(∂T)→ H1/2(∂T),

K′T : H−1/2(∂T)→ H−1/2(∂T), DT : H1/2(∂T)→ H−1/2(∂T),

called, in turn, thesingle layer potential, double layer potential, adjoint double layer
potential, andhypersingularoperators. They are defined by means of the fundamen-
tal solution of the Laplace equation.

We construct a computable approximation as follows. We assume that each ele-
ment boundary∂T has a shape-regular meshFT which consists of line segments in
R2 and of triangles inR3, and that these local meshes match across elements. On this
mesh, we construct a spaceZ h

T of piecewise constant functions and define, given
u ∈ H1/2(∂T), the discrete variablewh

T ∈ Z h
T by solving the discrete variational

problem〈VTwh
T , zh

T〉= 〈(1
2I +KT)u, zh

T〉 for all zh
T ∈Z h

T . A computable approxima-
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tion to ST is then given bỹSTu := αT(DTu+(1
2I +K′T)w

h
T). The approximatioñST

remains self-adjoint and its kernel is given by the constantfunctions, just as forST .
Furthermore, it satisfies the spectral equivalence

c̃T 〈STv, v〉 ≤ 〈S̃Tv, v〉 ≤ 〈STv, v〉 ∀v∈ H1/2(∂T) (3)

with c̃T ∈ (0, 1
4]. Replacing, in (2),ST by its approximations̃ST , we obtain the inex-

act skeletal variational formulation: findu∈ H1/2(ΓS) with u|ΓD = gD such that

ã(u,v) := ∑
T∈T

〈S̃Tu|∂T , v|∂T〉= 〈F, v〉 ∀v∈WD.

The positive constant ˜cT in (3) depends on the geometry of the elementT. For robust
error estimates, it is necessary to bound ˜cT from below uniformly for all elements.
Recently, explicit bounds for these constants have been obtained, starting with a
paper by Pechstein [8] which relied on the Jones parameter and a constant in an
isoperimetric inequality. These results were employed in the rigorousa priori error
analysis of the BEM-based FEM [3, 2] and have later been simplified in [4].

Theorem 1 ([4]). Let Ω ⊂ R3. Assume that there exists a shape-regular simplicial
meshΞ(Ω ′) of an open, bounded supersetΩ ′ ⊃Ω of Ω such that each element T∈
T is a union of simplices fromΞ(Ω ′), and the number of simplices per element T
is uniformly bounded. Furthermore, assume that the boundary meshesFT , T ∈T ,
are shape-regular.

Then, the contraction constantsc̃T , T ∈ T , are uniformly bounded away from0
in terms of the mesh regularity parameters.

4 Discretization

By assumption,F :=
⋃

T∈T FT describes a shape-regular triangulation of the
skeletonΓS. On this mesh, we construct the discrete trial spaceW h ⊂ H1/2(ΓS)
of piecewise linear, continuous functions on the skeleton and setW h

D := W h∩WD.
After this discretization, we aim to finduh ∈W h with uh|ΓD = gD such that

ã(uh,vh) = 〈F, vh〉 ∀vh ∈W h
D . (4)

Rigorous error estimates of optimal order for this discretized variational problem
can be found in [3, 2]. Equivalently, (4) can be written as an operator equation

Auh = F (5)

with A : W h→ (W h
D )∗. The associated stiffness matrix in the canonical nodal basis

shares many properties with the stiffness matrix obtained from a standard finite
element method like sparsity, symmetry and positive definiteness.
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5 A FETI solver

In the following, we derive a solution method for (5) based onthe ideas of the FETI
substructuring approach, originally proposed by Farhat and Roux [1]. Our derivation
closely follows that of the classical FETI method. Thus, we refer to the monographs
[11] and [7] and the references therein for further details and proofs.

Fig. 1 Sketch of domain decomposition approach in 2D for a rectangulardomain withN = 2
subdomains.Left: FETI substructuring.Right:FETI-like substructuring for the BEM-based FEM.

We decomposeΩ into non-overlapping subdomains(Ωi)
N
i=1 in agreement with

the polyhedral meshT , that is,Ω i =
⋃

T∈Ti
T with an associate decomposition

(Ti)
N
i=1. We setHi := diamΩi andH := maxN

i=1Hi . Every subdomainΩi has an as-
sociated skeleton

⋃
T∈Ti

∂T and discrete skeletal trial spacesW h(Ωi) andW h
D (Ωi),

constructed as in Section 4. In the following, we assume thatthe problem has been
homogenized with respect to the given Dirichlet datagD, such thatuh ∈W h

D .
Both the operatorA and the functionalF in (5) can be written as a sum of local

contributionsAi : W h(Ωi)→W h(Ωi)
∗ and fi ∈W h(Ωi)

∗ such that∑N
i=1Ai(u|Ωi ) =

∑N
i=1 fi , where here and in the sequel we drop the superscripth since all functions are

discrete from now on. Indeed, all relevant functions live inspaces of piecewise lin-
ear functions which have natural nodal bases. Therefore, wewill not distinguish in
the following between functions and the coefficient vectorsrepresenting them with
respect to the nodal basis, nor between operators and their matrix representations.

We introduce the Schur complementS̃i = Ai,Γ Γ −Ai,Γ I A
−1
i,II Ai,IΓ of the subdo-

main stiffness matrixAi . The blocksAi,Γ Γ ,Ai,Γ I ,Ai,IΓ ,Ai,II are chosen such that the
subscriptsΓ andI correspond to the boundary and inner degrees of freedom, i.e.,

Aiw=

[
Ai,Γ Γ Ai,Γ I

Ai,IΓ Ai,II

][
wΓ
wI

]
.

Eliminating the interior unknowns in (5) yields the equivalent minimization problem

u= argminv∈W h
D (Γ H

S )

1
2

N

∑
i=1
〈S̃iv|∂Ωi

, v|∂Ωi
〉−

N

∑
i=1
〈gi , v|∂Ωi

〉, (6)

whereΓ H
S =

⋃N
i=1 ∂Ωi is the coarse skeleton,W h

D (Γ H
S ) is the trace space of discrete

functionsW h
D (Ω) ontoΓ H

S , andgi is a suitably adjusted forcing term.
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Let W h(∂Ωi) := {v|∂Ωi
: v∈W h(Ωi)} denote a space of discrete boundary func-

tions. We then introduce the broken spaceY := ∏N
i=1Yi with Yi := {v∈W h(∂Ωi) :

v|ΓD = 0}. In order to enforce continuity of the functions inY, we introduce the
jump operatorB : Y→ RNΛ , whereNΛ ∈ N is the total number of constraints. Here
we assume fully redundant constraints, i.e., for every nodeon a subdomain inter-
face, constraints corresponding to all neighboring subdomains are introduced. This
choice implies thatB is not surjective, and we define the space of Lagrange multi-
pliers as the rangeΛ := RangeB⊆ RNΛ and considerB as a mappingY→Λ .

Using the jump operator, we rewrite (6) asu = argminy∈kerB
1
2 ∑N

i=1〈S̃iyi , yi〉 −
∑N

i=1〈gi , yi〉. Introducing Lagrange multipliers to enforce the constraint By= 0, we
obtain the saddle point formulation

[
S̃ B⊤

B 0

][
u
λ

]
=

[
g
0

]
, (7)

for u ∈ Y and λ ∈ Λ , with the block matrices and vectors̃S= diag(S̃1, . . . , S̃N),
B = (B1, . . . ,BN), u = (u1, . . . ,uN)

⊤, g = (g1, . . . ,gN)
⊤. From (7), we see that the

local skeletal functionsui satisfy the relationship

S̃iui = gi−B⊤i λ . (8)

For anon-floatingdomainΩi , that is, one that shares a part of the Dirichlet bound-
ary such that∂Ωi ∩ΓD 6= /0, S̃i is positive definite and thus invertible. For afloating
domainΩi , the kernel of̃Si consists only of the constant functions, and we parame-
terize it by the operatorRi :R→ kerS̃i ⊂Yi which maps a scalar to the corresponding
constant function. Under the condition that the right-handside is orthogonal to the
kernel, i.e.,

〈gi−B⊤i λ , Riζ 〉= 0 ∀ζ ∈ R, (9)

the local problem (8) is solvable and we haveui = S̃†
i (gi −B⊤i λ )+Riξi with some

ξi ∈ R. Here,S̃†
i denotes a pseudo-inverse ofS̃i . For non-floating domainsΩi , we

setS̃†
i = S̃−1

i .

We setZ := ∏N
i=1R

dim(kerS̃i) and introduce the operatorR : Z→Y by (Rξ )|Ωi :=
Riξi for floatingΩi and(Rξ )|Ωi := 0 for non-floatingΩi . The local solutionsu can
then be expressed by

u= S̃†(g−B⊤λ )+Rξ (10)

under the compatibility conditionR⊤B⊤λ = R⊤g derived from (9). Inserting (10)
into the second line of (7) yieldsBS̃†g−BS̃†B⊤λ +BRξ = 0, and together with the
compatibility condition and using the notationsF = BS̃†B⊤ andG= BR, we obtain
the dual saddle point problem

[
F −G

G⊤ 0

][
λ
ξ

]
=

[
BS̃†g
R⊤g

]
. (11)
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With a self-adjoint operatorQ : Λ → Λ which is assumed to be positive definite
on the range ofG and which will be specified later, we define the projectorP =
I −QG(G⊤QG)−1G⊤ from Λ onto the subspaceΛ0 := kerG⊤ ⊂ Λ of admissible
increments. The choiceλg := QG(G⊤QG)−1R⊤g ∈ Λ ensures thatG⊤λg = R⊤g,
and thus, withλ = λ0+λg, we can homogenize (11) such that we only search for a
λ0 ∈Λ0 with

Fλ0−Gξ = BS̃†g−Fλg. (12)

Applying the projectorP⊤ to this equation and noting thatP⊤G= 0, we obtain the
following formulation of the dual problem: findλ0 ∈Λ0 such that

P⊤Fλ0 = P⊤(BS̃†g−Fλg) = P⊤BS̃†(g−B⊤λg). (13)

It can be shown thatP⊤F is self-adjoint and positive definite onΛ0. Thus, the
problem (13) has a unique solution which may be computed by CGiteration in
the subspaceΛ0. Once λ = λ0 + λg has been computed, we see that applying
(G⊤QG)−1G⊤Q to (12) yieldsξ = (G⊤QG)−1G⊤QBS̃†(B⊤λ −g). The unknowns
ui may then be obtained by solving the local problems (10), and the unknowns in
the interior of eachΩi may be recovered by solving local Dirichlet problems.

Preconditioners for FETI are typically constructed in the formPM−1 with a suit-
able operatorM−1 : Λ → Λ . The FETI Dirichlet preconditioner adapted to our set-
ting, is given by the choiceM−1 = BS̃B⊤ and works well for constant or mildly
varying coefficientα. In this case, the choiceQ= I works satisfactorily.

To deal with coefficient jumps, we need to employ ascaledor weighted jump
operatoras introduced in [9] and analyzed in [5]. We restrict ourselves to the case
of subdomain-wise constant coefficientα, i.e.,α(x) = αi for x∈Ωi .

Let xh∈ ∂Ωi refer to a boundary node. We introduce weighted counting functions
δ j via piecewise linear interpolation on the facets of the coarse skeletonΓ H

S of the
nodal values defined byδ j(xh) = α j/(∑k∈{1,...,N}:xh∈∂Ωk

αk) for xh ∈ ∂Ω j and 0
otherwise, j = 1, . . . ,N. We introduce diagonal scaling matricesDi : Λ → Λ , i =
1, . . . ,N, operating on the space of Lagrange multipliers. Consider two neighboring
domainsΩi andΩ j sharing a nodexh ∈ ∂Ωi ∩∂Ω j . Let k∈ {1, . . . ,NΛ} denote the
index of the Lagrange multiplier associated with this node and pair of subdomains.
Then, thek-th diagonal entry ofDi is set toδ j(xh), and thek-th diagonal entry ofD j

to δi(xh). Diagonal entries ofDi not associated with a node on∂Ωi are set to 0.
Theweighted jump operator BD :Y→Λ is now given byBD = [D1B1, . . . ,DNBN],

and the weighted Dirichlet preconditioner byM−1
D = BDS̃B⊤D . In this case, a possi-

ble choice forQ is simplyQ= M−1
D . Alternatively,Q can be replaced by a suitable

diagonal matrix as described in [5].

6 Convergence Analysis

The convergence analysis proceeds by the idea of spectral equivalences between the
BEM-based FEM Schur complementsS̃i and the Schur complements which occur
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in a standard one-level FETI method, allowing us to transferthe known condition
estimates from the FETI literature to our case. This is similar to the approach used in
the analysis of the BETI method [6]. For space reason, we cannot give this analysis
here, and it must be postponed to a forthcoming paper. Here weonly state the main
results. Under standard assumptions, we can prove the condition number estimate

κ(P⊤F |Λ0)≤C(α/α)maxi=1,...,N(Hi/hi)

for the non-preconditioned case, whereα = maxx∈Ω α(x), α = minx∈Ω α(x), and
the constantC depends only on mesh regularity parameters. For the preconditioned
case, with the choiceQ= M−1

D , we have the condition number estimate

κ(PM−1
D P⊤F |Λ0)≤C(1+ log(maxi=1,...,N(Hi/hi)))

2.

7 Numerical experiments

We solve the pure Dirichlet boundary value problem−∆u = 0 in Ω andu(x) =
−(2π)−1 log|x− x⋆| on ∂Ω . The 2d domainΩ (Figure 2, left) is discretized by an
irregular polygonal mesh. The source pointx⋆ = (−1,1) lies outside ofΩ .

Fig. 2 Left: Ω partioned intoN = 400 subdomains.Right:Zoom into the polygonal mesh.

The polygonal meshT is constructed by applying the graph partitionerMETIS

to a standard triangular mesh consisting of 524,288 triangles, resulting in a polyg-
onal mesh with 99,970 elements, most of which are unions of 5 or 6 triangles, cf.
Figure 2, right. The domain decomposition{Ωi} is obtained by applyingMETIS a
second time on top of the meshT , see Figure 2, left.

We use the Dirichlet preconditioner with multiplicity scaling and a suitable diag-
onal matrix forQ as described in [5], and solve the dual system by the corresponding
PCG iteration. In Table 1, we give the number of CG iterationsrequired to reduce
the initial residual by a factor of 10−8 without and with Dirichlet preconditioner,
and provide some CPU times for varying numberN of subdomains.
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N total time avg. loc. time #iter # Lagrange
25 32.23 /20.490.0776 /0.0759133 /29 5875
50 30.19 /19.100.0317 /0.0310135 /30 8962

100 26.64 /17.700.0135 /0.0131131 /31 13012
200 23.69 /17.410.0059 /0.0057134 /36 19056
400 21.06 /16.130.0027 /0.0026123 /34 27324
800 20.23 /17.680.0013 /0.0013109 /36 39304

1600 22.19 /20.960.0006 /0.0006095 /35 56632

Table 1 Results of the non-preconditioned (left) /preconditioned (right) CG solver. Columns:
number of subdomains, total CPU time for the solution in seconds, averaged time for solving the
local problems in seconds, number of iterations, number of Lagrange multipliers.
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Domain decomposition methods for problems of
unilateral contact between elastic bodies with
nonlinear Winkler covers

Ihor I. Prokopyshyn1, Ivan I. Dyyak2, Rostyslav M. Martynyak1, and
Ivan A. Prokopyshyn2

1 Introduction

Thin covers from different materials are often applied in engineering to improve the
functional properties of the surfaces of machines and structures components. On the
other hand, thin covers with certain mechanical propertiesare used to model the real
microstructure of surfaces, adhesion and glue bondings [6,14, 15].

The classical methods for solution of contact problems for bodies with thin cov-
ers are grounded on integral equations and are reviewed in work [15]. Nowadays,
one of the most effective numerical methods for such contactproblems are methods,
based on variational formulations and finite element approximations.

Efficient approach for solution of multibody contact problems is the use of do-
main decomposition methods (DDMs). Many DDMs for contact problems without
covers are obtained on discrete level [3, 16]. Among DDMs, proposed on continu-
ous level for contact problems without covers are methods presented in [1, 9, 12].
Domain decomposition methods for solution of problem of ideal contact between
two bodies, connected through nonlinear Winkler layer are proposed in [2, 8]. These
methods are based on saddle-point formulation and conjugate gradient methods.

In current contribution we consider a problem of unilateralcontact between elas-
tic bodies with nonlinear Winkler covers. We give variational formulations of this
problem in the form of nonquadratic variational inequalityon convex set and non-
linear variational equation in the whole space, and presenttheorems about existence
and uniqueness of their solution. Furthermore, we propose on continuous level a
class of parallel domain decomposition methods for solvingthe nonlinear varia-
tional equation, which corresponds to original contact problem. In each iteration of
these methods we have to solve in a parallel way linear variational equations in sep-
arate bodies, which are equivalent in a weak sense to linear elasticity problems with
Robin boundary conditions on possible contact areas. TheseDDMs are based on
abstract nonstationary iterative methods for variationalequations in Banach spaces.
They are the generalization of domain decomposition methods, proposed by us ear-
lier in [4, 5, 10] for unilateral contact problems without covers. Some particular
cases of proposed DDMs can be viewed as a modification of semismooth Newton
method [7]. The numerical analysis of obtained DDMs is made for plane contact
problems using finite element approximations.

1Pidstryhach IAPMM NASU, Naukova 3-b, Lviv, 79060, Ukraine, e-mail: ihor84@gmail.
com ·2 Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
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2 Statement of the problem

Consider a unilateral contact ofN elastic bodiesΩα ⊂ R3 with sufficiently smooth
boundariesΓα , α = 1,2, ...,N (Fig.1a). Suppose that across each contact surface
there is a nonlinear Winkler layer. DenoteΩ =

⋃N
α=1 Ωα .
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Fig. 1 Unilateral contact between several elastic bodies through nonlinear Winkler layers

A stress-strain state in pointx= (x1,x2,x3)
⊤ of each solidΩα is described by the

displacement vectoruα = uα i ei , the tensor of strainŝεεεα = εα i j ei ej and the tensor
of stresseŝσσσα = σα i j ei ej . These quantities satisfy the following relations:

3

∑
j=1

∂σα i j (x)
∂x j

+ fα i(x) = 0, x ∈Ωα , i = 1,2,3, (1)

σα i j (x) =
3

∑
k,l=1

Cα i jkl (x)εα kl(x) , εα i j =
1
2

(
∂uα i

∂x j
+

∂uα j

∂xi

)
, i, j = 1,2,3, (2)

where fα i are the components of volume forces vectorfα = fα i ei , andCα i jkl are
symmetric elasticity constants, which are bounded in the following sense:

(∃bα ,cα > 0) (∀x)

{
bα

3

∑
i, j=1

ε2
α i j ≤

3

∑
i, j,k,l=1

Cα i jkl εα i j εαkl ≤ cα
3

∑
k,l=1

ε2
αkl

}
. (3)

On the boundaryΓα introduce a local orthonormal coordinate systemξξξ α , ηηηα , nα ,
wherenα is an outer unit normal, andξξξ α , ηηηα are unit tangents. Then the vec-
tors of displacements and stresses onΓα can be written in the following way:
uα = uα ξ ξξξ α +uαη ηηηα +uαnnα , σσσα = σ̂σσα ·nα = σαξ ξξξ α +σαη ηηηα +σαnnα .

Suppose, that the boundaryΓα consists of three disjoint parts:Γα =Γ u
α
⋃

Γ σ
α
⋃

Sα ,
Γ u

α = Γ u
α , Γ u

α 6= /0, Sα 6= /0. On the partΓ u
α homogenous Dirichlet boundary condi-

tions are prescribed, and on the partΓ σ
α we consider Neumann boundary conditions:

uα(x) = 0, x ∈ Γ u
α ; σσσα(x) = pα(x), x ∈ Γ σ

α . (4)
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The partSα =
⋃

β∈Bα Sαβ ,
⋂

β∈Bα Sαβ = /0 is the possible contact area of body
Ωα with the other bodies. HereSαβ is the possible unilateral contact area of body
Ωα with body Ωβ , and Bα ⊂ {1,2, ...,N} is the set of the indices of all bodies
in contact with bodyΩα . We assume that the surfacesSαβ ⊂ Γα and Sβα ⊂ Γβ
are sufficiently close (Sαβ ≈ Sβα ), andnα(x) ≈ −nβ (x′), x ∈ Sαβ , x′ = P(x) ∈
Sβα , whereP(x) is the projection of pointx on Sαβ . Let dαβ (x) = ±‖x−x′‖ be
a distance between bodiesΩα and Ωβ before the deformation. We suppose that
possible contact areasSαβ andSβα , β ∈ Bα , α = 1, ...,N have nonlinear Winkler
covers. Total compressionwαβ of these covers is related with normal contact stress
as follows:σαn(x) = σβn(x′) = gαβ

(
wαβ (x)

)
, x ∈ Sαβ , x′ ∈ Sβα , wheregαβ is

given nonlinear continuous function, which satisfies the following conditions:

gαβ (0) = 0, (∀y,z)
{

y< z⇒ gαβ (y)< gαβ (z)
}
, (5)

(
∃Mαβ > 0

)
(∀y,z)

{∣∣gαβ (y)−gαβ (z)
∣∣≤Mαβ |y−z|

}
. (6)

On possible contact zonesSαβ , β ∈Bα , α = 1,2, ...,N we consider the following
unilateral contact conditions through nonlinear Winkler layers:

σαξ (x) = σβξ (x
′) = 0, σαη(x) = σβη(x

′) = 0, (7)

σαn(x)=σβn(x
′)= gαβ

(
wαβ (x)

)
≤ 0, uαn(x)+uβn(x

′)+wαβ (x)≤ dαβ (x), (8)
[
uαn(x)+uβn(x

′)+wαβ (x)−dαβ (x)
]

σαn(x) = 0, x′ = P(x) , x ∈ Sαβ . (9)

3 Variational formulations

For each bodyΩα consider Sobolev spaceVα = [H1(Ωα)]
3 and the closed subspace

V0
α = {uα ∈Vα : uα = 0 onΓ u

α }. All values of the elements from these spaces on
the parts of boundaryΓα should be understood as traces. The trace of elementuα ∈
Vα on the partΓ u

α should belong to space[H1/2(Γ u
α )]3, and the trace of element from

V0
α on the partΞα = int(Γα \Γ u

α ) should belong to[H1/2
00 (Ξα)]

3.
Define Hilbert spaceV0=∏N

α=1Vα with scalar product(u ,v)V0
=∑N

α=1 (uα ,vα)Vα

and norm‖u‖V0
= (u ,u)1/2

V0
, u,v ∈ V0. Moreover, introduce the following spaces

W = {w = (wαβ )
⊤
{α ,β}∈Q : wαβ ∈ H1/2

00 (Ξα)} andU0 =V0×W = {U = (u,w)⊤ :
u ∈V0, w ∈W}, whereQ= {{α,β} : α ∈ {1,2, ...,N} , β ∈ Bα}.

In spaceU0 consider the closed convex set of all displacements, which satisfy
nonpenentration contact conditions:K = {U∈U0 : uαn+uβn+wαβ ≤ dαβ on Sαβ ,

{α, β} ∈Q}, whereuα n = nα ·uα ∈ H1/2
00 (Ξα), wαβ ,dαβ ∈ H1/2

00 (Ξα).
Let us introduce bilinear formA(u,v)=∑N

α=1aα(uα ,vα), u,v∈V0, aα(uα ,vα)=∫
Ωα

σ̂σσα(uα) : ε̂εεα(vα)dΩ , such thatA(u,u) represents the total elastic deformation
energy of the bodies, linear formL(u) = ∑N

α=1 lα(uα), lα(uα) =
∫

Ωα
fα ·uα dΩ +
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∫
Γ σ

α
pα ·uα dS, fα ∈ [L2(Ωα)]

3, pα ∈ [H−1/2
00 (Ξα)]

3, which is equal to external forces

work, and nonquadratic functionalH(w) = ∑{α ,β}∈Q
∫

Sαβ

[∫ wαβ
0 gαβ (z)dz

]
dS,

w ∈W, which represents the total deformation energy of nonlinear Winkler layers.
We have shown, that bilinear formA is symmetric, continuous and coercive

if condition (3) holds, and nonquadratic functionalH is Gateaux differentiable:
H ′(w,z) = ∑{α ,β}∈Q

∫
Sαβ

gαβ (wαβ )zαβ dS, w,z∈W.

Theorem 1.Suppose that conditions (3), (5), (6) hold. Then problem (1), (2), (4),
(7)–(9) has an alternative weak formulation as the following minimization problem:

F(U) = A(u,u)/2−L(u)+H(w)→ min
U∈K

. (10)

Moreover, there exists a unique solution of problem (10), and this problem is equiv-
alent to the following nonquadratic variational inequality on set K:

F ′(U,V−U) = A(u,v−u)−L(v−u)+H ′(w,z−w)≥ 0, ∀(v,z)⊤ ∈ K . (11)

Except this variational formulation, we also have proposedanother weak formu-
lation of original contact problem in the form of nonlinear variational equation.

Let us introduce the following nonquadratic functional in spaceV0:

J(u) = ∑
{α ,β}∈Q

∫

Sαβ

[∫ dαβ−uαn−uβn

0
g−αβ (z)dz

]
dS, u ∈V0 , (12)

whereg−αβ (z) = {0, z≥ 0}∨{gαβ (z) , z< 0} is nonlinear function.
FunctionalJ(u) is nonnegative and Gateaux differentiable inV0:

J′(u,v) = −∑{α ,β}∈Q
∫

Sαβ
g−αβ (dαβ − uαn− uβn) [vαn + vβn]dS. We have shown

that if conditions (5) and (6) hold, then Gateaux differential J′(u,v) satisfies the
following properties:(∀u ∈V0) (∃ R̃> 0) (∀v ∈V0){|J′(u,v)| ≤ R̃‖v‖V0},
(∃ D̃ > 0)(∀u,v,w ∈V0){|J′(u+w,v)−J′(u,v) | ≤ D̃‖v‖V0‖w‖V0 }, (∀u,v ∈V0)
{J′(u+v,v)−J′(u,v)≥ 0}. These properties helped us to prove the next theorem.

Theorem 2.Suppose that conditions (3), (5) and (6) hold. Then the contact prob-
lem (1), (2), (4), (7)–(9) is equivalent to problem (1), (2),(4), (7) with the following
nonlinear boundary value conditions on the possible contact areas:

σαn(x) =σβn(x
′) = g−αβ

(
dαβ (x)−uαn(x)−uβn(x

′)
)
, x′=P(x) , x∈Sαβ , (13)

and it is equivalent in weak sense to the next nonquadratic minimization problem:

F1(u) = A(u,u)/2−L(u)+J(u)→ min
u∈V0

. (14)

Moreover, problem (14) has a unique solution and is equivalent to the following
nonlinear variational equation in space V0:

F ′1(u,v) = A(u,v)+J′(u,v)−L(v) = 0, ∀v ∈V0 , u ∈V0 . (15)



Domain decomposition methods for problems of unilateral contact 625

4 Nonstationary iterative methods

In reflexive Banach spaceV consider an abstract nonlinear variational equation

Φ (u,v) =Y(v) , ∀v ∈V, u ∈V, (16)

whereΦ : V×V → R is a functional, which is linear inv, but nonlinear inu, and
Y : V → R is linear continuous form. For numerical solution of (16) consider the
following nonstationary iterative method [5, 11]:

Gk(uk+1,v) = Gk(uk,v)− γk
[

Φ (uk,v)−Y(v)
]
, k= 0,1, ... , (17)

whereGk : V×V→ R are some given bilinear forms,γk ∈ R are iterative parame-
ters, anduk ∈V is thek-th approximation to the exact solution of problem (16).

Theorem 3.[5] Suppose that functionalΦ satisfies the following properties:
(∀u ∈V)(∃RΦ > 0)(∀v ∈V){|Φ(u,v)| ≤ RΦ‖v‖V}, (∃DΦ > 0) (∀u,v,w ∈V)
{ |Φ (u+w,v)−Φ (u,v) | ≤DΦ‖v‖V‖w‖V }, (∃BΦ > 0)(∀u,v∈V){Φ (u+v,v)−
Φ (u,v) ≥ BΦ‖v‖2V}. Then nonlinear variational equation (16) has a unique solu-
tion ū ∈V. In addition, suppose that bilinear forms Gk, k = 0,1, ... are symmetric,
continuous with constant M∗G > 0, coercive with constant B∗G > 0, and the following
conditions hold:(∃k0 ∈ N0)(∀k≥ k0) (∀u ∈V) {Gk(u,u)≥Gk+1(u,u)},
(∃ε ∈ (0, γ∗), γ∗ = BΦB∗G/D

2
Φ)(∃k1)(∀k≥ k1){γk ∈ [ε , 2γ∗− ε ]}.

Then‖uk− ū‖V →
k→∞

0, where{uk} ⊂V is obtained by iterative method (17).

5 Domain decomposition schemes

Now let us apply nonstationary iterative method (17) for solving the nonlinear vari-
ational equation (15), which corresponds to original contact problem. This equa-
tion can be written in form (16), whereΦ(u,v) = A(u,v)+J′(u,v) , Y(v) = L(v) ,
u,v∈V, V =V0 , and iterative method (17) applied to solve (15) rewrites asfollows:

Gk(uk+1,v) = Gk(uk,v)− γk
[
A(uk,v)+J′(uk,v)−L(v)

]
, k= 0,1, ... . (18)

Note, that in general case iterative method (18) does not lead to domain decom-
position. Let us propose such variants of this method, whichinvolve the domain
decomposition. At first, let us take bilinear formsGk in method (18) as follows:

Gk(u,v) = ∂ 2F1(uk,u,v) = A(u,v)+∂ 2J(uk,u,v) , u,v ∈V0 , (19)

∂ 2J(uk,u,v) = ∑
{α ,β}∈Q

∫

Sαβ
χk

αβ g′αβ (dαβ −uk
αn−uk

βn)
[
uαn+uβn

][
vαn+vβn

]
dS,

χk
αβ =−[sgn(dαβ −uk

αn−uk
βn) ]

− = {0, dαβ −uk
αn−uk

βn≥ 0}∨{1, else}. (20)
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Here∂ 2F1(uk,u,v), ∂ 2J(uk,u,v) are one of the second subdifferentials of function-
alsF1 andJ in point uk ∈V0. In the case whenγk = 1, k= 0,1, ... , iterative method
(18) with bilinear forms (19) corresponds to semismooth Newton method for varia-
tional equation (15). However, this method does not lead to domain decomposition.

Now, let us take bilinear formsGk in the following way:

Gk(u,v) = A(u,v)+Xk(u,v) , u,v ∈V0 , (21)

Xk(u,v) =
N

∑
α=1

∑
β∈Bα

∫

Sαβ
ψk

αβ g′αβ (dαβ −uk
αn−uk

βn)uαnvαndS, u,v ∈V0 , (22)

whereψk
αβ (x) = {1, x ∈ Sk

αβ }∨{0, x ∈ Sαβ\Sk
αβ } are characteristic functions of

some given subsetsSk
αβ ⊆ Sαβ of possible contact areas.

Iterative method (18) with bilinear forms (21) can be written in such way:

A(ũk+1,v)+Xk(ũk+1,v) = L(v)+Xk(uk,v)−J′(uk,v) , ∀v ∈V0 . (23)

uk+1 = γk ũk+1+(1− γk)uk, k= 0,1, ... . (24)

Since the common quantities of the subdomains are known fromthe previous
iteration, variational equation (23) splits intoN separate equations in subdomains
Ωα , and iterative method (23)–(24) can be written in the following equivalent form:

aα(ũk+1
α ,vα)+ ∑

β ∈Bα

∫

Sαβ
ψk

αβ g′αβ (dαβ −uk
αn−uk

βn) ũk+1
αn vαndS=

= lα(vα)+ ∑
β ∈Bα

∫

Sαβ
ψk

αβ g′αβ (dαβ −uk
αn−uk

βn)uk
αnvαndS+

+ ∑
β ∈Bα

∫

Sαβ
g−αβ (dαβ −uk

αn−uk
βn)vαndS, ∀vα ∈V0

α , (25)

uk+1
α = γk ũk+1

α +(1− γk)uk
α , α = 1,2, ...,N, k= 0,1, ... . (26)

In each iterationk of method (25)–(26), we have to solveN linear variational
equations (25) in parallel, which correspond to linear elasticity problems in separate
bodiesΩα with Robin boundary conditions on possible contact areas. Therefore,
this method refers to parallel Robin–Robin type domain decomposition schemes.

By taking different characteristic functionsψk
αβ , we can obtain different partic-

ular cases of domain decomposition method (25)–(26). Thus,taking ψk
αβ (x) ≡ 0

(Sk
αβ = /0), ∀α,β , ∀k, we get parallel Neumann–Neumann domain decomposition

scheme. Other borderline case is whenψk
αβ (x)≡ 1 (Sk

αβ = Sαβ ), ∀α,β , ∀k.

Moreover, we can choose characteristic functionsψk
αβ by formula (20), i.e.

ψk
αβ = χk

αβ . Numerical experiments, provided by us, have shown, that such DDM
has higher convergence rate than other particular domain decomposition schemes.
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6 Numerical analysis

Numerical analysis of proposed DDMs has been provided for plane problem of uni-
lateral contact between two isotropic bodiesΩ1 andΩ2, one of which has a groove
(Fig.1b). The bodies are loaded by normal stress with intensity q = 10MPa. Each
body has lengthl = 4cm and heighth= 1cm. The elasticity constants of the bodies
are the same:E1 = E2 = 2.1·105MPa,ν1 = ν2 = 0.3. The distance between bodies
is d12(x) = r

{
[1− (x1− l)2

/
b2]+

}3/2
, x ∈ S12, whereb= 1cm,r = 5·10−4cm.

Across possible contact areaS12 there is a nonlinear Winkler layer. The relation-
ship between normal contact stresses and displacements of this layer is described
by the following power function:g12(w12(x)) = B−1/asgn(w12(x)) |w12(x)|1/a, x ∈
S12, where parametersB anda are taken from the intervalsB∈ [10−6cm/(MPa)a,
2·10−4cm/(MPa)a ] , a∈ [0.1, 1]. For such choice of these parameters the nonlinear
Winkler layer models a roughness of the possible contact surface [6].

This problem has been solved by DDM (25)–(26) with stationary iterative pa-
rametersγk = γ, ∀k and characteristic functionsψk

12, taken by formula (20), i.e.
ψk

12 = χk
12, ∀k. For solving linear variational problems (25) in each iteration k we

have used finite element method with 8192 linear triangular elements for each body.
We have used the following initial guesses for displacements u0

1n(x) = u0
2n(x)≡

10−4cm, and the next stopping criterion:ρk+1
α =

∥∥uk+1
αn −uk

αn

∥∥
2 /
∥∥uk+1

αn

∥∥
2 ≤ εu,

α = 1,2, where‖uα n‖2 =
√

∑ j [uα n(x j)]2 is discrete norm,x j ∈ S12 are finite ele-
ment nodes on the possible contact area, andεu > 0 is relative accuracy.
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Fig. 2 Relative error (a), and normal contact stress (b)

At Fig.2a the relative errorρk
2 of displacementu2n on different iterationsk, ob-

tained forB= 2.5 ·10−5cm/(MPa)a, a= 0.5, is represented for different values of
parameterγ. Curves 1–9 correspond toγ = 0.02, 0.03, 0.05, 0.6, 0.8 (0.3), 0.9, 0.95,
0.97, 0.98. For these values of parameterγ, DDM (25)–(26) reaches the accuracy
εu = 10−3 in 110, 83, 58, 7, 12 (14), 29, 60, 102, 155 iterations respectively. Thus,
we conclude, that the best convergence rate reaches ifγ = 0.6. The convergence rate
is good ifγ ∈ [0.1, 0.9]. However, it becomes slow whenγ is close to 0 or to 1. For
γ = 0.98 the method is still convergent, but the convergence becomes nonmonotone.
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We also have established, that the convergence rate of proposed DDMs does not
deppend strongly on the number of finite element nodesm in each body. Form= 43,
149, 553, 2129, 8353, and 33089, DDM (25)–(26) with parameter γ = 0.6 reaches
the accuracyεu = 10−6 in 15, 15, 14, 14, 14, and 14 iterations respectively.

At Fig.2b the normal contact stressσ1n = σ2n, obtained by DDM (25)–(26) for
B= 10−5cm/(MPa)a and different values of parametersa is represented. Curves 1–
4 correspond to numerical solution fora= 0.3, 0.6, 0.8, 1. Dashed curve represents
the analytical solution, obtained in [13] for contact between two halfspaces without
nonlinear layer. Here we conclude, that for small values ofa (a≤ 0.3) the influence
of nonlinear layer on the contact behavior is not so large andthe numerical solutions
are close to the solution without layer. However, for largervalues ofa (a≥ 0.5) the
influence of nonlinear layer becomes more significant and cannot be neglected.
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3. Dost́al, Z., Kozubek, T., Vondŕak, V., Brzobohat́y, T., Markopoulos, A.: Scalable TFETI al-
gorithm for the solution of multibody contact problems of elasticity. Int. J. Numer. Methods
Engrg.41, 675–696 (2010)

4. Dyyak, I.I., Prokopyshyn, I.I.: Domain decomposition schemes for frictionless multibody con-
tact problems of elasticity. In: G.K. et al. (ed.) Numerical Mathematics and Advanced Appli-
cations 2009, pp. 297–305. Springer (2010)

5. Dyyak, I.I., Prokopyshyn, I.I., Prokopyshyn, I.A.: Penalty Robin–Robin domain decompo-
sition methods for unilateral multibody contact problems of elasticity: Convergence results
(2012). URLhttp://arxiv.org/pdf/1208.6478.pdf

6. Goryacheva, I.G.: Contact mechanics in tribology. Kluwer(1998)
7. Hinterm̈uller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as semismooth

Newton method. SIAM J. OPTIM.13(3), 865–888 (2003)
8. Koko, J.: Convergence analysis of optimization-based domain decomposition methods for a

bonded structure. Applied Numerical Mathematics (58), 69–87 (2008)
9. Koko, J.: Uzawa block relaxation domain decomposition method for a two-body frictionless

contact problem. Applied Mathematics Letters22, 1534–1538 (2009)
10. Prokopyshyn, I.I.: Parallel domain decomposition schemes forfrictionless contact problems of

elasticity. Visnyk Lviv Univ. Ser. Appl. Math. Comp. Sci.14, 123–133 (2008). [In Ukrainian]
11. Prokopyshyn, I.I., Dyyak, I.I., Martynyak, R.M., Prokopyshyn, I.A.: Penalty Robin–Robin do-

main decomposition schemes for contact problems of nonlinear elasticity. Lect. Notes Com-
put. Sci. Eng.91, 647–654 (2013). [Accepted to DD20 Proceedings]

12. Sassi, T., Ipopa, M., Roux, F.X.: Generalization of Lion’snonoverlapping domain decompo-
sition method for contact problems. Lect. Notes Comput. Sci. Eng.60, 623–630 (2008)

13. Shvets, R.M., Martynyak, R.M., Kryshtafovych, A.A.: Discontinuous contact of an anisotropic
half-plane and a rigid base with disturbed surface. Int. J. Engng. Sci.34(2), 183–200 (1996)

14. Suquet, P.M.: Discontinuities and plasticity. In: CISM Courses Lect., 302, pp. 279–340 (1988)



Domain decomposition methods for problems of unilateral contact 629

15. Vorovich, I.I., Alexandrov, V.M. (eds.): Contact Mechanics. Fizmatlit, Moscow (2001)
16. Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for

contact problems. Acta Numerica20, 569–734 (2011)





Asymptotic expansions and domain
decomposition

G. Geymonat1, S. Hendili2,3, F. Krasucki3, M. Serpilli4 and M. Vidrascu2

1 Introduction

At a first glance asymptotic expansions and domain decomposition are two alter-
natives to efficiently solve multi scale elasticity problems. In this paper we will
combine these two methods: we will use, for several types of problems, asymptotic
expansions and show that for an efficient implementation of problems obtained at
the asymptotic limit it may be useful to use domain decomposition type algorithms.
In particular we will consider problems with heterogenous or non heterogenous thin
layers(see Fig 1 a) et b)). To directly solve such problems bya standard finite el-
ement method is too expensive from a computational point of view. That is why
specific asymptotic expansions are used and allow to replacethe original problem
by a set of problems defined on a new domain where the thin layeris replaced by
a line in 2D or a surface in 3D (see Fig 1 c)). In addition particular jumping condi-
tions are defined on this new interface yielding a non standard problem which can
be solved by a Neumann-Neumann domain decomposition algorithm. The paper is
organized as follows: In Section 2 we review of a domain decomposition algorithm
on an elasticity problem, in Section 3 we consider a thin layer of heterogeneities
which can be holes or elastic inclusions and, finally, in Section 4 we consider a
multi-materials with a thin layer with high ratio in material properties.

2 Domain decomposition algorithm: general setting for an
elasticity problem

The aim of this paragraph is to specify the notations. We consider a standard linear
elasticity problem: 




divσ ε = 0 in Ω ε

σ ε = Ae(uε) in Ω ε

σ εn = F onΓF

uε = 0 onΓ0

(1)
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The mechanical characteristics of the multi-material structure are described by the
elasticity tensorA. Each material is isotropic butA is indeed material dependent. In
the sequel we will omit this constitutive equation. The structure is clamped on a part
Γ0 ⊂ ∂Ω (of surface measure> 0) and a densityF of surface forces is applied on
the complementary partΓF . In a variational form this problem writes

A(u,v) = L(v) for all v∈V, with A(u,v) =
∫

Ω
Ai jkℓekℓ(u)ei j (v) dx. (2)

Let us mention that the variational form is always used to discretize the problem,
nevertheless in order to simplify notations we will use either partial differential
equations or variational form. The same problem will be considered in sections 3
and 4, where the the domain differs with respect to the heterogeneities. We will ex-
plain how the domain decomposition algorithm is adapted in each situation. In order
to use a primal domain decomposition to solve the problem we transform the prob-
lem on the entire domain in a problem on the interface. After splitting the domain
in non overlapping subdomains we introduce an additional unknown,λ = Tr(u) on
the interface. For simplicity reasons we will consider hereonly two sub-domains
and only a first level preconditioner. To solve the original problem is equivalent to
solving the following problem on each subdomain:





divσ(ui) = f Ω in Ωi

σn = f Γ on ∂ΩF ∩Ωi

ui = ud on ∂Ωu∩Ωi

ui = γ onΓ

(3)

By linearity ui = ui
0+ui

γ whereui
0 is the solution of (3) withui

0 = 0 onΓ andui
γ is

the solution of (3) withf Ω = 0, f Γ = 0. In order to settle the interface problem we
write the continuity of the normal stress on the interface:

σ(u1)n1+σ(u2)n2 = σ(u1
γ)n

1+σ(u1
0)n

1+σ(u2
γ)n

2+σ(u2
0)n

2 = 0

Using the Steklov Poincaré operatorSwhich is defined as follows: forγ given on
Γ (the sub-domains interface )

Siγ = σ(ui
γ)n

i

whereni denotes the outer normal onΓ , the interface problem writes:

S1γ +S2γ =−σ(u1
0)n

1−σ(u2
0)n

2 (4)

In variational form

S1(γ ,v)+S2(γ ,v) =−L(σ(u1
0)n

1,v)−L(σ(u2
0)n

2,v)

This problem will be solved using a iterative method, the preconditioner isM =
α1S−1

1 +α2S−1
2 with α1+α2 = 1. ([6], [3])
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The parallel between this approach and the one used in the asymptotic analysis
(as described in 1) is that a particular problem has to be solved on the interface, the
next sections will specify this concept.

3 Structure with a thin layer of heterogeneities

Let us consider a three-dimensional structure with small identical heterogeneities
periodically distributed along a surfaceω. Let ε be a small dimensionless param-
eter which characterizes the diameter and the periodic arrangement of the hetero-
geneities. We denoteBε the layer of thicknessε containing the heterogeneities cen-
tered onω (see Fig. 1 a)).

ω

B
ε

ε

Γ0

ω

ε

B
ε

Γ0

ω

Γ0

Fig. 1 a) Heterogeneous layer b) Homogeneous layer c) Limit domain

The domainΩ containsI ε the set of identical heterogeneities of diameterεD
andε-periodically distributed in the vicinity of the interior surfaceω of equation
x1 = 0. We consider the problem (3) with two types of inclusions: cavities and elastic
inclusions. The displacement fielduε and the stress fieldσ ε , satisfy, respectively,
equilibrium equation (1).

Notice thatΩ is a domain with a number of heterogeneities which depends onε.
For the elastic inclusionsAS andAI (the elasticity tensor in the structure, respectively
in the inclusions) are of same order of magnitude.

The asymptotic analysis of this problem forε → 0 provides a model describing
the linear elastic behavior of the structure on a simplified domain denoted byΩ0

where the layerBε becomes the surfaceΓ (see Fig. 1 c)). More precisely, by as-
suming thatuε ≃ u0+εu1, the initial problem (1) is approximated by two new ones
where the layer of heterogeneities is replaced by a surface on which particular jump
conditions are defined.

The zeroth order approximationu0 is the solution of the following transmission
linear problem : 




divσ0 = 0 in Ω0

σ0n = F onΓF

u0 = 0 onΓ
(5)

Notice that there are no jumps onΓ for the outer approximation. In other words, at
the zero order the outer approximation does not consider theheterogeneities. Thus
this problem can be solved using a standard finite element procedure.
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The first order approximationu1 is the unique solution of the following boundary
value problem (with transmissions conditions onΓ ):





divσ1 = 0 in Ω0\Γ
σ1n = 0 onΓF

u1 = 0 onΓ0[
u1](x̂) = Gd

(
u0(0, x̂) ;

[
V i j
]∞)

[
σ1e1

]
(x̂) = GnS

(
u0(0, x̂) ;

∫
Y T i j (y) dy

)
(6)

whereV i j are the solutions of nine elementary problems defined on one repre-
sentative cellY ([5],[4]) and T i j are the stress fields associated withV i j and[
V i j
]∞

= limy1→+∞V i j − limy1→−∞V i j−

Gd has the same structure for the different types of inclusions, whileGnSdepends
on the inclusion:

Gd =
∂u0

i

∂x j
(0, x̂)

[
V i j ]∞ (7)

i) in the elastic inclusions case one has:

GnS= div

(
|I |
(
AS−AI)e

(
u0(0, x̂)

)
− ∂u0

i

∂x j
(0, x̂)

∫

Y
T i j (y) dy

)
(8)

ii) in the cavities case one has:

GnS= div

(
|I |AIe

(
u0(0, x̂)

)
− ∂u0

i

∂x j
(0, x̂)

∫

Y
T i j (y) dy

)
(9)

Let us emphasize that, for the first order problem,Gd andGnS are given and depend
on the first and second order derivatives of the zeroth order problem. This is not an
issue at the domain decomposition level, while, at the implementation level, since
the solutionu0 is onlyof classC0, a regularization is needed. In practice, an efficient
way to implement the jump conditions in problem (6) is to solve this problem by a
domain decomposition type algorithm which will be detailedhereafter.

Finally, the generic form of the first order problem, (6) is given by:




−divσ(u) = 0 in Ω
σn = 0 on∂ΩF

u = 0 on∂Ωu

[u] = Gd onΓ
[σn] = GnS onΓ

(10)

whereGd andGnSdenote, respectively, the gap in displacements and normal stresses
on Γ . By using the linearity of the problem, we will search, in each subdomain a
solution of the form

ui = wi +βiz
i

whereβi are two real numbers conveniently chosen andzi are the solutions of the
following two independent problems:
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−divσ(zi) = 0 in Ωi

σn = 0 on∂ΩF ∩Ωi

zi = 0 on∂Ωu∩Ωi

zi = Gd onΓ

(11)

Notice that
−divσ(wi) =−divσ(ui−βiz

i) = 0

The transmission conditions forwi are given by:

{
[w] = [u]−β1Gd +β2Gd = (1−β1+β2)Gd

[σn] = [u]+β1σ(z1)n−β2σ(z2)n = GnS+β1σ(z1)n−β2σ(z2)n

If we choose 1−β1+β2 = 0 thenw is continuous on the interfaceΓ , while the
normal stress is discontinuous at the interface.

By introducing the Steklov Poincaré, as described above, the unknownγ on the
interface is the solution of the following problem:

(S1+S2)γ =−σ(w1
0)n

1−σ(w2
0)n

2+GnS+β1σ(z1)n1−β2σ(z2)n2

Let us remark that this equation differs from (4) only on the right hand side. In
this situation the solution of the entire problem is not as regular as in section 2.
Here, because of the jumps, the solution is not inH1(Ω), this is why the norms
used in the following numerical simulations areL2(Ω). Thus as the operator does
not change, the same algorithms (and in particular the same preconditioner) may be
used to solve the problem with the same performance and no additional analysis is
required to prove efficiency.

Fig. 2 a) Mesh used for the asymptotic computation b) Fine mesh forε = 1
20

In order to numerically validate this approach we consider a2D case whereΩ
is a plane domain containingN ε holes of diameterεD Notice that the domain and
thus the number of holes depends onε. A reference solutionuε

h of the problem (1) is
computed on a large mesh (see Fig 2 b)) and compared with the asymptotic solution
u0

h andu0
h+ εu1

h obtained by solving the problems (5) and (6) on a corse mesh (see
Fig. 2 a)). This comparison is performed by computing the relative error for the
L2-norm (see table (1)).
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Table 1 L2-errors norms computed inΩ ε

ε Nb elements dofs
||uε

h−u0
h||L2

||uε
h||L2

||uε
h− (u0

h+ εu1
h)||L2

||uε
h||L2

1/20 13348 54938 0.013501216 0.001225971
1/40 27668 113530 0.006689361 0.000475813
1/80 57164 234050 0.003281498 0.000176916

4 Multimaterials with strong curved interface

In this section we analyze the mechanical behavior of a particular structural as-
sembly, which is constituted by an elastic shell-like inclusion with high rigidity
surrounded by two three-dimensional elastic bodies.

Let Ω+ andΩ− be two disjoint open domains with smooth boundaries∂Ω+ and
∂Ω−. Let ω := {∂Ω+∩∂Ω−}◦ be the interior of the common part of the bound-
aries which is assumed to be a non empty domain inR2. Let θ ∈ C 2(ω;R3) be an
immersion such that the vectorsaα(y) := ∂α θ(y) form the covariant basis of the

tangent plane to the surfaceS := θ(ω). We note witha3(y) := a1(y)∧a2(y)
|a1(y)∧a2(y)| the unit

normal vector toS. We insert an intermediate curved layer movingΩ+ andΩ− in
the a3 and−a3 directions, respectively, by an amount equal totε > 0, whereε is
a small dimensionless real parameter. Then letΩ±,ε := {xε := x± tεa3; x∈ Ω±},
Ω m,ε := ω×]− tε , tε [, andΩ ε := Ω−,ε ∪Ω+,ε ∪Ω m,ε , as shown in Fig. 1 The struc-
ture is clamped onΓ ε

0 ⊂ (∂Ω ε \Γ m,ε). We consider thatScoincides with the middle
surface of the shell-like inclusionΩ m,ε . Moreover, the shell thicknesstε depends lin-
early onε, so thattε = εt. For a more detailed treatment of this asymptotic problem
in a general curvilinear framework, the reader can refer to [1], [2].

The physical variational problem defined over the variable domainΩ ε is

{
Find uε ∈Vε := {vε ∈ H1(Ω ε ;R3); vε |Γ ε

0
= 0}

Aε
−(u

ε ,vε)+Aε
+(u

ε ,vε)+Aε
m(u

ε ,vε) = L(vε) for all vε ∈Vε ,
(12)

where A is defined as in (2).
The functionalL(·) is the linear form associated with the applied forces. Here

Ai jkℓ,ε := λ εgi j ,εgkℓ,ε + µε(gik,εg jℓ,ε +giℓ,εg jk,ε) are the contravariant components
of the elasticity tensor, wheregi j can be considered as the curvilinear version of
the Kronecker’s delta. Let us suppose that the Lamé’s constants of the isotropic
materials satisfy the following dependences with respect to ε: λ±,ε = λ±, µ±,ε =
µ±, λ m,ε = 1

ε λ m, µm,ε = 1
ε µm.

As shown in [1], the asymptotic expansion method applied to the physical prob-
lem (12) leads to a simplified model for the assembly, in whichthe layer inclusion
is reduced to its middle surface asε tends to zero. Thus the presence of the layer is
replaced by a surface shell like energy at the interface which corresponds to a partic-
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ular membrane transmission condition between the two three-dimensional bodies.
The main result is contained in the following theorem:

Theorem 1.The leading termu0 of the asymptotic expansionu(ε) = u0 + εu1 +
ε2u2+ ..., is the unique solution of the following limit problem:

{
Find u0 ∈VM such that
A−(u0,v)+A+(u0,v)+Am

M(u0,v) = L(v) for all v ∈VM
(13)

where VM := {v ∈ H1(Ω+ ∪ω ∪Ω−;R3); v|ω ∈ H1(ω;R2)×H
1
2 (ω), v|Γ0 = 0},

and
Am

M(u0,v) = 2t
∫

ω
aαβστeστ(u0)eαβ (v) dy, (14)

is the bilinear form associated with the membrane behavior of the shell, aαβστ is the
elasticity tensor of the shell and eαβ (u) := 1

2(uβ |α +uα |β ) is the change of metric
tensor.

Remark. In the simplified model we obtain a membrane transmission condition at
the interface between the two three-dimensional bodies, which can be interpreted as
a curvilinear generalization of the Ventcel-type transmission condition obtained in
[1]. Indeed, by integrating by parts problem (13), one has

{−div σ± = f in Ω±,
u0 = 0 onΓ0,

{[
σα3]= div (nαβ ) in ω,[
σ33]= nαβ bαβ in ω,

(15)

whereσ i j
± :=Ai jkℓ

± ekℓ(u0) and nαβ := 2taαβστeστ(u0|ω) represent, respectively, the
Cauchy stress tensor and the membrane stress tensor of the shell,

[
σ i3
]

:= σ i3
+ −σ i3

−
represents the stress jump at the interfaceω, andbαβ is the second fundamental
form associated to the shell middle surface.

In order to solve the problem (13) we introduce a specific domain decomposition
algorithm, more precisely, we construct the interface problem. We consider three
subdomainsΩ+ := Ω (1), Ω− := Ω (2), and the shellΩ m. For the two 3D domains,
Ω 1,Ω 2 we introduce the corresponding Steklov Poincaré operator and we observe
that the domainΩ 3 is the interface. Thus, in a variational form, the compatibility
condition on the interface writes :

S1(γ ,v)+S2(γ ,v)+Am
M(γ ,v) = L(−σ(u1

0)n
1−Lσ(u2

0)n
2,v) (16)

This problem can be solved by a Neumann-Neumann algorithm aswell because,
compared to (4) we add in the right hand side a term wich is symmetric and positive
defined.

As a numerical example, we consider an axisymmetric problemof two thick
cylinders bonded together with a cylindrical shell with high rigidity subjected to an
internal pressure (Ecyl = 5e05,Eshell = 5e07,ν = 0.3, t=0.1,Rmax= 6). We choose
this particular geometry because it is characterized by an immediate mechanical
interpretation. Moreover we can compute an exact solution for this problem. We
tested the domain decomposition by using two subdomains (the shell is ”glued”
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to another subdomain) and three subdomains and by studying the influence of a
Neumann-Neumann preconditioner on the number of iterations. The preliminary
results are shown in the following table. As we can see the number of iterations
decreases drastically when adopting a preconditioner.

Table 2 Mesh:Nel = 11020,Nel,shell = 580

Subdomains Iterations Iterations with preconditioner

2 69 6
2+1(shell) 70 46

In the actual simulations we can use membrane or shell elements. The shell is
more robust but also more computationally demanding. In ourexample we used
a membrane element. The drawback is that the operator is not invertible (that is
needed in the preconditioning step) and that explains why the results with two do-
mains are far better than with three domains. Hence, our testexample does not
behave totally as a pure membrane. This feature disappears when shell elements are
used or when the problem has a pure membrane behavior.
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A Schur Complement Method for Compressible
Two-Phase Flow Models

Thu-Huyen DAO1,2, Michael NDJINGA1, and Fŕed́eric MAGOULÈS2

1 Introduction

Computations of complex two-phase flows are required for thesafety analysis of
nuclear reactors. These computations keep causing problems for the development
of best estimate computer codes dedicated to design and safety studies of nuclear
reactors. Moreover, we often need to find the long-term behavior of the system. In
these cases, implicit schemes are proven very efficient. Unfortunately, for implicit
schemes, after the discretization, we need to solve a nonlinear systemA U = b.
This task is computationally expensive in particular sincethe matrixA is usually
non-symmetric and very ill-conditioned. It is therefore necessary to find an efficient
preconditioner.
When the size of the system is large, the parallel resolution on multiple processors is
essential to obtain reasonable computation times. Currently in the thermal hydraulic
code, FLICA-OVAP (see [7]), the matrixA and the right hand sideb are stored on
multiple processors and the system is solved in parallel with a Krylov solver with
a classical incomplete factorization preconditioner. Unfortunately, the parallel pre-
conditioners of FLICA-OVAP only perform well on a few processors. In contrast,
if we want to increase the number of processors these parallel preconditioners per-
form poorly. Tests were run on different test cases and led usto conclude that it
is often better not to use these parallel preconditioners, especially for 3D problems
([2]). This strategy does not make an optimal use of the available computational
power. Hence, we seek for more efficient methods to distribute the computations.
We study and use a domain decomposition method as an alternative to the classical
distribution.

2 Mathematical model

For the modeling of two-phase flows, several sets of equations have been worked
out. They range in complexity from the homogeneous equilibrium model to two-
fluid models involving unequal pressure for each phase. In this paper, we consider
the well-known two-fluid model. This model is obtained by averaging the balance
equations for each separated phase, using space, time or ensemble averaged quan-
tities (see [8] and [6]). The unknown physical quantities are the volume fraction

1 CEA–Saclay, DEN, DM2S, STMF, LMEC, F–91191 Gif–sur–Yvette,France,·2 Appl. Mat.
and Syst. Lab., Ecole Centrale Paris, 92295 Châtenay–Malabry, France, e-mail:frederic.
magoules@hotmail.com
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αk ∈ [0,1], the densityρk ≥ 0, and the velocityuk of each phase. The subscript
k stands forl if it is the liquid phase andg for the gas phase. The common aver-
aged pressure of the two phases is denoted byp. In our model, pressure equilibrium
between the two phases is postulated. For the sake of simplicity, we study the isen-
tropic two-fluid model. This model can be written as follows:




∂ (αgρg)
∂ t + ∇ · (αgρgug) = 0,

∂ (αl ρl )
∂ t + ∇ · (αl ρl ul ) = 0,

∂ (αgρgug)
∂ t + ∇ · (αgρgug⊗ug)+αg∇p+∆ p∇αg−∇ · (αgνg∇ug) = 0,

∂ (αl ρl ul )
∂ t + ∇ · (αl ρl ul ⊗ul )+αl ∇p+∆ p∇αl −∇ · (αl νl ∇ul ) = 0,

(1)

with αg+αl = 1, and the two equations of state(EOS)ρg = ρg(p) andρl = ρl (p). In
our problem, we use the stiffened equation of state. Hereνk is the viscosity of phase
k, and∆ p denotes the pressure defaultp− pk between the bulk average pressure
and the interfacial average pressure.
By denotingmk = αkρk, qk = αkρkuk andU = (mg,qg,ml ,ql )

t , we can write the
system (1) as follows:

∂U
∂ t

+Fconv(U)+Fdi f f (U) = 0, where (2)

Fconv(U)=




∇ ·qg

∇ ·ql

∇ · (qg⊗ qg
mg

)+αg∇p+∆ p∇αg

∇ · (ql ⊗ ql
ml
)+αl ∇p+∆ p∇αl


, Fdi f f (U)=




0
0

−∇ · (αgνg∇ qg
mg

)

−∇ · (αl νl ∇ ql
ml
)


.

3 Numerical Method

Most of the numerical methods used in two-phase flow computercodes are based
upon semi-implicit finite difference schemes with staggered grids and donor-cell
differencing. The main features of these schemes are their efficiency and their ro-
bustness. However, these methods have a large amount of numerical dissipation,
giving poor accuracy in smooth regions of the flow. Moreover,discontinutities are
heavily smeared on coarse grids and oscillations appear when the grid is refined.
Here, we propose to use an approximate Riemann solver to discretize and solve
the system (2). We decompose the computational domain intoN disjoint cellsCi

with volumevi . Two neighboring cellsCi andCj have a common boundary∂Ci j

with areasi j . We denoteN(i) the set of neighbors of a given cellCi and ni j the
exterior unit normal vector of∂Ci j . Integrating the system (2) overCi and setting
Ui(t) = 1

vi

∫
Ci

U(x, t)dxandUn
i = Ui(n∆ t), the discretized equations can be written:
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∫

Ci

∂U
∂ t

dx + ∑
j∈N(i)

Φconv
i j + ∑

j∈N(i)

Φdi f f
i j = 0 (3)

with Φconv
i j , Φdi f f

i j denote the numerical flux of convection and diffusion on the cell
Ci in direction of the neighbor cellCj .

The diffusion numerical fluxΦdi f f
i j is approximated on structured meshes using the

formula:

Φdi f f
i j = D(

Ui +U j

2
)(U j −Ui). (4)

Full details of the evaluation of diffusive flux terms are given in [16].
Due to theαk∇p and∆ p∇αk terms, the inviscid part of the two-phase flow cannot
be written in a conservative form. But this system can be written in the quasi-linear
form:

∂U
∂ t

+A(U)
∂U
∂x

= 0. (5)

Under some simplifying assumptions, the authors of [17] were able to obtain a con-
servative form that allowed them to give a sense to discontinous solutions. It was
also under those assumptions that they have been able to develop an approximate
Riemann solver of Roe-type for the system (5) providing a local linearization of the
non-conservative termαk∇p. We can also contruct other linearizations than that of
[17]. Here, we will not propose a specific linearization but ageneral method for the
construction of the Roe matrix once we have chosen a linearization. We then define
a local inviscid flux functionF locand a local Roe matrixARoe for this linearization.
The inviscid flux in the normal direction to the cell interface ∂Ci, j is given by:

Φconv
i j =

F loc(Ui)+F loc(U j)

2
.ni j +D

Ui−U j

2
(6)

=F loc(Ui).ni j +A−(U j −Ui),

whereD is an upwinding matrix,ARoe the Roe matrix andA± = 1
2(ARoe±D).

The choiceD = 0 gives the centered scheme, whereasD = |ARoe| gives the up-
wind scheme.

Newton scheme

Finally, since∑ j∈N(i)F loc(Ui).ni j = 0, using (6) and (4) the equation (3) of the
numerical scheme becomes:

Un+1
i −Un

i

∆ t
+ ∑

j∈N(i)

si j

vi
{(A−+D)(Un+1

i ,Un+1
j )}(Un+1

j −Un+1
i ) = 0. (7)

The system (7) is nonlinear, hence we use the following Newton iterative method to
obtain the required solutions:



642 Thu-Huyen DAO, Michael NDJINGA, and Fréd́eric MAGOULÈS

δUk+1
i

∆ t
+ ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j)
](

δUk+1
j −δUk+1

i

)

= −Uk
i −Un

i

∆ t
− ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j)
]
(Uk

j −Uk
i ), (8)

whereδUk+1
i = Uk+1

i −Uk
i is the variation of thek-th iterate that approximates the

solution at timen+1. Defining the unknown vectorU = (U1, . . . ,UN)
t , each New-

ton iteration for the computation ofU at time stepn+ 1 requires the numerical
solution of the following linear system:

A (U k)δU k+1 = b(U n,U k). (9)

Scaling strategy

The larger the time step, the worse the condition number of the matrixA in (9).
As a consequence, it is important to apply a preconditioner before solving the linear
system. The most popular choice is the Incomplete LU factorisation (later named
ILU, see [1] for more details). The error made by the approximate factorisation us-
ing an ILU preconditioner depends on the size of the off diagonal coefficients of
the matrix. For a better performance of the preconditioner,it is desirable that off
diagonal entries of the matrix have small magnitudes.
Here, we use the Scaling strategy (see details in [3]) to improve the condition num-
ber of the matrix. This strategy is a similarity transformation. Combined with the
classical ILU preconditioner this strategy has reduced significantly the GMRES it-
erations for local systems and the computational time.

4 Domain decomposition method

The object of the present work is to solve the compressible fluids by a nonoverlap-
ping domain decomposition methods [13, 15, 11, 9], and more precisely by a Schur
complement method. A simple attempt is to adapt the principle of the domain de-
composition method for elliptic problems [14, 10] to our problems. As in the case
of elliptic problems, the principle is that we decompose theglobal problem into
independent subproblems which are solved by each processor. However, the imple-
mentation of these ideas in hyperbolic problems raise some technical difficulties
such as:

• The scheme must be conservative.
• In the finite volume formulation, there is no unknown defined at the interface.
• The boundary condition of hyperbolic systems must depend onthe characteris-

tics of the problem.

Those difficulties are solved in [5] for the Euler equations by replacing the interface
variables in the context of elliptic problems by the interface fluxes in the context



A Schur Complement Method for Compressible Two-Phase Flow Models 643

of hyperbolic problems. In this paper, we introduce a new interface variable which
make the Schur complement method easy to build and allows us to treat diffusion
terms.

Implicit Coupling

We recall the linear system at each Newton iteration of the implicit scheme (8):

δUk+1
i

∆ t
+ ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j)
](

δUk+1
j −δUk+1

i

)

= −Uk
i −Un

i

∆ t
− ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j)
]
(Uk

j −Uk
i ).

We would like to solve (8) onN processors and each processor work on one sub-
domain. We see that it lacksδUk+1

j to the computational unit of the subdomainI if
the cell j belongs to another subdomain, and it is not calculable by thesystem since
δUk+1

j is to be calculated. Then the processorI needs from the processorJ the value

δUk+1
j which is not yet available. Conversely, the processorJ needsδUk+1

i from the
processorI .

A new interface variable

In order to include diffusion terms in the model and to use various schemes and
various systems, we introduce a new interface flux variableδφi j (see [4]) at the
domain interface between two neighboring cellsCi andCj which belong to different
subdomains:

δφi j = δU j −δUi (10)

In the case where the celli of the subdomainI is at the boundary and has to
communicate with the neighboring subdomains, we can rewrite the system (8) as:

δUk+1
i

∆ t
+ ∑

j∈I , j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j)
](

δUk+1
j −δUk+1

i

)

=−Uk
i −Un

i

∆ t
− ∑

j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j)
]
(Uk

j −Uk
i )

− ∑
j 6∈I , j∈N(i)

si j

vi

[
(A−+D)(Uk

i ,U
k
j)
]

δφ k+1
i j

We defineUI = (U1, . . . ,Um)
t the unknown vector of the subdomainI ,

δφI = (δφi j )i∈I , j∈J, j∈N(i), (11)
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AI the local Neumann matrix of the subdomainI , and

PI = ∑ j 6∈I , j∈N(i)
si j
vi

[
A−(Uk

Roe)+D(Uk
di f f )

]
, we can write the linear system as:

AI (Uk)δUk+1
I = bI (Un,Uk)−PI δφI (12)

By taking into account equations (10), (11) and (12),and denoting δΦ = (δφI ),
I = 1. . .N we can build an extended system that distinguishes the internal unknowns
from the interface ones:




A1 0 . . . . . . P1

0 A2 0 . . . P2

. . . . . . . . . . . . . . .
0 0 . . . AN PN

M1 . . . . . . MN I







δU1

δU2

. . .
δUN

δΦ




=




b1

b2

. . .
bN

bΦ




(13)

whereAI is the matrix that couples the unknowns associated with internal cells of
ΩI whereasMI links δUI to δΦ through (10). Then, in our method,MI comprises
only 0 or±1.
The internal unknowns in (13) can be eliminated in favor of the interface ones to
yield the following interface system:

SδΦ = bΦ , (14)

with (SδΦ) = δΦ +∑N
I=1MIAI

−1PI δφI and(bΦ) = ∑N
I=1MI AI

−1bI .
The computation of the matrixS is so costly as we have to inverse the local matrix
AI . Fortunately, we do not have to compute explicitly the coefficients ofS. All we
need is to design the operatorδΦ → SδΦ . Then the equation (14) can be solved
by, e.g., GMRES, BICGStab, or the Richardson methods. Once we solved the in-
terface system, we knowδΦ and then we can solve the internal unknowns on each
processor using the equation (12).

5 Numerical Results

We have implemented our method for the compressible Navier-Stokes equations
and the isentropic two-fluid model and compared the results obtained using single
and multiple domains. After this validation, we compare thecomputation time of
the ILU preconditioner, our method and our method with strategy Scaling ([3]).
Fig. 1 presents the computational time required to perform atime step of a fixed
global problem of one million cells using upwind scheme. We compare the compu-
tational time required using the classical distributed method (red curve), the domain
decomposition method (blue curve) and the domain decomposition method with
scaling (green curve). We vary the number of processors up to128. One can see that
the domain decomposition method is comparable with classical distributed method
and using scaling ([3]) is better.
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Fig 3 shows the computational time required to perform the previous test but using

Fig. 1 Upwind scheme, single-phase flow,
global mesh = 96×96×96, CFL 20

Fig. 2 Upwind scheme, two-phase flow,
global mesh = 96x96x96, CFL 20

centered scheme. We can see only two curves. This is because,in this case the clas-
sical distributed method does not converge like we use the centered scheme. Domain
decomposition is the only one method that converges.

Fig. 3 Centered scheme, single-phase flow,
global mesh = 96×96×96, CFL 10 Fig. 4 Centered scheme, two-phase flow,

global mesh = 96×96×96, CFL 20

Similarly, Figs 2 and 4 show the computational time requiredto perform a time
step in the case of the two-phase flow for the upwind and centered schemes.

Conclusion

We have presented a new interface variable which allows for the treatment of
diffusion terms and the use of various numerical schemes fortwo-phase flows. We
also introduced the Scaling strategy to improve the conditioner number of the matrix
and reduce the computational time. We compared the scalability of our method with
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the classical distributed computations. Numerical results showed that our method is
more robust and efficient.
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A Posteriori Error Estimates for a
Neumann-Neuman Domain Decomposition
Algorithm Applied to Contact Problems

Daniel Chöı1, Laurent Gallimard2, and Taoufik Sassi1

1 Introduction

Contact problems are frequent in structural analysis. Theyare characterized by in-
equality constraints such as non-interpenetration conditions, sign condition on the
normal constraints, and an active contact, an area that is a priori unknown. Several
approaches exist for solving the non linear equations issued from the finite element
discretization of frictionless contact problems. Recently, many efficient error esti-
mates for solving frictionless contact problems have been proposed, see for example
[1] and with domain decomposition techniques combined withadapative finite ele-
ment methods, see [8, 5].

In this work, we consider a natural Neuman-Neumann domain decomposition
(NNDD) algorithm, in which each iterative step consists of aDirichlet problem for
the one body, a contact problem for the other one and two Neumann problems to
coordinate contact stresses. Two main approximation errors are introduced by this
algorithm: a discretization error due to the finite element method (FEM) and an
algebraic error due to the NNDD algorithm.

In [5] an error estimator in the constitutive relation for contact problems solved
by a Neumann-Dirichlet domain decomposition algorithm hasbeen proposed. The
objective of this paper is to extend this error estimator fora frictionless contact
problem, solved by a NNDD algorithm and to present two errorsindicators which
allow us to estimate the part of the error due to the spatial discretization and the
part of the error due to the domain decomposition algorithm.Numerical results are
presented, showing the pratical efficiency of the proposed error estimators.

2 A contact problem, notations and conventions

Two plane bounded domainsΩ1 andΩ2 representing two linear elastic bodies are
considered. Their Lipschitz boundaries are composed of distinct partsΓ α

D , Γ α
N and

Γ α
C :

∂Ωα = Γ α
D ∪Γ α

N ∪Γ α
C α = 1,2.

1 Laboratoire de Math́ematiques Nicolas Oresme, Université de Caen Basse-Normandie, France,
e-mail: {daniel.choi}{taoufik.sassi}@unicaen.fr ·2 Laboratoire Electronique,
Mécanique, Enerǵetique, Universit́e Paris Ouest Nanterre-La Défense e-mail:laurent.
gallimard@u-paris10.fr
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The indicesD, N, C of the boundary parts indicate respectively Dirichlet, Neumann
and contact imposed boundary conditions, see problem (2)–(5). For the sake of sim-
plicity, we suppose thatΓ 1

C =Γ 2
C = ∂Ω1∩∂Ω2 =ΓC is a common part of∂Ωα along

which the bodiesΩα are in unilateral contact. On the presumed contact boundary
ΓC, we define

n= n1 =−n2 and t = t1 =−t2,

wherenα andtα denote, respectively, the unit external normal and tangential vectors
to ∂Ωα .

On each domainΩα , α = 1,2, the stress tensor isσα andE (uα) is the linearized
strain tensor associated with the displacementuα . With the elasticity tensorsEα ,
characterizing the materials ofΩα , we have the linear strain-stress relation :

σα = EαE (uα). (1)

The bilinear energy forms, of linear elastic deformation, are then defined as

aα(uα ,u∗) =
∫

Ω α
σα : E (u∗).

The external loads (surfacic tractions of densityFα onΓ α
N ) are represented, in their

weak form, as the linear formsbα :

bα(u∗) =
∫

Γ α
N

Fα .u
∗.

3 Unilateral Contact problem and ’Neumann-Neumann’ domain
decomposition algorithm (NNDD)

We consider a unilateral frictionless contact problem betweenΩ1 and With volu-
mic forces neglected and tractions of densityFα imposed onΓ α

N , the equilibrium
equations can be written forα = 1,2:

divσα = 0 in Ω α (2)

σ α .nα = Fα onΓ α
N (3)

with the kinematic boundary condition and unilateral frictionless contact condi-
tions :

uα = uα
D onΓ α

D (4)
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(u1−u2).n ≤ 0
σ1

TN = σ2
TN = 0

σ1
NN = σ2

NN = σN

σN ≤ 0
σN.(u1−u2).n = 0





onΓC (5)

with

σα
NN = nα .σαnα (6)

σα
NT = tα .σα tα . (7)

We now define a Neumann-Neumann domain decomposition (NNDD)algorithm.
First, for any given normal displacementλp onΓC, we define the functional spaces

V1 = {u∈ H1(Ω 1);u|Γ 1
D
= u1

D}
U1

C(λp) = {u∈V1;u|Γ 1
C
.n= λp}

V2 = {u∈ H2(Ω 2);u|ΓD = u2
D}

K2
C(λp) = {u∈V2;u|Γ 2

C
.n≥ λp}.

Given a non-negative parameterθ and an initial arbitraryλ1, we define two se-
quences of displacementsuα

p on each solidΩ α , α = 1,2. Each iterationp of the
NNDD algorithm is divided in two successive steps.

• Step 1 – Two independent elasticity problems (hence parallelizable) are solved
on Ω1 andΩ2:

(i) In Ω1, the variational problem writes

{
Find u1

p ∈U1
C(λp) such that

a1(u1
p,u
∗−u1

p) = b1(u∗−u1
p) ∀u∗ ∈U1

C(λp)
(8)

(ii) In Ω2, with the givenλp normal displacement defined onΓC, we solve
the following variational problem corresponding to a unilateral frictionless
contact problem onΓ 2

C :

{
Find u2

p ∈ K2
C(λp) such that

a2(u2
p,u
∗−u2

p)≥ b2(u∗−u2
p) ∀u∗ ∈ K2

C(λp)
(9)

From the respective unique solutionsu1
p andu2

p of (8) and (9) we deducer1
p

andr2
p, defined on the contactΓC as

r1
p = σ1

pn1

r2
p = σ2

pn2.
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whereσ1
p andσ2

p are the stress tensor associated with the respective solu-
tionsu1

p and ofu2
p of problems (8) and (9).

• Step 2 – Withr1
p andr2

p obtained in step 1, we solve two independent “Neumann
type” problems (hence the name NNDD):
In Ω1, we solve

{
Find w1

p ∈V1 such that
a1(w1

p,u
∗−w1

p) =−
∫

ΓC

1
2(r

1
p+ r2

p).(u
∗−w1

p) ∀u∗ ∈V1.
(10)

In Ω2, we solve
{

Find w2
p ∈V2 such that

a2(w2
p,u
∗−w2

p) =
∫

ΓC

1
2(r

1
p+ r2

p).(u
∗−w2

p) ∀u∗ ∈V2.
(11)

Let εt be the precision of the algorithm, we have the alternative :

(i) If ετ is small enough, the algorithm stops.
(ii) Else, the normal displacementλp is updated :

λp+1 := λp+θ(w1
p−w2

p).n

and we return to step 1 for iterationp+1.

If r1
p+ r2

p = 0, it means that the equilibrium is satisfied on the contact interface,
in other words the solutionsu1

p andu2
p of step 1 constitute the unique solution of

the reference problem (2)–(5). The proof of convergence of the NNDD algorithm
(8)–(11) is given in [6] for any sufficiently smallθ > 0:

Theorem 1.There is aθ0 > 0 such that for any0< θ ≤ θ0, the NNDD algorithm
for unilateral frictionless contact converges.

4 Error estimates

The NNDD algorithm introduces two error sources. The first one is introduced by
the solution of the FE problems (8)–(9). The second is introduced by the iterative
NNDD algorithm. The global error is defined as the differencebetween the solu-
tion of the weak form of the reference problemuα and the finite element solution
computed from the NNDD algorithmuα

h . Let

eh =

√
2

∑
α=1
‖uα −uα

h ‖2u,Ω α where‖u‖2u,Ω α =
∫

Ω α
EαE (u) .E (u)dΩ α

In the next section, we will define an a posteriori global error estimator, which is
an adaptation to the NNDD algorithm of the error estimator proposed in [5], [4].
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Moreover, we propose here two error indicators that allow usto estimate separately
the part of the error due to the FE discretization and that dueto the NNDD algorithm.

4.1 Global error estimator

The global error estimator is based on the concept of error inthe constitutive relation
[7]. Let us consider kinematically admissible displacements, i.e those satisfying (4),
v̂= (v1,v2,vN) and statically admissible stress tensor fields ˆc= (τ1,τ2, tc), i.e. those
satisfying (5), where onΓc, with wα = vα |Γc :

wc = w1−w2, andtc = ταnα .

We define a global error estimator for any admissible ˆs= (ĉ, v̂) :

eCRE(ŝ) =

[
2

∑
α=1
‖τα −EαE (vα)‖2τ,Ω α +2

∫

Γc

[φ(−wc)+φ ∗(tc)+wc.tc]dS

]1/2

,

with
‖τα‖2τ ,Ω α =

∫

Ω α
τα : (Eα)−1(τα),

and whereφ andφ ∗ are the conjugate convex potentials introduced in [2] to model
the Coulomb’s contstitutive law in a frictionless case:

φ(v) =

{
0 if vN ≥ 0
+∞ otherwise

φ ∗(t) =
{

0 if tN ≤ 0 andtT = 0
+∞ otherwise,

where the indicesN andT indicate respectively the normal and the tangential com-
ponent.
From [2, 3] the unilateral frictionless contact condition is equivalent to

φ(−wc)+φ ∗(tc)+wc.tc = 0 onΓC. (12)

eCRE(ŝ) is the constitutive relation error estimator for the admissible solutionŝ. It is
equal to zero if and only if ˆs is the exact solution of the unilateral frictionless contact
problem (5)–(2). From [1], we have the upper bound,

eCRE(ŝ)≥ eh =

√
2

∑
α=1
‖uα

h −uα‖2u,Ω α .
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4.2 Error indicators

The discretization error is estimated through a discretization error indicator com-
puted for a second reference problem defined by (8)–(9) for a given λp. The only
approximation used to solve this problem is the Finite Element approximation.

Let ŝp = (ûp, ĉp) be an admissible pair for this new reference problem, then the
discretization errorindicator is defined by

ηdis
h,p = eCRE(ŝp).

To define an algorithm error indicator, we consider a third reference problem ob-
tained with the Finite Element discretization of equations(2)–(5) (It is also nec-
essary to introduce a discretized contact constitutive relations), the only approxi-
mation used to solve this problem is the Neuman-Neuman domain decomposition
algorithm. Let ˆsh = (ûh, ĉh) be an admissible pair for this third reference problem,
then thealgorithm error indicator is defined by

ηNNDD
h = eCRE(ŝh)

To build the admissible fields ˆsp and ŝh, we use an adaptation of the techniques
developed in [5].

5 Numerical results

We consider a test problem illustrating the reference problem (2)–(5). The domain
Ω 1 is subject to a non-zero imposed displacement on a partΓ 1

D of its boundary and
to a rigid frictionless contact on another partΓ 1

D′ . The domainΩ 2 has zero displace-
ment imposed onΓ 2

D . Some surface forcesFN are imposed onΓ 1
N to illustrate some

loss of contact at the interface, see Figure 1. The two domains are in contact onΓC.

Fig. 1 A test problem for
NNDD algorithm: frictionless
unilateral contact between 2
elastic bodies.
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In our implementation of the NNDD Algorithm, we define the precision of the
algorithmεt as

ετ =
2maxΓC |r1

p+ r2
p|

maxΓC |r1
p|+maxΓC |r2

p|

wherer1
p andr2

p are obtained from step 1 of the NNDD algorithm at iterationp.
We first test the a posteriori error estimates of the NNDD algorithm (8)–(11) for

different values ofθ , and two meshes, one coarse mesh with 380 nodes and one finer
mesh with 5994 nordes, see Figure 2. For both meshes, we notice an apparently
optimal value near 0.4≤ θ ≤ 0.5 after 3 iterations of the NNDD algorithm. We
also remark that the algorithm errors are very similar for both the fine and coarse
meshes. The discretisation errors are naturally greater for the coarse mesh, but it
doesn’t change much withθ .
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Fig. 2 NN error indicators for different values ofθ , coarse 380 nodes mesh (up) and finer 5994
nodes mesh (down) after 3 iterations.
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In Figure 3, we show the evolution of the algorithm error and the precisionεt for
an increasing number of iterations for a fixed valueθ = 0.4 and a fixed coarse mesh
(380 nodes). While both decrease towards zero, the slopes of each appear very dif-
ferent. It means that the precisionεt may not be a very good stopping criterion and
can be deceiving as it appears much smaller than the algorithm error, which con-
stitutes the largest part of the global error when using finermesh, see the previuos
figure 2.

Fig. 3 Algorithm error and
precisionεt on fixed coarse
mesh per number of iterations,
with θ = 0.4
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Additive Schwarz with Variable Weights

Chen Greif1, Tyrone Rees2, and Daniel B. Szyld3

1 Introduction and Motivation

We consider the numerical solution of nonsymmetric linear systems of equations of
the form

Au = f, (1)

that arise from the discretization of partial differentialequations (PDEs). In practical
problems, the number of mesh points is very large, and thus also the number of un-
knowns in (1), and the resulting matrix is large and sparse. In these circumstances,
iterative methods are often used, due to their ability to deal more effectively with
a high degree of sparsity. A popular iterative method is theGeneralized Minimum
Residualiterative scheme, or GMRES [8, 9, 10]. This method is based onminimiz-
ing at thekth iterate the residual within the affine Krylov subspaceu0+K k(A, r0),
whereu0 is an initial vector,r0 = f−Au0 is the initial residual, and

K k(A, r0) = span(r0,Ar0, . . . ,A
k−1r0).

The performance of GMRES is often (though not exclusively) determined by the
structure of the eigenvalues of the matrixA. Loosely speaking, if they are strongly
clustered, then GMRES is expected to converge fast. To accomplish a clustering
effect, apreconditioner Mis typically used: instead of solving (1) we solve, say,

AMũ = f,

whereM is constructed so thatAM has a more favorable eigenstructure thanA. Upon
incorporating the preconditionerM, the Krylov subspace changes accordingly: the
matrix associated with the subspace becomesAM, and the preconditioned residual
is now minimized.

A common way of dealing with the large number of degrees of freedom in a
fine mesh is to break the problem down into a number of more manageable sub-
problems. This amounts to the technique ofdomain decomposition; see, e.g., [11].
We can then incorporate preconditioners that work on the subdomains into the gen-
eral iterative framework.

The additive Schwarz preconditioner [11] and its restricted variant (RAS) [3],
can be written in the form

1 Department of Computer Science, University of British Columbia,Vancouver, B.C., Canada.
e-mail: greif@cs.ubc.ca ·2 Scientific Computing Department, STFC Rutherford Appleton
Laboratory, Chilton, Didcot, UK. e-mail:tyrone.rees@stfc.ac.uk ·3 Department of Math-
ematics, Temple University, Philadelphia, Pennsylvania, USA. e-mail: szyld@temple.edu
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M =
t

∑
i=1

R̃iA
−1
i RT

i ,

wheret is usually the number of subdomains,R̃i is a restriction operator,RT
i is a

prolongation operator, andAi =RT
i ARi is the restriction ofA onto theith subdomain.

A possible generalization would be to use a weighted additive or restricted addi-
tive Schwarz preconditioner, say of the form

M(k) =
t

∑
i=1

α(k)
i R̃iA

−1
i RT

i ,

where the weightsα(k)
i are chosen at thekth iteration of GMRES so as to minimize

the preconditioned residual, cf. [1]1. What we propose in this paper is to go a step
further, and implicitly find at each iteration both the current weights and all the
weights at the previous iterations, so as to minimize the residual at the current step.

Incorporating weights which change from one iteration to the next is significant
and we can no longer talk about a standard iterative method with a single precondi-
tioner. Instead, the proposed strategy fits into the MPGMRESparadigm the authors
recently described in [5], where more than one preconditioner may be applied si-
multaneously.2 Our main goal in this paper is to show that this methodology ispar-
ticularly effective in the domain decomposition paradigm,since we can associate
each subdomain with a specific, unique preconditioner.

An outline of the remainder of this paper follows. In Section2 we briefly describe
Additive and Restricted Additive Schwarz Preconditioning. In Section 3 we describe
the MPGMRES algorithm. We address the question of computational cost of the
algorithm and characterize the generalized Krylov subspace and its unique features
in domain decomposition setting. In Section 4 we provide some details on numerical
experiments. Finally, in Section 5 we make some concluding remarks.

2 Additive Schwarz Preconditioning

Suppose we divide the domainΩ containingn nodes intot subdomainsΩ1, . . . ,Ωt ,
which overlap by bands of widthδ nodes. Suppose each subdomain consists of
mi ≪ n nodes, which we denote as the entries of the setIi . We can define a prolon-
gation matrixRT

i,δ ∈ Rn×mi which extends vectorsu(i) ∈ Rmi toRn by

(RT
i,δ u(i))k =

{
(u(i))k if k∈ Ii
0 otherwise.

1 We point out that this is completely different than the approach in [4], where the weights are
zeros and ones, and the emphasis is on asynchronous iterations.
2 This algorithm extends previous work on using a combination ofpreconditioners – e.g., flexible
GMRES [7] with alternating preconditioners, as described by Rui et al. [6] in the method they call
multipreconditioned GMRES – by making an ‘optimal’ choice of weights. See [5] for a discussion.
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The transpose of this matrix defines a restriction operatorRi which restricts vec-
tors inRn to the subdomainΩi . The restriction of the discretized PDE,A, to theith
subdomain is given byAi = Ri,δ ART

i,δ .
We can now define theadditive Schwarzpreconditioner as

M :=
t

∑
i=1

RT
i,δ A−1

i Ri,δ =
t

∑
i=1

Mi , (2)

whereMi := RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ . Note that, by the definition ofRT

i,δ , there exists
some permutationΠi such that, for allx,

ΠiMix = (×·· ·×0· · · · · ·0)T ,

i.e., the vector resulting from multiplication by theMi (regardless of the permuta-
tion) will be sparse.

We can also define arestricted additive Schwarz(RAS) preconditioner [5] by
considering the prolongationRT

i,0 instead ofRT
i,δ in (2).

3 The MPGMRES Algorithm for Domain Decomposition
Problems

MPGMRES [5] is a minimal residual algorithm for solving a linear system of equa-
tions which allows the user to apply more than one preconditioner simultaneously
(see also [2] for a multipreconditioned version of the conjugate gradient method).
At each step, new search directions are added to the search space, corresponding
to AMiv for each i = 1, . . . , t, and for each basis vectorv of the current search
space. The multipreconditioned search directions are all combined into a gener-
alized Krylov subspace, and the minimization procedure requires solving a linear
least-squares problem. As opposed to standard GMRES, here the subspace grows
quickly due to the presence of multiple search directions and the projection can
be expressed in terms of a block upper Hessenberg matrix; seeFigure 1. It has been
shown in [5] that a so-calledselective MPGMRES(sMPGMRES) algorithm – which
chooses a subset oft search directions and hence keeps the size of the search space
growing only linearly – can be an effective method. MPGMRES (in both complete
and selective forms) is given as Algorithm 1.

3.1 Computational Work

In the selective algorithm we needt matrix-vector products andt preconditioner
solves per iteration, as opposed to one for both in the standard preconditioned
GMRES algorithm. The main other source for work is the inner products. Note
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(a) Complete MPGMRES (b) Selective MPGMRES

Fig. 1 Schematic of Arnoldi decompositions in complete and selective MPGMRES

Algorithm 1 MPGMRES
Chooseu0, r0 = f−A u0
β = ‖r0‖, v1 = r0/β
Z1 = [M1v1 · · ·Mtv1]
for k= 1, . . ., until convergencedo

W = A Zk
for j = 1, . . . ,k do

H j,k = (Vj )
TW

W =W−VjH j,k
end for
W =Vk+1Hk+1,k (skinny QR factorization)
yk = argmin‖βe1− H̃ky‖2
uk = u0+[Z1 · · ·Zk]yk

Zk+1 =

{
[M1Vk+1 · · ·MtVk+1] for complete MPGMRES
[M1Vk+11· · ·MtVk+11] for selective MPGMRES

end for

that every entry in the Hessenberg matrixHk is the result of an inner product,
and these are the only inner products in the algorithm. MPGMRES therefore needs
(2k−1) t2

2 + 3
2t inner products at thekth step [5, Table 4.1].

Significantly, in the domain decomposition setting, due to the nature of the stan-
dard Additive Schwarz preconditioner, the preconditioning step isexactlythe same
cost when using both selective MPGMRES and standard preconditioned GMRES.
Moreover, since the vectors we obtain by applying the preconditioners are sparse,
the cost of the matrix-vector products will also be of the same order as in the stan-
dard GMRES algorithm – the only extra expense coming from theoverlapping
nodes. Indeed, if we use RAS, then the cost of a matrix-vectorproduct would be
identical here too. While we studied RAS in the context of MPGMRES in [5], in the
rest of this paper we restrict our comments and experiments to additive Schwarz.
The extra cost in the MPGMRES approach therefore lies completely with the inner
products. The vectors here are, in general, dense, as we losesparsity ofW in the
modified Gram-Schmidt step (in the inner loop of Algorithm 1).
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3.2 The subspace in complete MPGMRES

Recall that (complete) MPGMRES minimizes over the multi-Krylov subspace

K k
M1,...,Mt

(A, r0),

where

K 1
M1,...,Mt

(A, r0) = span{M1Ar0, . . . ,MtAr0},
K 2

M1,...,Mt
(A, r0) = span{M1Ar0, . . . ,MtAr0,M1AM1r0, . . . ,M1AMt r0, . . .

. . . ,MtAM1r0, . . . ,MtAMt r0},

etc. Usually the size of this space grows exponentially witheach iteration. However,
in an additive Schwarz context the situation is not quite so dire, as we see below.

First, note that each preconditioned matrix is a projection, since

MiAMi = RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ ART

i,δ (Ri,δ ART
i,δ )
−1Ri,δ = Mi .

Hence applyingMi to AMi does nothing to enrich the space.
Next, note that

MiAMj = RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ ART

j,δ (Rj,δ ART
j,δ )
−1Rj,δ .

In the middle of this expression is the cross-termRi,δ ART
j,δ . Now note that

Ri,δ ART
j,δ = 0 wheneverIi ∩ I j = /0. Provided the overlapδ is not large enough to

touch two subdomains, this implies that only the contributions from sub-domains
that touch each other add anything to the multi-Krylov subspace. This is the number
of edges + corners in 2D (a maximum of 8 for a tensor product-based grid), and
these plus the number of faces in 3D (a max of 26 for a tensor product-based grid).
Altogether, this means that

dim(K k
M1,...,Mt

(A, r0)) = (kc+1)t,

wherec is a constant independent ofk, t. Therefore, even in the complete MPGMRES
case, we only havelinear growth in the search space.

4 Numerical Experiments

If we split the domain into a small number of subdomains, i.e., we have a high
proportion of subdomains lying on an edge, then there may notbe much difference
between the spaces minimized over by the selective algorithm and the complete
algorithm.
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For example, consider the special case where we split the domain Ω into two
subdomains,Ω1 and Ω2 such thatΩ1∪Ω2 = Ω . Then it can be shown [5, Sec-
tion 5.2.1] that, provided the subdomain solves are exact, the space over which we
minimize in both selective and complete MPGMRES are identical.

Figure 2 shows the convergence curves for solving the advection-diffusion equa-
tion

−∇2u+ω ·∇u = f in Ω (3)

u = 0 on∂Ω , (4)

whereΩ denotes the unit square andω = 10
(
cos(π

3 ),sin(π
3 )
)T

. This is discretized
using finite differences with a uniform mesh sizeh, and the right hand side is taken
to be the vector of ones. Thus, in 2D,n= 1/h2 and in 3D,n= 1/h3.
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Fig. 2 Convergence curves for solving the advection-diffusion equation (3-4) with two subdomains
in 2D and 3D. The iteration number is plotted along the x-axis, and ‖r k‖2 is plotted along the y-
axis.

As we see in Figure 2, the iteration counts are significantly better using a mul-
tipreconditioned approach. Despite only having a serial MATLAB code, this also
corresponds to significantly better timings, as is seen in Table 1: it is anticipated
that the difference between the two approaches would be evenmore striking in a
parallel implementation.

For a large numbers of subdomains, the work involved in the inner products and
vector updates becomes significant, even though the work in actually applying the
preconditioners is essentially the same as for the usual AS method. Convergence
curves for the problem (3)-(4) are given in Figure 3.

Although the iteration counts are impressive for a large number of subdomains
(with, e.g., 101 iterations for GMRES with an additive Schwarz preconditioner be-
ing reduced to 17 iterations with selective MPGMRES for 256 subdomains), the
timings in this case are not yet competitive – e.g., for the case with 256 subdomains
GMRES converges in 2.5s whereas sMPGMRES takes 9s. This is due to the fact
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Table 1 Timings for sMPGMRES and GMRES with two subdomains in 2D (left) and 3D (right)

h sMPGMRES GMRES

2−3 0.008 0.007
2−4 0.015 0.023
2−5 0.13 0.087
2−6 0.32 0.55
2−7 2.1 3.7
2−8 15.3 28.6

h sMPGMRES GMRES

2−2 0.010 0.011
2−3 0.059 0.058
2−4 1.03 1.49
2−5 25.6 39.7
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Fig. 3 Convergence curves for multiple subdomains in 2D (h = 2−6). The iteration number is
plotted along the x-axis, and‖r k‖2 is plotted along the y-axis.

that we are using a proof-of-concept (serial) MATLAB code. Recall that the only
extra work between the methods is in calculating the inner products and the subse-
quent vector update in the Gram-Schmidt process. Due to the block nature of the
proposed method much of this extra work could be distributedacross any available
processors. We envisage that a state-of-the-art implementation would yield great
computational savings, which would be manifested in a significantly reduced run-
ning time. This would be especially true for very large scaleproblems, where the
cost of the subdomain solves would dominate the cost of each iteration. A Fortran 95
implementation of MPGMRES –HSL MI29 – will be included in the 2013 release
of the HSL subroutine library.

Recall from Algorithm 1 that in the implementation of sMPGMRES reported
here we apply each preconditioner to the sum of the columns ofVk+1. This choice
is by no means unique, and there are many other possible selection strategies [5,
Section 2.3]. The approach employed here seems to perform well on a wide range
of problems, but it is a somewhat arbitrary choice. There maybe situations where
another selection strategy would be superior; this is one avenue for future research.
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5 Conclusions

We have presented an algorithm that applies Additive Schwarz with Variable Weights.
The approach is incorporated as a set of multiple preconditioners into MPGMRES.
Domain decomposition has a few unique features that make ourapproach partic-
ularly attractive. First, the preconditioning step entails the same cost when using
both selective MPGMRES and standard preconditioned GMRES,and the cost of
the matrix-vector products is also of the same order as in thestandard GMRES al-
gorithm. Secondly, because there is a very low degree of overlap between nodes in
the different subdomains, the growth in the search space forcomplete MPGMRES is
only linear, i.e., very modest. This is in contrast to other situations, where the search
space for complete MPGMRES grows exponentially and we settle for a selective
algorithm. For these reasons we believe that the combination of domain decompo-
sition preconditioners and the MPGMRES framework is an effective method for the
numerical solution of linear systems arising from PDEs.
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A parallel multigrid solver on a structured
triangulation of a hexagonal domain

Kab Seok Kang1

1 Introduction
Fast elliptic solvers are a key ingredient of massively parallel Particle-in-Cell (PIC)
and Vlasov simulation codes for fusion plasmas. This applies for both, the gyroki-
netic and fully kinetic models. The currently available most efficient solver for large
elliptic problems is the multigrid method, especially the geometric multigrid method
which requires detailed information of the geometry for itsdiscretization.

In this paper, we consider a structured triangulation of a hexagonal domain for an
elliptic partial differential equation and its parallel solver. The matrix-vector mul-
tiplication is the key component of iterative methods such as CGM, GMRES, and
the multigrid method. Many researchers have developed parallel solvers for partial
differential equations on unstructured triangular meshes. In this paper, we consider
a new approach to handle a structured grid of a regular hexagonal domain with reg-
ular triangle elements. We classify nodes as either real or ghost ones and find that
the required steps of data communication to assign the values on the ghost nodes is
five. We show that the matrix-vector multiplication of this approach has an almost
perfect scaling property.

The multigrid method is a well-known, fast and efficient algorithm to solve many
classes of problems [1, 4, 5]. In general, the ratio of the communication costs to
computation costs increases when the grid level is decreased, i.e., the communica-
tion costs are high on the coarser levels in comparison to thecomputation costs.
Since, the multiplicative multigrid algorithm is applied on each level, the bottleneck
of the parallel multigrid lies on the coarser levels, including the exact solver at the
coarsest level. The additive multigrid method could combine all the data communi-
cation for the different levels in one single step. However,this version can be used
only for preconditioner and need almost the double amount ofiterations generally.
The multiplicative version can be used as a solver and as a preconditioner, so we
consider the multiplicative version only.

The feasible coarsest level of operation of the parallel multigrid method depends
on the number of cores. The number of degrees of freedom (DoF)of the coarsest
level problem will be increased as the number of cores is increased. To improve
the performance of the parallel multigrid method, we consider reducing the number
of executing cores to one (the simplest case) after gathering data from all cores on
a certain level. This algorithm avoids the coarsest level limitation and numerical
experiments on large numbers of cores show very good performance improvement.

1 Max-Planck-Institut f̈ur Plasmaphysik, EURATOM Associate, Boltzmannstraße 2, D-85748
Garching, Germany e-mail:kskang@ipp.mpg.de
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A different way to improve the performance of the parallel multigrid method is
to use a scalable solver on the coarsest level. A good candidate for the coarsest level
solver is the two-level domain decomposition method because these methods are
intrinsically parallel and their required number of iterations does not depend on the
number of sub-domains (cores). We consider BDDC [2] and FETI-DP [3] because
these are well-known two-level non-overlapping domain decomposition methods
and show very good performance for many problems.

In this paper we investigate the scaling properties of the multigrid method with
gathering data, BDDC, and FETI-DP on a massively parallel computer.

2 Model problem and its parallelization
We consider the Poisson type second order elliptic partial differential equations on
a regular hexagonal domainΩ with Dirichlet boundary conditions

c(x,y)u−∇ ·a(x,y)∇u = f , in Ω ,

u = 0, on ∂Ω , (1)

where f ∈ L2(Ω), c(x,y) is a non-negative function anda(x,y) is a uniformly posi-
tive and bounded function. It is well known that the Eq. (1) has a unique solution.

The second-order elliptic problem (1) is equivalent to: findu∈H1
0(Ω) such that

aE(u,v) =
∫

Ω
c(x,y)uvdx+

∫

Ω
a(x,y)∇u·∇vdx=

∫

Ω
f vdx (2)

for any test functionv∈H1
0(Ω) whereH1

0(Ω) is the space of the first differentiable
functions inΩ with zero values on the boundary∂Ω .

We consider a piecewise linear finite element space defined ona triangulation
with regular triangles. This triangulation generate a structured grid and can be ap-
plied to a D-shape Tokamak interior region with conformal mapping. Leth1 and
Th1 ≡ T1 be given, whereT1 is a partition ofΩ into triangles andh1 is the maxi-
mum diameter of the elements ofT1. For each integer 1< k≤ J, let hk = 2−(k−1)h1

and the sequence of triangulationsThk ≡Tk be constructed by the nested-mesh sub-
division method, i.e., letTk be constructed by connecting the midpoints of the edges
of the triangles inTk−1, and letThJ ≡TJ be the finest grid.

Let us define the piecewise linear finite element spaces

Vk = {v∈C0(Ω) : v|K is linear for allK ∈Tk}.

Then, the finite element discretization problem can be written as follows: find
uJ ∈VJ such that

aE(uJ,v) =
∫

Ω
f vdx (3)

for any test functionv∈VJ, i.e., solve the linear systemAJuJ = fJ.
Let us now consider the parallelization of the above problem. We use real and

ghost nodes on each core. The values on the real nodes are handled and updated
locally. The ghost nodes are the part of the distributed sub-domains located on other
cores whose values are needed for the local calculations. Hence, the values of the
ghost nodes are first updated by the cores to which they belongto as real nodes and
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Fig. 1 The subdomains on 24
cores and real (–,•) and ghost
(· · · ,©) nodes on subdomains
according to the types

then transferred to the cores that need them. To reduce data communication during
matrix element computation, the computation of matrix elements on some cells can
be executed on several cores which have a node of the cell as a real node.

We consider the way to divide the hexagonal domain into sub-domains with the
same number of cores. Except for the single core case, we divide the hexagonal
domain in regular triangular sub-domains and each core handles one sub-domain.
Hence, feasible numbers of cores are limited to the numbers 6×4n for n= 0,1,2, . . ..
For each core we have to define what are real and ghost nodes on the common
boundary regions of the sub-domains. We determine the nodeson the common
boundary of the sub-domains as the real nodes of the sub-domain which are lo-
cated in the counterclockwise direction or in the outer direction from the center of
the domain as shown in Fig. 1. For our problem with a Dirichletboundary condition
on the outer boundary, we can handle the boundary nodes as ghost ones. The values
of these boundary nodes are determined by the boundary condition and thus do not
have to be transferred bewteen cores.

We number the sub-domains beginning at the center and going outwards follow-
ing the counterclockwise direction. Each sub-domain can befurther divided into
triangles; this process is called triangulation. In this process each line segment of
the sub-domain is divided into 2n parts. It can be shown that, independently of the
total number of sub-domains and triangulation chosen, there are just three domain
types. These give detailed information on the real and ghostnodes being connected
to other sub-domains and cells which are needed to compute the matrix elements
for the real nodes. To see how good the load balancing is, we measure the ratio
of the largest number of real nodes to the smallest number of real nodes which is
{2n(2n+3)}/{2n(2n+1)} which tends to ‘1’ asn is increased.

To get the values on the ghost nodes from the other cores for all sub-domains, we
implement certain communication steps. The communicationsteps are the dominat-
ing part of the parallelization process and thus a key issue for the performance of
the parallel code. The easiest way to implement the data communication would be
that every ghost node value is received from the core which handles it as a real node
value. However, such implementation would need several steps and the required
number would then vary among the different cores. So this approach could be used
for unstructured grids, but it would be too slow in our case. However, we solved the
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problem by using a sophisticated data communication routine which needs a fixed
number of steps for each core (that is, five).

Our dedicated data communication steps are as follows:

S1: Radial direction
S2: Counterclockwise rotational direction
S3: Clockwise rotational direction
S4: Radial direction (same as in S1)
S5: Mixed communications

3 Multigrid and domain decomposition methods
The motivation for the multigrid method is the fact that basic iterative methods, such
as Jacobi and Gauss-Seidel methods, reduce well the high-frequency error but have
difficulties to reduce the low-frequency error, which can bewell approximated after
projection on the coarser level problem. The multigrid method consists of two main
steps, one is the smoothing operator and the other is the intergrid transfer operator.
The former has to be easy to be implemented and be able to reduce effectively the
high frequency error.

The other important operator is the intergrid transfer operator, which consists
of the prolongation and the restriction operator. The intergrid transfer operators on
triangular meshes have been studied in depth by many researchers, and their usage
is mature.

The main issue with the parallelization of the multigrid method is execution time
on the coarser level iterations. In general, the ratio of communication to computation
on a coarse level grid is larger than on a fine level grid. Because the multigrid method
works on both the coarse and fine grid levels, to get good scaling performance, we
might need to avoid operating on the coarser level if possible. Usually, theW-cycle
and the variableV-cycle multigrid methods require more work on the coarse level
problems, so we consider for parallelization only theV-cycle multigrid method.

In addition to the execution time on the coarser level, we have to consider the
solving time on the coarsest level. As a coarsest level solver, we can use either a
Krylov subspace method or a direct method. The solving time of both methods in-
creases with the problem size. So in considering the solution time of the coarsest
level we need to find the optimal coarsening level, as well as the ratio of the com-
munication to computation on each level.

From a certain level on, we can use a small number of cores to perform compu-
tations for the coarser levels. Among all the possible algorithms, let us consider the
one which executes only on one core after having gathered alldata.

Such a multigrid algorithm variation can solve the coarsestlevel problem on
one core only, independent of the total number of cores. Instead of having only
one core solving the coarser level problems and other cores idling, we choose to
replicate the same computation on the coarser levels on eachcore; then we use
these results for computations on the finer level. In the variant which we use, we use
MPI Allreduce which may yield a better performance than using combinations
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of MPI Reduce andMPI Bcast , depending on theMPI implementation on the
given machine.

Let us now consider another well known parallel solver, namely the domain de-
composition method (DDM). The non-overlapping DDM is a natural method for
problems which have discontinuous coefficients or many parts and are akin to being
implemented on distributed memory computers. The non-overlapping DDM can be
characterized by how it handles the values on the inner-boundary (that is, the com-
mon boundary of the two sub-domains). The condition number of the two-level non-
overlapping DDM does not depend on the number of sub-domains. The BDDC and
FETI-DP methods are well developed two-level DDM and have good performance
when using a large number of sub-domains.

The BDDC algorithm [2] has been developed as an algorithm forsubstructuring,
based on the constrained energy minimization concept. We follow the algorithm of
[2] with a constraint matrixCu which enforces equality of substructure DoF aver-
aged across edges and at individual DoF on substructure boundaries (corner).

The FETI-DP method [3] imposes the continuity on the corner nodes which in-
cludes more than two sub-domains and the continuity on the edge nodes by using the
Lagrange multipliersλ . By block Gauss elimination, we obtain the reduced system
Fλ = d and solve it with PCGM with the Dirichlet preconditioner, asin [3].

4 Numerical experiments
As a model problem, we choose the simplest one withc(x,y) = 0 anda(x,y) = 1.0 in
Eq. (1), i.e., the Poisson problem. To test the performance of our implementation, we
use the finite element discretization formula which is the same for the finite volume
discretization for this test problem. As a termination criterion for the solvers, we
define a reduction of the initial residual error on the finest level by a factor of 10−8.

The performance results reported in this paper were obtained on the HELIOS
machine. The HELIOS machine is located in the InternationalFusion Energy Re-
search Centre (IFERC) at Aomori, Japan. IFERC was built in the framework for
the EU(F4E)-Japan broader approach collaboration. The machine is made by 4410
Bullx B510 Blades nodes of two 8-core Intel Sandy-Bridge EP 2.7 GHz processors
with 64 GB memory and connected by Infiniband QDR. So it has a total of 70 560
cores total and 1.23 Petaflops Linpack performance.

We consider the multigrid method as a preconditioner of the preconditioned
CGM with a localized Gauss-Seidel smoother which use old values on the ghost
nodes. For the multigrid method, we use PCGM with the symmetric Gauss-Seidel
method as a solver on the coarsest level and run two pre- and post-smoothing itera-
tions for all cases.

We tested different data gathering levels on fixed numbers ofcores. Without gath-
ering data, the feasible coarsest level of the multigrid algorithm is the level that has
at least more than one DoF per core. This level is the coarsestgathering level and de-
pends on the number of cores. For instance, the coarsest gathering level of 384 cores
is 5, of 1563 cores is 6, and 6144 cores is 7. Experimentally, setting the gathering
level to the coarsest one shown always best performance. After gathering the data,
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Fig. 2 The solution times
in seconds of the multigrid
method as a preconditioner
for the PCGM with the Gauss-
Seidel smoother with (–) and
without (. . . ) gathering data
as a function of the number of
cores for domains with 2.2K
DoF (×), 8.5K DoF(•), 33.4K
DoF(+), and 132K DoF(◦)
per core

all the computations are performed on one core. In this coarsest gathering level, the
coarsest level does not impact performance as along as it is taken below level 6

In this paper, we use the simplest case only from the gathering level, all the
data of the coarse problem are gathered on one core. In the case of large coarse
problem, i.e., level greater than 6, a performance improvement could be expected
by distributing it on many cores instead of one. But it has notbeen tested.

Let us now consider the performance impact when gathering the data on each
core. To show that, we choose the coarsest level of the parallel algorithm as the
coarsest gathering level. In the case of not gathering data,we have to use the coarsest
gathering level as the coarsest level on which we solve the problem by using PCGM
exactly. We tested four different cases, 2.2K, 8.5K, 33K, and 132K DoF per core and
depicted the results in Fig. 2 which show that the gathering of the data is needed for
large number of cores. The solution time of the solver in thiscase has a significant
improvement for large numbers of cores and small number of DoF per core.

For a multigrid algorithm it is nearly impossible to fix the number of operations
per core while increasing the total problem size, so we consider a semi-weak scaling
by fixing the number of DoF of the finest level on each core. We tested six different
number of DoF of the finest level on each core; from 2.2K DoF to 2.1M DoF and
depicted the results in Table 1 together with the execution time (in bracket) of the
matrix-vector multiplication which is the basic operationfor iterative solvers and
include the data communication step to update the values on the ghost nodes. The
data shows that the matrix-vector multiplication has a perfect weak scaling property
and the multigrid method as a preconditioner has really goodsemi-weak scaling
properties when the number of DoF per core is large (compare 527K DoF and 2.1M
DoF per core cases). Typically, the behaviour of multigrid algorithm implementa-
tions in weak scaling experiments is that they perform better as the number of DoF
per core is increased.

The required number of iterations of the FETI-DP and BDDC methods does not
depend on the number of sub-domains, but rather on the ratio of the mesh size of
the triangulation (fine level,h) to the size of the sub-domains (coarse level,H). This
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# cores 2.2K 8.5K 33.4K 132K 527K 2.1M
24 0.0034(0.000013) 0.0081(0.000055) 0.0356(0.00045) 0.1671(0.0031) 0.7046(0.0129) 2.824(0.052)
96 0.0075(0.000013) 0.0131(0.000056) 0.0406(0.00045) 0.1717(0.0031) 0.7114(0.0129) 2.825(0.051)
384 0.0104(0.000013) 0.0157(0.000056) 0.0502(0.00048) 0.2057(0.0031) 0.8397(0.0129) 3.327(0.052)
1536 0.0175(0.000013) 0.0244(0.000056) 0.0605(0.00051) 0.2209(0.0031) 0.8661(0.0129) 3.366(0.052)
6144 0.0633(0.000013) 0.0756(0.000056) 0.1192(0.00052) 0.3015(0.0031) 0.9476(0.0131) 3.471(0.052)
24576 0.5671(0.000014) 0.5630(0.000060) 0.6302(0.00054) 0.9105(0.0033) 1.6122(0.0141) 6.954(0.056)

Table 1 The solution times in seconds of the multigrid method as a preconditioner for the PCGM
with the Gauss-Seidel smoother and the execution times of the matrix-vector multiplication (in
bracket) according to the number of cores for domains with the several numbers of DoF per core

is shown in Table 2 where we list the required number of iterations of the FETI-DP
and DBBC methods.

h/H 1/8 1/16 1/32 1/64 1/128
# cores FETIDP BDDC FETIDP BDDC FETIDP BDDC FETIDP BDDC FETIDP BDDC
24 12 7 14 8 16 9 18 10 20 12
96 15 8 17 9 20 11 23 13 26 14
384 16 8 19 10 22 11 24 13 28 14
1536 16 8 20 10 23 11 26 13 29 14
6144 16 8 19 10 23 11 26 13 30 14
24576 16 8 19 9 23 11 26 13 29 14

Table 2 The required number of iterations of FETI-DP and BDDC according to the number of
sub-domains and the ratio of the mesh size of the fine level (h) to the coarse level (H)

To implement the FETI-DP and BDDC methods, we have to solve local prob-
lems with Dirichlet and/or Neumann boundary conditions on each sub-domain and
one globally defined coarse level problem. Furthermore, we need to communicate
data with neighboring sub-domains and data on the coarse level. Solving the local
problems and communicating the data with neighboring sub-domains are performed
in parallel. So, these local steps do not alter the performance by changing the num-
ber of cores. Otherwise, the dimension of the global coarse level problem would
grow as the number of cores increases. The dimension of the coarse level problem
used for BDDC method is the same as of the coarsest gathering level used for the
multigrid method. And the dimension of the coarse level problem used for FETI-DP
method is one level below it.

We use the same gathering algorithm as in the multigrid method to solve the
global coarser level problem. In both FETI-DP and BDDC, every sub-domain has
some contributions to the matrices and vectors on the coarselevel and uses the
solution of the coarse level problem. So, we gather these contributions on each core
using theMPI Allreduce and use the solution after solving the coarse problem
without any data communication.

To solve the local and global problems, we used two direct methods, the LA-
PACK (Intel MKL) library with dense matrix format and the IBMWSMP library
with sparse matrix format, and the multigrid method as an iterative method. For
large number of cores (more than 1536 cores), the global problems could be solved
by either the iterative method or parallelized direct methods only on a small number
of cores, due to the memory limitation. The solution time with parallel solver for
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the global problems could be reduced as same as progressively reduced cores on the
multigrid method.

For comparison to our previous results, we chose the solver which performes
best. We tested five different cases with fixed number of DoF per core, from 55 DoF
to 2200 DoF, and depicted the results in Table 3 together withthe multigrid method.
Results in Table 3 show that the FETI-DP is faster than the latter even though the
DBBC requires a smaller number of iterations. These resultsalso show that the weak
scaling property is improved as the number of DoF per core is increased.

DoF/core 55 170 590 2200
# cores MG FETI-DP BDDC MG FETI-DP BDDC MG FETI-DP BDDC MG FETI-DP BDDC

24 0.0009 0.0013 0.0014 0.0015 0.0020 0.0027 0.0019 0.0115 0.0216 0.0034 0.1007 0.2328
96 0.0022 0.0024 0.0028 0.0038 0.0034 0.0046 0.0054 0.0165 0.0298 0.0075 0.1287 0.3309
384 0.0043 0.0041 0.0067 0.0065 0.0057 0.0181 0.0080 0.02280.0439 0.0104 0.1414 0.3513
1536 0.0126 0.0131 0.0171 0.0152 0.0240 0.0367 0.0146 0.0512 0.0666 0.0175 0.1953 0.4056
6144 0.0582 0.0792 0.2954 0.0550 0.0988 0.3809 0.0584 0.1509 0.4849 0.0632 0.3864 1.2242
24576 0.5550 0.4961 1.8470 0.5762 0.5359 2.3163 0.5505 0.6883 2.3867 0.5671 1.0609 3.7620

Table 3 The solution times in seconds of the FETI-DP, the BDDC, and the multigrid method
(MG) as a function of the number of cores for domains with the number of DoF per core

The solution times of the FETI-DP and the multigrid method for the smallest
number of DoF per core cases (55 DoF per core) are almost the same. The multigrid
method with gathering data is faster than the FETI-DP method. The difference of
the solution time between the two methods increases as the number of DoF per core
is increased, except for the largest number of cores (24576 cores).

5 Conclusions
We investigated the performance of the multigrid method with gathering data,
BDDC, and FETI-DP on a regular hexagonal domain with regulartriangulations
and concluded that the first is the fastest solver for such a problem.

Acknowledgements This work was carried out using the HELIOS supercomputer system atCom-
putational Simulation Centre of International Fusion EnergyResearch Centre (IFERC-CSC), Ao-
mori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented
by Fusion for Energy and JAEA. I would like to thank R. Hatzky and other HLST team members,
B. Scott, and D. Tskhakaya for helpful discussions.

References

1. Bramble, J.: Multigrid Methods. Pitman, London (1993)
2. Dohrmann, C.R.: A preconditioner for substructuring based onconstrained energy minimiza-

tions. SIAM J. Sci. Comput.25, 246–258 (2003)
3. Farhat C. Lesoinne M., e.a.: FETI-DP: A dual-primal unified FETI method – part I: A faster

alternative to the two-level FETI method. Internat. J. Numer. Methods Engrg.42, 1523–1544
(2001)

4. Hackbush, W.: Multigrid Methods and Applications. Spinger-Verlag, Berlin (1985)
5. Hülsemann F. Kowarschik M., e.a.: Parallel geometric multigrid. Numerical Solution of Partial

Differential Equations on Parallel Computers II, Lecture Notes in Computational Science and
Engineering51, 165–208 (2006)



A parallel Crank–Nicolson predictor-corrector
method for many subdomains

Felix Kwok1

1 Introduction

In this paper, we propose a fast parallel solver for the parabolic equation

∂tu= L u+g(x, t), x∈Ω ,

u= uΓ (x, t) onΓ = ∂Ω , u(x,0) = f (x) on Ω ,
(1)

whereΩ is an open connected subset ofR2 andL u= ∑i, j ∂xi

(
κi j (x)∂x j u

)
−c(x)u,

with c(x) ≥ 0 andκi j (x) symmetric and uniformly positive definite, i.e., we have
κi j (x) = κ ji (x) for i 6= j and∑i, j κi j (x)ξiξ j ≥ λ ∑i ξ 2

i for all choices ofξi , where the
constantλ > 0 is independent ofx. Our method is based on the predictor-corrector
method introduced by [15]. In that work, the authors consider nonlinear reaction-
diffusion equations posed on branched structures, which model the evolution of
the electric potential in neurons, see Fig. 1. In such problems, the nodal points are
natural separators of the computational domain, meaning that the solution within the
individual branches can be solved independently if the electric potential at the nodes
are known. Based on this observation, the authors proposed the Crank–Nicolson
predictor-corrector (CNPC) method: they first use forward Euler to predict the nodal
values, and then backward Euler to solve for the solution within the branches. To
maintain stability, they then correct the nodal values using a backward Euler step,
and the whole solution is extrapolated to obtain formal second-order accuracy in
time. The main advantage of this method is that a fixed amount of computation is
performed at each time step, and no iteration is necessary. This is unlike classical
domain decomposition (DD) algorithms such as Schwarz methods [3, 14, 11, 1] or
waveform relaxation methods [10, 8, 9, 7], where one must iterate to convergence (or
to some fixed tolerance), and the number of iterations generally increases as the grid
is refined. Thus, a suitable extension of the CNPC method for 2D and 3D problems
can be useful for parallel-in-time methods such as Parareal[13, 6], where fast coarse
integrators are needed. Other DD-type methods with a fixed cost per time step have
been proposed in [4] and [16]; both are only first order accurate under simultaneous
refinement in space and time.

Our main goal is to present in detail a generalization of the CNPC method that
can be used to solve 2D problems with many subdomains in parallel. This is done
in Section 2. In particular, we show how the backward Euler correction step for the
interface can be implemented efficiently, even in cases where the subdomain inter-

1 Universit́e de Geǹeve, 2-4 Rue du Lièvre, 1211 Geǹeve, Switzerland, e-mail:felix.kwok@
unige.ch

671



672 Felix Kwok

Fig. 1 A branched structure, with nodes indicated.

faces are coupled through cross points. To fix ideas, we have chosen a finite volume
discretization in space, although similar techniques can be used for other discretiza-
tions. In Section 3, we examine the convergence of the CNPC method. We will see
that the method indeed converges as the mesh sizeh→ 0 the time stepτ satisfies
τ = O(hα) for α ≥ 1. In fact, the method attains full second order accuracy for
α ≥ 3/2; it is however only first order accurate whenτ = O(h). Finally, numerical
results in Section 4 illustrate the behavior of the method for many subdomains.

2 The CNPC algorithm

To define the CNPC algorithm, we will assume that the domainΩ is divided into
shape regular, quasi-uniform and conforming control volumesVi , i = 1, . . . ,n, with
diameterhi ≤ h, see Fig. 2. If we discretize (1) in space using a finite volume
method, we get a semi-discrete ODE system of the form

M∂tu(t)+Au(t)+BuΓ (t) = Mg(·, t). (2)

Here,u(t) are the unknown values at the nodal points at timet, A∈Rn×n is a sparse,
symmetric positive definite matrix whose entriesai j are non-zero and ofO(1) (con-
stant with respect toh) if and only if volumesi and j are neighbors.B ∈ Rn×nΓ

contains the dependence on the Dirichlet boundary values; its entries are alsoO(1).
uΓ (t) ∈ RnΓ contains the Dirichlet boundary values at timet. M is a diagonal mass
matrix whose(i, i) entry is the area ofVi ; thus, the elements ofM are of sizeO(h2).
g(·, t) is a vector whose elements are the values ofg at the nodes; we will use this dot
notation to denote the vectors of samples of other functionselsewhere in this paper.

We now divide the unknowns into two subsets, theinterface unknownsV1 and the
interior unknownsV2. We also define two corresponding projectorsX1,X2 ∈ Rn×n

such thatX1u projects ontoV1, i.e., it leaves all the values inV1 unchanged and sets
all the other entries to zero, andX2 does the opposite. Thus, we haveX2 = I−X1 and
X1X2 = X2X1 = 0. Note thatX1 andX2 commute withM, since the latter is diagonal.

We are now ready to define the CNPC algorithm. For a given time-step sizeτ and
an approximationun≈ u(·, tn), one step of the CNPC method proceeds as follows:

(i) Predict the interface values att = tn+1/2 using forward Euler: calculateu∗ using

M(u∗−un)

τ/2
=−X1(Aun+BuΓ (tn))+X1Mg(·, tn+1/2),
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Fig. 2 Decomposition into interface (light and dark gray) and interior (white) cells and their cor-
responding unknowns. Light gray corresponds to edge nodes and dark gray to cross points.

Note thatX2(u∗−un) = 0, so interior node values are not altered by this step.
(ii) Using the predicted valuesX1u∗ as boundary values, solve foru∗∗ in

M(u∗∗−un)

τ/2
=−X2

[
A(X1u∗+X2u∗∗)+B

(uΓ (tn)+uΓ (tn+1)

2

)]
+X2Mg(·, tn+1/2),

where bothuΓ (tn) and uΓ (tn+1) are known. This corresponds to a backward
Euler step for the interior unknownsV2; the interface values are not updated.
Note that this step requires solving a linear system with thematrixM+ τ

2X2AX2.
(iii) Computeun+1/2 by correcting the interface values att = tn+1/2 with backward

Euler, usingu∗∗ as boundary values:

M(un+1/2−u∗∗)
τ/2

=−X1

[
A(X1un+1/2+X2u∗∗)+B

(uΓ (tn)+uΓ (tn+1)

2

)]
+X1Mg(·, tn+1/2).

This is a backward Euler step for the interface nodes, since their values have
not been updated in the previous steps, i.e., we haveX1u∗∗ = X1un. For the
other nodes, we haveX2un+1/2 = X2u∗∗, i.e. we reproduce the values obtained
in step 2. Here one needs to solve a linear system with matrixM+ τ

2X1AX1.
(iv) Extrapolate to obtainun+1:

un+1 = 2un+1/2−un.

Note that there is no iteration to convergence, since each ofthe above is only per-
formed once per time step.

Parallelization. We only need consider how to solve linear systems with matrices
Ai = M+ τ

2XiAXi (i = 1,2) in parallel, since the other operators are local in nature
and easy to parallelize. For the matrixA2 = M+ τ

2X2AX2 (step 2), we note that the
interior nodesV2 are naturally decomposed into disconnected “subdomains” whose
only connections are through the interface nodesV1. Thus,A2 is block diagonal,
with blocks corresponding to subdomains or to individual nodes inV1. As a result,
if we assign each subdomain to its own processor, step 2 can besolved in parallel.
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Next, we need to solve systems involvingA1 = M + τ
2X1AX1 (step 3). This is a

block diagonal matrix whose largest block is of the same sizeasV1, so it is much
smaller than the original system. Also note thatX1AX1 (and henceA1) is sparse,
with nonzero entries corresponding to neighboring interface nodesonly. This is
unlike a Schur complement approach, where the elimination of interior nodes in-
troduces additional connections between non-neighboringinterface nodes. How-
ever, the unknowns corresponding to edges from different subdomains are coupled
through cross points, see Fig. 2, leading to a system that is globally coupled.

We now show how we can overcome this bottleneck by reducing the inter-
face system to an even smaller one that has only as many variables as there are
cross pointsin the domain. LetN be the number of subdomains, i.e., the number
of connected components ofV2. We partition the setV1 of interface nodes into
edges{E1, . . . ,Em} between subdomains andC , the set of cross points, so that

V1 = C ∪
(
∪m

j=1E j

)
. We now permute the blocks ofA1 so that edges are ordered

first and the cross points last. If we letu j be the unknowns corresponding toE j and
v be those belonging to cross points, we get




E1 G1

E2 G2
. ..

...
Em Gm

GT
1 GT

2 · · · GT
m C







u1

u2
...

um

v




=
N

∑
i=1

f i ,

whereE j are sparse matrices corresponding to couplings withinE j , G j are the con-
nections betweenE j and the cross points, andC represents the connections among
cross points themselves (typicallyC = 0). The f i represent contributions of subdo-
main i to the right-hand side, e.g., contributions from nodes in subdomaini that are
adjacent toE j . Then the Schur complement with respect to the cross points becomes

(
C−

m

∑
j=1

GT
j E−1

j G j

)
v= RC

N

∑
i=1

m

∑
j=1

(I −RT
j GT

j E−1
j Rj) f i , (3)

whereRj is the restriction fromV1 to E j , j = 1, . . . ,mandRC the restriction fromV1

to C .Thus, each term in the sum on the right-hand side can be computed indepen-
dently by subdomaini; moreover, since edges are one-dimensional,E j is typically
a tridiagonal matrix that can be factored easily. In addition, Rj f i is nonzero only
if E j is an edge of subdomaini, so the inner sum contains only as many terms as
there are edges in the subdomain boundary. Thus, the contributionGT

j E−1
j G j and the

corresponding right-hand side can be calculated in parallel, and it remains to solve
the Schur complement system, whose size is typically comparable to the number of
subdomains. Oncev is known, theu j can be calculated in parallel by back substitu-
tion, which completes Step 3 in the CNPC algorithm. Thus, thecost of the coarse
solve is low, similar to the cost of one coarse grid correction step in other domain
decomposition methods, such as FETI-DP [5].
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3 Convergence of the CNPC method

In this section, we outline the convergence analysis of the CNPC method under
simultaneous time and spatial grid refinement. For more details, see [12]. For ease
of presentation, we assume a uniform rectangular grid in which all control volumes
are of sizeh2, so thatM = h2I . Then (2) is a second-order discretization of (1):

−L u(·, t) = 1
h2 [Au(·, t)+BuΓ (t)]+O(h2).

We assume that the boundary data and source terms are sufficiently smooth, so that
u(x, t) has as many continuous spatial and temporal derivatives as needed.

Lemma 1. The CNPC method can be written as

Dun+1+
k
2
(I +

k
2

X2AX1)BuΓ (tn+1) =Cun− k
2
(I− k

2
X2AX1)BuΓ (tn)+τg(·, tn+1/2),

where k= τ/h2, D= (I + k
2X2A)(I + k

2X1A) and C= (I − k
2X2A)(I − k

2X1A). More-
over, the stability matrix D−1C satisfies‖D−1C‖W < 1 for any τ > 0 and h> 0,
where‖ · ‖W is induced by the vector norm‖u‖2W := uT(I + k

2AX1)A(I + k
2X1A)u.

Recall that the classical Crank–Nicolson method can be written as

(I +
k
2

A)un+1+
k
2

BuΓ (tn+1) = (I − k
2

A)un− k
2

BuΓ (tn)+ τg(·, tn+1/2).

Thus, we see that CNPC and the classical Crank–Nicolson (CN)method differ by

ρ̂n :=
k2

4
X2AX1[A(u

n+1−un)+B(uΓ (tn+1)−u(tn))] =−
τ3

4h2 X2AX1
(
L (∂tu(·, tn+1/2))+O(h2)

)
.

This observation, combined with the fact that the truncation error of CN isO(τ2+
h2), yields the following lemma.

Lemma 2. The local truncation errorρn of the CNPC method at time step n satisfies

ρn = τ
[
− τ2

4h2 X2AX1

(
L (∂tu(·, tn+1/2))+O(τ2)+O(h2)

)
+O(τ2)+O(h2)

]
.

In particular, if τ = O(hα) with α ≥ 1, thenρn = τ · [O(h2)+O(h2α−2)].

Note that theO(h2α−2) term comes from the termτ2

4h2 X2AX1. Fig. 3 shows the lo-
cal truncation error for a two-subdomain decomposition with τ = O(h), for which
Lemma 2 predictsρn/τ = O(1). Although this is true near the interface, we observe
that the error is much smaller away from the interface, whereX2AX1 vanishes.

Let εn := u(·, tn)−un denote the global error of the method at stepn. If ε0 = 0,
i.e., if the correct initial conditions are used, then a standard argument shows that

εn =
n

∑
j=1

(D−1C)n− jD−1ρ j−1.
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Fig. 3 Local truncation error of the CNPC method for a 1D two-subdomainproblem withut =
uxx+g(x, t), τ = h= 1/n, wheren= 20,40,80.

We now splitρn into the interface part̂ρn and theO(h2) part and treat them differ-
ently. The smoothness ofρ̂n in time allows us to prove the following lemma.

Lemma 3. Let ε̂n = ∑n
j=1(D

−1C)n− jD−1ρ̂ j−1 be the global error due to the inter-
face. Then

‖ε̂n‖A≤ 4τ2 · max
0≤l≤n−1

‖X2AX1zl‖A−1 +O(τ4),

where z0 =−L ∂tu(·, t1/2) and zl =−L ∂ 2
t u(·, tl ) for l ≥ 1.

Since‖u‖H1(Ω) is spectrally equivalent to‖u(·)‖A, we can use Lemma 3 to obtain
a bound for‖εn‖H1(Ω). To do so, we estimate

‖X2AX1zl‖A−1 = ‖A−1/2(I−X1)AX1zl‖2≤‖A1/2X1zl‖2+
√
‖X1A−1X1‖2 ·‖AX1zl‖2.

But X1A−1X1 = S−1
1 , whereS1 is the Schur complement ofA with respect to the

interface. Thus, we can invoke the well-known Sobolev estimate [17, Lemma 4.11],
cf. [2], which states that for a decomposition ofΩ into shape-regular, conforming
subdomains with diameterH, we have the condition number estimate

κ(S1) := ‖S1‖2‖S−1
1 ‖2≤

C
Hh

.

Since A has been scaled in such a way that‖S1‖2 = O(1), we conclude that
‖S−1

1 ‖2 ≤Ch−1H−1. Additionally, since there areO(h−1) points per interface and
O(H−1) interfaces, we have‖X1zl‖2 = O(h−1/2H−1/2). Combining these estimates
leads to our main result.

Theorem 1.Let Ω be partitioned into shape-regular, conforming subdomainsΩi

with diameter≤ H. Then forτ = γhα for γ > 0 andα ≥ 1, the error of the CNPC
method satisfies

‖εn‖H1(Ω) ≤
Chβ

H
, (4)

whereβ = min{2α−1, 2}.
Thus, for a fixed number of subdomains, the method is second order if and only if
α ≥ 3/2. Forα = 1, i.e., forτ =O(h), the method is only first order, unlike the clas-
sical CN method; this is due to the local inconsistency near subdomain interfaces.
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Fig. 4 Error of the CNPC scheme for the 2D heat equationut −∆u= g(x,y, t) on Ω = (0,1)2.

4 Numerical results

We apply the CNPC method to solve

∂tu−∆u= g(x,y, t), (x,y) ∈Ω = (0,1)× (0,1),

The domainΩ is decomposed into 4× 4 equal subdomains, and the PDE dis-
cretized using a standard 5-point finite difference stencilin space. The initial condi-
tionsu(x,y,0) and the source termg(x,y, t) are chosen so that the exact solution is
u(x,y, t) = sin(3πx)(1−e2y)(1−ey−1)

√
1+ t. Figure 4 shows the maximumL2 and

H1 error of the method over the time intervalt ∈ (0,1), with τ = hα for α = 1, 3
2,2.

As predicted by Theorem 1, the error behaves likeO(h) for τ = h, andO(h2) for
α = 3

2 and 2. Moreover, we also see that using the finer time stepτ = h2 only im-
proves the error marginally when compared toτ = h3/2.

Table 1 shows the error of the method forτ = h andτ = h3/2, whenΩ is decom-
posed intoN×N subdomains withN = 1/H. We see that forτ = h, the estimate (4)
is sharp; indeed, the errors are approximately constant along the diagonals, except
for the columnN = 2. For τ = h3/2, the estimate is too conservative, as the error
does not deteriorate as the number of subdomains increases.This appears to be a
2D effect, since the estimate is sharp forτ = h3/2 in the 1D case. Thus, there ap-
pears to be a subtle interplay between temporal and spatial interpolation errors that
gives rise to this “superconvergence” behavior.

Conclusions and outlook.The CNPC method allows one to solve diffusion prob-
lems in parallel to second-order accuracy without iterating, providedτ = O(h3/2)
or smaller. For 3D problems, the Schur complement (3) becomes much denser; one
alternative is to use a two-level approach, by first correcting the face values using
explicit edge and vertex values, and then correct the edge and vertex values using the
face values. The error analysis for this variant, as well as for more general equations
(e.g. the advection-diffusion equation), will be the subject of a future paper.
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Table 1 MaximumL2 error for the 2D example .

τ = h τ = h3/2

Subdomains per direction (N = 1/H) Subdomains per direction (N = 1/H)
n= 1/h 2 4 8 16 2 4 8 16

16 7.540e-02 2.347e-01 3.300e-01 5.888e-02 6.585e-02 7.165e-02
32 2.265e-02 1.399e-01 2.330e-01 3.185e-01 1.448e-02 1.397e-02 1.392e-02 1.402e-02
64 1.291e-02 7.602e-02 1.382e-01 2.391e-01 3.607e-03 3.425e-03 3.296e-03 3.168e-03
128 6.941e-03 4.006e-02 7.405e-02 1.397e-01 9.010e-04 8.513e-04 8.107e-04 7.571e-04
256 3.597e-03 2.053e-02 3.838e-02 7.426e-02 2.252e-04 2.124e-04 2.015e-04 1.860e-04
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Heterogeneous coupling for implicitly described
domains

Christian Engwer1 and Sebastian Westerheide1

1 Introduction

Many applications in physics, biology or chemistry exhibitcomplex geometrical
shapes. Often these models feature partial differential equations (PDEs) on the
complex shaped domain and its surface. At the same time the domain might be
time-dependent, e.g. in cell biology the shape of a cell depends on its internal state
and couples back to the cell metabolism, cf. [12]. Modern imaging techniques yield
high resolution data of microscopic structures and thus allow us to exploit direct
simulations.

Constructing suitable meshes for complex geometries is a very involved task,
thus methods to decouple the computational mesh from the geometry are of great
interest. In the context of Fictitious Domain Methods a widerange of methods
was developed; we want to mention explicitly the Unfitted Finite Element Method
[2, 13, 4], which we build upon. These methods formulate the original problem as
a problem embedded in a larger domain. Different ways of incorporating the, now
internal, boundary conditions are described in the literature. Examples for appli-
cations to coupled problems can be found using XFEM [9, 10], or using fictitious
domain and mortar methods [1]. Many of these methods have been developed for
engineering applications and are not directly applicable to biological problems as
certain processes, e.g. topology changes can not be captured. An alternative class
of methods uses implicit domain descriptions as level sets [17], or phase-field mod-
els [5, review paper]. Both approaches have been applied to coupled problems (e.g.
[6, 18]), but due to the diffusive representation of the coupling interface these meth-
ods can lead to numerical artifacts, including spurious fluxes.

In this work we present a new approach to incorporate processes on manifolds in
a heterogeneous domain-decomposition framework for implicitly described geome-
tries. Although using a level set formulation, we avoid a diffuse coupling interface
by utilizing an explicit reconstruction. It uses concepts of the Unfitted Finite Ele-
ment Method and can be directly applied to image data.

Outline. The paper is structured as follows. In section 2 we discuss how domains
can be described implicitly and in the following section we introduce the model
problem. Section 4 describes the numerical scheme, starting with the Unfitted Dis-
continuous Galerkin approach for volume equations and thenpresenting a consis-
tent approach for equations on the surface as well as the way of imposing coupling
conditions. Finally, a numerical example is discussed in section 5.

1 Institute for Computational and Applied Mathematics, University of Muenster, Germany, e-mail:
{christian.engwer}{sebastian.westerheide}@uni-muens ter.de

679
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2 Implicitly described domains

For eacht ∈ [0,T], T > 0, let Ω(t) ⊂ Rn be a Lipschitz bounded domain andΓ (t)
its boundary, withν denoting the outward pointing unit normal vector field toΓ (t).

By embeddingΩ(t) in a larger stationary domain̂Ω , it is possible to describe
Ω(t) using the so-called level set approach [14]. It captures thegeometric informa-
tion and motion of a moving interface from an Eulerian point of view in terms of
a level set function and an associated PDE. A level set function is a scalar function
Φ(x, t) defined inΩ̂ × [0,T] with

Φ(x, t)





< 0 for x∈Ω(t),

= 0 for x∈ Γ (t),

> 0 else,

like illustrated in Figure 1. For eacht the interfaceΓ (t) corresponds to the zero
level setΦ−1(0) := {x ∈ Ω̂ | Φ(x, t) = 0}. Φ(x, t) satisfies the level set advection
equation

Φt +v ·∇Φ = 0,

wherev(x, t) is a velocity field corresponding to the evolution ofΩ(t) andΓ (t).
The level set approach allows for an elegant treatment of complex geometrical

morphologies with potential topology changes in a fully implicit way, as discrete
versions ofΦ can be defined using a fixed grid on̂Ω . It is convenient to choose an
appropriateΩ̂ which allows to use a simple Cartesian grid.

In this paper we only consider static domains, i.e.v≡ 0. Eulerian formulations of
PDEs on moving domains contain additional terms corresponding to the transport of
information induced by domain movement, the so-called material derivatives. The
numerical schemes we present in section 4 are extended accordingly by appropriate
transport terms.

3 Model problem

Let u1 andu2 denote the concentrations of two scalar quantities on a static domainΩ
and its surfaceΓ , respectively. Conservation of these quantities with a diffusive flux
−D1∇u1 in Ω and a diffusive surface flux−D2∇Γ u2 together with an additional
reactive process onΓ leads to the model problem we want to consider. Given some
initial valuesu1(·,0) andu2(·,0), it reads

∂tu1 = ∇ · (D1∇u1) in Ω × (0,T], (1a)

∂tu2 = ∇Γ · (D2∇Γ u2)+ r2
(
u1|Γ ,u2

)
on Γ × (0,T], (1b)

D1∇u1 ·ν = r1
(
u1|Γ ,u2

)
on Γ × (0,T]. (1c)
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Here, ∇Γ denotes the tangential surface gradient as well as the induced surface
divergence.D1 andD2 are the particular volume and surface diffusivity tensors,i.e.
D2 maps the tangent space ofΓ into itself at every point.r1 together withr2 are
potentially nonlinear terms which couple the processes inΩ andΓ . For example,
they could describe transitions betweenu1 andu2. The coupling in equation (1a)
is due to its Robin-like boundary condition (1c), whereasr2 appears as a standard
surface reaction term in equation (1b).

4 Heterogeneous coupling

We propose a new numerical scheme for solving problems like model problem (1).
It is based on the Unfitted Discontinuous Galerkin method (UDG) for solving PDEs
in Ω and a level set based extension to surface PDEs. The method oflines [16] is
used to split spatial and temporal operators. A semi-discretization in space yields:
Find (u1,h,u2,h) ∈ L2(0,T;V1,h)×L2(0,T;V2,h) such that for eacht ∈ (0,T]

tvol(u1,h,v1,h, t)+avol(u1,h,v1,h, t)+c1(u1,h,u2,h,v1,h, t) = 0 ∀v1,h ∈V1,h,

tsur(u2,h,v2,h, t)+asur(u2,h,v2,h, t)+c2(u1,h,u2,h,v2,h, t) = 0 ∀v2,h ∈V2,h,
(2)

whereV1,h andV2,h denote discrete function spaces. The operatorstvol andtsur corre-
spond to the two time derivatives∂tu1 and∂tu2 in problem (1). The elliptic diffusion
terms of equations (1a) and (1b) are contained in the operatorsavol andasur, respec-
tively, andc1 andc2 are coupling operators which correspond to the termsr1 andr2.
To get a fully discrete scheme, different time discretization schemes can be used.

Bulk discretization: The Unfitted Discontinuous Galerkin method. To treat the
bulk equations (1a, 1c), we consider the UDG method [4], which is a general ap-
proach for simulations on complicated domains. It uses the concepts of the Unfitted
Finite Element Method [2, 13] and discretizes PDEs on an unfitted mesh, i.e. the
domain boundaryΓ is not resolved by the mesh. For an easy implementation, this
so calledfundamental meshis chosen to be the same mesh as for the discrete level
set function. Shape functions are defined on the unfitted meshand their support is
restricted toΩ . We use a Discontinuous Galerkin (DG) discretization. Thisallows to
easily incorporate local mass conservation and to use higher order shape functions.

Based on the fundamental meshT (Ω̂) :=
{

Ê0, . . . , ÊM−1
}

, a Finite Element
mesh for domainΩ is defined by intersectingΩ andT (Ω̂) (see Figure 1):

T (Ω) :=
{

En = Ω ∩ Ên
∣∣ Ên ∈T (Ω̂), |En|> 0

}
.

The elementsEn can be arbitrarily shaped and in general will not be convex. Using
standard DG shape functions onT (Ω̂) with their support restricted to the elements
in T (Ω), the resulting Finite Element space is defined by

V1,h :=
{

v∈ L2(Ω)
∣∣∣ v|En ∈ Pk ∀En ∈T (Ω)

}
,
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→ → &

Fig. 1 Given the fundamental meshT (Ω̂) and a piecewise linear level set functionΦ (left), the
domainΩ and the Finite Element meshT (Ω) are defined. Local triangulations of its cellsEn and
∂En yield a partition ofΩ into integration parts

{
En,k

}
and a piecewise linear reconstruction ofΓ .

Pk being the space of polynomial functions of degreek. V1,h is discontinuous on the
internal skeletonΓint :=

{
γn,m= ∂En∩∂Em

∣∣En,Em∈T (Ω), En 6=Em, |γn,m|> 0
}
,

with |γn,m| denoting the codimension one volume ofγn,m, but not on the external
skeletonΓext :=

{
γn = ∂En∩∂Ω

∣∣ En ∈ T (Ω), |γn|> 0
}
. To eachγn,m = γm,n, we

assign unit normal vector fieldsnEn ≡−nEm and arbitrarily choosen := nEn. Using
the DG formulation described in [15], the operators which result from eq. (1a) read:

tvol(u1,h,v1,h, t) :=
d
dt ∑

En∈T (Ω)

∫

En

u1,hv1,h dV,

avol(u1,h,v1,h, t) := ∑
γn,m∈Γint

∫

γn,m

ε 〈(D1∇v1,h) ·n〉[u1,h ]−〈(D1∇u1,h) ·n〉[v1,h ] ds

+ ∑
En∈T (Ω)

∫

En

(D1∇u1,h) ·∇v1,h dV+ ∑
γn,m∈Γint

σ
|γn,m|β

∫

γn,m

[u1,h ][v1,h ] ds.

Here,σ andβ are appropriate stabilization parameters andε = ±1. Furthermore,
[ · ] denotes the jump of a functionv ∈ V1,h on the interface between two adjacent
elementsEn, Em which is defined as[v] := v|∂En − v|∂Em and the average〈 · 〉 is
defined as〈v〉 := 1

2

(
v|∂En +v|∂Em

)
.

Assembling the local stiffness matrix requires integration over the volume of
each elementEn and different parts of its surface∂En. As these mesh elements might
exhibit very complicated shapes, quadrature rules based oninterpolation functions
are not directly applicable. Integation on the fundamentalmesh also does not work,
since shape functions are discontinuous. In order to guarantee accurate evaluation
of integals in an efficient manner, quadrature rules for irregular shaped elements
are constructed using a local triangulation ofEn. To do so,En is subdivided into a
disjoint set

{
En,k
}

k of simple geometric objects, i.e. simplices and hypercubes. For
each of theseintegration partsan efficient Gauss type quadrature rule is available.
For a piecewise linear approximation of the level set function, the local triangulation
can be efficiently constructed by applying a modified marching cubes algorithm [4].

Extension to surface equations.The pure surface part of model problem (1) with-
out the coupling termr2 reads

∂tu2 = ∇Γ · (D2∇Γ u2) on Γ × (0,T]. (3)
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Γ

Ω̂

Fig. 2 From left to right: SurfaceΓ embedded into the larger level set domainΩ̂ , Γ and some
other level setsΓr of Φ , the same together with a Cartesian grid onΩ̂ .

To treat this equation, we combine the DG method with an implicit surface Finite
Element approach which was introduced in [7]. Similar to themethod described in
[7], we make use of the implicit level set description ofΓ . The basic idea is to extend
a surface diffusion equation like (3) and its solution to thewhole level set domain̂Ω
by simultaneously formulating the(n−1)-dimensional PDE on all level surfaces of
Φ . The resultingn-dimensional problem is solved using a DG discretization onan
arbitrary triangulation ofΩ̂ . See also Figure 2. The solution of the original surface
problem is then obtained by restricting the higher dimensional solution toΓ .

In particular, we use that we can partition̂Ω into level surfaces

Γr :=
{

x∈ Ω̂
∣∣Φ(x) = r

}

with
⋃

r∈(Φmin,Φmax)Γr = Ω̂ , Φmin := infx∈Ω̂ Φ(x), Φmax := supx∈Ω̂ Φ(x). Note that
Γ = Γ0. First, we create a suitable extensionDΦ

2 of the surface diffusivity tensor
D2 to the level set domain̂Ω , such that we do not have any diffusion normal to any
level surface. In detail,DΦ

2 is chosen such thatDΦ
2

∣∣
Γ = D2 and

DΦ
2 ν⊥ ·ν = 0 in Ω̂ × (0,T] (4)

for every tangential vectorν⊥, where we now denote byν the outward pointing
unit normal vector field to every level surface. Then the elliptic surface differential
operator∇Γ is extended to each level surfaceΓr yielding a differential operator∇Φ .
Using these extensions, (3) is formulated on all level surfacesΓr . This results in the
n-dimensional equation

∂tu2 = ∇Φ ·
(
DΦ

2 ∇Φu2
)

in Ω̂ × (0,T].

Assuming that the level set functionΦ is differentiable and satisfies a non-degene-
racy condition∇Φ 6= 0 in Ω̂ ∪ ∂Ω̂ , we can follow the approach from [7, Remark
3.3] and reformulate the extended tangential surface divergence operator∇Φ . This
results in an equivalent equation

∂tu2|∇Φ |= ∇ ·
(
D̃Φ

2 ∇u2
)

in Ω̂ × (0,T], (5)

with a modified diffusion tensor̃DΦ
2 := |∇Φ |DΦ

2 PΦ . At every point inΩ̂ , PΦ is
the operator which projects onto the tangent space of the corresponding level sur-
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face. Equation (5) is a usual parabolic diffusion equation inRn with a special mass
density. In order to define a well-posed problem it has to be supplemented by initial
values and an appropriate boundary condition foru2 on∂Ω̂ . We choose initial values
which are an arbitrary but continuous extension of the original initial values chosen
for equation (1b) and use the natural no-flux boundary condition D̃Φ

2 ∇u2 ·ν∂Ω̂ = 0,
with the outer unit normalν∂Ω̂ . Note that the restricted solution on a particular level
surfaceΓr only depends on the values of data on that surface as we do not have any
diffusion in the normal direction due to equation (4). Therefore it is independent of
the solutions on any other level surface. It can, however, berelated to these solutions
by the extensions of the data. Furthermore, it is not affected by the artificial bound-
ary condition as long asΓr does not intersect∂Ω̂ . Further note that the solution on
Γ , i.e.u2|Γ , solves equation (3).

The initial-boundary-value problem resulting from equation (5) can be dis-
cretized on the fundamental meshT (Ω̂) by usual grid-based numerical methods.
Using the same DG formulation as for the volume part, we obtain:

tsur(u2,h,v2,h, t) :=
d
dt ∑

Ên∈T (Ω̂)

∫

Ên

u2,hv2,h |∇Φ | dV,

asur(u2,h,v2,h, t) := ∑
γ̂n,m∈Γ̂int

∫

γ̂n,m

ε 〈
(
D̃Φ

2 ∇v2,h
)
·n〉[u2,h ]−〈

(
D̃Φ

2 ∇u2,h
)
·n〉[v2,h ] ds

+ ∑
Ên∈T (Ω̂)

∫

Ên

(
D̃Φ

2 ∇u2,h
)
·∇v2,h dV+ ∑

γ̂n,m∈Γ̂int

σ
|γ̂n,m|β

∫

γ̂n,m

[u2,h ][v2,h ] ds.

Here, we choose the discrete function space

V2,h :=
{

v∈ L2(Ω̂)
∣∣ v|Ên

∈ Pk ∀Ên ∈T (Ω̂)
}
,

and the jump[ · ] and average〈 · 〉 act on functions fromV2,h, targeting discontinuities
that lie on the internal skeleton ofT (Ω̂), which is defined by

Γ̂int :=
{

γ̂n,m = ∂ Ên∩∂ Êm
∣∣ Ên, Êm∈T (Ω̂), Ên 6= Êm, |γ̂n,m|> 0

}
.

Explicit coupling of bulk and surface. The volume coupling operatorc1 results
from the way DG formulations include boundary conditions ofRobin type. For
boundary condition (1c) we get

c1(u1,h,u2,h,v1,h, t) :=− ∑
γn∈Γext

∫

γn

r1
(
u1,h|Γ ,u2,h|Γ

)
v1,h|Γ ds.

The surface coupling operatorc2 is imposed directly alongΓ by choosing

c2(u1,h,u2,h,v2,h, t) :=− ∑
γn∈Γext

∫

γn

r2
(
u1,h|Γ ,u2,h|Γ

)
v2,h|Γ ds,
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such that the native surface reaction termr2 from equation (1b) now acts like the
lower order term in a Robin-like inner boundary condition. The integrals over each
γn are efficiently evaluated using the local triangulation of the bulk discretization.

In each time step, this results in a globally coupled block systemA =
(

Avol C1
C2 Asur

)
,

which can be solved fully coupled or using a Schwarz type iteration.

5 Numerical example and conclusion

We compute a problem from cell biology. Prior to cell division, the shape of a single
yeast cell can be idealized as a circular domainΩ ⊂ R2 whose surfaceΓ is the cell
membrane. We use eq. (1) to model the intracellular pathway of a protein known
as CDC42, whereu1 andu2 denote its bulk and surface concentration. Diffusion
driven instabilities lead to clustering of CDC42 on the membrane, which triggers the
sprouting of a bud in areas of high concentration. The model uses coupling terms
r2(u1,u2) :=−r1(u1,u2) := k1 ·u1u2

2+k2 ·u1u2−k3 ·u2, k1 := 0.0036,k2 := 0.0067,
k3 := 0.01733, which describe transitions between CDC42 inside of the cell and on
its membrane, and constant diffusivitiesD1 := 10,D2 := 0.0025=: DΦ

2 .
In our simulation, we use a level set domainΩ̂ = [0,1]2 and a Cartesian funda-

mental meshT (Ω̂)which contains 32×32 elements. The cellΩ is positioned in the
center ofΩ̂ . It is described by a level set functionΦ(x) := ‖x− (0.5,0.5)T‖−0.35
which is approximated using Q1 Finite Elements onT (Ω̂).

The discretization is done using polynomial degreek = 1. For bulk discretiza-
tion we chooseε = −1, the Interior Penalty Galerkin scheme. For the surface dis-
cretization we useε = +1, the Nonsymmetric Interior Penalty Galerkin scheme.
The resulting semi-discretized problem (2) is solved usingNewton’s method for lin-
earization and the fractional stepθ -method [11] for time discretization. As shown
in Figure 3, random generated initial values foru1 andu2 lead to the expected local-
ization ofu2 on the membrane.

Conclusion. The proposed approach yields a unified setting for coupled volume
and surface problems. The same infrastructure can be used toimplement the dis-
cretization of both the volume and the surface part. Coupling conditions are handled
explicitly along the surface in an efficient way without additional effort. At the same
time we use an implicit description of the domain which makesthe method com-
pletely independent of the problem’s geometry. This level set based Eulerian for-
mulation makes the approach a promising tool for biologicalproblems, especially
those which involve strongly evolving domains with potential topology changes.

Future topics may include the application to evolving domain problems or a thor-
ough error analysis.

Acknowledgements The authors thank Wolfgang Giese (HU Berlin) for providing the bud-
ding yeast model which is based on [12]. All implementations were done using the frameworks
DUNE [3] and DUNE-UDG [8].
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Fig. 3 Left: Initial values
on a circular shaped domain
Ω and its surfaceΓ . Right:
Simulation result at final time
T = 500, using polynomial
degreek = 1 and time step
dt = 0.5; note the localization
of u2 onΓ at the lower left.
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NKS Method for the Implicit Solution of
a Coupled Allen-Cahn/Cahn-Hilliard System∗

Chao Yang1, Xiao-Chuan Cai2, David E. Keyes3, and Michael Pernice4

1 Coupled Allen-Cahn/Cahn-Hilliard system

Coupled Allen-Cahn/Cahn-Hilliard (AC/CH) systems, oftenfound in phase-field
simulations, are prototype systems that admit simultaneous ordering and phase sep-
aration. Numerical methods to solve coupled AC/CH systems are studied in e.g.,
[2, 6, 8, 9, 10, 11]. However, except for [9] and [10], the above works are based
on explicit methods that require very small time step size toadvance the solution
and need many time steps for long time integrations. Fully implicit methods enjoy
an advantage that the stability limit on the time step size isgreatly relaxed. The
purpose of this paper is to study efficient and scalable algorithms based on domain
decomposition methods for the fully implicit solution of a coupled AC/CH system.

There are several different ways to couple the AC and the CH equations. Among
them we restrict our study to the original form introduced in[3], which is





∂u
∂ t

= ∇ ·c(u,v)∇δE(u,v)
δu

,

∂v
∂ t

=−c(u,v)
ρ

δE(u,v)
δv

.
(1)

whereu and v are functions ofx ∈ Ω ⊂ R2 and t ∈ [0,+∞). Both u and v are
bounded with restrictions:u∈ [0,1], v∈ [−1/2,1/2] and(u± v) ∈ [0,1]. Here the
first equation in (1) is the Cahn-Hilliard equation in whichu represents a conserved
concentration field for the phase separation; the second equation in (1) is the Allen-
Cahn equation wherev denotes a non-conserved order parameter for the anti-phase
coarsening.

In (1), the mobilityc(u,v) = u(1−u)(1/4−v2) is degenerate at pure phases and
the densityρ is a positive constant. The free energy functionalE(u,v) reads
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E(u,v) =
∫

Ω

{
γ
2
(|∇u|2+ |∇v|2)+θ (Φ(u+v)+Φ(u−v))+

α
2

u(1−u)− β
2

v2
}

dx, (2)

whereΦ(z) = zlnz+(1− z) ln(1− z) andγ, θ , α, β are all positive constants. It
then follows that

δE
δu

=−γ∆u+θΦ ′(u+v)+θΦ ′(u−v)−α(u−1/2),

δE
δv

=−γ∆v+θΦ ′(u+v)−θΦ ′(u−v)−βv.

(3)

In the current study we consider periodic boundary conditions for bothu andv.
Other boundary conditions lead to similar numerical results and the performance of
our proposed solver is not sensitive to them. The AC/CH system (1) is closed with
the above boundary conditions and an initial conditionu= u0, v= v0 at t = 0.

2 Discretizations

We restrict our study in this paper to the case of a 2-dimensional square domainΩ . A
second-order accurate cell-centered finite difference (CCFD) scheme on a uniform
mesh is applied to the system. The details of the CCFD scheme is omitted here due
to the page limit.

Special attention should be paid when considering the time integration of the
AC/CH system (1). Because of the high-order spatial differentiation in the system,
explicit methods become impractical due to the severe restriction on the time step
size. In order to relax the restriction and obtain the steady-state solution in an ef-
ficient way, we use the fully implicit backward Euler scheme.We remark that due
to the co-existence of both diffusive and anti-diffusive terms in the AC/CH system,
the backward Euler scheme is not unconditionally stable. Other more efficient and
accurate implicit schemes will be studied in a forthcoming paper.

After spatially discretizing the AC/CH system,u andv are replaced with their
cell-centered valuesU andV respectively. Denote the spatial discretizations of the
right-hand-sides in the two equations in (1) asM(U,V) andN(U,V) respectively,
the nonlinear algebraic system arising at each time step reads





Mk(Uk+1,Vk+1) :=
Uk+1−Uk

∆ tk −M(Uk+1,Vk+1) = 0,

Nk(Uk+1,Vk+1) :=
Vk+1−Vk

∆ tk −N(Uk+1,Vk+1) = 0,

(4)

where∆ tk is the step size andUk+1, Vk+1 are the solutions for thek-th time step.
Due to the multiple temporal scales admitted by the AC/CH system, ∆ tk is adap-
tively controlled by a method that is analogous to the switched evolution/relaxation
method [5, 7]. More specifically, we start with a relatively small time step size∆ t0

and adjust its value according to
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∆ tk = max(1/r,min(r,s))∆ tk−1,

s=

(‖(Mk−1(Uk−1,Vk−1),Nk−1(Uk−1,Vk−1))T‖2
‖(Mk(Uk,Vk),Nk(Uk,Vk))T‖2

)p

,
(5)

for k= 1,2,3, ..., where we user = 1.5 andp= 0.75.

3 Newton-Krylov-Schwarz solver

An inexact Newton method is applied to solve the nonlinear system (4) at each time
step. We denote the solution of (4) at thek-th time step asWk+1 = (Uk+1,Vk+1)T .
The initial guessX0 =Wk is set to be the solution of the previous time step, then the
approximate solutionXn+1 is obtained by

Xn+1 = Xn+λnSn, n= 0,1, ... (6)

Hereλn is the steplength determined by a linesearch procedure andSn is the Newton
correction vector. To calculateSn for each Newton iteration, a right-preconditioned
linear system

JnM−1(MSn) =−Fk(Xn) (7)

is constructed and solved approximately by using a GMRES method that restarts
every 30 iterations. HereFk(Xn) = (Mk(Xn),Nk(Xn))

T is the nonlinear residual and

Jn =
∂Fk(Xn)

∂Xn
(8)

is the Jacobian matrix.
In (4) M−1 is an additive Schwarz preconditioner. We first partitionΩ into np

non-overlapping subdomainsΩp, p= 1,2, ...,np. An overlapping decomposition is
obtained by extending each subdomain withδ mesh layers. Denote the overlapping
subdomain asΩ δ

p . The one-level restricted additive Schwarz (RAS, [4]) precondi-
tioner is

M−1 =
np

∑
p=1

(R0
p)

T inv(Bp)R
δ
p. (9)

Here Rδ
p and (R0

p)
T serve as a restriction operator and an interpolation operator

respectively; their detailed definitions can be found in [4].
In (9), inv(Bp) is either an exact or approximate inverse of the subdomain prob-

lem defined byBp. Choosing proper boundary conditions for the subdomain prob-
lems has a great impact on the convergence of the RAS preconditioner. Since the
AC/CH system (1) contains two differential equations with different orders, it is
natural to impose different boundary conditions. For the first equation in (1) we
follow [12] by employing the following homogeneous boundary conditions

u= (∇u) ·n = 0, ∂Ω δ+1
p \∂Ω , (10)
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wheren is the outward normal of∂Ω δ+1
p . For the second equation in (1), the bound-

ary conditions are simply
v= 0, ∂Ω δ

p\∂Ω . (11)

We remark that the above boundary conditions for the subdomain problems are es-
sential for the success of the NKS solver. Other boundary conditions are also tested
but only lead to poor convergence of GMRES. To solve the subdomain problems, we
use either a sparse LU factorization or a sparse incomplete LU (ILU) factorization.
In doing the factorization, we use a point-block ordering for the subdomain matrix
and keep the coupling between the two components at each meshcell. Within each
time step, the factorization is only done once at the first Newton iteration and is
reused thereafter.

4 Numerical experiments

We carry out numerical experiments on a Dell supercomputer located at the Uni-
versity of Colorado Boulder. The computer consists of 1368 compute nodes, with
two hex-core 2.8Ghz Intel Westmere processors and 24GB local memory in each
node. Our algorithm is implemented based on the Portable, Extensible Toolkits for
Scientific computations (PETSc, [1]) library. In the numerical experiments we use
all 12 cores in each node and assign one subdomain per processor core. The relative
stopping conditions for the Newton and GMRES iteration are respectively 1×10−6

and 1×10−5.

4.1 Steady-state solution

The test case we study here is taken from [11]. The initial condition for the test is a
randomly distributed state(U0,V0) = (0.05+δu,δv), where max(‖δu‖∞,‖δv‖∞)≤
0.05. The parameters are set as:α = 4, β = 2, γ = 0.005,θ = 0.1, ρ = 0.001.

We run the test case on a 256× 256 mesh with an initial time step size∆ t0 =
0.001. The time step size is then adaptively controlled by using (5). Thanks to the
fully implicit method and the adaptive time stepping strategy, we are able to obtain
the steady-state solution at aboutt = 100, as seen in Figure 1 and 2. From the
figures we observe that whent < 1.4 both the spinodal decomposition and the order-
disorder type instability occur but after that the order parameter quickly tends to
zero as the conserved concentration field coarsens to a stabilized state. Provided in
Figure 3 is the evolution history of the time step size and thetotal free energy. It can
be seen that by using the adaptive strategy, the time step is successfully adjusted by
several orders of magnitude. The total free energy decays and finally approaches to
its minimizer when the solution arrives at the steady-state.
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Fig. 1 Contour plots of the conserved concentration fieldu.

Fig. 2 Contour plots of the non-conserved order parameterv.
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Fig. 3 Evolution history of the time step size (left panel) and the totalfree energy (right panel).

We remark that because of the severe stability restriction on the time step size, it
is often difficult to obtain the steady-state solution when an explicit method is used.
In [11], although similar tests are conducted, no steady-state solutions are obtained
due to the explicit time stepping.

4.2 Parameters in the NKS solver

To understand how the parameters in the Schwarz preconditioner affect the perfor-
mance, in the following experiments we run the test case on a 1152× 1152 mesh
with 144 processor cores by using a fixed the time step size∆ t = 1.0× 10−5 for
only the first 20 steps.

We first examine the effects of different subdomain solvers.The overlap size
is fixed atδ = 2. In Table 1 we show the total numbers of Newton and GMRES
iterations as well as the total compute time. Results for both LU and ILU with
different fill-in levels are provided. From the table we find surprisingly that GMRES

Table 1 Effects of different subdomain solvers. Here “n/c” means no convergence.

ILU(2) ILU(4) ILU(8) LU LU-blk LU-blk-reuse

#Newton n/c n/c n/c 41 41 41
#GMRES n/c n/c n/c 1225 1225 1243
Time (s) n/c n/c n/c 138.6 89.2 65.6

doesn’t converge when ILU is the subdomain solver, even withlarge fill-in levels.
When a sparse LU factorization is used as subdomain solver, although the point-
block version doesn’t change the number of iterations, the compute time is saved
by around 35% compared to the non-block version. To reduce the compute time, we
perform the subdomain LU factorization only once per time step, and reuse it for all
the Newton iterations within the same time step. By reusing the LU factorization the
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total compute time is cut by around 26% despite of the slight increase of the number
of GMRES iterations. Based on the above observations, for all the following tests,
we use the point-block version of sparse LU factorization and reuse the factorization
within each time step.

We next investigate the performance of the NKS solver with different overlap
δ . Table 2 shows the total numbers of Newton and GMRES iterations as well as
the total compute time forδ = 0,1, ...,6. It is observed from the table that: (1) the

Table 2 Results on using different overlaps.

δ 0 1 2 3 4 5 6

#Newton 41 41 41 41 41 41 41
#GMRES 21274 2482 1243 840 642 513 440
Time (s) 205.6 95.3 65.6 55.7 45.7 50.8 52.0

number of Newton iterations does not change asδ varies; (2) the number of GMRES
iterations reduces whenδ becomes larger; and (3) the total compute time is optimal
for δ = 4 in the test. Therefore we useδ = 4 in our scalability tests.

4.3 Parallel scalability

In the parallel scalability tests, we fix the overlap size to be δ = 4 and choose the
point-block version of the sparse LU factorization (reusedwith each time step) as the
subdomain solver. We run the tests on a 1152×1152 mesh for 20 time steps with
∆ t = 1.0× 10−5 and gradually double the number of processor cores. As shown
in Figure 4, when the number of processor cores is increased the total number of
Newton iterations stays unchanged while the total number ofGMRES iterations
increases slightly. Further from Figure 5 we observe that the total compute time is
reduced almost linearly as more processor cores are used. A total of 12.35 speedup
is achieved when the number of processor cores increases from 144 to 2304, leading
to a parallel efficiency of 78.1%.
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Surrogate Functional Based Subspace
Correction Methods for Image Processing

Michael Hinterm̈uller1 and Andreas Langer2

1 Introduction

Recently in [4, 5, 6] subspace correction methods for non-smooth and non-additive
problems have been introduced in the context of image processing, where the non-
smooth and non-additive total variation (TV) plays a fundamental role as a regular-
ization technique, since it preserves edges and discontinuities in images. We recall,
that for u ∈ L1(Ω), V(u,Ω) := sup

{∫
Ω udivφdx : φ ∈ [C1

c(Ω)]2,‖φ‖∞ ≤ 1
}

is the
variation ofu. In the event thatV(u,Ω)< ∞ we denote|Du|(Ω) =V(u,Ω) and call
it the total variation ofu in Ω [1].

In this paper, as in [6], we consider functionals, which consist of a non-smooth
and non-additive regularization term and a weighted combination of anℓ1-term and
a quadraticℓ2-term; see (1) below. This type of functional has been shown to be par-
ticularly efficient to eliminate simultaneously Gaussian and salt-and-pepper noise.
In [6] an estimate of the distance of the limit point obtainedfrom the proposed sub-
space correction method to the global minimizer is established. In that paper the ex-
act subspace minimization problems are minimized, which are in general not easily
solved. Therefore, in the present paper we analyse a subspace correction approach
in which the subproblems are approximated by so-calledsurrogatefunctionals, as in
[4, 5]. In this situation, as in [6], we are able to achieve an estimate for the distance
of the computed solution to the real global minimizer. With the help of this esti-
mate we show in our numerical experiments that the proposed algorithm generates
a sequence which converges to the expected minimizer.

2 Notations

For the sake of brevity we consider a two dimensional settingonly. We defineΩ =
{x1 < .. . < xN}×{y1 < .. . < yN} ⊂ R2, andH = RN×N, whereN ∈ N. Foru∈ H
we write u = u(x) = u(xi ,y j), wherei, j ∈ {1, . . . ,N} andx ∈ Ω . Let h = xi+1−
xi = y j+1−y j be the equidistant step-size. We define the scalar product ofu,v∈ H
by 〈u,v〉H = h2 ∑x∈Ω u(x)v(x) and the scalar product ofp,q ∈ H2 by 〈p,q〉H2 =
h2 ∑x∈Ω 〈p(x),q(x)〉R2 with 〈z,w〉R2 =∑2

j=1zjw j for everyz= (z1,z2)∈R2 andw=

1 Department of Mathematics, Humboldt-University of Berlin, Unter den Linden 6, 10099 Berlin,
Germany, e-mail:hint@math.hu-berlin.de · 2 Institute for Mathematics and Scientific
Computing, University of Graz, Heinrichstraße 36, A-8010 Graz, Austria, e-mail:andreas.
langer@uni-graz.at
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(w1,w2)∈R2. We also use‖u‖ℓp(Ω) =
(
h2 ∑x∈Ω |u(x)|p

)1/p
, 1≤ p<∞, ‖u‖ℓ∞(Ω) =

supx∈Ω |u(x)| and‖ · ‖, when any norm can be taken.
The discrete gradient∇u is denoted by(∇u)(x) = ((∇u)1(x),(∇u)2(x)) with

(∇u)1(x) = 1
h(u(xi+1,y j)− u(xi ,y j)) if i < N and (∇u)1(x) = 0 if i = N, and

(∇u)2(x) = 1
h(u(xi ,y j+1)− u(xi ,y j)) if j < N and (∇u)2(x) = 0 if j = N, for all

x∈Ω . Forω ∈H2 we defineϕ :R→R by ϕ(|ω|)(Ω) := h2 ∑x∈Ω ϕ(|ω(x)|), where

|z| =
√

z2
1+z2

2. In particular we define thetotal variation of u by settingϕ(t) = t

andω = ∇u, i.e.,|∇u|(Ω) := h2 ∑x∈Ω |∇u(x)|.
For an operatorT we denote byT∗ its adjoint. Further we introduce thediscrete

divergencediv : H2→ H defined by div= −∇∗ (∇∗ is the adjoint of the gradient
∇), in analogy to the continuous setting. The symbol 1 indicates the constant vector
with entry values 1 and 1D is the characteristic function ofD⊂Ω .

For a convex functionalJ : H→ R̄, we define thesubdifferentialof J atv∈H as
the set valued mapping∂J(v) := /0 if J(v) = ∞ and∂J(v) := {v∗ ∈H : 〈v∗,u−v〉H +
J(v) ≤ J(u) ∀u ∈ H} otherwise. It is clear from this definition that 0∈ ∂J(v) if
and only ifv is a minimizer ofJ. Whenever the underlying space is important, then
we write∂Vi J or ∂HJ.

3 Subspace Correction Approaches

As in [6] we are interested in minimizing by means of subspacecorrection the fol-
lowing functional

J(u) = αS‖Su−gS‖ℓ1(Ω)+αT‖Tu−gT‖2ℓ2(Ω)+ϕ(|∇u|)(Ω), (1)

whereS,T : H → H are bounded linear operators,gS,gT ∈ H are given data, and
αS,αT ≥ 0 with αS+αT ≥ τ > 0. We assume thatJ is bounded from below and
coercive, i.e.,{u∈H : J(u)≤C} is bounded inH for all constantsC> 0, in order to
guarantee that (1) has minimizers. Moreover we assume thatϕ : R→R is a convex
function, nondecreasing inR+ with (i) ϕ(0) = 0 and (ii) cz−b≤ ϕ(z) ≤ cz+b,
for all z∈ R+ for some constantc> 0 andb≥ 0.

Note that for the particular exampleϕ(t) = t, the third term in (1) becomes the
well-known total variation ofu in Ω and we call (1) theL1-L2-TV model.

Now we seek to minimize (1) by decomposingH into two subspacesV1 and
V2 such thatH = V1 +V2. Note that a generalization to multiple splittings can be
performed straightforwardly. However, here we will restrict ourselves to a decom-
position into two domains only for simplicity. ByVc

i we denote the orthogonal com-
plement ofVi in H and we define byπVc

i
the corresponding orthogonal projection

ontoVc
i for i = 1,2.

With this splitting we want to minimizeJ by suitable instances of the following
alternating algorithm:

Choose an initialu(0) =: u(0)1 +u(0)2 ∈V1+V2, for example,u(0) = 0, and iterate
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u(n+1)
1 = arg min

u1∈V1
J(u1+u(n)2 ),

u(n+1)
2 = arg min

u2∈V2
J(u(n+1)

1 +u2),

u(n+1) := u(n+1)
1 +u(n+1)

2 .

(2)

Differently from the case in [6], where the authors solved the exact subspace min-
imization problems in (2), we suggest now to approximate thesubdomain problems
by so-called surrogate functionals (cf. [2, 3, 4, 5, 8]): Assumea,ui ∈Vi , u−i ∈V−i ,
and define

Js(ui +u−i ,a+u−i) := J(ui +u−i)+αT
(
δ‖ui +u−i− (a+u−i)‖2ℓ2(Ω) (3)

−‖T(ui +u−i− (a+u−i))‖2ℓ2(Ω)

)

= J(ui +u−i)+αT

(
δ‖ui−a‖2ℓ2(Ω)−‖T(ui−a)‖2ℓ2(Ω)

)

for i = 1,2 and−i ∈ {1,2}\{i}, whereδ > ‖T‖2. Then an approximate solution to

minui∈Vi J(u1+u2) is realized by using the following algorithm: Foru(0)i ∈Vi ,

u(ℓ+1)
i = arg min

ui∈Vi
Js(ui +u−i ,u

(ℓ)
i +u−i), ℓ≥ 0,

whereu−i ∈V−i for i = 1,2 and−i ∈ {1,2}\{i}.
The alternating domain decomposition algorithm reads thenas follows:

Choose an initialu(0) =: ũ(0)1 + ũ(0)2 ∈V1+V2, for example,u(0) = 0, and iterate









u(n+1,0)
1 = ũ(n)1 ,

u(n+1,ℓ+1)
1 = arg min

u1∈V1
Js(u1+ ũ(n)2 ,u(n+1,ℓ)

1 + ũ(n)2 ), ℓ= 0, . . . ,L−1,




u(n+1,0)
2 = ũ(n)2 ,

u(n+1,m+1)
2 = arg min

u2∈V2
Js(u(n+1,L)

1 +u2,u
(n+1,m)
2 +u(n+1,L)

1 ), m= 0, . . . ,M−1,

u(n+1) := u(n+1,L)
1 +u(n+1,M)

2 , ũ(n+1)
1 = χ1 ·u(n+1), ũ(n+1)

2 = χ2 ·u(n+1),
(4)

whereχ1,χ2 ∈H have the properties (i)χ1+χ2 = 1 and (ii)χi ∈Vi for i = 1,2. Let
κ := max{‖χ1‖∞,‖χ2‖∞}< ∞.

The parallel version of the algorithm in (4) reads as follows:

Choose an initialu(0) =: ũ(0)1 + ũ(0)2 ∈V1+V2, for example,u(0) = 0, and iterate
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u(n+1,0)
1 = ũ(n)1 ,

u(n+1,ℓ+1)
1 = arg min

u1∈V1
Js(u1+ ũ(n)2 ,u(n+1,ℓ)

1 + ũ(n)2 ), ℓ= 0, . . . ,L−1,




u(n+1,0)
2 = ũ(n)2 ,

u(n+1,m+1)
2 = arg min

u2∈V2
Js(ũ(n)1 +u2,u

(n+1,m)
2 + ũ(n)1 ), m= 0, . . . ,M−1,

u(n+1) :=
u(n+1,L)

1 +u(n+1,M)
2 +u(n)

2 , ũ(n+1)
1 = χ1 ·u(n+1), ũ(n+1)

2 = χ2 ·u(n+1).

(5)

Note that we prescribe a finite numberL andM of inner iterations for each sub-
space, respectively. Hence we do not get a minimizer of the original subspace min-
imization problems in (2), but approximations of such minimizers. Moreover, ob-

serve thatu(n+1) = ũ(n+1)
1 + ũ(n+1)

2 , with u(n+1,L)
i 6= ũ(n+1)

i , for i = 1,2, in general.

We have thatu(n+1,L)
1 ∈ argminu∈H

{
Js(u+ ũ(n)2 ,u(n+1,L−1)

1 + ũ(n)2 ) : πVc
1
u= 0

}
.

Then, by [7, Theorem 2.1.4, p. 305] there exists anη(n+1)
1 ∈Range(πVc

1
)∗ ≃Vc

1 such
that

0∈ ∂HJs(·+ ũ(n)2 ,u(n+1,L−1)
1 + ũ(n)2 )(u(n+1,L)

1 )+η(n+1)
1 . (6)

Analogously, we have that ifu(n+1,M)
2 is a minimizer of the second optimization

problem in (4) or (5), then there exists anη(n+1)
2 ∈ Range(πVc

2
)∗ ≃Vc

2 such that

0∈ ∂HJs(u(n+1,L)
1 + ·,u(n+1,L)

1 + ũ(n+1,M−1)
2 )(u(n+1,M)

2 )+η(n+1)
2 , or (7)

0∈ ∂HJs(ũ(n,L)1 + ·, ũ(n,L)1 + ũ(n+1,M−1)
2 )(u(n+1,M)

2 )+η(n+1)
2 , (8)

respectively.

3.1 Convergence Properties

In this section we state convergence properties of the subspace correction methods
in (4) and (5). In particular, the following three propositions are direct consequences
of statements in [4, 5, 6].

Proposition 1. The algorithms in (4) and (5) produce a sequence(u(n))n in H with
the following properties:

(i) J(u(n))> J(u(n+1)) for all n ∈ N (unless u(n) = u(n+1));

(ii) limn→∞ ‖u(n+1,ℓ+1)
1 −u(n+1,ℓ)

1 ‖ℓ2(Ω)= 0andlimn→∞ ‖u(n+1,m+1)
2 −u(n+1,m)

2 ‖ℓ2(Ω)=
0 for all ℓ ∈ {0, . . . ,L−1} and m∈ {0, . . . ,M−1};

(iii) limn→∞ ‖u(n+1)−u(n)‖ℓ2(Ω) = 0;

(iv) the sequence(u(n))n has subsequences that converge in H.

The proof of this proposition is analogous to the one in [5, Theorem 5.1].

Proposition 2. The sequences(ũ(n)i )n for i = 1,2 generated by the algorithm in (4)

or (5) are bounded in H and hence have accumulation pointsũ(∞)
i , respectively.
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Proof. By the boundedness of the sequence(u(n))n we obtain‖ũ(n)i ‖ = ‖χiu(n)‖ ≤
κ‖u(n)‖ ≤C< ∞ and hence(ũ(n)i )n is bounded fori = 1,2. ⊓⊔
Remark 1.From the previous proposition it directly follows by the coercivity as-

sumption onJ that the sequences(u(n,ℓ)1 )n and (u(n,m)
2 )n are bounded for allℓ ∈

{0, . . . ,L} andm∈ {0, . . . ,M}.

Proposition 3. Let u(∞)
1 , u(∞)

2 , and ũ(∞)
i be accumulation points of the sequences

(u(n,L)1 )n, (u(n,M)
2 )n, and (ũ(n)i )n generated by the algorithms in (4) and (5), then

u(∞)
i = ũ(∞)

i , for i = 1,2.

One shows this statement analogous to the first part of the proof of [4, Theorem
5.7].

Moreover, as in [6] we are able to establish an estimate of thedistance of the limit
point obtained from the subspace correction method to the true global minimizer.

Theorem 1.Let αS≥ τ, u∗ a minimizer of J, and u(∞) an accumulation point of the
sequence(u(n))n generated by the algorithm in (4) or (5). Then we have that

(i) u(∞) is a minimizer of J or
(ii) there exists a constantβ > 0 (independent ofαT ) such that‖u(∞)−u∗‖ℓ2(Ω)≤ β

or

(iii) if αT < γ
β 2δ for 0 < γ ≤ J(u(∞))− J(u∗), then‖u(∞)− u∗‖ℓ2(Ω) ≤

β 2‖η̂‖
ℓ2(Ω)

γ−αT δβ 2 ,

where‖η̂‖ℓ2(Ω) = min{‖η(∞)
1 ‖ℓ2(Ω),‖η

(∞)
2 ‖ℓ2(Ω)} andη(∞)

i is an accumulation

point of the sequence(η(n)
i )n for i = 1,2 defined as in (6)-(8) respectively, or

(iv) if T ∗T is positive definite with smallest Eigenvalueσ > 0, αT > 0 and‖T‖2 <
δ < 2σ , then we have‖u∗−u(∞)‖ℓ2(Ω) ≤

‖η̂‖
ℓ2(Ω)

αT (2σ−δ ) .

Proof. Since(u(n+1,L)
1 )n, (u(n+1,L−1)

1 )n, and(ũ(n)2 )n are bounded and based on the

fact that∂Js(ξ , ξ̃ ) is compact for anyξ , ξ̃ ∈H we obtain that(η(n)
1 )n is bounded, cf.

[6, Corollary 4.7]. By noting that(u(n+1,L)
1 )n and(u(n+1,L−1)

1 )n have the same limit
for n→ ∞, see Proposition 1, we subtract a suitable subsequence(nk)k with limits

η(∞)
1 , u(∞)

1 , andũ(∞)
2 such that (6)-(8) respectively are still valid, cf. [9, Theorem 24.4,

p 233], i.e., 0∈ ∂HJs(·+ ũ(∞)
2 ,u(∞)

1 + ũ(∞)
2 )(u(∞)

1 ) + η(∞)
1 . By the definition of the

subdifferential and Proposition 3 we obtainJ(u(∞)) = Js(u(∞),u(∞)) ≤ Js(v,u(∞))+

〈η(∞)
1 ,u(∞)−v〉H ≤ Js(v,u(∞))+‖η(∞)

1 ‖ℓ2(Ω)‖u(∞)−v‖ℓ2(Ω)for all v∈ H. Similarly

one can show thatJ(u(∞)) ≤ Js(v,u(∞))+‖η(∞)
2 ‖ℓ2(Ω)‖u(∞)−v‖ℓ2(Ω) for all v∈ H,

and hence we have

J(u(∞))≤ Js(v,u(∞))+‖η̂‖ℓ2(Ω)‖u(∞)−v‖ℓ2(Ω) (9)

for all v∈ H, where‖η̂‖ℓ2(Ω) = min{‖η(∞)
1 ‖ℓ2(Ω),‖η

(∞)
2 ‖ℓ2(Ω)}.

Let u∗ ∈ argminu∈H J(u). Then there exists aρ ≥ 0 such thatJ(u(∞)) = J(u∗)+ρ .
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(i) If ρ = 0, then it immediately follows thatu(∞) is a minimizer ofJ.
(ii) If ρ > 0, then from the coercivity condition we obtain that there exists a constant

β > 0, independent ofαT , such that‖u(∞)−u∗‖ℓ2(Ω) ≤ β <+∞.

(iii) If αT < γ
β 2δ for 0 < γ ≤ J(u(∞))− J(u∗), thenJ(u(∞)) ≥ J(u∗) + γ

β 2‖u(∞)−
u∗‖2

ℓ2(Ω)
. Settingv= u∗ in (9) and using the last inequality we obtain

αT

(
δ‖u∗−u(∞)‖2ℓ2(Ω)−‖T(u

∗−u(∞))‖2ℓ2(Ω)

)
+ ‖η̂‖ℓ2(Ω)‖u(∞)−u∗‖ℓ2(Ω)

≥ γ
β 2‖u

(∞)−u∗‖2ℓ2(Ω). (10)

From the latter inequality we get‖η̂‖2≥ ( γ
β 2 −αTδ )‖u(∞)−u∗‖ℓ2(Ω) and since

αTδ < γ
β 2 we obtain

β 2‖η̂‖
ℓ2(Ω)

γ−αT δβ 2 ≥ ‖u(∞)−u∗‖ℓ2(Ω).

(iv) If αT > 0 andT∗T is symmetric positive definite with smallest Eigenvalue
σ > 0, then the factorγ

β 2 on the right hand side of the inequality in (10) is
replaced byαTσ , cf. [6], and (10) reads as follows

αT(σ−δ )‖u∗−u(∞)‖2ℓ2(Ω)+αT‖T(u∗−u(∞))‖2ℓ2(Ω)≤‖η̂‖ℓ2(Ω)‖u(∞)−u∗‖ℓ2(Ω).

By using once more the symmetric positive definiteness assumption onT∗T we
obtain from the latter inequality thatαT(2σ−δ )‖u∗−u(∞)‖2

ℓ2(Ω)
≤‖η̂‖ℓ2(Ω)‖u(∞)−

u∗‖ℓ2(Ω). If 2σ > δ then we get‖u∗−u(∞)‖ℓ2(Ω) ≤
‖η̂‖

ℓ2(Ω)

αT (2σ−δ ) .
⊓⊔

4 Numerical Experiments

We present numerical experiments obtained by the parallel algorithm in (5) for the
application of image deblurring, i.e.,S=T are blurring operators andϕ(|∇u|)(Ω)=
|∇u|(Ω) (the total variation ofu in Ω ). The minimization problems of the subdo-
mains are implemented in the same way as described in [6] by noting that the func-
tional to be considered in each subdomain is now the strictlyconvex functional in
(3).

We consider an image of size 1920×2576 pixels which is corrupted by Gaussian
blur with kernel size 15×15 pixels and standard deviation 2. Additionally 4% salt-
and-pepper noise (i.e., 4% of the pixels are either flipped toblack or white) and
Gaussian white noise with zero mean and variance 0.01 is added.

In order to show the efficiency of the parallel algorithm in (5) for decomposing
the spatial domain into subomains, we compare its performance with theL1-L2-TV
algorithm presented in [6], which solves the problem on all of Ω without any split-
ting. We consider splittings of the domain in stripes, cf. Figure 1(a), and in windows
as depicted in Figure 1(b) for different numbers of subdomains (D = 4,16,64).
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(a) (b)

Fig. 1 Image of size 1920× 2576 pixels which is corrupted by Gaussian blur with kernel size
15×15 pixels and standard deviation 2, 4% salt-and-pepper noise, and Gaussian white noise with
zero mean and variance 0.01. In (a) decomposition of the spatial domain into stripes and in (b) into
windows.

The algorithms are stopped as soon as the energyJ reaches a significance level
J∗, i.e., whenJ(u(n)) ≤ J∗ for the first time. For reason of comparison we experi-
mentally chooseJ∗ = 0.059054, i.e., we once restored the image of interest until we
observed a visually satisfying restoration and the associated energy-value asJ∗. In
the subspace correction algorithm as well as in theL1-L2-TV algorithm we restore
the image by settingαS = 0.5, αT = 0.4, andδ = 1.1. The computations are done
in Matlab on a computer with 256 cores and the multithreading-option is activated.

Table 1 presents the computational time and number of iterations the algorithms
need to fulfill the stopping criterion for different number of subdomains. We clearly
see that the domain decomposition algorithm forD = 4,16,64 subdomains is much
faster than theL1-L2-TV algorithm (D = 1). Since a blurring operator is in general
non-local, in each iterationu(n) has been communicated to each subdomain. There-
fore the communication time becomes substantial for splittings into 16 or more do-
mains such that the algorithm needs more time to reach the stopping criterion.

Table 1 Restoration of the image in Figure 1: Computational performance(CPU time in seconds
and the number of iterations) for the globalL1-L2-TV algorithm and for the parallel domain decom-
position algorithms withα1 = 0.5, α2 = 0.4 for different numbers of subdomains (D = 4,16,64).

# Domains window-splitting stripe-splitting

D = 1 (L1-L2-TV alg.): 11944 s / 131 it
D = 4: 2374 s / 27 it 2340 s / 27 it
D = 16: 2914 s / 27 it 2982 s / 27 it
D = 64: 7833 s / 27 it 8797 s / 28 it

In Figure 2 we depict the progress of the minimal Lagrange multiplier η(n) :=

mini{‖η(n)
i ‖ℓ2(Ω)}, which indicates that the parallel algorithm indeed converges to

a minimizer of the functionalJ.



702 Michael Hinterm̈uller and Andreas Langer

Restored image

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3 Norm of the Lagrange multiplier in first domain

(b)

Fig. 2 (a) Restoration of the image in Figure 2 by the parallel subspace correction algorithm in
(5). (b) The progress of the minimal Lagrange multiplierη(n).

Acknowledgements This work was supported by the Austrian Science Fund FWF through the
START Project Y 305-N18 “Interfaces and Free Boundaries” andthe SFB Project F32 04-N18
“Mathematical Optimization and Its Applications in Biomedical Sciences” as well as by the Ger-
man Research Fund (DFG) through the Research Center MATHEON Project C28 and the SPP
1253 “Optimization with Partial Differential Equations”. M.H. also acknowledges support through
a J. Tinsely Oden Fellowship at the Institute for Computational Engineering and Sciences (ICES)
at UT Austin, Texas, USA.

References

1. Ambrosio, L., Fusco, N., D., P.: Functions of Bounded Variation and Free Discontinuity Prob-
lems. Oxford Mathematical Monographs. Oxford: Clarendon Press. xviii, Oxford (2000)

2. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multi-
scale Model. Simul.4, 1168–1200 (2005)

3. Fornasier, M., Kim, Y., Langer, A., Schönlieb, C.B.: Wavelet decomposition method forl2/tv-
image deblurring. SIAM J. Imaging Sciences5, 857–885 (2012)

4. Fornasier, M., Langer, A., Schönlieb, C.B.: A convergent overlapping domain decomposition
method for total variation minimization. Numer. Math.116, 645–685 (2010)
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Practical aspects of domain decomposition in
Jacobi-Davidson for parallel performance

Menno Genseberger1

1 Introduction

Most computational work in Jacobi-Davidson [7], an iterative method for large scale
eigenvalue problems, is due to a so-called correction equation. For this, to reduce
wall clock time and local memory requirements, [3, 5] proposed a domain decom-
position strategy that was further improved in [4] (§ 2 and§ 3).

Here we investigate practical aspects for parallel performance of the strategy
by scaling experiments on supercomputers (§ 4). This is of interest for large scale
eigenvalue problems that need a massively parallel treatment.

2 Domain decomposition

In [3, 5] a domain decomposition preconditioning techniquefor the (approximate)
solution of the correction equation was proposed. This technique is based on a
nonoverlapping additive Schwarz method with locally optimized coupling parame-
ters by Tan & Borsboom [8, 9] (belonging to the class of optimized Schwarz meth-
ods [2]).
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• • • • • • •
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Ω̂1• • • • ◦

◦ • • • Ω̂2
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Fig. 1 Decomposition in one (left picture) and two dimensions (right picture).

For some partial differential equation (PDE) defined on a domain Ω with appro-
priate boundary conditions,Ω is covered by a gridΩ̂ and the PDE is discretized
accordingly, with unknowns defined on the grid points, yielding the linear system

By = d. (1)

1 Deltares, PO Box 177, 2600 MH Delft, The Netherlands, e-mail:Menno.Genseberger@
deltares.nl
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Now, the domain decomposition technique
1. Enhancesthe linear system (1) intoBC y≈ = d0 with the following structure




B11 B1ℓ 0 0 0 0
Bℓ1 Bℓℓ Bℓr 0 0 0
0 Cℓℓ Cℓr −Cℓℓ −Cℓr 0
0 −Crℓ −Crr Crℓ Crr 0
0 0 0 Brℓ Brr Br2

0 0 0 0 B2r B22







y1

yℓ
ỹr

ỹℓ
yr

y2



=




d1

dℓ
0
0
dr

d2




(2)

in case of a two subdomain decomposition (generalization isstraightforward). Here
Ω is decomposed in two nonoverlapping subdomainsΩ1 andΩ2 with interface (or
internal boundary)Γ (see Fig. 1). The subdomains are covered by subgridsΩ̂1 and
Ω̂2 with additional grid points located just outside the subdomain near the interface
Γ (the open bullets “◦” in Fig. 1) such that no splitting of the original discretized
operator (or stencil) has to be made. ForB, the labels 1,2, ℓ, andr, respectively, refer
to operations on data from/to subdomainΩ1, Ω2, and left, right from the interface
Γ , respectively. Fory andd, the labels 1,2, ℓ, and r, respectively, refer to data in
subdomainΩ1, Ω2, and left, right from the interfaceΓ , respectively. Here, subvector
yℓ (yr respectively) contains those unknowns on the left (right) from Γ that are
coupled by the stencil both with unknowns inΩ1 (Ω2) and unknowns on the right
(left) from Γ . Subvector ˜yr (ỹℓ respectively) contains the unknowns at the additional
grid points of the subgrid forΩ1 (Ω2) on the right (left) ofΓ . For the unknowns
on the additional grid points additional equations are provided with the requirement
that the submatrix (theinterface coupling matrix)

C≡
[
Cℓℓ Cℓr

Crℓ Crr

]
(3)

is nonsingular as for nonsingularC the solutiony≈ of (2) is unique, ˜yℓ = yℓ and
ỹr = yr , and the restriction ofy≈ to y is the unique solution of the original linear
system (1) ([9, Theorem 1], [8, Theorem 1.2.1]).
2. Splits the matrixBC = MC−NC in a partMC, the boxed parts in (2) that do not
map elements from one subgrid to the other subgrid and a remaining partNC that
couples the subgrids via the discretized interface with a relatively small number of
nonzero elements. (Therefore matrix vector multiplication with BC can be imple-
mented efficiently on distributed memory computers.)
3. Tunesthe interface coupling matrixC defined in (3) such that error components
due to domain decomposition are damped in the Richardson iteration

y (i+1)
≈ = y (i)

≈ +M−1
C (d0−BC y (i)

≈ ). (4)

NoteMC
−1BC = I−MC

−1NC, therefore error components are propagated byMC
−1NC.

4. Computesa solution of the enhanced linear system from (4) or with a more
general Krylov method like GMRES [6] withKm(MC

−1BC,MC
−1d0)≡

span(MC
−1d0,MC

−1BC MC
−1d0, . . . ,(MC

−1BC)
m−1MC

−1d0).
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The key idea is to use the degrees of freedom, that we have created by the in-
troduction of additional unknowns near the interface, for damping the error compo-
nents. For this purpose, the spectral properties ofM−1

C NC for the specific underlying
PDE are analyzed. With results of this analysis, optimal coupling parameters can be
estimated, i.e. the interface coupling matrixC defined in (3) can be tuned. In this
way error components due to the splitting are damped “as muchas possible”, op-
timal choices result in a coupling that annihilates the outflow from one domain to
another: absorbing boundary conditions. This leads effectively to almost uncoupled
subproblems at subdomains. As a consequence, the number of iterations required
for convergence is minimal with minimal communication overhead (due to the ex-
plicit step withNC) between subdomains: an ideal situation for implementation on
parallel computers and/or distributed memory.

3 Jacobi-Davidson

For a standard eigenvalue problemAx = λ x each iteration Jacobi-Davidson [7]
1. Extracts an approximate eigenpair(θ ,u)≈ (λ ,x) from a search subspaceV:
constructH ≡ V∗AV , solveH s= θ s, computeu = V s.
2. Corrects the approximate eigenvectoru with a correctiont ⊥ u that is computed
from thecorrectionequation:

PBPt= r where P≡ I − uu∗

u∗u
,B≡ A−θ I , and r ≡−Bu. (5)

3. Expandsthe search subspace with the correctiont: Vnew= [V | t⊥] wheret⊥ ⊥V.

The linear system described by the correction equation (5) may be highly in-
definite and is given in an unusual manner so that the application of the domain
decomposition technique needed further development and special attention.

Similar to the enhancements (1) of the linear system (2) in§ 2, the following com-
ponents of the correction equation are enhanced: the matrixB ≡ A−θ I to BC, the
correction vectort to t≈ and the vectorsu andr to u0 andr0. With these enhance-
ments, a correctiont≈ ⊥ u0 is computed from the following enhanced correction
equation [3,§3.3.2]:

PBC Pt≈ = r0 with P≡ I − u0u∗0
u∗0u0

. (6)

The preconditionerMC for BC is constructed in the same way as the ordinary
linear system case shown by the boxed parts in (2). However, because of the indef-
initeness, for the correction equation the matricesBC andMC are accompanied by
projections. Both for left and right preconditioning the projection is as follows:

P′ ≡ I − M−1
C u0u∗0

u∗0M−1
C u0

. (7)
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In case of left preconditioning (for right preconditioningsee [3,§3.3.3]) we compute
approximate solutions to the correction equation from

P′M−1
C BC P′ t≈ = P′M−1

C r0. (8)

However, there is more to gain. For approximate solutions ofthe correction equa-
tion with a preconditioned Krylov method, the Jacobi-Davidson method is an accel-
erated inexact Newton method that consists of two nested iterative solvers. In the
innerloop of Jacobi-Davidson a search subspace for the (approximate) solution of
the correction equation is built up by powers ofM−1

C (A−θ I ) for fixed θ . In the
outerloop a search subspace for the (approximate) solutionof the eigenvalue prob-
lem is built up by powers ofM−1

C (A−θ I ) for variableθ . As θ varies slightly in
succeeding outer iterations, one may take advantage of the nesting by applying the
domain decomposition technique to the outer loop as was the subject of [4]. This
effectively leaded to two different processes:

• Jacobi-Davidson withenhanced inner loop, enhancement at intermediate level
with enhanced correction equation (6) and

• Jacobi-Davidson withenhanced outer loop, enhancement at highest level with
a slightly different correction equation

PBC Pt≈ = r≈ with P≡ I − u0u∗0
u∗0u0

. (9)

The amount of work for both processes per outer iteration is almost the same. How-
ever, Jacobi-Davidson with enhanced outer loop turned out to be faster as it damps
remaining error components from the previous outer iteration in the next one.

4 Scaling experiments

For the two processes, in [4,§ 5.1] different eigenvalue problems have been con-
sidered including variable coefficients and large jumps. Here, to investigate prac-
tical aspects for parallel performance, we consider the eigenvalue problem for the
Laplace operator as results for different numbers of subdomains show more regular
behavior (see for instance Fig. 3 in [4]). Except for the firstexperiment about dif-
ferent decompositions, in all experiments we take for the domainΩ the unit square,
decomposeΩ in p square subdomains, and cover each subdomain by a 256× 256
subgrid. Jacobi-Davidson is started with a parabolic shaped vectorx(1−x)y(1−y)
for 0≤ x≤ 1 and 0≤ y≤ 1 (see also [3,§ 3.5.1]) to compute the most global eigen-
vector (for which the corresponding eigenvalue is the closest one to zero) of the
two-dimensional Laplace operator onΩ until the residual norm of the approximate
eigenpair is less than 10−9. We apply right preconditioning in the enhanced correc-
tion equation for exact solves with the preconditioner (i.e. exact subdomain solves)
to enable a Schur complement approach. The preconditionerMC is constructed only
once, at the first Jacobi-Davidson outer iteration. The remaining linear system is
solved with GMRES [6].
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Fig. 2 Residual norm of the approximate eigenpair as a function of theJacobi-Davidson outer
iteration for the different decompositions with GMRES(8) (top) and GMRES(4) (bottom).

Implementation is in Fortran77 with calls to BLAS, LAPACK, and MPI. Note,
however, that Fortran compiler, BLAS, LAPACK, and MPI versions differ on the
specific hardware which is of influence on the (parallel) performance. Scaling ex-
periments are performed on the following hardware:

• Curie linux-cluster (2 Intel eight 2.7 GHz core E5-2680 node, InfiniBand QDR,
Intel Fortran 12, BLAS/LAPACK from MKL, Bull X MPI),

• H4+ linux-cluster (1 Intel quad 3.4 GHz core i7-2600 node, 1 GB/s Gigabit
Ethernet, Intel Fortran 11, MPICH2),

• IBM POWER5+ system Huygens (16 IBM single 1.9 GHz core Power5+node,
1.2 GB/s InfiniBand, XL Fortran 10, BLAS from ESSL, MPI from IBM PE),
• IBM POWER6 system Huygens (16 IBM dual 4.7 GHz core Power6 node, 160

GB/s InfiniBand, XL Fortran 12, BLAS from ESSL, MPI from IBM PE),
• Lisa 2008 linux-cluster (1 Intel Xeon 3.4E GHz core node, 800MB/s Infini-

Band, GFortran, MPICH2),
• Lisa 2012 linux-cluster (2 Intel eight 1.8 GHz core Xeon E5-2650L node, Intel

Fortran 12, BLAS/LAPACK from MKL, OpenMPI),

On the H4+ and Lisa 2008 linux-clusters one subdomain is assigned to one node.
On the other hardware one subdomain is assigned to one core. Results presented
here are averages of three measured wall-clock times.

First we study different decompositions for a fixed number ofsubdomains for the
same (discretized) eigenvalue problem. We keep the overallgrid fixed to a size of
1024× 1024 gridpoints and consider configurations with a 1× 16, 2× 8, 4× 4, 8
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Fig. 3 Residual norm of the approximate eigenpair as a function of thewall clock time for the
different decompositions. Shown are both enhanced innerloop and enhanced outerloop for the Lisa
2012 and H4+ linux-cluster and a fixed number of 8 and 4 inner iterations with GMRES.

× 2, and 16× 1 decomposition, respectively (resulting in subgrids of size 1024×
64, 512× 128, 256× 256, 128× 512, and 64× 1024, respectively). So the num-
ber of subdomains is 16 with 65536 unknowns per subdomain in all configurations,
but the subdomains differ in shape. Fig. 2 shows the residualnorm of the approxi-
mate eigenpair as a function of the Jacobi-Davidson outer iteration for the different
decompositions. Shown are both enhanced innerloop and enhanced outerloop for a
fixed number of 8 (top) and 4 (bottom) inner iterations with GMRES. As expected,
the convergence histories for configurations which are mirrored (for instance 2× 8
and 8× 2) coincide. Decomposition in only one direction needs the least number
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of outer iterations for convergence. For the tuning of the coupling between the sub-
domains we only took into consideration the one dimensionalcharacter of the error
modes. For decompositions in two directions error modes will have a two dimen-
sional character and are therefore harder to damp. Fig. 3 shows the residual norm
of the approximate eigenpair as a function of wall clock timefor the different de-
compositions. Shown are both enhanced innerloop and enhanced outerloop for the
Lisa 2012 and H4+ linux-cluster and a fixed number of 8 and 4 inner iterations with
GMRES. By comparing the mirrored configurations it can be observed that the grid
ordening may significantly lower the performance. This is mainly in the construction
of the preconditioner with LAPACK (initial horizontal lines in the figure). Although
processors of the H4+ linux-cluster are faster, use of the MKL implementation of
LAPACK resulted in a faster construction of the preconditioner at the Lisa 2012
linux-cluster. After the construction of the preconditioner, the process at the H4+
linux-cluster goes faster than the Lisa 2012 linux-cluster. At the H4+ linux-cluster
communication is between 16 nodes over a relatively slow network, at the Lisa 2012
linux-cluster communication is fast inside a 16 core node with shared memory. So,
we may conclude that the process is dominated by computational work. This con-
firms the remarks at the end of§ 2 about the minimal communication overhead.

For the massively parallel behavior, we first extend Fig. 6 from [4] with results
from (weak) scaling experiments on more recent hardware (IBM POWER6 system
Huygens, Curie, and H4+). In Fig. 4 it can be observed that thetrend holds, but now
for lower wall clock times as processor speed has increased further for the more
recent hardware.

To further investigate the weak scaling we start with a decomposition in 16 sub-
domains (on 1 node with 16 cores) on the Curie linux-cluster and increase everytime
the number of subdomains in both directions with a factor 2. From 16, 64, 256, 1024,
4096 to 16384 subdomains (cores), resulting in up to more than 109 unknowns. For
an efficient overall method, we will now use (see [1,§4])

‖r (i)‖2 < 2− j ‖r (0)‖2 (10)

as a stopping criterion for the inner iterations (GMRES) at the j th Jacobi-Davidson
outer iteration. Herer (0) is the residual at the start of the inner iterations andr (i) the
residual at theith inner iteration. Fig. 5 shows the results for Jacobi-Davidson with
enhanced outerloop. Note that in this figure we choose the scaling of the x-axis to be
quadratic to have a better impression. The figure indicates that for a large number
of subdomains the wall clock doubles when the number of subdomains increases
in both directions with a factor 2. This can be explained fromthe local behavior
of the error modes due to domain decomposition: mainly one dimensional near the
interface. The additional work to damp these error modes effectively depends on
this local behavior.

Acknowledgements We thank SURFsara Computing and Networking Services (www.surfsara.nl)
for their support in using the Power5+/6 system Huygens and Lisa linux-cluster. We acknowledge
that the results in this paper have been achieved using the PRACE Research Infrastructure resource
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Fig. 5 Massively parallel behavior on the Curie linux-cluster (quadratic scaling of the x-axis).
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Low-Rank Update of the Restricted Additive
Schwarz Preconditioner for Nonlinear Systems

Laurent Berenguer1 and Damien Tromeur-Dervout1

We consider the solution of differential equations of the form Eq.(1) for a given
initial conditiony(0) = y0 and suitable boundary conditions.

Mẏ= g(y, t) (1)

In Equation (1),g∈C1(Ω ,Rn) , for Ω an open set inRn×R∗ andM ∈ Rn×n. This
equation is called a linear differential-algebraic equation (DAE) if the matrixM is
singular. The time discretization of Eq. (1) via backward differentiation formulas
leads to solving a system of nonlinear equationsf (y) = 0 for f : Rn→ Rn at each
time step. These equations are generally solved by Newton-like methods which re-
quire the solution of numerous linear systems of the form:

Jk∆xk =− f (xk) (2)

whereJk ∈ Rn×n is the Jacobian matrix off at xk, or an approximation of it. In this
paper we deal with the solution of these linear systems by a parallel Krylov iterative
method. The condition number of the matrixJk can be very large, hence, a good
preconditioner is required.

Preconditioners based on the additive Schwarz method are often used to precon-
dition sparse linear systems. The combination of a Newton method with a Krylov
method preconditioned by a Schwarz method is generally called Newton-Krylov-
Schwarz [5] and has widely be applied to CFD problems (see forexample [6, 14, 7]).
In this paper we deal with the Restricted Additive Schwarz preconditioner [8]. Com-
puting and solving such linear systems is generally the mosttime consuming part of
ODE/DAE integration codes, even if there are usually only slight changes between
two consecutive linear systems. When the analytic Jacobian matrix is not available,
a finite difference scheme is commonly used to approximate it[12] or its matrix-
vector product [15]. Another way to avoid the computation ofthe Jacobian matrix
is to update it from one iteration to another using quasi-Newton methods [10] that
converge superlinearly [4]. Since Krylov methods are used to solve Equation (2),
providing a preconditioner is a critical point. A balance must be found between
the ability of the preconditioner to reduce the number of Krylov iterations, and its
computational cost. Then, one may want to update the preconditioner using the se-
cant condition in order to improve its efficiency. This idea is not new, and has been
widely discussed in [3, 2]. The aim of this paper is to extend these techniques to do-
main decomposition based preconditioners such as the Restricted Additive Schwarz

1 Universit́e de Lyon, Universit́e Lyon 1, CNRS, UMR 5208 Institut Camille Jordan, 43
boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France, e-mail: {laurent.
berenguer}{damien.tromeur-dervout}@univ-lyon1.fr
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preconditioner. First, we present the Broyden update and its application to general
preconditioners. Then we discuss the practical issues in applying this update to the
RAS preconditioner. The third part is devoted to numerical experiments on the CFD
problem of the lid-driven cavity.

1 The Update of the RAS Preconditioner

The preconditioned linear system of the Newton iterations can be written as:

GkJ(xk)∆xk =−Gk f (xk) (3)

or
J(xk)GkG

−1
k ∆xk =− f (xk) (4)

depending on which side the preconditioner is applied.
For the sake of simplicity, we use the notationsfk = f (xk) and∆ fk = fk+1− fk

in the following. The quasi-Newton update ofGk, that satisfies the secant condition:

∆xk = Gk+1∆ fk (5)

is given by:

Gk+1 = Gk+(∆xk−Gk∆ fk)
vT

k

vT∆ fk
for somevk (6)

Usually,vk is taken as∆ fk or GT
k ∆xk:

• If vk = GT
k ∆xk, thenGk+1 minimizes‖G−1

k+1−G−1
k ‖F .

• If vk = ∆ fk, thenGk+1 minimizes‖Gk+1−Gk‖F .

In both cases, the proof can be derived in straightforward manner from the proof of
Theorem 4.1 in [10]. In general, it is not possible to give an estimation of the ef-
fect of the update of the preconditioner in terms of condition number. Nevertheless,
it is possible to give a lower bound of condition number of theupdated precon-
ditioned linear system. Let{σk} and{τk} be the singular values ofGkJ(xk+1) and
Gk+1J(xk+1) =GkJ(xk+1)+uwT for wT = vTJ(xk+1). Then, the interlacing property
of the singular values [13, Theorem 6.1] gives:





σ2≤ τ1,
σk+1≤ τk ≤ σk, 1< k< n
0≤ τn≤ σn−1,

(7)

Then,

κ2(Gk+1J(xk+1)) =
τ1

τn
≥ σ2

σn−1
. (8)
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The same results can be derived for right preconditioned linear systems, since a
rank-one update of the preconditioner linear system leads to a rank one modification
of the preconditioned operator. This lower bound gives a limitation of the updating
procedure: it will not be efficient if the preconditioned linear system has a large set
of very high, or very low singular values.

Let us now illustrate the effect of the Broyden update on a manufactured prob-
lem.−∆FD2 be the second order finite difference discrete 1D Laplacian operator
for homogeneous boundary conditions, associated to the eigenpairs{(Ui ,λi)}1≤i≤n
such thatλi > λi+1. We define the nonlinear functionF(v) vanishing forv= 0 and
its JacobianJ(v) definite positive matrix, of eigenpairs{(ηiU1+Ui ,µi)}1≤i≤n, with
condition numberκ2(J(v)) =

µ1
µn

:

F(v)
de f
= (v,v)U1U

T
1 v︸ ︷︷ ︸

nonlinear

−∆FD2v︸ ︷︷ ︸
linear

(9)

J(v)h = 2(v,h)U1U
T
1 v+(v,v)U1U

T
1 h−∆FD2h (10)

µ1 = (2(v,U1)
2+(v,v)+λ1),µi = λi ,2≤ i ≤ n, (11)

η1 = 0,ηi =
2(v,U1)(v,Ui)

µi−µ1
,2≤ i ≤ n. (12)

For the sake of simplicity in calculus, starting fromX0 = x0
1U1 and

G0 = J(X0)−1, Newton’s and Broyden’s iterates give the sameX1 =
2(x0

1)
3

µ0
1

U1 and

the eigenvalue ofG1J(X1) associated toU1 is given by:

(G1J(X1)U1 =
λ1

3+6(x0
1)

2λ1
2+9λ1(x0

1)
4
+12(x0

1)
6

λ1
3+7(x0

1)
2λ1

2+17λ1(x0
1)

4
+19(x0

1)
6U1

These results suggest thatZ1 is a good preconditioner forJ(X1) if X0 is close to the
solutionX = 0, (G1J(X1) have the same(n−1) eigenpairs(Ui ,1),2≤ i ≤ n).

2 Application to the RAS Preconditioner

The Restrictive Additive Schwarz preconditioner of the linear systemJ(x)∆x =
− f (x) decomposed insoverlapping subdomains, is given by:

M−1
RAS=

s

∑
i=1

R̃T
i Ji(x)−1Ri (13)

whereRi is the restriction operator of theith subdomain including the overlap, and
R̃i is the restriction operator except that only interior nodeshave a corresponding
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nonzero line. The matrixJi(x) is the submatrix ofJ(x) corresponding to theith sub-
domain including the overlap. We propose to performing Broyden’s updates starting
from the RAS preconditionerG0 = M−1

RAS= ∑i R̃iJi(x)−1RT
i .

Algorithm 1 gives an overview of the method for (vk = ∆ fk) within a time-
stepper. Finding an optimal restarting criterion is out of the scope of this paper.
One should notice that the restart may not happen at each timestep. Hence, two
simple strategies could be (1) to restart everyr time steps, or (2) to restart when
a maximum number of Krylov iterations has been reached for the solution of the
previous linear system.

Algorithm 1 Time stepper with update of the RAS preconditioner
Require: restart parameter, initial guessx, k= 0
1: for each time stepdo
2: // Newton iterations:
3: repeat
4: if restartthen
5: G0← ∑i R̃

T
i Ji(x0)

−1Ri // Local LU factorizations
6: k← 0
7: end if
8: solveJ(x)∆x=− f (x) with a Krylov method preconditioned byGk.
9: x← x+∆x

10: Gk+1 = Gk+(∆xk−Gk∆ fk)
f T
k

f T
k ∆ fk

11: k← k+1
12: until convergence
13: end for

Therefore, even ifG0 is a sparse matrix,Gk is not. Consequently, the ma-
trix Gk is never formed, we only compute its application to a vector.Let uk be
(∆xk−Gk∆ fk)/(vT∆ fk) then the application ofGk to an arbitrary vectorx depends
on the choice made forvk :

• For vk = ∆ fk the application of the preconditioner can be rewritten as:

Gk+1x= G0x+
k

∑
i=0

uiv
T
i x= G0x+[u0 · · ·uk][v0 · · ·vk]

Tx (14)

Hence, the additional cost of the application ofGk compared toG0 is roughly
two matrix-vector products ofn×k matrices. Furthermore, the computation of
uk involves one application ofGk. One should also notice that the local LU fac-
torizations can also be computed asynchronously, continuing Newton iterations
during the computation of the restarted preconditioner.

• For vk = GT
k ∆xk, the explicit computation ofvk should be avoided because it

involvesGT
k , soM−T

RASwhich cannot be easily computed. ThenGk+1x is usually
rewritten as in Eq. (15).
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Gk+1x=

(
0

∏
i=k

(I −ui∆xi
T)

)
G0x (15)

Following an idea of Martı́nez [16], Bergamaschi et al. proved in [3, theorem 3.6]
that for G0 and x0 good enough initial guesses, the norm‖I −GkJ(xk)‖ can be
made arbitrarily small. Since the preconditioner is also reused from one time step
to another, it slowly loses its efficiency and the algorithm must be restarted, which
means recomputingG0.

In terms of condition numbers, the preconditionerGk is not expected to be more
efficient than the RAS preconditionerM−1

RASof the current Jacobian matrixJ(xk), but
it’s computational cost is less important: computingGk+1 form Gk does not involves
LU factorizations unlike the computation of a newM−1

RAS.
The efficiency of the updated preconditioner is expected to decrease from one

time step to another, but this decrease should be slowed by the update. This decrease
can be roughly explained by the fact that the convergence of Broyden’s method is
slower than the convergence of Newton’s method. Thus, a restart of the algorithm is
needed. This restart (Algo.1, step 4) consists in the computation of a newG0 =M−1

RAS
(i.e. new local LU factorizations).

One of the main drawbacks of the method presented here is the increase of the
memory cost by two vectors per update. A few techniques can beused to reduce this
memory cost: the simplest one consists in restarting the algorithm when a maximum
number of updates is reached. One may also compress the updates using a truncated
SVD of [u0 · · ·uk][v0 · · ·vk]

T [18].
The parallelism of Equations (14) and (15) should also be discussed:

• The application of the preconditioner in Eq. (14) to a vectorx involves global
communications since the matrices[u0 · · ·uk] and[v0 · · ·vk] are dense, and dis-
tributed over the processors. Then, depending on the implementation, Eq. (14)
requires an additional global reduction ofk values, ork reductions where the
k−1 first are overlapped by computations.

• The parallel implementation of Eq. (15) requiresk sequential collective reduc-
tions. Hence, one should not usevk = GT

k ∆xk for a parallel implementation on
distributed memory computers.

3 Numerical experiments

Let us first give a numerical illustration of the model problem F(v) = c whereF is
from Eq. (9),c ∈ R100 an arbitrary vector, and starting fromG0 = M−1

RAS(−∆FD2).
Then, the condition numbers are:κ2(J(X1)) = 1.8×109, κ2(G0J(X1)) = 1.7×108

andκ2(G1J(X1))= 1.2×103 when the preconditionerG0 is updated with Broyden’s
update. This suggests that the update of the preconditionerhas efficiently reduced
the effect of the first eigenvalue ofJ(X1). We now consider the lid-driven cavity
problem on the unit square. The PETSc library [1] was used forthe implementa-
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tion. In particular, the implementation of the following(u,v,ω,T)-formulation is
provided as a PETSc example [9]. The linear solver used in these experiments is a
BiCGstab [17] and Jacobian matrices are approximated by a coloring method.





−∆(u)−∇y(ω) = 0
−∆(v)+∇x(ω) = 0
ω̇−∆(ω)+∇ · ([u×ω,v×ω])−∇x(T) = 0
Ṫ−∆(T)+∇ · ([u×T,v×T]) = 0

(16)

Whereu andv are the two components of the velocity field,ω =−∇yu+∇xv is the
vorticity andT the temperature. The space discretization is performed on aregular
grid with a five-point stencil and the time discretization isa backward Euler scheme.
The lid-velocityu(x,0) is a nonzero constant, the other boundary conditions satisfy
u = v = 0, T = 0 on the left wall, andT = 1 on the right wall,∂T/∂y = 0 on the
top and the bottom. A fixed time step length has been used for the simulation, ex-
cepted for the very first time steps. The initial solution is zero everywhere excepted
on the walls, and the solution at the previous time step is used as the initial guess
for the current time step. In the following results, the linear systems are right pre-
conditioned andG0 is the RAS preconditioner of the current approximation of the
Jacobian matrix, and the overlapping size is one. The reasonis that when the left pre-
conditioning technique is used, the natural stopping criterion of the Kyrlov method
is based on the norm of the preconditioned residual. Hence, in order to compare two
different preconditioners, one should use a stopping criterion based on the norm of
true residual. The Newton iterations are stopped (i.e. the time step is accepted) when
the absolute norm of the residual is lower than 10−6.

Table 1 Comparison of the updated and the frozen preconditioner for a 512×512 grid decomposed
in 8×8 subdomains. The lid velocity isu(x,0) = 500 and the time step length is 10−3. 1000 time
steps are performed, and the sum of all the BiCGstab iterations isgiven. The algorithm is restarted
every fr time steps, and the walltimes are given in seconds.

With update Without update Saved Saved
fr BiCGstab it. Walltime BiCGstab it. Walltime iterations (%) walltime (%)
1 34483 4729 34882 4744 1.144 0.309
5 34572 3820 35230 3850 1.868 0.779
40 35165 3609 35946 3649 2.173 1.085
60 35785 3619 36249 3625 1.280 0.159
80 36110 3653 36693 3670 1.589 0.461

Table 1 compares the total number of BiCGstab iterations with and without the
rank-one update, for different frequencies of restarting.A frequency of restartingfr
of 10 means that 100 local LU factorizations have been computed on each proces-
sors during the 1000 time steps. There is actually between one and three Newton
iterations per time steps. This results show that the total number of Krylov iterations
is slightly reduced by the updating method. If we take into account only the 580
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time steps for which three Newton iterations have been performed, then 3.79% of
the Krylov iterations have been saved. the additional cost of the application of the
preconditioner is the reason why the proportion of Krylov iterations that are saved
is greater than the proportion of saved computational time.

Table 2 Number BiCGstab iterations for the updated and the frozen preconditioner. The grid de-
composition is regular, using the same number of subdomains in each direction. 1000 time steps
of length 10−3 are performed. The algorithm is restarted every 40 time steps.

Processors Grid size Lid velocity With update Without update Saved .it (%)
8 1282 100 9009 9474 4.908
8 1282 300 16358 16748 2.329
16 1282 100 12724 13275 4.150
16 1282 300 17961 18345 2.093
16 2562 300 20011 20805 3.816
64 2562 300 28408 30114 5.665
64 2562 500 32599 32889 0.882

Table 2 compares the number of BiCGstab iterations for different sizes of grid
and lid velocities. This results show that the Broyden update of the preconditioner
may leads to a significant reduction of the number of Krylov iterations. For a restart-
ing frequency of 40, the percentage of saved iterations generally decreases when the
lid velocity is increased. This suggests that a more appropriate restarting algorithm
should be designed in order to preserve the efficiency of the update. It should be no-
ticed that the results presented above are obtained for a fixed time step length. The
efficiency of the update is expected to change if an adaptive time stepping algorithm
is used since the step length is present on the diagonal of theJacobian matrix.

4 Conclusions

We presented a very simple procedure to update the RAS preconditioner without
loss of parallelism. This update leads to a decrease of the number of Krylov it-
erations, especially for the time steps that requires the largest number of New-
ton iterations. However, further developments are needed to achieve an efficient
method. This quasi-Newton update of the preconditioner should be used with a
well-parametrized restarting procedure, since the efficiency of the preconditioner
decreases from one iteration to another. A natural extension of this work is to use
higher-rank updates, like the multisecant update [11]. Techniques such as partial
updates, or relaxed updates should also be investigated since they are expected to
significantly improve the numerical efficiency of the updated preconditioner.
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GMRES acceleration of restricted Schwarz
iterations

Pacull1 and Aubert1

We present here an analysis of the Richardson iterations preconditioned by either
the restricted additive [2] or multiplicative Schwarz [6] operators, and the associated
GMRES Krylov sub-space acceleration. The framework of study is purely algebraic
and general sparse unsymmetrical and indefinite matrices are considered. This paper
can be seen as an extension of [1, 10], in which a block preconditioned system is
downsized to an interface system. The following study is circumscribed to restricted
Schwarz preconditioners.

At first, the equivalence between the primary and interface iterations is described.
Then, the interface system operator is depicted as a Schur complement of the per-
muted preconditioned global matrix. Finally, the benefit ofthe Krylov sub-space
acceleration of the interface iterations, over the primaryones, is exhibited. Note that
exact solves of the sub-domain problems is assumed throughout.

The linear system to solve is :
Au= f (1)

with A∈ Rn×n, u∈ Rn and f ∈ Rn. We assume thatA is close to structurally sym-
metric, which is a common property of matrices originating from PDE problems.

As a preparatory step, we start by introducing the vertex-based partitioning pro-
cess and the notations used hereafter.

1 Introduction

1.1 Graph partitioning and overlap

We denoteG the adjacency graph of matrixA, V = {1,2, ...,n} the nodes ofG ,
andE the edges, which correspond to the non-zero off-diagonal elements ofA. The
graphG is considered to be undirected: given an unordered pair of distinct nodes
(v1,v2) ∈ V 2, we have(v1,v2) ∈ E if and only if A(v1,v2) 6= 0 orA(v2,v1) 6= 0.

A non-overlapping partition ofV with p sub-domains corresponds top non-
empty sub-sets,{Vi}1≤i≤p, such thatV =∪p

i=1Vi andV j ∩Vk =∅ for 1≤ j < k≤ p.
The usual goal when performing this graph-partitioning task is to minimize the over-
all edge cut, which is the total number of edges(vi ,v j) ∈ E with vi andv j belonging
to distinct sub-domains, while equilibrating the number ofnodes per sub-domain
to approximativelyn/p. Dealing with p equal sub-sets aims at balancing the dis-

1 Fluorem, 64 Chemin des Mouilles 69130 Ecully, France e-mail:{fpacull}{saubert}@
fluorem.com
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tributed computational and memory load per processor. Minimizing the number of
edges crossing the partition boundaries results in a reduced communication volume
between processors.

Increasing theδ -overlap is beneficial regarding the convergence rate of Schwarz
methods (see [6] for example): starting fromVi,0 ≡ Vi , this consists in growing
recursively each sub-setVi,δ by adding some of the adjacent nodes, in order to form
a larger setVi,δ+1.

For each sub-domain and for eachδ level, ni,δ ≡ |Vi,δ | refers to the cardinality
of the node sub-set.

1.2 Notations regarding restrictions operators

Similarly to what is done in [9], three different sub-sets ofnodes are defined in
association with a given sub-domainVi,δ : V int

i,δ , V loc
i,δ andV ext

i,δ . The internal nodes

V int
i,δ are the nodes ofVi,δ that have their graph neighborhood fully included inVi,δ .

The local interface nodesV loc
i,δ are the nodes ofVi,δ that have a least one of their

neighbors outside ofVi,δ . Finally, the external interface nodesV ext
i,δ are the nodes

that do not belong toVi,δ , but which have at least one of their neighbors withinVi,δ .
Note thatV ext

i,δ is the set of candidate nodes for growing the sub-setVi,δ : Vi,δ+1⊆
Vi,δ ∪V ext

i,δ .
An important sub-set of nodes for our study is the global set of external interface

node, simply called theinterface nodeshereafter:V ext
δ ≡∪p

i=1V
ext

i,δ , with cardinality

next
δ ≡ |V ext

δ |. The complementary sub-set ofV ext
δ is denoted byV̄ ext

δ ≡ V \V ext
δ .

In the following, notations from [7] are used to describe thedifferent operators
associated with the algebraic Schwarz preconditioners. For the i-th sub-domain, we
denoteRi,δ ∈ Rni,δ×n the restriction operator associated withVi,δ . Rext

i,δ is the re-
striction operator associated withV ext

i,δ . The special restriction operator used in the

restricted Schwarz iterations, is defined as follows:R̃i,δ ≡ Ri,δ RT
i,0Ri,0 ∈ Rni,δ×n.

The node sub-set̄Vi,δ refers to the following set difference:̄Vi,δ ≡ V \Vi,δ , and
R̄i,δ to the restriction operator associated with̄Vi,δ . Rext

δ andR̄ext
δ are the restriction

operators associated withV ext
δ andV̄ ext

δ respectively.
The local parts of the operatorA are the following ones:Ai,δ ≡ Ri,δ ART

i,δ for the

inner coupling, andAext
i,δ ≡ Ri,δ ARext T

i,δ for the outer coupling.
Finally, the vectory stands for the vector of interface node unknowns

y= Rext
δ u∈ Rnext

δ (2)

while x = R̄ext
δ u ∈ Rn−next

δ stands for the complementary unknowns, located at the
non-interface nodes̄V ext

δ .
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2 Richardson iterations with a restricted Schwarz
preconditioner

The preconditioned Richardson iterationu(k+1) = u(k) + M−1( f − Au(k)), is ex-
pressed as the stationary iteration

u(k+1) = F u(k)+g (3)

whereF = I −M−1A andg = M−1 f are the iteration matrix and vector. We only
consider here the restricted additive (RAS) and multiplicative (RMS) Schwarz pre-
conditioners, as defined for example in [6]:

FRAS,δ = I −
p

∑
i=1

R̃T
i,δ A−1

i,δ Ri,δ A (4)

FRMS,δ =
1

∏
i=p

(
I − R̃T

i,δ A−1
i,δ Ri,δ A

)
(5)

As pointed out in [1, 10], under some specific conditions, theprimary iteration
(3) can be reduced to an equivalent interface iteration, in terms of the unknowny
defined in (2):

y(k+1) = Gy(k)+h (6)

In order to gain more insight into this interface system, letus derive the iteration
(6) starting from (3). If the restrictionRext

δ is applied to (3), we get the following
iteration:y(k+1) = Rext

δ Fx(k)+h, with h≡ Rext
δ g. We now make use of the following

relation:

Ri,δ A = Ri,δ A(RT
i,δ Ri,δ + R̄T

i,δ R̄i,δ )

= Ai,δ Ri,δ +Ri,δ AR̄T
i,δ R̄i,δ

= Ai,δ Ri,δ +Aext
i,δ Rext

i,δ (7)

Thus, in the restricted additive Schwarz case, we have:

FRAS,δ = I −
p

∑
i=1

R̃T
i,δ A−1

i,δ (Ai,δ Ri,δ +Aext
i,δ Rext

i,δ )

= I −
p

∑
i=1

R̃T
i,δ Ri,δ −

p

∑
i=1

R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ (8)

Using the following equality,
p
∑

i=1
R̃T

i,δ Ri,δ =
p
∑

i=1
RT

i,0Ri,0RT
i,δ Ri,δ =

p
∑

i=1
RT

i,0Ri,0 = I , we

get:

FRAS,δ =−
p

∑
i=1

R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ (9)
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This shows that the iteration matrixFRAS,δ only depends on the interface nodes.
For the multiplicative case, by using (7), we get:

FRMS,δ =
1

∏
i=p

(
I − R̃T

i,δ A−1
i,δ Ri,δ A

)

=
1

∏
i=p

(
I −RT

i,0Ri,0− R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ

)
(10)

For simplicity reasons, we callai the left term in the parentheses andbi the right
term:ai ≡ I −RT

i,0Ri,0, bi ≡ R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ . By noticing that∏1
i=pai = 0 and that

ai b j = b j if i 6= j, we get:

FRMS,δ =
p

∑
k=1

∑
p≥i1>...>ik≥1

(−1)kbi1 . . .bik (11)

The important thing is that thebi terms only depend on the interface nodes, and so
doesFRMS,δ consequently.

Hence we have, in both restricted Schwarz cases:

F = FRext T
δ Rext

δ and FR̄ext T
δ R̄ext

δ = 0 (12)

Indeed we know from [10] thatk belongs toV̄ ext
δ (that is,k is not an interface node)

if and only if thek-th column ofF is null, and if and only if thek-th column ofM is
equal to thek-th column ofA.

We can now state that with the coherent initial interface conditionsy(0)=Rext
δ u(0),

the following relation betweenu(k) andy(k) holds:

y(k+1) = Rext
δ u(k+1) = Rext

δ

[
Fu(k)+g

]
= Gy(k)+h for k≥ 1 (13)

The iteration matrixG can be expressed as follows:G= Rext
δ FRext T

δ . Note that this
relation holds whatever the initial conditionx(0) = R̄ext

δ u(0) is.
We now focus on the interface system:(I −G)y(∞) = h.

3 Restricted Schwarz and Schur

In [3, 8], it is shown that a multiplicative Schwarz iterate is identical to a block
Gauss-Seidel sweep applied to the Schur complement system on the interface un-
knowns, provided that coherent initial conditions are used. Similar results also holds
between the additive Schwarz iterate and a block Jacobi sweep of the Schur comple-
ment system. The considered Schur complementS is related to the interface nodes
of the non-overlapping partition. In the overlapping case,it is possible to decom-
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pose the sub-domains into smaller disjoint parts and express the global matrix as a
preconditioned version ofS, thanks to block Gaussian elimination. As stated in [4]:

the overlapping method is equivalent to a non-overlapping method with a specific interface
preconditioner. One can think of the overlapping method implicitly computing the effect of
this preconditioner by the extra operations performed on theoverlapping region.

We observe that in our case, the interface unknowns may not correspond to
the interface nodes of the non-overlapping partition. If weconsider the permuted
matrix Pδ M−1APT

δ , with M being a restricted Schwarz preconditioner, andPT
δ =[

R̄ext T
δ Rext T

δ
]
, we get the following linear system:

Pδ M−1APT
δ

{
x
y

}
=

{
R̄ext

δ g
h

}
(14)

We note that the matrixPδ M−1APT
δ is a 2×2 block matrix:

Pδ M−1APT
δ =

[
R̄ext

δ M−1AR̄ext T
δ R̄ext

δ M−1ARext T
δ

Rext
δ M−1AR̄ext T

δ Rext
δ M−1ARext T

δ

]
(15)

In the previous section, we saw thatFR̄ext T
δ = 0, which implies that

R̄ext
δ M−1AR̄ext T

δ = I (16)

Rext
δ M−1AR̄ext T

δ = 0 (17)

We also have the following equalities:

R̄ext
δ M−1ARext T

δ = −R̄ext
δ FRext T

δ (18)

Rext
δ M−1ARext T

δ = I −Rext
δ FRext T

δ = I −G (19)

Plugging these equalities into (14), we get:

Pδ M−1APT
δ

{
x
y

}
=

[
I −R̄ext

δ FRext T
δ

0 I −G

]{
x
y

}
=

{
R̄ext

δ g
h

}
(20)

The matrixI −G can be seen as a Schur complement ofPδ M−1APT
δ with respect to

the identity operator applied to the non-interface nodes. The inverse ofPδ M−1APT
δ

can be expressed in this way:

(
Pδ M−1APT

δ
)−1

=

[
I R̄ext

δ FRext T
δ (I −G)−1

0 (I −G)−1

]
(21)

Also, equation (20) gives us some information about the spectrum of I −G:

σ
(
M−1A

)
= σ

(
Pδ M−1APT

δ
)
= σ(I)∪σ(I −G) (22)
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The spectrum ofI −G is the spectrum ofM−1A augmented with the eigenvalue 1,
which has a multiplicity ofn−next

δ .
We remark that the cost of explicitly building theI −G matrix is prohibitive,

regarding the significant resources required. In the RAS case, the matrixG writes:

G=−Rext
δ

p

∑
i=1

R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ Rext T
δ (23)

This represents|V ext
i,δ | local systems to solve for each sub-domain, which solution is

dense. This is why iterative methods are preferred.

4 Krylov acceleration

Since matrixA is assumed to be unsymmetrical and indefinite, the GMRES Krylov
sub-space method [8] is used to accelerate the iteration (6), as proposed in [1]. The
GMRES method is chosen over some other Krylov techniques forits monotonous
convergence property. The algorithm used to solve the interface system is presented
next, in a left-preconditioned version.

Algorithm 1 GMRES resolution of(I −G)y= h

r0 = Rext
δ M−1(b−Ax0), β = ‖r0‖, andv1 = r0/β

for j = 1, ...,mdo
w← Rext

δ M−1ARext T
δ v j

for i = 1, ..., j do
hi, j ← (w,vi)
w← w−hi, jvi

end for
. . .

end for
. . .
Computezm = argminz‖βe1− H̄mz‖ andym = Rext

δ x0+Vmzm

If satisfiedy(∞)← ym else restart withx0 = Rext T
δ ym

An important point is thatAlgorithm 1 only differs from the usual one by the
use of the restriction and prolongation operatorsRext

δ andRext T
δ . Also, one extra step

is required to solve the global solution from the interface solutiony(∞):

u(∞) = (I −M−1A)Rext T
δ y(∞)+g (24)

In this last step, the preconditionerM−1 can differ from the one used in the GMRES
algorithm. For example, ifM−1

RAS,δ is chosen, we get:
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u(∞) =
p

∑
i=1

R̃T
i,δ A−1

i,δ Ri,δ

(
b−AR̄T

i,δ R̄i,δ Rext T
δ y(∞)

)

=
p

∑
i=1

R̃T
i,δ A−1

i,δ

(
Ri,δ b−Aext

i,δ Rext
i,δ Rext T

δ y(∞)
)

(25)

Algorithm 1 represents less floating point operations and also requiresless mem-
ory to store the Arnoldi vectors than when GMRES is applied tothe primary un-
knowns, with almost no extra work regarding the implementation.

Fig. 1 Full GMRES conver-
gence of the global and inter-
face systems. GT01R matrix
from the UF sparse matrix
collection is used. Initial con-
dition is x(0) = {1, ...,1}T .
The domain is divided into 2
parts (p = 2) with an over-
lap of δ = 1 (all the adjacent
nodes are included). The num-
ber of primary and interface
unknowns is 7980 and 420
respectively. 5 10 15 20 25 30
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Fig. 1 presents the GMRES convergence of both primary and interface systems.
Matrix GT01R from the UF sparse matrix collection [5] is used. We observe that the
convergence behaviors are similar, but slightly differ because of the non-interface
nodes. The size of the global system is 7980, while it is 420 for the interface system.

Also, the new vectorw← Rext
δ M−1ARext T

δ v j in the outer loop ofAlgorithm 1 is
equivalent to this one:w← (I−Rext

δ FRext T
δ )v j , in which only local “homogeneous”

problems are solved. For example in the RAS case, we have:

w←
(

I +Rext
δ

p

∑
i=1

R̃T
i,δ A−1

i,δ Aext
i,δ Rext

i,δ Rext T
δ

)
v j (26)

The local operatorA−1
i,δ is applied toAext

i,δ Rext
i,δ Rext T

δ v j , which only concerns the local

interface nodes of the sub-domain,V loc
i,δ . This means that for the local problem in

(26), the right-hand side is null for the internal nodesV int
i,δ . Thus, a local Schur

complement approach may be used to deal with each local problem, associated to
an iterative local solver and the LU factorization of the twodiagonal blocks ofAi,δ
corresponding to the internal and the local interface nodes.
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5 Conclusion

The restricted Schwarz iterations have been described in details. It appears that the
restricted Schwarz operators benefit from the indirect preconditioning effect of the
overlap, but also from the non-overlapping property of the restricted local operator
images. We have seen that solving the interface system instead of the primary one,
is advantageous regarding memory usage and floating point operation count. This
represents only a slight modification of the global algorithm, but requires exact local
solves. Another advantage is that the local problems can be treated as homogeneous
problems.
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A nonlinear domain decomposition technique
for scalar elliptic PDEs

James Turner1, Michal Kočvara1, and Daniel Loghin1

1 Introduction
Nonlinear problems are ubiquitous in a variety of areas, including fluid dynamics,
biomechanics, viscoelasticity and finance, to name a few. A number of computa-
tional methods exist already for solving such problems, with the general approach
being Newton-Krylov type methods coupled with an appropriate preconditioner.
However, it is known that the strongest nonlinearity in a domain can directly impact
the convergence of Newton-type algorithms. Therefore, local nonlinearities may
have a direct impact on the global convergence of Newton’s method, as illustrated
in both [3] and [5]. Consequently, Newton-Krylov approaches can be expected to
struggle when faced with domains containing local nonlinearities.

An attempt to resolve this issue was considered in [4] by Cai and Li. Here, a
method based on an overlapping decomposition of the domain was proposed, which
involved the development of a nonlinear restrictive additive Schwarz preconditioner
for the treatment of high nonlinearities. Effectively, their proposed method ensured
that the distribution of nonlinearities was balanced throughout their system, building
on earlier work in [9]. While positive results were obtained,it is noted that their nu-
merical experiments display a logarithmic dependence withregard to the mesh size.
Additionally, in the situation of the unavailability of sufficient processors, it was
found that subdomain problems could become computationally demanding, due in
part to the need for a region of overlap. An alternative approach would be to in-
stead consider applying a nonoverlapping decomposition ofthe domain directly to
the nonlinear problem, avoiding the linearisation on a global scale. Methods have
been proposed to this effect by both Pebrel et. al. [12] and bySassi [14]. In [12],
the resulting algorithm involved the solution to local nonlinear subproblems, as well
as a global interface problem solved by a Newton-type algorithm. As a result, local
nonlinearities could be dealt with much more effectively without having a major
impact on the solution across the whole domain. While the paper reported speed
up in the CPU time when compared directly to a Newton-Krylov approach, the
method proposed involves the solution of a global interfaceproblem, which can be
both expensive and time consuming to compute. In comparison, [14] considered a
preconditioned modified Newton algorithm, which was found to converge indepen-
dently of the mesh size. However, the diameter of each subdomain was found to
have a direct influence on the condition number of the involved operator, and as a
result the proposed algorithm struggled with an increasingnumber of subdomains.

1 University of Birmingham, B15 2TT, UK. e-mail:{jat649}{m.kocvara}{d.loghin}@
bham.ac.uk
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We propose a splitting of a class of nonlinear problems into athree step proce-
dure wrapped around a fixed point iteration. Section 2 will provide a description of
the model problem, before the application of domain decomposition to the nonlin-
ear problem in Section 3. A three step procedure can then be devised by applying an
appropriate Picard linearisation (Section 4), which will be wrapped inside a global
fixed point iteration. The corresponding weak formulation and finite element dis-
cretisation of the problem are given in Section 5, with results from the proposed
method illustrated in Section 6.

2 Model Problem
We begin by considering the following problem posed on a two dimensional open
and simply connected domainΩ :

{
N (u) ..=−∆u+c(u) = f in Ω

u= 0 on∂Ω ,
(1)

where the functionc(u) is nonlinear andN is assumed to be positive. We also
assume that (1) has a unique solution. A number of real life situations can be simu-
lated by the nonlinear diffusion equation (1); in particular, notable applications can
be found when modelling flow through porous material, in biochemistry, and in the
transport of radiation.

An established approach for dealing with problems of type (1) is to employ
Newton-Krylov methods and use domain decomposition methods as precondition-
ers. A number of preconditioning strategies have been considered (e.g. additive-
Schwarz [7, 11], approximate-Schur [8, 13]), giving rise tonumerous different
Newton-Krylov type approaches, which have been applied to awide range of prob-
lems mainly due to the quadratic convergence of Newton’s method. However, for
domains containing high local nonlinearities, the global convergence of Newton’s
method becomes entirely dependent on the local phenomena contained within the
domain. Therefore, a substantial number of iterations can be expected for certain
problems solved using such approaches, even for domains containing predominantly
smooth areas, and so it is desirable to consider alternativeapproaches for determin-
ing solutions to systems of the form (1).

3 Nonlinear Domain Decomposition
We consider an approach that applies domain decomposition directly to the nonlin-
ear problem. To do this, we divide our domainΩ into N nonoverlapping subdomains
Ωi with boundary∂Ωi with outer normalsni . We denote byΓ the resulting skele-
tal interfaceΓ =

⋃N
i=1 Γi , whereΓi

..=∂Ωi\∂Ω . The restriction of a functionw to a
subdomainΩi is denoted bywi . Assumingui|Γi= λi is given, problem (1) can then
be seen to be equivalent to the following subproblems





N (ui) ..=−∆ui +c(ui) = fi in Ωi

ui = 0 on∂Ωi\Γi

ui = λi onΓi .
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Let u = u1 + u2 and assume that the nonlinear functionc(u) can be written as
c(u1+u2) = c1(u1+u2)+c2(u1+u2). The reason for splittingu andc in this way
is to attempt to form homogeneous Dirichlet subdomain problems aroundu1. The
remaining components will then form subdomain problems aroundu2.

Problem (1) can be viewed in terms of the following subproblems

{
−∆u1

i +c1(u1
i +u2

i ) = fi in Ωi

u1
i = 0 on∂Ωi

(2a)

{
N

∑
i=1

(
ni ·∇(u2

i )
)
=−

N

∑
i=1

(
ni ·∇(u1

i )
)

onΓ (2b)




−∆u2

i +c2(u1
i +u2

i ) = 0 in Ωi

u2
i = 0 on∂Ωi\Γi

u2
i = λi onΓi .

(2c)

The nonlinear subproblems presented in (2a) correspond to obtaining solutions to
local copies of (1) with homogeneous Dirichlet conditions enforced on local bound-
aries ∂Ωi . In comparison, the nonlinear subdomain problems presented in (2c)
use interfacial data found in the intermediate step (2b) to obtain local solutions.
The main motivation for considering such a splitting, and indeed for considering a
nonoverlapping decomposition ofΩ is that each subproblem in both (2a) and (2c)
can be solved independently of other subdomains. In the following, we will assume
that solution operators exist for problems of the form (2c);these will be denoted
by Ei ; in particular, we haveu2

i = Ei(λi). We will denote byFi µi any other linear
extensions of a given functionµi defined onΓi to Ωi .

4 Picard Linearisation
We decouple (2a), (2b) and (2c) via the following Picard linearisation

{
N1(u

1,k
i ) ..=−∆u1,k

i +c1
(

u1,k
i +u2,k−1

i

)
= fi in Ωi

u1,k
i = 0 on∂Ωi

(3a)

{
N

∑
i=1

ni ·∇(Ek−1
i λ k

i ) =−
N

∑
i=1

ni ·∇(u1,k
i ) onΓ (3b)





N2(u
2,k
i ) ..=−∆u2,k

i +c2
(

u1,k
i +u2,k

i

)
= 0 in Ωi

u2,k
i = 0 on∂Ωi\Γi

u2,k
i = λ k

i onΓi .

(3c)

Given uk−1, N nonlinear subproblems are first solved independently in (3a). The
solution to these subproblems is then used in equation (3b) to obtain the interface
updateλ k

i . Finally, the solutions to each nonlinear subproblem in (3c) are obtained
independently using the updates from the previous two steps. Note that it is pos-
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sible to solve each of the two sets ofN nonlinear subproblems in (3a) and (3c) in
parallel. Equation (3b) is a linear Steklov-Poincaré equation involving the operator

Sk : H1/2
00 (Γ )→ H−1/2

00 (Γ ) defined as

〈Skλ k,µ〉 ..=
N

∑
i=1

∫

Γi

(ni ·∇)(Ek−1
i λi)µi ds=

N

∑
i=1
〈Sk

i λ k
i ,µi〉,

whereEk−1
i are linearizations of the nonlinear extension operatorsEi corresponding

to (3c). We summarize below the proposed iterative scheme for computing the exact
solutionu∗, given an initialu0.

(i) Run through the following three steps to compute the solution uk = u1,k+u2,k:

{
N1(u

1,k
i ) = f in Ωi

u1,k
i = 0 on∂Ωi

i = 1, . . . ,N. (4a)

{
Skλ k =−

N

∑
i=1

ni ·∇(u1,k
i ) onΓ (4b)





N2(u
2,k
i ) = 0 in Ωi

u2,k
i = 0 on∂Ωi\Γi

u2,k
i = λ k

i onΓi .

i = 1, . . . ,N. (4c)

(ii) Compute the residualRk =N (uk)− f . If ‖Rk‖< τ, setu∗ = uk and terminate.
Else, setk= k+1 and return to step 1.

5 Finite Element Discretisation
Define now local bilinear forms

al
i (v,w;z) ..=

∫

Ωi

∇v∇wdx+
∫

Ωi

cl (v+z)w dx,

for l = 1,2. Using the above notation, the weak formulation of (4) is

{
Find u1,k

i ∈ H1
0(Ωi) such that∀vi ∈ H1

0(Ωi)

a1
i (u

1,k
i ,vi ;u

2,k−1
i ) = ( fi ,vi)

(5a)





Find λ k ∈ H1/2
00 (Γ ) such that∀µ ∈ H1/2

00 (Γ )

s(λ k,µ) =
N

∑
i=1

( fi ,Fi µi)−a1
i (u

1,k
i ,Fi µi ;u

2,k−1
i )

(5b)

{
Find u2,k

i ∈ E(λ k
i )+H1

0(Ωi) such that∀vi ∈ H1
0(Ωi)

a2
i (u

2,k
i ,vi ;u

1,k
i ) = 0.

(5c)
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Let nowVh ⊂ H1
0(Ω)∩C0(Ω) be a space of continuous piecewise polynomials

of degreem defined on an isotropic subdivision ofΩ into simplices of maximum
diameterh. In our tests we choosem= 1, though other values are equally possible.
Let the corresponding basis be denoted by{ψr}. Let B denote the index set corre-
sponding to basis elementsψr with support onΓ . Let Sh

..=span{γ0 (Γ )ψr : r ∈ B}
whereγ0 denotes the trace operator. The finite element discretisation of the systems
in (5) can then be written fori = 1, . . . ,N as

{
Find u1,k

i,h ∈Vi,h such that∀vi,h ∈Vi,h

a1
i (u

1,k
i,h ,vi,h ;u2,k−1

i,h ) = ( fi ,vi,h)
(6a)





Find λ k
h ∈ Sh such that∀µh ∈ Sh

s(λ k
h ,µh) =

N

∑
i=1

( fi ,Fi µi)−a1
i (u

1,k
i,h ,Fi µi,h ;u2,k−1

i,h )
(6b)

{
Find u2,k

i,h ∈ (Eλ )k
i,h+Vi,h such that∀vi,h ∈Vi,h

a2
i (u

2,k
i,h ,vi,h ;u1,k

i,h ) = 0.
(6c)

The system (6) can be represented systematically by matrices and vectors in the
usual way. In particular, the Schur complement of the systemmatrix corresponds to
the matrix representation ofs(·, ·) in the basis ofSh. We can therefore describe our
proposed method as follows:

(i) Run through the following three step procedure to determine u.

a. Solve theN decoupled nonlinear subdomain problems (6a) written in ma-
trix form as

Ai,1
II (u

1,k
I ,i )u

1,k
I ,i = f1

I ,i , (7a)

using a Newton-Krylov method with line search and adaptive tolerances
τ1,i .

b. Calculate interface valuesλλλ k using

Skλλλ k = fΓ −
N

∑
i=1

Ai,1
Γ I (u

1,k
I ,i )u

1,k
I ,i . (7b)

c. Solve theN decoupled nonlinear subdomain problems (6c) written in ma-
trix form as

Ai,2
II (u

2,k
I ,i )u

2,k
I ,i =−Ai,2

IΓ (u
2,k
I ,i )λλλ

k
i , (7c)

using a Newton-Krylov method with line search and adaptive tolerances
τ2,i .

(ii) Setuk = u1,k+u2,k, whereu1,k = [u1,k
I ,0]T andu2,k = [u2,k

I ,λλλ k ]T . Assemble the
global stiffness matrixAk(u) and compute the residualRk(uk) = A(uk)uk− f.
If ‖Rk‖< τ setu∗ = uk and exit; else, return to Step 1.
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The subindicesI andΓ indicate permutations involving the index sets corresponding
to the interior and boundary nodes in the subdivision ofΩ . The adaptive tolerances
τ1,i ,τ2,i are chosen in relation to the norm of the global nonlinear residual ‖Rk‖,
following the strategy in [6].

We solve the system (7b) using iterative methods of Krylov type with precon-
ditioning. The matrixSk is the interface Schur complement corresponding to the
reaction-diffusion problem−∆u2,k−1+ c2(u1,k−1+u2,k−1); as such, it can be pre-
conditioned by any domain decomposition preconditioner designed for elliptic prob-
lems. The preconditioner employed in this work is based on [2], where discrete
norms corresponding to finite element discretisations of fractional Sobolev spaces

are presented. In particular, it was shown that a discrete norm on Sh ⊂ H1/2
00 (Γ )

which is spectrally equivalent toSk is given by

H1/2 = MΓ
(
M−1

Γ LΓ
)1/2

.

In [2], MΓ and LΓ correspond to the mass and Laplacian matrices, respectively,
assembled onΓ . We adapt the definition ofH1/2 to include the contribution from
the reaction term as suggested in [1]; this involves replacing LΓ with

Lk
Γ = LΓ +Mk

Γ ,

whereMk
Γ is the mass matrix assembled onΓ and weighted by the trace on the

interfaceΓ of c2
(
u1,k−1+u2,k−1

)
. For more details, see [15].

Note thatMΓ ,Lk
Γ are assembled globally onΓ and henceH1/2 is a dense matrix.

However, in our computations we use sparse techniques to circumvent this issue. In
particular, the application of both Lanczos and inverse Lanczos factorisations has
been considered in [2], and will be applied in this work in a similar manner.

6 Results
In this section, we will consider a number of examples to highlight the benefits of
our proposed method. In particular, we will consider modelsfor which

(a) c(u) = uq+1, and (b) c(u) = uq+1sin(10u),

whereq is a positive integer. For both choices, we note that by substituting u =
u1+u2 into the function, we can write

c(u1+u2) = (u1+u2)q+1 = (u1+u2)qu1+(u1+u2)qu2.

Table 1 displays performance comparisons of our proposed method to the stan-
dard Newton-Krylov approach for two test problems. We used piecewise linear dis-
cretizations for a range of mesh parametersh. Each nonlinear problem was solved
with a zero initial guess. We consider four different representations for the pre-
conditionerS̃, namely the exact Schur complement, the exact discrete fractional
Sobolev normH1/2, and both the Lanczos(L) and inverse Lanczos(I) approxima-
tions toH1/2. The performance recorded in the table indicates that our method deliv-
ers promising results when directly compared to the corresponding Newton-Krylov
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(a),q= 2 (b),q= 9

Newton-Krylov 3-Step Procedure Newton-Krylov 3-Step Procedure

S̃ h 4 16 64 4 16 64 4 16 64 4 16 64

1/16 4 (8) 4 (8) 3 (6) 4 (8) 4 (8) 3 (5) 11 (22) 10 (20) 10 (20) 6 (12)5 (10) 5 (10)

S 1/32 4 (8) 3 (6) 3 (6) 4 (8) 3 (6) 3 (5) 10 (20) 10 (20) 9 (18) 5 (10) 5(10) 5 (10)

1/64 3 (6) 3 (6) 3 (6) 3 (6) 3 (6) 3 (5) 10 (20) 9 (18) 8 (16) 5 (10) 5 (10) 4 (8)

1/16 9 (24) 11 (35) 6 (48) 6 (29) 6 (26) 5 (35) 15 (66) 16 (89) 12 (110) 7 (48) 8 (60) 6 (47)

H1/2 1/32 12 (38) 7 (42) 5 (49) 6 (36) 5 (25) 4 (30) 17 (79) 12 (103) 10 (110) 7 (53) 6 (49) 5 (52)

1/64 6 (33) 4 (29) 4 (42) 5 (28) 4 (25) 4 (41) 11 (75) 9 (96) 8 (103)6 (47) 4 (28) 4 (43)

1/16 9 (24) 11 (35) 6 (48) 6 (29) 6 (26) 5 (35) 15 (66) 16 (89) 12 (110) 7 (48) 8 (60) 6 (47)

H(L)
1/2 1/32 12 (38) 7 (42) 5 (49) 6 (36) 5 (25) 4 (30) 17 (79) 12 (103) 10 (110) 7 (53) 6 (49) 5 (52)

1/64 6 (33) 4 (29) 4 (42) 5 (28) 4 (25) 4 (41) 11 (75) 9 (96) 8 (103)6 (47) 4 (28) 4 (43)

1/16 17 (39) 106 (148) 7 (51) 6 (31) 6 (34) 5 (39) 21 (78) 132 (193) 12 (102) 8 (64) 7 (56) 6 (58)

H(I)
1/2 1/32 11 (40) 6 (35) 4 (36) 6 (37) 5 (35) 4 (33) 14 (77) 11 (92) 5 (53) 7 (54) 6 (49) 5 (55)

1/64 6 (37) 4 (34) 4 (40) 5 (36) 4 (27) 3 (27) 11 (76) 9 (90) 8 (92) 5(40) 5 (44) 4 (45)

Table 1 Nonlinear iterations (total GMRES iterations) for a global toleranceτ = 10−7.

method. In particular, it can be seen that the results indicate independence with re-
spect to both the mesh size and the number of subdomains used.By comparing the
columns in Table 1, an indication is given on how well both methods adapt to the in-
crease in nonlinearity. Notably, it is clear that the Newton-Krylov method struggled
when faced with the increased nonlinearity, confirming results noted earlier. How-
ever, in comparison our method was found to deal with the increase in nonlinearity
in a much more efficient manner. This would suggest that our method would adapt
quite well to domains containing high local nonlinearitiesconfined to a particular re-
gion of the domain. It is also noted that by directly inverting the Schur complement,
an adaptation of the result presented in [10] is also shown for our method, namely
that the interface problem (7b) solved with GMRES can be expected to converge in
a number of iterations no more than the dimension ofΩ per fixed point iteration.

7 Conclusion
In this paper, we introduced a three step procedure for solving a class of nonlin-
ear PDEs. We have demonstrated that our method is able to deliver results inde-
pendent of both the mesh size and the number of subdomains used. Furthermore,
we have shown that our procedure is competitive when directly compared to the
corresponding Newton-Krylov method. Future work will involve further testing to
include problems that contain a high nonlinearity confined to a particular region of
the domain together with an appropriate analysis of the method. We will also adapt
our method to problems in topology optimization [15].
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A non overlapping domain decomposition
method for the obstacle problem

Samia Riaz1 and Daniel Loghin2

1 Obstacle problem

The obstacle problem is to determine the equilibrium position of an elastic mem-
brane in a domainΩ ⊆R2 with closed boundary∂Ω , which lies above an obstacle
function ψ : Ω → R+ under the vertical forcef . The classical solutionu of this
model problem is the vertical displacement of the membrane.Since the membrane
is fixed on∂Ω , we have boundary conditions of Dirichlet type (sayu = 0). The
problem can be written as




−∆u− f ≥ 0 in Ω ,

u−ψ ≥ 0 in Ω ,
u = 0 on∂Ω ,

(1)

subject to the pointwise complementarity condition(u−ψ)(−∆u− f ) = 0.
Let C = {x ∈ Ω : u(x) = ψ(x)} denote the coincidence set. Then the complemen-
tarity conditions yields the PDE−∆u− f = 0 in Ω \C . The weak formulation of
(1) can be written as [10]

{
Findu ∈ K such that∀v∈ K,
a(u,v−u)≥ ( f ,v−u),

(2)

which can be shown to be equivalent to the following minimization problem
{

Find u∈ K, such that∀ v∈ K,
J(u)≤ J(v),

whereK = {v∈V := H1
0(Ω) : v ≥ ψ in Ω} is convex and

J(v) =
1
2

a(∇v,∇v)− ( f ,v), ( f ,v) =
∫

Ω
f vdΩ , a(u,v) =

∫

Ω
∇u·∇vdΩ .

An important class of solution techniques for (2) is that of multilevel and multigrid
methods for constrained minimization problems, first introduced by [6] and [2] some
variants of these method were studied in [4] and were analyzed in [5]. A challenging
task for multigrid is the representation of the coincidenceset on a coarse grid, as
shown in the review paper [3]. Some multi-grid and two level domain decomposition
methods are given in [9] [7] in which it is shown that the overlapping DDM has a

1 University of Birmingham, UK and UET, Lahore, Pakistan e-mail:riazs@for.mat.bham.
ac.uk ·2 University of Birmingham, UKdaniel.loghin@bham.ac.uk
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linear convergence for constrained obstacle problem if theobstacle and computed
functions decomposed properly. Some more variants of multi-grid method are given
in [1], where the decomposition of the closed convex set for minimization problem
is introduced as a sum of closed convex level subsets; the convergence rate is shown
to depend on the number of levels.

2 A non-overlapping domain decomposition method

Let Ω i denote an open subset ofΩ containing the coincidence setC and let
Ω e = Ω \ Ω̄ i . Let Γ denote the interface betweenΩ i and Ω e. This decomposi-
tion allows us to reformulate our problem into two subproblems: one which is a
partial differential inequality (PDI) in subdomainΩ i and the other which is a partial
differential equation (PDE) inΩ e.
Let z= u|Ωe,w = u|Ω i , f e = f |Ωe and f i = f |Ω i be the restrictions ofu and f to
Ω e andΩ i respectively; let alsoλ = u|Γ be the trace ofu onΓ . Assuming for now
thatλ is known, problem (1) decouples into the two subproblems

PDE:





−∆z= f e in Ω e,

z= 0 on∂Ω \Γ ,

z= λ onΓ ,

PDI:





−∆w≥ f i in Ω i ,

w≥ ψ i in Ω i ,

w= 0 on∂Ω \Γ ,

w= λ onΓ .

with (−∆w− f i)(w−ψ i) = 0 satisfied in a pointwise sense inΩ i . The subproblem
PDE can be further decoupled as follows:

PDE1 :





−∆z1 = f e in Ω e,

z1 = 0 on∂Ω \Γ ,

z1 = 0 onΓ ,

PDE2 :





−∆z2 = 0 in Ω e,

z2 = 0 on∂Ω \Γ ,

z2 = λ onΓ ,

(3)

wherez|Ωe = z1+ z2 with z2 = Eλ whereE is the harmonic extension operator to
Ω e. Writing the weak formulation (2) as

ae(z,v−z)+ai(w,v−w)≥ ( f e,v−z)Ωe +( f i ,v−w)Ω i , (4)

where
ae(z,v) =

∫

Ωe
∇z·∇v dΩ e andai(w,v) =

∫

Ω i
∇w ·∇v dΩ i

the variational formulations of (3) and PDI are

{
find z1 ∈ H1

0(Ω e) such that∀v∈ H1
0(Ω e)

ae(z1,v−z)−
∫

Γ
n1 ·∇z1 · (v−z) dΓ = ( f e,v−z)Ωe,
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{
find z2 ∈ H1(Ω e) such that∀v∈ H1(Ω e)

ae(z2,v−z)−
∫

Γ
n1 ·∇z2 · (v−z) dΓ = 0,

(5)

{
find w∈ H1(Ω i) such that∀v∈ H1(Ω i)

ai(w,v−w)−
∫

Γ
n2 ·∇w · (v−w)dΓ ≥ ( f i ,v−w)Ω i .

(6)

For i = 1,2, ni , is the normal direction fromΩ e andΩ i respectively. Adding the
above weak formulations, wherez1 = 0, z2 = λ = w on Γ and using the weak for-
mulation (4) yields a partial Steklov-Poincaré inequality forλ (corresponding to the
splitting of PDE)

(S eλ ,µ−λ )≤ (g(λ ),µ−λ ).

Using the assumption that the interfaceΓ lies outside the support of the obstacle we
obtain the following nonlinear equation on the interface

(S eλ ,µ) = (g(λ ),µ). (7)

The Steklov-Poincaré operatorS e : Λ → Λ ′ (whereΛ = H1/2(Γ ), H1/2
0 (Γ ) or

H1/2
00 (Γ ) depending on the nature of the problem) is defined as

(S eλ ,µ) :=
∫

Γ
(n1 ·∇(Eλ ))µ dΓ ,

and
(g(λ ),µ) :=−

∫

Γ
(n1 ·∇z1+n2 ·∇w)µ dΓ

Applying Green’s formula we get the alternative representation of S e

(S eλ ,µ) := ae(Eλ ,Fµ) ∀λ ,µ ∈Λ

whereF denotes an arbitrary extension operator toΩ e. By using the above defini-
tion of S e, our classical problem can be written as an ordered sequenceof three
decoupled problems involving Poisson problem on subdomainΩ e together with a
problem set on the interfaceΓ which is coupled with the problem onΩ i .





−∆z1 = f e in Ω e,

z1 = 0 on∂Ω \Γ ,

z1 = 0 onΓ ,

(i)
{

S eλ =−n1 ·∇z1−n2 ·∇w, (ii)





−∆w≥ f i in Ω i ,

w≥ ψ in Ω i ,

w= 0 on∂Ω \Γ ,

w= λ onΓ ,
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−∆z2 = 0 in Ω e,

z2 = 0 on∂Ω \Γ ,

z2 = λ onΓ ,

The resulting solution inΩ e, is u|Ωe = z= z1+ z2. The solutions of(i),(ii), i.e. λ
andw can be approximated in an iterative manner by using a fixed point iteration
(see section 2.3). The weak formulations of the above problems are given below.
{

find z1 ∈ H1
0(Ω e) such that∀v∈ H1

0(Ω e),
ae(z1,v) = ( f e,v)Ωe,

(8a)





find λ ∈Λandw∈ Eλ +K i such that∀µ ∈Λandv∈ K i ,

(S eλ ,µ) = (( f e,Feµe)−ae(z1,F
eµe))+(( f i ,F i µ i)−ai(w,F i µ i)),

ai(w,v−w)≥ ( f i ,v−w)Ω i ,

(8b)

{
find z2 ∈ Eλ +H1

0(Ω e) such that∀v∈ H1
0(Ω e),

ae(z2,v) = 0,
(8c)

whereK i = {v∈V := H1
0(Ω i) : v ≥ ψ}.

2.1 Finite element discretization

Let Ω ⊂ R2 be a bounded open convex subset and letTh be a conforming isotropic
subdivision ofΩ into simplicest. LetVe

h ,V
i
h denote the spaces of continuous piece-

wise polynomials defined on the corresponding subdivision of Ω e,Ω i .

Ke
h := {vh ∈Ve

h : vh|∂Ωe∩∂Ω = 0}, K i
h := {vh ∈V i

h : vh≥ ψ, v|∂Ω i∩∂Ω = 0}.

Let N e,N i ,N Γ denote the sets of nodes located, respectively, in the subdomains
Ω e,Ω i and on the interfaceΓ . Let

Ke
h = span{φk, k∈N e}, K i

h = span{φk, k∈N i} ,KΓ
h = span{φk, k∈N Γ }

and let
Sh = span{γ0(Γ )φk, k∈N Γ

i }.
By using above definitions, we have the following finite element discretization for
the two-domains method:
{

find zh
1 ∈ Ke

h ∀vh ∈ Ke
h

ae(zh
1,vh) = ( f e,vh),

(9)





find λh ∈ Sh andwh ∈ K i
h such that∀vh ∈ K i

h, ∀ µh ∈ Sh,

(S eλh,µh) = (( f e,Feµe
h)−ae(zh

1,F
eµe

h))+(( f i ,F i µ i
h)−ai(wh,F

i µ i
h)),

ai(wh,vh−wh)≥ ( f i ,vh−wh)

(10)
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{
find zh

2 = (Eλ )h+Ke
h such that∀vh ∈ Ke

h,
ae(zh,vh) = 0.

(11)

2.2 Matrix formulation

To obtain the matrix formulation of the above discrete formulation of the domain
decomposition problem let us denote the unknown vectors byue,ui ,uΓ and the
right hand side vectors byfe, f i , fΓ of lengthsNe,Ni ,NΓ respectively, such thatN =
Ne+Ni +NΓ , with A ∈ RN×N and f ∈ RN. Then the matrix representation of (1)
can be written as {

Au ≥ f,
u ≥Ψ ,

subject to the complementarity conditions(f−Au) j(u−Ψ) j = 0, with




Ae
II O Ae

IΓ
O Ai

II Ai
IΓ

Ae
Γ I Ai

Γ I AΓ Γ


 , u =




ue
I

ui
I

uΓ


 , f =




fe
I

f i
I

fΓ


 , (12)

where we have partitioned the degrees of freedom into those internal toΩ e and to
Ω i and those on the interfaceΓ . By using this notation, the above discrete weak
formulations have the following matrix form

Ae
II u

e,1
I = fe

I , (13a)

SeuΓ = fΓ −Ae
Γ I u

e,1
I −Ai

Γ I u
i
I , (13b)

Ai
II u

i
I ≥ f i

I −Ai
IΓ uΓ , (13c)

Ae
II u

e,2
I =−Ae

IΓ uΓ , (13d)

subject to conditions(f i
I −Ai

II u
i
I −Ai

IΓ uΓ ) j(ui
I −ΨI ) j = 0, which represent the com-

plementarity conditions for (13c).
The set of equations (13a)-(13d) could be seen as a partial Schur complement

approach for the system (12). The solutionsui
I anduΓ will be approximated in an

iterative manner. The resulting solution is then[ue,1
I +ue,2

I ,ui
I ,uΓ ].

2.3 Domain decomposition algorithm

Equations (13b) and (13c) form a coupled system which we solve by using a fixed
point iteration. We note here that, givenui

I , the solution of (13b) involving the Schur
complement matrixSe can be implemented by using a Krylov subspace solver with
domain decomposition preconditioning, corresponding to some partition ofΩ e into
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several subdomains. On the other hand, (13c) is a standard linear complementarity
problem posed on a small subdomainΩ i . The proposed algorithm is included below.

Picard reduced QP algorithm

1: step 0:Find an initial guess by using coarse mesh solution

2: step 1:find ue{1}
I = (Ae

II )
−1fe

I ,
3: step 2:
4: for k= 0,1,2, ..., till convergencedo
5: SolveSe(uΓ )

k+1 = (fΓ −Ae
Γ I u

e{1}
I −Ai

Γ I (u
i
I )

k)
6: Find(ui

I )
k+1 ∈ K i such that

J((ui
I )

k+1)≤ J(v) ∀v ∈ K i

7: where

J(v) :=
1
2
(v)TAi

II v− (v)T(f i
I −Ai

IΓ uk+1
Γ )

8: If converged, setuΓ = uk+1
Γ and exit

9: end for
10: step 3:Compute

ue{2}
I =−(Ae

II )
−1Ae

IΓ uΓ

11: The resulting solution is then
u = [ue{1}

I +ue{2}
I ,ui

I ,uΓ ].

3 Numerical Experiments

Test 1:One obstacle

For our first test problem, we consider an elastic membrane which lies above an
obstacle of height 1 centered at the origin with square cross-section with side length
ℓo = 0.3 under the forcing functionf = 1 with Ω = (−1,1)2. We chooseΩ i to be
a square region with side-lengthℓi which contains the support of the obstacle such
that the interface boundaryΓ lies outside of the obstacle support. In the given algo-
rithm we solved PDI, in the step 2(ii) by using the matlab function quadprog , a
built-in quadratic programming solver. The PDI is coupled together with the inter-
face equality problem in step 2(i) in an iterative manner. The relation to constrained
minimization problems with quadratic programming problemcan be found in [8].
We apply fixed point DD algorithm with global complementarity condition as a
stopping criterion max

1≤i≤n
| (Łu− f)i(u−Ψ)i |≤ 10−3. The initial guess was com-

puted on a fixed coarse mesh withn0 nodes. Note that the variational inequality
problem is now posed over a small subdomain, and hence has lowcomplexity - we
therefore decided not to report on it. Table 1 displays the number of fixed point iter-
ations required to solve the coupled equations (13b), (13c). We see that the number
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of iterations grows logarithmically as we increase the level of refinement. On the
other hand, reducing the size ofΩ i leads to a smaller number of iterations, while
preserving the dependence behaviour on the refinement level.

Table 1 Fixed point iterations for test problem 1.

ℓi= 0.4 0.5 0.6

n = 1,089 8 10 10
4,225 12 16 17
16,641 17 25 26

Test 2: Three obstacles

For the same domainΩ we consider the obstacle problem with three square obsta-
cles of height 1 with centers located at(0.5,0.5),(−0.5,0.5),(0,−0.5) and equal
sidesℓo = 0.3. We performed the same investigation, where we choseΩ i to be a
multiply-connected domain consisting of square regions ofside-lengthℓi (see Fig.
1. The numerical results are displayed in Table 2. For this harder problem, the num-
ber of iterations displays a logarithmic dependence forℓi sufficiently small, but de-
teriorates for largerΩ i . However, this is not the context we devised our algorithm
for. Finally, we note that for this test problem the variational inequality in step (ii)
decouples into three independent variational inequalities.

Table 2 Fixed point iterations for test problem 2.

ℓi= 0.4 0.5 0.6

n = 1,089 9 14 14
4,225 14 21 24
16,641 19 32 38

4 Summary and future work

We described an algorithm for the solution of obstacle problems using a two-domain
formulation. In the larger subdomain we solved a PDE, while in the smaller region
containing the coincidence set we solved a variational inequality using a minimiza-
tion formulation. The solution of the PDE, as well as the solution involving a re-
duced Schur complement problem can in practice be achieved via a parallel im-
plementation of a Krylov method coupled with a domain decomposition precondi-
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Fig. 1 Test problem 2: the choice ofΩ i for ℓi = 0.4 and the corresponding solution.

tioner. Work in progress includes a Newton-Krylov solutionof the non-linear prob-
lem (7). Future work is expected to include results validating this approach as well
as an analysis of our algorithm. We are also interested to implement this method on
general elliptic and parabolic problems.
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A domain decomposition algorithm for contact
problems with Coulomb’s friction

J. Haslinger1, R. Kučera2, and T. Sassi1

1 Introduction

Contact problems of elasticity are used in many fields of science and engineering,
especially in structural mechanics, geology and biomecanics. Many numerical pro-
cedures solving contact problems have been proposed in the engineering literature.
They are based on standard discretization techniques for partial differential equa-
tions in combination with a special implementation of non-linear contact conditions
(e.g., see [3, 5, 6, 8]).

The use of domain decomposition methods turns out to be one ofthe most ef-
ficient approaches. Recently, Dirichlet-Neumann and FETI type algorithms have
been proposed and studied for solving multibody contact problems with Coulomb
friction (see for example [7, 1, 2]).

In this paper, the Neumann-Neumann algorithm is extended totwo-body con-
tact problems with Coulomb friction. The main difficulty is due to the boundary
conditions at the contact interface. They are highly non-linear, both in the normal
direction (unilateral contact conditions) and in the tangential one (Coulomb’s law).
A fixed point procedure is introduced to ensure the continuity of the contact stresses.
Numerical results illustrate that an optimal relaxation parameter exists and its value
is nearly independent of the friction coefficient and the mesh size.

2 Setting of the problem

Let us consider two plane elastic bodies, occupying boundeddomainsΩ α , α = 1,2.
The boundaryΓ α := ∂Ω α is assumed to be piecewise continuous, and it is split into
three non empty disjoint partsΓ α

u , Γ α
p andΓ α

c such thatΓ α
u ∩Γ α

c = /0. Each body
Ω α is fixed onΓ α

u and subject to surface tractionsφ α ∈ (L2(Γ α
p ))2 onΓ α

p . The body
forces are denoted byf α ∈ (L2(Ω α))2. In the initial configuration, both bodies have
a common contact portionΓc :=Γ 1

c =Γ 2
c . In other words, we consider the case when

the contact zone cannot grow during the deformation processand there is no gap
betweenΩ 1 andΩ 2. Unilateral contact conditions with local Coulomb’s friction are
prescribed onΓc. The problem consists in finding the displacement fieldu= (u1,u2)

1KNM MFF UK Prague, Czech Republic, Sokolovská 83, 18675 Praha 8,2Department of
Mathematics and Descriptive Geometry, VŠB-TUO, Czech Republic, 17. listopadu 15/2172,
70833 Ostrava-Poruba,3Laboratoire de Math́ematiques Nicolas Oresme, Université de Caen Basse-
Normandie, France, e-mail:{hasling@karlin.mff.cuni.cz}{radek.kucera@vsb.
cz}{taoufik.sassi@unicaen.fr}
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(the notationuα stands foru|Ω α ) and the stress tensor fieldσ = (σ(u1),σ(u2)) such
that:

divσ(uα)+ f α = 0 in Ω α ,

σ(uα)nα = φ α onΓ α
p ,

uα = 0 onΓ α
u ,





(1)

α = 1,2. The elastic constitutive law, is given by Hooke’s law for homogeneous and
isotropic material:

σi j (u
α) = Aα

i jkhekh(u
α), e(uα) =

1
2

(
∇uα +(∇uα)

T
)
, (2)

whereAα = (Aα
i jkh)1≤i, j,k,h≤2 ∈ (L∞(Ω α))16 is the fourth-order elasticity tensor sat-

isfying the usual symmetry and ellipticity conditions ande(uα) is the respective
strain tensor. The summation convention is adopted.

Further the normal and tangential components of the displacementu and the
stress vector onΓc are defined by

uα
N = uα

i nα
i , uα

Ti
= uα

i −uα
Nnα

i ,

σα
N = σi j (uα)nα

i nα
j , σT

α
i = σi j (uα)nα

j −σα
N nα

i ,

}
(3)

wherenα denotes the outward normal unit vector to the boundary. On the interface
Γc, the unilateral contact law conditions are prescribed:

σN := σ1
N = σ2

N, σT := σ1
T = σ2

T , (4)

[uN]≤ 0, σN ≤ 0, σN[uN] = 0, (5)

where[vN] = v1 ·n1+v2 ·n2 is the jump across the interfaceΓc of a functionv defined
on Ω 1∪Ω 2. Coulomb’s law of local friction reads as follows

|σT | ≤F |σN|,
|σT |< F |σN|=⇒ [uT ] = 0,

|σT |= F |σN|=⇒∃ν ≥ 0 [uT ] =−νσT ,





(6)

whereF ∈ L∞(Γc), F ≥ 0 onΓc is the coefficient of friction and[uT ] stands for the
jump of the tangential displacements.

Weak solutions of the contact problem obeying Coulomb’s lawof friction can be
defined as a fixed point of the mappingΦ : Λ 7→Λ , whereΛ = {µ ∈H−1/2(Γc),µ ≥
0} and Φ(g) = −σN(u) with u ∈ K being the unique solution of the variational
inequality:

u := u(g) ∈K : a(u,v−u)+ 〈Fg, |[vT ]|− |[uT ]|〉 ≥ L(v−u), ∀v∈K. (P)
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Here

K= {v∈ V| [vN]≤ 0 onΓc}, V= V1×V2,

Vα = {vα ∈ (H1(Ω α))2 | vα = 0 onΓ α
u }, α = 1,2.

The bilinear and linear forma(·, ·), L(·) represent the inner energy of the system,
and the work of applied forces, respectively:

a(v,w) = a1(v1,w1)+a2(v2,w2), L(v) = L1(v1)+L2(v2), v,w∈ V,

where

aα(vα ,wα) =
∫

Ω α
Aα

i jkhekh(v
α)ei j (w

α)dx,

Lα(vα) =
∫

Ω α
f α ·vα dx+

∫

Γ α
p

φ α ·vα ds,

α = 1,2. The symbol〈·, ·〉 stands for the duality pairing betweenH−1/2(Γc) and
H1/2(Γc) or for the scalar product inL2(Γc), if g∈ L2(Γc).

3 Domain decomposition algorithm for contact problems with
given friction

We present the continuous version of the domain decomposition algorithm for solv-
ing (P). The mathematical justification of all results presented below can be found
in [4]. We introduce the following notation: byπα : (H1/2(Γc))

2 7→ Vα we denote
the extension mapping defined forλ ∈ (H1/2(Γc))

2 by

πα λ ∈ Vα : aα(πα λ ,vα) = 0 ∀vα ∈ Vα
0 ,

πα λ = λ on Γc,

}
(7)

where
Vα

0 = {vα ∈ (H1(Ω α))2| vα = 0 on Γ α
u ∪Γc}. (8)

Further forϕ ∈ L2(Γc) given, we define:

K2(ϕ) = {v2 ∈ V2| v2 ·n2≤−ϕ onΓc}

and the frictional termj : V 7→ R by

j(v) := j(v1,v2) =
∫

Γc

g|[vT ]|ds, v= (v1,v2) ∈ V.

The algorithm is based on the following result.
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Proposition 1. A pair u= (u1,u2) ∈ V is a solution of(P) if and only if u1 ∈ V1,
u2 ∈ V2 solve the following problems:

Find u1 ∈ V1 such that

a1(u1,v1) = L1(v1)−a2(u2,π2v1)+L2(π2v1) ∀v1 ∈ V1

}
(9)

and

Find u2 ∈K2(u1 ·ν1) such that

a2(u2,v2−u2)+ j(u1,v2)− j(u1,u2)≥ L2(v2−u2) ∀v2 ∈K2(u1 ·ν1),

}
(10)

respectively.

Suppose thatλ ∈ (H1/2(Γc))
2 is given andu1, u2 are the solutions of the follow-

ing decoupledproblems:

Find u1 := u1(λ ) ∈ V1 such that

a1(u1,v1) = L1(v1) ∀v1 ∈ V1
0

u1 = λ onΓc





(P1(λ ))

and
Find u2 := u2(λ ) ∈K2(λ ·n1) such that

a2(u2,v2−u2)+ j(λ ,v2)− j(λ ,u2)≥ L2(v2−u2)

∀v2 ∈K2(λ ·n1).





(P2(λ ))

If λ ∈ (H1/2(Γc))
2 was chosen in such a way thatσ1

N = σ2
N andσ1

T = σ2
T onΓc, then

the coupleu = (u1,u2) ∈ K would be a solution of(P). To find suchλ ensuring
continuity of the normal and tangential contact stress acrossΓc, we shall use the
following auxiliary Neumann problems defined inΩ 1 andΩ 2:

Find w1 ∈ V1 such that

a1(w1,v1) = 1
2(−a1(u1,v1)+L1(v1)−a2(u2,π2v1)+L2(π2v1))

∀v1 ∈ V1





(P3(λ ))

and

Find w2 ∈ V2 such that

a2(w2,v2) = 1
2(a

2(u2,v2)−L2(v2)+a1(u1,π1v2)−L1(π1v2))

∀v2 ∈ V2,





(P4(λ ))

whereu1 := u1(λ ), u2 := u2(λ ) are the solutions of(P1(λ )), and(P2(λ )), respec-
tively. The algorithm consists of the following five steps:
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ALGORITHM (DD) Let λ0 ∈ (H1/2(Γc))
2 andθ > 0 be given. Fork≥ 1 integer,

defineuα
k , wα

k , α = 1,2 andλk by:

Step 1. u1
k ∈ V1 solves(P1(λk−1));

Step 2. u2
k ∈K2(λk−1 ·n1) solves(P2(λk−1));

Step 3. w1
k ∈ V1 solves(P3(λk−1));

Step 4. w2
k ∈ V2 solves(P4(λk−1));

Step 5. λk = λk−1+θ(w1
k−w2

k) onΓc.

The convergence property of this algorithm follows from thenext theorem.

Theorem 1.There exist:0< θ ∗ < 4 and functionsλ∗ ∈ (H1/2(Γc))
2, uα
∗ ,w

α
∗ ∈ Vα ,

α = 1,2 such that for anyθ ∈ (0,θ ∗) it holds:

λk→ λ∗ in (H1/2(Γc))
2,

uα
k → uα

∗

wα
k → wα

∗

}
in (H1(Ω α))2, α = 1,2,





k→ ∞ (11)

where the sequence{(uα
k ,w

α
k ,λk)} is generated byALGORITHM (DD). In addition,

the couple(u1
∗,u

2
∗) solves(P).

A discrete version of algorithm is obtained by a finite element approximation of
Steps 1-4. In [4] we used piecewise linear functions on triangulations ofΩ 1 andΩ 2.
These triangulations are supposed to be compatible on the contact partΓc. Using a
similar technique as in Theorem 1, one can prove the convergence property of the
discrete version withθ ∗ independent of the mesh norm.

4 Numerical experiments

In this section, we shall test the performance of variants ofALGORITHM (DD) for
solving contact problems with Coulomb friction. For this reason, we combine AL-
GORITHM (DD) with the method of succesive approximations that enables us to
compute fixed points of the mappingΦ . To get an efficient algorithm, we perform
only one iteration of ALGORITHM (DD) in each step of the method of succesive
approximations. In other words, we update the slip boundg in eachStep 2using
the result of the previous iteration, i.e.,g= −σN(u2

k−1) (andg= 0, if k = 1). This
algorithm will be called ALGORITHM I in this numerical part.

Note thatStep 2in ALGORITHM I treats simultaneously both, the non-penetration
and the friction conditions. A natural idea occurs, namely to split these conditions
betweenSteps 1and2. This modification of ALGORITHM (DD) will be called AL-
GORITHM II.
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In both, ALGORITHM I and II, one can perform splitting of the Gauss-Seidel type
so that computatios of the normal and tangential contact stresses are decoupled by
performing one Gauss-Seidel iteration; see [4] for more details. In the respective
columns of the tables below we show the results without (columnwithout) and with
the Gauss-Seidel splitting inStep 1, 2, and in both these steps.

Example 1. Let us consider two plane elastic bodies

Ω 1 = (0,3)× (1,2) and Ω 2 = (0,3)× (0,1)

made of an isotropic, homogeneous material characterized by the Young modulus
2.1×1011 and the Poisson ratio 0.277 (steel). The decompositions of∂Ω α , α = 1,2
are as follows:

Γ 1
u = {0}× (1,2), Γ 1

c = (0,3)×{1}, Γ 1
p = ∂Ω 1\Γ 1

u ∪Γ 1
c ,

Γ 2
u = {0}× (0,1), Γ 2

c = (0,3)×{1}, Γ 2
p = ∂Ω 2\Γ 2

u ∪Γ 2
c .

The volume forcesf α = 0 in Ω α , α = 1,2 while the following surface tractions of
densityφ1 = (φ1

1 ,φ1
2 ) act onΓ 1

p :

φ1
1 (s,2) = 0, φ1

2 (s,2) = φ1
2,L +φ1

2,Rs, s∈ (0,3),

φ1
1 (3,s) = φ1

1,B(2−s)+φ1
1,U (s−1), s∈ (1,2),

φ1
2 (3,s) = φ1

2,B(2−s)+φ1
2,U (s−1), s∈ (1,2),

whereφ1
2,L =−6×107, φ1

2,R =−1/3×107, φ1
1,B = 2×107, φ1

1,U = 2×107, φ1
2,B =

4×107, andφ1
2,U = 2×107. The coefficient of friction isF = 0.3.

We compare performance of ALGORITHMS I and II with different splittings of
Gauss-Seidel type for various values ofθ and degrees of freedomn (twice the num-
ber of nodes) andm (the number of the contact nodes). In the tables we report
the computational time in seconds, the number #iter of the (outer) iterations, and
the total number of actionsnA of the inverses to the stiffness matrices. Further we
quote the total efficiency of the method assessed by the ratioeff := nA/(2m) which
gives a comparison of our algorithms with the realization of”similar linear prob-
lems” by the standard conjugate gradient method. It is well-known that the number
of conjugate gradient iterations, i.e. the number of matrix-vector multiplications,
is bounded by the size of the problem. Therefore, one can say that our algorithms
exhibit the complexity comparable with the conjugate gradient method wheneff is
less than two. All computations are performed in Matlab 8.2 on Intel(R)Core(TM)2
Duo CPU, 2 GHz with 3 GB RAM. We set the relative terminating precision on the
computed contact stresses totol = 10−4. The inner problems inStep 1and2 are
solved by optimization algorithms based on the conjugate gradient method with the
adaptive precision control respecting the accuracy achieved in the outer loop; see [4]
for more details.
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Table 1 Characteristics of ALGORITHM I without and with splitting.

n|m without in Step 1 in Step 2 in Step 1+2
#iter|nA #iter|nA #iter|nA #iter|nA
[time|eff] [time|eff] [time|eff] [time|eff]

504|18 60|667 61|1075 59|742 60|1146
[0.80|18.53] [0.98|29.86] [0.67|20.61] [0.70|31.83]

6072|66 61|1044 61|1492 61|824 60|1236
[8.19|7.91] [8.35|11.30] [4.63|6.24] [6.91|9.36]

17784|114 62|1313 63|1816 61|855 63|1365
[31.73|5.76] [43.71|7.96] [33.24|3.75] [32.89|5.99]

35640|162 61|1839 62|1819 61|892 62|1377
[126.94|5.68] [133.30|5.61] [59.59|2.75] [91.82|4.25]

59640|210 60|1583 61|2336 61|876 61|1377
[238.32|3.77] [341.33|5.56] [127.42|2.09] [196.11|3.28]

89784|258 60|1627 59|2333 60|864 61|1421
[405.31|3.15] [585.25|4.52] [216.09|1.67] [359.08|2.75]

Table 2 Characteristics of ALGORITHM II without and with splitting.

n|m without in Step 1 in Step 2 in Step 1+2
#iter|nA #iter|nA #iter|nA #iter|nA
[time|eff] [time|eff] [time|eff] [time|eff]

504|18 37|530 36|520 37|714 38|770
[0.19|14.72] [0.16|14.44] [0.19|19.83] [0.19|21.39]

6072|66 36|987 37|586 37|964 38|829
[5.76|7.48] [3.29|4.44] [5.35|7.30] [4.59|6.28]

17784|114 36|1417 38|626 37|1347 35|794
[34.32|6.21] [15.16|2.75] [32.81|5.91] [19.00|3.48]

35640|162 37|1864 36|608 36|1399 36|863
[119.50|5.75] [38.74|1.88] [89.79|4.32] [54.83|2.66]

59640|210 37|2132 37|624 37|1401 35|851
[290.71|5.08] [93.40|1.49] [191.30|3.34] [115.64|2.03]

89784|258 37|2532 37|619 37|1806 36|877
[631.80|4.91] [154.52|1.20] [451.65|3.50] [225.59|1.70]

Figure 1 illustrates the sensitivity of the different variants of our algorithms with
respect toθ . From these results one may conclude at least two facts:(i) ALGO-
RITHM II without splitting is more stable than ALGORITHM I in sense that it con-
verges for larger values ofθ ; (ii) splitting usedStep 2of ALGORITHM II leads to
the convergent process for allθ ∈ (0,1].



750 J. Haslinger, R. Kǔcera, and T. Sassi
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Fig. 1 For eachθ we display the number of iterations #iter satisfying the terminating precision
as above (n= 1872,m= 36).
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Hybrid dual-primal FETI-Schur complement
method for Stokes

Ange B. Toulougoussou1 and François-Xavier Roux2

1 Discrete Stokes

The algebraic Stokes is of the following saddle point form: Find (Uh,Ph) ∈Vh×Qh

such that (
Ah BT

h
Bh 0

)(
Uh

Ph

)
=

(
Fh

0

)
. (1)

We suppose that the system (1) arises from the mixed finite-element discretization
of Stokes on a domainΩ . We consider spacesVh andQh that satisfy the inf-sup
condition and whose elements are continuous. Such spaces can be found in [5] and
include Hood-Taylor and Mini elements. Under the inf-sup condition and assuming
a mixed boundary condition on the velocity there exists a unique solutuion to (1).

2 Hybrid dual-primal FETI-Schur

Stokes is a bottleneck in the analysis of incompressible fluid flows and is the subject
of many researches. The numerical solution of the system (1)that arises from its
discretization is a challenging problem because of the indefiniteness of saddle-point
problems [1]. Memory space storage is an other important issue to deal with for large
three-dimensional problems. An overview of solution methods to solve saddle-point
problems is given in [1]. We focus on iterative methods such as FETI and BDD that
save memory space and have proved efficiency for many linear systems. The do-
main Ω is split into N non-overlapping subdomains{Ω (s)}s=1,··· ,N with interface

ΓI =∪N
s,q=1{Ω

(s)∩Ω (q)}. Degrees of freedom of each subdomainΩ (s) are split into
internal degrees of freedom designated by subscripti and degrees of freedom des-
ignated by subscriptΓ that correspond to the interface of the subdomainΩ (s) with
other subdomains. Related to the spliting above, FETI and BDD split the original
linear systems into subproblems whose solutions are flux andtrace continuous re-
spectively [4, 9]. FETI adresses these compatibility requirements by introducing a
unique Lagrange multiplier on the interface to ensure the weak continuity of the sub-
solutions. FETI is dual to BDD that imposes a unique trace to the subsolutions on
the interface. The original system is thus reduced in both cases to interface problems
to be solved by Krylov methods that nullify the residual at convergence. The resid-

1 Universit́e Pierre et Marie Curie, 4 place Jussieu 75005 Paris, France e-mail:
toulougoussou@ann.jussieu.fr ·2 ONERA, Chemin de la Hunière et des Joncherettes,
BP 80100,FR-91123 PALAISEAU CEDEX e-mail:roux@onera.fr
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uals in FETI and BDD are the jump of the solutions and of the fluxon the interface
respectively.These domain decomposition methods have been successfully extended
to solve the system (1) when the discrete pressure is discontinuous. Their interface
systems become mixed problems when the discrete velocity and pressure are both
continuous. The spectral distribution of the interface operators slows down the rate
of convergence of FETI and BDD that is proven to be optimal forsystems arising
from the discretization of elliptic problems. The interface unknowns resulting from
the combination of FETI and BDD should be physically homogeneous [6] and well-
suited for saddle-point problems such as (1) that arise in many applications [1]. We
split the system (1) intoN subsystems, renumber the unkwnows starting with the
internal ones to get the following system:
Local systems

(
A(s)

ii B(s)
ii

T

B(s)
ii 0

)(
U (s)

i

P(s)
i

)
+

(
AiΓ
BiΓ

)
U (s)

Γ +

(
B(s)

iΓ
T

0

)
P(s)

Γ =

(
F(s)

i
0

)
, (2)

interface problems

(
A(s)

Γ i B(s)
iΓ

T
)(U (s)

i

P(s)
i

)
+A(s)

Γ Γ U (s)
Γ +B(s)T

Γ Γ P(s)
Γ = F(s)

Γ , (3)

incompressibility conditions

(
B(s)

Γ i 0
)(U (s)

i

P(s)
i

)
+B(s)

Γ Γ U (s)
Γ = 0, s= 1, · · · ,N. (4)

Systems (2)-(4) supplemented with continuity conditions on the velocity and on the
pressure through the interface are equivalent to system (1).
Introduce notations:

M(s)
uu = A(s)

Γ Γ −
(

A(s)
Γ i B(s)

iΓ
T
)(

A(s)
ii B(s)

ii

T

B(s)
ii 0

)−1(
A(s)

iΓ
B(s)

iΓ

)
,

M(s)
up = B(s)T

Γ Γ −
(

A(s)
Γ i B(s)

iΓ
T
)(

A(s)
ii B(s)

Γ Γ
T

B(s)
ii 0

)−1(
B(s)

iΓ
T

0

)
,

M(s)
pu = B(s)

Γ Γ −
(

B(s)
Γ i 0

)(
A(s)

ii B(s)
ii

T

B(s)
ii 0

)−1(
A(s)

iΓ
B(s)

iΓ

)
,

M(s)
pp =

(
B(s)

Γ i 0
)(

A(s)
ii B(s)

ii

T

B(s)
ii 0

)−1(
B(s)

Γ i

T

0

)
,

F̃(s)
Γ = F(s)

Γ −
(

A(s)
Γ i B(s)

iΓ
T
)(

A(s)
ii B(s)

ii

T

B(s)
ii 0

)−1(
F(s)

i
0

)
,
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F̃i
(s)

=
(

B(s)
Γ i 0

)(
A(s)

ii B(s)
ii

T

B(s)
ii 0

)−1(
F(s)

i
0

)
, s= 1, · · · ,N.

Lemma 1. The subdomain Schur complements M(s)
pp and M(s)

uu are symmetric, posi-
tive semi-definite.

Proof. MatricesM(s)
pp are clearly symmetric. Systems (2) are well-posed algebraic

problems although they are not the usual Stokes because of the Dirichlet boundary

condition on the pressure [2]. Therefore, for any givenP(s)
Γ , there exists

(
U (s)

i

P(s)
i

)
=−

(
A(s)

ii B(s)
ii

T

B(s)
ii 0

)−1(
B(s)

iΓ
T

0

)
P(s)

Γ .

By Gaussian elimination, we have




A(s)
ii B(s)

ii

T
B(s)

Γ i

T

B(s)
ii 0 0

B(s)
Γ i 0 0







U (s)
i

P(s)
i

P(s)
Γ


=




0
0

−M(s)
ppP(s)

Γ


 . (5)

Therefore,

−P(s)T

Γ M(s)
ppP(s)

Γ =




U (s)
i

P(s)
i

P(s)
Γ




T


A(s)
ii B(s)

ii

T
B(s)

Γ i

T

B(s)
ii 0 0

B(s)
Γ i 0 0







U (s)
i

P(s)
i

P(s)
Γ




= U (s)T

i A(s)
ii U (s)

i +2P(s)T

i B(s)
ii U (s)

i +2P(s)T

Γ B(s)
Γ i U

(s)
i . (6)

From (5), we have

B(s)
ii U (s)

i = 0 and B(s)
Γ i U

(s)
i =−M(s)

ppP(s)
Γ .

Then from (6) and the positivity of the matrix arising from the discretization of the
Laplace operator by finite elements, we have

P(s)T

Γ M(s)
ppP(s)

Γ =U (s)T

i A(s)
ii U (s)

i ≥ 0.

We also have 


A(s)
ii B(s)

ii

T
B(s)

Γ i

T

B(s)
ii 0 0

B(s)
Γ i 0 0







0

1(s)i

1(s)Γ


=




0
0
0


 (7)

where 1(s)i and 1(s)Γ are constants in the subdomainΩ (s) and on its boundary re-

spectively. By equality (7) one can show that in general there existsR(s)
p such that
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M(s)
ppR(s)

p = 0.

It is well-known that the subdomain Schur complementsM(s)
uu are symmetric, posi-

tive semi-definite in general [7].

Eliminating the internal degrees of freedom from local systems (2), the interface
systems (3) and the incompressibility conditions (4) can bewritten as




M(1)
uu M(1)

up 0 0 · · · · · · 0 0

M(1)
pu −M(1)

pp 0 0 · · · · · · 0 0

0 0
...

...
.. .

...
...

0 0
...

...
.. .

. . .
...

...
...

...
.. .

.. .
.. .

. . . 0 0
...

...
.. .

.. .
. . . 0 0

0 0 · · · · · · 0 0 M(N)
uu M(N)

up

0 0 · · · · · · 0 0 M(N)
pu −M(N)

pp







U (1)
Γ

P(1)
Γ
...
...
...
...

U (N)
Γ

P(N)
Γ




=




F̃(1)
Γ
−F̃i

(1)

...

...

...

...

F̃(N)
Γ
−F̃i

(N)




. (8)

We introduce a unique Lagrange multiplierλ to ensure the weak continuity of the
velocity on the interface as in FETI transforming the system(8) into




M(1)
uu M(1)

up 0 0 · · · · · · 0 0 T(1)T

M(1)
pu −M(1)

pp 0 0 · · · · · · 0 0 0

0 0
...

...
.. .

...
...

...

0 0
...

...
.. .

. . .
...

...
...

...
...

.. .
.. .

. . .
. . . 0 0

...
...

...
.. .

. . .
. . . 0 0

...

0 0 · · · · · · 0 0 M(N)
uu M(N)

up T(N)T

0 0 · · · · · · 0 0 M(N)
pu −M(N)

pp 0
T(1) 0 · · · · · · · · · · · · T(N) 0 0







U (1)
Γ

P(1)
Γ
...
...
...
...

U (N)
Γ

P(N)
Γ
λ




=




F̃(1)
Γ
−F̃i

(1)

...

...

...

...

F̃(N)
Γ
−F̃i

(N)

0




. (9)

where{T(s)}s=1,N are boolean matrices of elements−1, 0 and 1. The application of
the matrixT(s) to a matrix or a vector extracts and signs the interface components
of that matrix or vector [4]. We next introduce the 0–1 matrixL(s)T that maps the
interface degrees of freedom of subdomainΩ (s) into global interface degrees of
freedom belonging to the interfaceΓI [9]. we develop the system (9) imposing a

unique pressure on the interface as in BDD asP(s)
Γ = PΓ to obtain :

M(s)
uuU (s)

Γ +M(s)
upPΓ +T(s)T λ = F̃(s)

Γ , (10)

M(s)
puU (s)

Γ −M(s)
ppPΓ = −F̃(s), (11)
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N

∑
s=1

T(s)U (s)
Γ = 0. (12)

We can then eliminate the degrees of freedom associated to the velocity in the equa-
tion (10) as in FETI taking into account the possibly singularity of the matrices

M(s)
uu ,s= 1, · · · ,N. Using the previously obtained velocity into the equations(11)

and (12) we get the FETI type interface system:
(

FDP −GI

−GT
I 0

)(
Λ
α

)
=

(
d
−eT

)
(13)

where

F(s)
DP =




(
M(s)+

uu

) (
M(s)+

uu

)
M(s)

up

M(s)
pu

(
M(s)+

uu

) (
M(s)

pp +M(s)
pu

(
M(s)+

uu

)
M(s)

up

)

 , FDP =

N

∑
s=1

B(s)F(s)
DPB(s)T ,

B(s) =

(
T(s) 0

0 L(s)T

)
,GI =

(
T(1)R(1)

u · · · T(Nf )R
(Nf )
u

0 · · · 0

)
, Λ =

(
λ
PΓ

)
,

Nf the number of floating subdomains,R(s)
u ,s= 1, · · · ,Nf store the basis of the ker-

nel of the matricesM(s)
uu andα a combination of them. The interface system (13)

derives from a substructuring strategy using one-level FETI on the velocity and the
primal Schur complement method on the pressure and shares some common ideas
with previous methods. Indeed, the idea of combining dual and primal Schur com-
plement method to solve algebraic systems has been introduced in [3]. A general-
ization of FETI and primal Schur complement has been obtained using A-FETI, a
three-field variant of FETI [6]. In [8], the authors use FETI-DP on the velocity and
the primal Schur complement on the pressure to solve the algebraic system arising
from the discretization of Stokes with a modified Hood-Taylor element.

Interchanging the role ofU (s)
Γ andP(s)

Γ we obtain the matrix

F(s)
PD =



(

M(s)
uu +M(s)

up

(
M(s)+

pp

)
M(s)

pu

)
M(s)

up

(
M(s)+

pp

)
(

M(s)+
pp

)
M(s)

pu

(
M(s)+

pp

)

 , s= 1, · · · ,N. (14)

We have

Lemma 2. Matrices F(s)DP,s= 1, · · · ,N are symmetric positive semi-definite.

Proof. MatricesF(s)
DP,s= 1, · · · ,N are clearly symmetric. For any

(
λ (s)

P(s)
Γ

)
let us

compute the following quantity

(
λ (s)

P(s)
Γ

)T

F(s)
DP

(
λ (s)

P(s)
Γ

)
=



756 Ange B. Toulougoussou and François-Xavier Roux

(
λ (s)

P(s)
Γ

)T

T(s)

(
M(s)+

uu

)
T(s)T T(s)

(
M(s)+

uu

)
M(s)

up

M(s)
pu

(
M(s)+

uu

)
T(s)T

(
M(s)

pp +M(s)
pu

(
M(s)+

uu

)
M(s)

up

)


(

λ (s)

P(s)
Γ

)
=

{
λ (s)+M(s)

upP(s)
Γ

}T
M(s)+

uu

{
λ (s)+M(s)

upP(s)
Γ

}
+P(s)T

Γ M(s)
ppP(s)

Γ . (15)

We have shown that matricesM(s)
pp are positive semi-definite and matricesM(s)+

uu are
known to be positive semi-definite [4]. We can then conclude by (15) that matrices

F(s)
DP,s= 1, · · · ,N are positive semi-definite in general.

The FETI type operatorFDP is thus positive semi-definite in general and we can
solve the system (13) by projected preconditioned conjugate gradient [4]. The suit-
able projectorP is a matrix that projectsΛ onto the null space ofGT

I . The precon-
ditioner we choose is BDD with a local component defined as a weighted sum of

matricesF(s)
PD and a coarse problem using the possibly kernel

(
−M(s)

upR(s)
p

R(s)
p

)
of ma-

tricesF(s)
DP. Define weights

{
D(s)

u

}
s=1,N

and
{

D(s)
p

}
s=1,N

associated with velocity

and pressure respectively and the matrices

C=

(
−D(1)

u M(1)
up R(1)

p · · ·−D(N)
u M(N)

up R(N)
p

D(1)
p R(1)

p · · ·D(N)
p R(N)

p

)
,

B(s)
D =

(
D(s)

u T(s) 0

0 L(s)T D(s)
p

)
, s= 1, · · · ,N.

The BDD algorithm is defined as follows:

3 Theoretical analysis of the condition number

DefineT = ∑N
s=1B(s)

D F(s)
PDB(s)T

D andP0 the PTFDPP− orthogonal projection on the

kernel ofF(s)
DP. Following [9] one can prove

Lemma 3. The algorithm above returns z= M

(
ru

rp

)
, where

M =
(
(Id−P0)T

(
PTFDPP

)
(Id−P0)+P0

)(
PTFDPP

)−1
. (20)

We have

Theorem 1.The algorithm above returns z= M

(
ru

rp

)
, where M is a symmetric

positive definite matrix and cond
(
M,PTFDPP

)
≤ c, where
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(i) Balance the original residual

(
ru

rp

)
by solving the auxiliary problem

CTPTFDPPCµ =CT
(

ru

rp

)
, (16)

(ii) Compute the matrix-vector product
(

λ̄ (s)

P̄(s)
Γ

)
= F(s)

PDB(s)T

D

((
ru

rp

)
−PTFDPCµ

)
, s= 1, · · · ,N, (17)

(iii) Balance the residual by solving the coarse problem

CTFDPCγ =CT

((
ru

rp

)
−PTFDPP

N

∑
s=1

B(s)
D

(
λ̄ (s)

P̄(s)
Γ

))
, (18)

(iv) Average the solutions on the interface

M

(
ru

rp

)
=

N

∑
s=1

B(s)
D

(
λ̄ (s)

P̄(s)
Γ

)
+Cγ. (19)

c= sup





∑N
s=1

∥∥∥∥∥B(s)T P∑N
r=1B(r)

D

(
λ̂ (r)

P̂(r)
Γ

)∥∥∥∥∥

2

F(s)
DP

∑N
s=1

∥∥∥∥∥

(
λ̂ (s)

P̂(s)
Γ

)∥∥∥∥∥

2

F(s)
DP

: GT
I

(
λ̂ (s)

P̂(s)
Γ

)
= 0,

〈(
λ̂ (s)

P̂(s)
Γ

)
,

(
µ̂(s)

Q̂(s)
Γ

)〉
= 0,∀

(
µ̂(s)

Q̂(s)
Γ

)
∈ Ker(F(s)

DP), 1≤ s≤ N

}
. (21)

We omit the proof of the theorem above because it essentiallyfollows [9].

4 Conclusion

We have combined FETI and BDD to solve the discrete Stokes with continuous
pressure. The original system is reduced to an interface system whose matrix is
symmetric positive semi-definite in general and whose unknowns are physically
homogeneous. We have given the operator form of the preconditioner and a result
from which a bound for the condition number could be derived.
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Stable computations of generalized inverses of
positive semidefinite matrices

A. Markopoulos1, Z. Dost́al1, T. Kozubek1, P. Kov́ǎr1, T. Brzobohat́y1, and
R. Kučera1

1 Introduction

Due to the rounding errors, effective elimination of the displacements of “floating”
subdomains is a nontrivial ingredient of implementation ofFETI methods, as it can
be difficult to recognize the positions of zero pivots when the nonsingular diagonal
block ofA is ill-conditioned. Moreover, even if the zero pivots are recognized prop-
erly, it turns out that the ill-conditioning of the nonsingular submatrix defined by the
nonzero pivots can have a devastating effect on the precision of the solution.

Most of the results are related to the first problem, i.e., to identify reliably the
zero pivots. Thus [6] proposed to combine the Cholesky decomposition with the
singular value decomposition (SVD) of the related Schur complementS in order
to guarantee a proper rank of the generalized inverse. A natural modification of
their method is to carry out the Cholesky decomposition as long as sufficiently large
pivots are generated, and then to switch to SVD ofS. The dimension ofS is typically
small, not greater than four for 2D problems or 3m+3 for 3D problems of linear
elasticity, wherem is the number of the last nodes that can be placed on a line.

Here we review our results [2, 5] related to the solution of SPS systems arising
in FETI methods. In particular in the Total FETI, a variant [4] of the FETI domain
decomposition method that implements both prescribed displacements and interface
conditions by the Lagrange multipliers, so that the kernelsof the stiffness matrices
of the subdomains, i.e., their rigid body motions, are knowna priori. We show, us-
ing a suitable (left) generalized inverse, how to reduce thesolution of local SPS
systems to the decomposition of an a priori defined well-conditioned positive def-
inite diagonal blockAJJ of A and application of a suitable generalized inverse of
its Schur complementS. Since the Schur complementS in our approach is typically
very small, the generalized inverse can be effectively evaluated by the SVD. If the
rank of A or a lower bound on the nonzero eigenvalues ofA are known, as hap-
pens in the implementation of TFETI, then the SVD can be implemented without
any “epsilon”. Moreover, if the kernel ofA is known, then the SVD decomposition
can be replaced by effective regularization. Alternatively, we show ([5]) that the
kernel can be used to identify a reasonably conditioned nonsingular submatrix of
A of the maximal order, so thatS= O. Our method can be considered as a variant

1 Centre of Excellence IT4I, V̌SB-Technical University of Ostrava, Czech Republic, 17. listopadu,
15/2172, 708 33 Ostrava - Poruba, e-mail:{alexandros.markopoulos}{zdenek.
dostal}{tomas.kozubek}{petr.kovar}{tomas.brzobohaty }{radek.
kucera}@vsb.cz
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of the regularization method or the LU–SVD method of [6] witha priori choice of
the well-conditioned nonsingular part ofA based on a combination of mechanical
and combinatorial arguments. Related methods which use an information from the
kernel to determine the positions of zero pivots were also proposed by [10, 1].

We review also results of [8], where we proposed a regularization technique en-
abling us to define a non-singular matrixAρ whose inverse is the generalized in-
verse toA. It avoids the necessity to identify zero pivots. The favorable feature of
our regularization is that an extra fill-in effect in the pattern of the matrix may be
negligible.

2 Cholesky decomposition and fixing nodes

We assume thatA is an SPS stiffness matrix of a “floating” 2D or 3D elastic body,
such as a subdomain in the TFETI method. If we chooseM of the totalN mesh
nodes that are neither near each other nor placed near any line, M < N, M ≥ 2 in
2D, andM ≥ 3 in 3D, then the submatrixAJJ of the stiffness matrixA defined by
the setJ with the indices of the displacements of the other nodes is “reasonably”
nonsingular. This is not surprising, asAJJ can be considered as the stiffness matrix
of the body that is fixed in the chosen nodes. It is natural to assume that if fixing
of the chosen nodes makes the body stiff, thenAJJ is well-conditioned. We call the
M chosen nodesfixing nodesand denote byI the set of indices of corresponding
displacements. In this section, we show how to combine this observation with the
regularization of the Schur complement ([11]) or with the LU–SVD method pro-
posed by [6].

Our starting point is the following decomposition of the SPSmatrixA ∈ Rn×n

Ã = PAPT =

[
ÃJJ ÃJI

ÃIJ ÃII

]
=

[
LJJ O

L IJ I

][
LT

JJ LT
IJ

O S

]
, (1)

whereLJJ ∈ Rr×r is a lower factor of the Cholesky decomposition ofÃJJ, L IJ ∈
Rs×r , r = n− s, s= 2M in 2D, s= 3M in 3D, L IJ = ÃIJL−T

JJ , P is a permutation
matrix, andS∈ Rs×s is the Schur complement matrix defined by

S= ÃII − ÃIJÃ−1
JJ ÃJI .

To find P, we proceed in two steps. First we form a permutation matrixP1 to
decomposeA into blocks

P1APT
1 =

[
AJJ AJI

AIJ AII

]
, (2)

where the submatrixAJJ is nonsingular andAII corresponds to the degrees of free-
dom of theM fixing nodes. Then we apply a suitable reordering algorithm onP1APT

1
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to get a permutation matrixP2 which leaves the partAII without changes and en-
ables the sparse Cholesky decomposition ofAJJ. Further, we decomposePAPT as
shown in (1) withP=P2P1. To preserve sparsity we use any sparse reordering algo-
rithm such as symmetric approximate minimum degree, symmetric reverse Cuthill-
McKee, profile and wavefront reduction etc. The choice depends on the way in
which the sparse matrix is stored and on the problem geometry. It is easy to verify
that

A+ = PT

[
L−T

JJ −L−T
JJ LT

IJS+

O S+

][
L−1

JJ O

−L IJL−1
JJ I

]
P, (3)

whereS+ ∈ Rs×s denotes a left generalized inverse which satisfies

S= SS+S.

Sinces is small, we can substitute forS+ the Moore–Penrose generalized inverse
S† ∈ Rs×s computed by the SVD. To see thatS† can be evaluated effectively, first
observe that the eigenvectors ofS that correspond to the zero eigenvalues are the
traces of the vectors from the kernel ofA on the fixing nodes. Indeed, if̃Ae = o,
then

ÃJJeJ + ÃJIeI = o, ÃIJeJ + ÃII eI = o,

and

SeI = (ÃII − ÃIJÃ−1
JJ ÃJI)eI = ÃII eI − ÃIJÃ−1

JJ (−ÃJJeJ) = o. (4)

Thus if we know the defectd of A, which is the case in the problems arising from
application of the TFETI method, we can replaced smallest nonzero eigenvalues of
S by zeros to get the best approximation ofS with the correct ranks−d. Alterna-
tively, we can identify the zero eigenvalues correctly if weknow a lower boundc
on the smallest nonzero eigenvalues ofA. Due to the Schur complement eigenvalue
interlacing property proved by [12], it follows that the nonzero eigenvalues ofSare
also greater or equal toc, so we can replace the computed eigenvalues ofS that do
not exceedc by zeros to get an approximation ofS that complies with our informa-
tion onA. If neither is the case, it seems that the best we can do is to choose some
small ε and to replace the eigenvalues that are smaller thanε by zeros (see, e.g.,
[6, 10]).

It follows from (4) that the kernel ofS is spanned by the trace of a basis of the
kernel ofA on the fixing nodes. Assume that the kernel ofA is known, i.e., we know
R ∈ Rn×d whose columns span the kernel ofA. AssemblingRI∗ by I th rows ofR,
we define the orthogonal projector onto the kernel ofSby

Q = RI∗
(
RT

I∗RI∗
)−1

RT
I∗

and we replaceS+ in (3) by

S∗ = (S+ρQ)−1 = S†+ρ−1Q, ρ > 0.
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We useρ ≈ ‖A‖. To see thatS∗ is a left generalized inverse, notice that

SS∗S= S(S+ρQ)−1S= S
(
S†+ρ−1Q

)
S= SS†S+ρ−1SQS= S.

Such approach can be considered as a variant of regularization by [11]. In the next
section, we show how to carry out the regularization directly onA.

3 Regularization

This section deals with generalized inverses, for which thenecessity to recognize
zero pivots is avoided. We regularizeA ∈ Rn×n using the known matrixR ∈ Rn×d

whose columns span the kernel ofA. Although our regularization is general, i.e., it
works for rectangular matrices (see [8]), we confine ourselfto the SPS matrixA.

Let us introduce the matrixM ∈Rn×d so thatM⊤R is nonsingular. Let us assem-
ble toA the regularized matrixAρ as follows:

Aρ = A+ρMM ⊤, (5)

whereρ > 0 is fixed. The following results are proved in [8].

Theorem 1.The matrixAρ is symmetric, positive definite (and non-singular) and
its inverseA−1

ρ is the generalized inverse toA.

Remark 1.If M = R, we can get the Moore-Penrose inverseA† to A by

A† = A−1
ρ PImA, (6)

wherePImA = I −R(R⊤R)−1R is the orthogonal projector on the image ofA.

Remark 2.If A+ is an arbitrary generalized inverse toA, then the Moore-Penrose
inverseA† is given by

A† = PImAA+PImA (7)

wherePImA is the same as in Remark 1.

Using (7), one can prove that FETI type algorithms are invariant to the choice of
generalized inverses in the sense that each generalized inverse is internally adapted
to the Moore-Penrose one [8]. On the other hand, the Moore-Penrose inverse may
be directly used in computations via the formulas (6) and (7). Although it should
not affect the behavior of the FETI algorithm, it may stabilize computations for
numerically unstable problems; see [9] for the experimental example.

Let us return to computational aspects of the regularization (5). To construct the
regularization term, we use again fixing nodes, in which we fixonly some DOFs to
keep the sparsity pattern ofA in Aρ as small as possible (see Fig. 1). Let us denote
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the set of indices of the fixing DOFs byI and the set of remaining indices byJ. We
assembleM as follows:

M = M̃T , M̃ i,: =

〈
Ri,:, i ∈ I ,
0, i ∈ J,

, i = 1, . . . ,k, (8)

whereRi,: denotes theith row of R andT is a nonsingular matrix which orthonor-
malizes columns of̃M to protect the condition number ofAρ . Obviously,T can be
efficiently computed as the upper triangular factor of the Cholesky decomposition of
M̃⊤M̃ . Finally, ρ is chosen as the maximum diagonal entry ofA that lays between
the minimum and maximum nonzero eigenvalues ofA.

The factorizationAρ = LL ⊤ can be computed by the Cholesky algorithm for
nonsingular matrices. The inverseA−1

ρ (and the generalized inverse) is given by

A−1
ρ = L−⊤L−1. The computational complexity for band matrices is analyzed

in [8]. For the sparse matrices we use a sparse Cholesky factorization in the form
Aρ = PLL⊤P⊤, whereP is the permutation matrix minimizing fill-in using a suit-
able reordering algorithm. The action ofA−1

ρ on a vectorv is implemented as fol-

lows:A−1
ρ v=P(L−⊤(L−1(P⊤v))), where the actions ofL−⊤ andL−1 are evaluated

efficiently using backward and forward substitutions, respectively.

4 Choice of fixing nodes

To getM uniformly distributed fixing nodes we combine a mesh partitioning algo-
rithm with a method for finding mesh centers. The algorithm reads as follows.

ALGORITHM ([2]) Given a mesh andM > 0.

(i) Split the mesh intoM submeshes using the mesh partitioning algorithm.
(ii) Verify whether the resulting submeshes are connected.If not, a graph post-

processing may be used to get connected submeshes.
(iii) Take a node lying near the center of each submesh.

Step 1 can be carried out by a code for graph decompositions such as METIS,
while Step 3 can be efficiently performed using the so-calledPerron vector (a unique
nonnegative eigenvector corresponding to the largest eigenvalue of the mesh adja-
cency matrix) whose maximal entry enables us to approximatethe center of the
submesh. For more details see [2].

The number of DOFs given byM fixing nodes may be larger than the dimension
of the kernel ofA. It is useful for engineering problems with complicated geometry.
The usage ofM instead ofR in the regularization technique of Section 3 enables
us to analyse cases when the most rows ofR are replaced by zeros inM . Then the
regularization term inAρ influeces only few entries ofA.
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5 Cholesky decomposition and the kernel of A

If the kernel ofA is known, then we can use it to identify a submatrixAJJ of A of a
maximal order. Since the Schur complement ofAJJ is the zero matrix, the solution
of a consistent system withA reduces to the Cholesky decomposition ofAJJ. The
following estimate proved in [5] indicates that we can use information obtained from
the kernel ofA to identify suitable zero pivots.

Proposition 1. Let A ∈ Rn×n denote a symmetric matrix whose kernel is spanned
by the full column rank matrixR ∈Rn×d with orthonormal columns, so that d is the
defect ofA. Let I= {i1, . . . , id}, 1≤ i1 < i2 < · · ·< id ≤ n, denote a set of indices,
and let J= N − I , N = {1,2, . . . ,n}. Then

λmin(AJJ)≥ λ min(A)σ4
min(RI∗), (9)

whereλ min(A) andσmin(RI∗) denote the least nonzero eigenvalue ofA and the least
singular value ofRI∗.

This strategy choosesd fixing DOFs by the orthonormalization ofR and apply-
ing the Gaussian elimination with complete pivoting to transform orthonormalized
matrixR into the column-wise echelon form. The position of the first nonzero entry
in each column gives the degree of freedom which will be fixed.For more details
we refer to [5].

6 Numerical examples

The performance of our strategies is tested on the stiffnessmatrix A of the elas-
tic three-dimensional cube made of steel and discretized bytrilinear bricks with
the Neumann boundary conditions (see Fig. 1.(a)). To illustrate the effect of fix-

Fig. 1 (a) No strategy, (b) GP strategy, (c) Geometrical strategy, (d) Uniform strategy

ing nodes, we carried out the computations for different strategies of choosing fix-
ing nodes depicted in Fig. 1. HereGeometrical strategyis the simplest one and
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is based on finding fixing nodes using simple geometrical and combinatorial argu-
ments: chooseM mesh nodes that are mutually as far apart as possible and thatare
not placed near any line.

In Table 1, we report the regular condition numbercond(A) (ratio of the largest
and the smallest nonzero eigenvalues), the condition number of the nonsingular part
AJJ decomposed by the Cholesky decomposition, and the regular condition number
cond(A+). The results of experiments agree with the intuitive rule that fixing nodes
distributed in a more regular pattern improves the conditioning ofAJJ. In particular,
comparing variants (c) and (d), we can observe that placing the eight fixing nodes
inside the body can result in more stable generalized inverse than placing them at
the corners. It follows that the matrices arising in the original FETI method or its
TFETI variant are typically better conditioned than those arising in the FETI–DP.
Notice that the worst conditioning ofAJJ andA+ can be observed in variant (a)
which is a possible result of the default strategy used by Farhat and Ǵeradin [6].

Table 1 Characteristics ofA andA+ in dependence on the distribution of fixing nodes.

No strategy GP strategy Geometrical strategy Uniform strategy
cond(A) 4.91E+02 4.91E+02 4.91E+02 4.91E+02

cond(AJJ) 2.90E+07 3.52E+05 9.92E+03 1.90E+03
cond(A+) 2.55E+07 3.52E+05 1.32E+04 1.90E+03

Table 2 shows results of numerical tests based on the regularization. The rows
iter or iter† report iterations of the TFETI algorithm for the regularizations com-
puted by strategies (b)-(d) or by the Moore-Penrose inverseobtained from them
using (7), respectively. It confirms invariancy with respect to the choice of the gen-
eralized inverse. The condition numbers in the next two rowsagree with the same
heuristic as in Table 1, i.e., the conditioning ofA−1

ρ is improved when the fixing
DOFs are distributed in a more regular pattern. The CPU timesin the fifth and sixth
rows required for computing the Cholesky decomposition andthe actions of the
generalized inverses, respectively, illustrate the computational invariancy that is due
to the negligible fill-in. It is seen from the number of non-zero entries in the last row
of the table.
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Table 2 Characteristics ofA andA−1
ρ in dependence on the distribution of fixing nodes.

GP strategy Geometrical strategy Uniform strategy
iter 22 22 22
iter† 22 22 22
cond(A) 4.91E+02 4.91E+02 4.91E+02
cond(A−1

ρ ) 3.53e+05 1.30e+04 3.02e+03
chol [sec.] 0.2897 0.2750 0.2567
action [sec.] 0.0215 0.0209 0.0210
nnz chol 2775956 2762089 2690104
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Parallel implementation of Total-FETI DDM
with application to medical image registration

Michal Merta1, Alena Vǎsatov́a1, Václav Hapla1, and David Hoŕak1

1 Introduction

The main task of image registration is to determine an optimal spatial transformation
such that two (or more) images become, in a certain sense, similar. Therefore, it
plays a crucial role in image processing if there is a need to integrate information
from two (or more) source images. These images usually show the same scene, but
taken at different times, from different viewpoints or by different sensors.

Image registration is used in various areas. In medical applications it serves to
obtain more complete information about the patient (e.g., to monitor a progression
or regression of a disease, to align pre- and post- contrast images, or to compare
patient’s data with anatomical atlases), to compensate a motion of a subject during
medical scanning, to correct calibration differences across scanners etc. [10, 12].
For more examples of usage of medical image registration see[8].

The first attempts at medical image registration focused mainly on the process-
ing of brain images. Hence, a rigid body approximation was sufficient, because of a
relatively small possibilities for deformation inside theskull. Later, it was extended
to the affine registration. However, rigid or even affine approximations are usually
not sufficient for a registration of a human body. Therefore,the research in medical
image processing is now focused on the development of non-rigid registration meth-
ods. One of them is the elastic registration introduced by Broit [1]. In this method,
images are considered to be 2D elastic bodies. Volume forcesdefined from ‘differ-
ences’ of the two images then deform one image so that it becomes similar to the
other. The disadvantage of this linear model is that it assumes small deformations.
For large deformations it can be replaced by the viscous fluidmodel [2].

With the increasing amount of data provided by medical instruments like CT or
MRI, a parallel implementation of image registration seemsto be necessary. In this
work we combine the method of elastic registration togetherwith the Total-FETI
method [3] to obtain scalable algorithm for registration ofmedical images.

1 Centre of Excellence IT4Innovations, VŠB-Technical University of Ostrava, tř. 17.
listopadu 15/2172, Ostrava, 708 33 Czech Republic, e-mail:{michal.merta}{alena.
vasatova}{vaclav.hapla}{david.horak}@vsb.cz
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2 Elastic registration

Image registration usually consists of three parts: choosing an appropriate transfor-
mation model, choosing a distance (similarity) measure, and optimization process.
Let us use the notation from [10] and briefly describe the process.

In order to find a transformation of the template imageT, such that after its
application it becomes, in a certain sense, similar to the reference imageR, we define
a suitable distance measureD and minimize the distance betweenR andT with
respect to searched transformationϕ:

min
ϕ:R2→R2

D [R,T;ϕ] , (1)

whereD [R,T;ϕ] := D
[
R,Tϕ

]
.

However, this approach has its drawbacks: a solution is not necessarily unique
and it actually may not exist. Thus, the problem (1) is ill-posed. Moreover, addi-
tional implicit constraints can emerge, e.g., in medical images no additional cracks
or folding of the tissue are allowed (the transformation should be diffeomorphic).
Both these situations can be solved by adding a regularizer [10].

Transformation model of elastic registration is based on a physical motivation
that the images are two different observations of an elasticbody, one before and one
after a deformation. The transformationϕ : R2→ R2 is split into the identity part
and the displacementu : R2→ R2:

ϕ(x) := x−u(x). (2)

As the regularizer we use the linearized elastic potential

P [u] :=
∫

Ω

µ
4

2

∑
j=1

2

∑
k=1

(
∂x j uk+∂xku j

)2
+

λ
2
(divu)2dV, (3)

whereλ andµ are the Laḿe parameters. The regularizer has the meaning of volume
forces, which implicitly constrain the displacement to fulfill a smoothness criteria.
We obtain the following regularized problem which is more suitable for a numerical
realization:

J [u] = min
v:R2→R2

J [v] , where J [v] := D [R,T;v]+αP [v] . (4)

Here, the parameterα ∈R+ controls the strength of the smoothness of the displace-
ment versus the similiarity of the images. In the case of the elastic registration it is
usually omitted, since it can be included in the Lamé parameters. Therefore, let us
assumeα = 1 in what follows.

A distance measure is a cost function which determines a similarity of two im-
ages. We choose the so-called sum of squared differences (SSD):
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D [R,T;u] :=
1
2
‖Tu−R‖2L2(Ω), (5)

whereTu(x) := T(x−u(x)). The volume forces

f (x,u(x)) := (R(x)−Tu(x))∇Tu(x), (6)

f :R2→R2, derived from its Ĝateaux derivative, push a transformed image into the
direction of a reference.

Images are represented by the compactly supported mappingsR,T : Ω → R,
whereΩ := (0,1)2. T(x) andR(x) denote the intensities of images at the spatial
positionx; we setR(x) := 0 andT(x) := 0 for all x /∈Ω .

By applying the Ĝateaux derivative to the elastic potential (3) we obtain the
Navier-Laḿe operator of classical elasticity. The displacement of theelastic body
and therefore the transformation of the imageT is then obtained as the solution of
the partial differential equation with zero Dirichlet boundary condition:

{
µ∆u(x)+(λ +µ)∇divu(x) = − f (x,u(x)) in Ω ,

u(x) = 0 on∂Ω .
(7)

There are several possibilities how to overcome the non-linearity of the previous
equation. In the simplest case, when the difference betweenthe reference and the
template image is small enough, we set

f (x,u(x)) := f (x,0) = (R(x)−T(x))∇T(x), (8)

and obtain a linearized problem. Otherwise, we solve the problem iteratively using
the Algorithm 1. The similar algorithm is presented in [10],where the finite differ-

Algorithm 1 Fixed-point iteration for the solution of Equation (7)
T0(x) := T(x)
f0(x) := (R(x)−T0(x))∇T0(x)
for k= 1 to K do

solve (7) foruk with f (x,u(x)) := fk−1
Tk(x) := Tk−1(x−uk)
fk(x) := (R(x)−Tk(x))∇Tk(x)

end for

ence method is used for the solution of the linearized problem.
We discretize the linearized problem using a finite element method with piece-

wise affine basis functions on triangular elements. To approximate the gradient of
Tu, which is necessary for the evaluation of forcesf , we use a convolution with an
appropriate kernel of the Sobel operator (see, e.g., [11]).The solution can be easily
parallelized by the Total-FETI method described in the following part.
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3 Parallelization using Total-FETI method

The numerical solution of the linearized version of the problem (7) can be effec-
tively parallelized by the Total-FETI (TFETI) method whichis a variant of the FETI
method originally proposed by Farhat et. al. [6]. The methodis based on the decom-
position of the spatial domain into non-overlapping subdomains. The continuity of
the solution among subdomains is enforced by Lagrange multipliers. Total-FETI
by Dost́al et al. [3] simplifies the inversion of stiffness matrices of subdomains by
using Lagrange multipliers also to enforce the Dirichlet boundary condition. Using
this approach, all subdomains are floating and their stiffness matrices have the same
kernels formed by the vectors of the rigid body modes.

To apply the FETI based domain decomposition, we partition the rectangular
domainΩ , representing the processed image, intoN geometrically identical rectan-
gular subdomainsΩs. We denoteKs, fs, us, andBs the subdomain stiffness matrix,
the subdomain load vector, the subdomain displacement vector, and the subdomain
constraint matrix, respectively. Let us also denoteRs as the matrix with columns
forming the basis of the kernel ofKs. Notice, that because of this regular decompo-
sition, the matricesKs, as well asRs, are the same for all subdomains. Therefore,
they are computed only once and then redistributed among processors. Eventually,
they can be stored in a shared memory.

After the decomposition we obtain the quadratic minimization problem with
equality constraints

min
1
2

uTKu−uT f s. t. Bu= c, (9)

where

K :=




K1
. . .

KN


 , f :=




f1
...
fN


 , u :=




u1
...

uN


 , B := [B1, . . . ,BN] . (10)

Applying the duality theory to the equivalent saddle-pointproblem and establish-
ing the notation

F := BK†BT , G := RTBT , d := BK† f , e := RT f ,

whereK† denotes a generalised inverse matrix satisfyingKK†K = K (see, e.g., [4]),
andR denotes the block-diagonal matrix with blocksRs, we obtain the following
minimization problem:

min
1
2

λ TFλ −λ Td s.t. Gλ = e. (11)

We can further homogenize the equality constraintsGλ = e to Gµ = 0 by decom-
posingλ into µ ∈ KerG andλ̃ ∈ ImGT as
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λ := µ + λ̃ . (12)

We getλ̃ easily byλ̃ = GT(GGT)−1e. To enforce the conditionGµ = 0 we intro-
duce the projectorP := I −Q to the null space ofG. HereQ := GT(GGT)−1G is
the projector onto the image space ofGT . The final problem forµ reads (note that
Pµ = µ):

PFµ = P(d−F λ̃ ). (13)

This problem can be effectively solved by the conjugate gradient method.
One of the advantages of the approach based on the Lagrange multipliers is the

possibility to include other constraints to the matrixB than ‘gluing’ and Dirichlet
conditions. One possibility is to use it to enforce the rigidity of certain parts of
the processed image. These rigid parts can represent, e.g.,bones. As mentioned in
Section 2, the new coordinatesϕ(x) of any pointx after transformation are

ϕ(x) := x−u(x). (14)

Using rigid body motions with a linearized rotation, this transformation can also be
described by

x−u(x) = Rxa, (15)

where

Rx :=

[
−x2 1 0

x1 0 1

]
, (16)

anda is the vector of motion parameters (shifts and rotation). Conditions necessary
to enforce a rigidity of a motion of two point ˜x, ỹ can be derived from the following
system of equations {

x̃−u(x̃) = Rx̃a,

ỹ−u(ỹ) = Rỹa.
(17)

We eliminatea and obtain

−ou1(x̃)− pu2(x̃)+ou1(ỹ)+ pu2(ỹ) = p2+o2, (18)

wherep := ỹ2− x̃2, o := ỹ1− x̃1, andu(x) := (u1(x),u2(x)). These conditions are
added to appropriate positions in the matrixB. To reduce the number of additional
constraints, one can enforce the rigidity only on the boundaries of given areas.

4 Data parallelization and implementation using Trilinos
framework

Parallelization of FETI/TFETI can be implemented using SPMD technique – dis-
tributing matrix portions among the processing units. The distribution of primal data
is straightforward because of the block-diagonal structure of the system stiffness
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Ω
Ω Ω

Ω Ω

1 2

3 4

Fig. 1 Total-FETI domain decomposition of the 2D rectangular area. Dirichlet boundary condi-
tions are enforced by Lagrange multipliers.

matrix. Each processor is assigned one rectangular part of the imagesR andT, and
the corresponding primal data – one block of the global stiffness matrixK, one block
of the kernel matrixR, and corresponding parts of the constraint matrixB, solution
vectoru, and right-hand side vectorf . On the other hand, if we want to accelerate
also the dual actions we have to distribute the dual objects as well. We distribute
the matrixG into vertical blocks. All dual vectors are distributed accordingly to this
(for more details see [9]).

For the parallel implementation we use the Trilinos framework [7] which is a
collection of relatively independent packages developed by Sandia National Lab-
oratories. It provides a tool kit for basic linear algebra operations (both serial and
parallel), direct and iterative solvers to linear systems,PDE discretization utilities,
etc. Its main advantages are object oriented design, high modularity and use of mod-
ern features of C++ language such as templating. It is currently in version 11.

In our codes we use the Epetra package as a base for linear algebra operations.
It provides users with distributed dense vectors and matrices, as well as sparse ma-
trices in compressed row format (Epetra_CrsMatrix ), linear operators, dis-
tributed graphs, etc. As the object-oriented wrapper to direct linear system solver
SuperLU, which is used for the solution of the coarse problem(application of
(GGT)−1) and the application of the pseudoinverseK†, we use the Amesos package.

5 Numerical experiments

The numerical experiments were performed on the cluster consisting of 16 SMP
nodes, each of the nodes is equipped with two Intel Xeon QuadCore 2.5 GHz CPUs
and 18 GB of RAM. Table 1 shows the results of the scalability tests for the data
obtained from Department of Oncology of University Hospital of Ostrava. We per-
fomed two experiments – one with no additional constraints,and the second on the
same data but with a rigidity of the bones enforced by additional Lagrange multipli-
ers. The processed data are depicted in Figure 2.
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The problem is linearized using the approach (8). For the first experiment, the
number of CG iterations is relatively low. For these numbersof dual variables the
coarse problem (which is usually the main bottleneck of the FETI methods) is not
big enough to affect the scalability and the increasing timeper iteration is caused
mainly by the communication and vector redistribution routines within the Trilinos
framework. The second experiment shows that the additionalconstraints lead to the
increase of the number of CG iterations. To reduce this number we can use the cheap
lumped preconditionerF−1 = BKBT (see [5]).

Table 1 Performance of the TFETI implementation for varying decomposition and discretization

Number of subdom. 1 4 16
Primal dimension 20,402 81,608 326,432
Dual dimension 808 2,424 8,080
CG time [s] 0.50 1.53 4.35
CG iterations 25 39 47
Time per iteration [s] 0.02 0.04 0.09

Example 1: Without rigid body parts

Number of subdom. 1 4 16
Primal dimension 20,402 81,608 326,432
Dual dimension 903 2,641 8,254
CG time [s] 41.01 34.54 57.44
CG iterations 2467 990 665
Time per iteration [s] 0.01 0.03 0.08

Example 2: With rigid body parts

(a) ImageR (b) ImageT (c) ImageTϕ

(d) Difference betweenRandT (e) Difference betweenR and
Tϕ

(f) Boundaries of rigid parts
(bones)

Fig. 2 Processed data - computer tomography of patient’s chest. We searchfor a transformation
ϕ of the imageT (in exhalation) so it becomes similar to the imageR (in inflation). For this
experiment, we setµ = 5×105 andλ = 0.
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6 Conclusion

We have demonstrated the applicability of the Total-FETI method to a paralleliza-
tion of a process of image registration. Our implementationwas tested on 2D com-
puter tomography data obtained from University Hospital ofOstrava. Because of
relatively low resolution of the images the total number of unknowns in the result-
ing systems did not exceed hundreds of thousands. However, these results enable us
to focus on the development of domain decomposition-based methods for the im-
age registration of 3D data, where the number of unknowns caneasily reach tens or
hundreds of millions.
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Finite Element Analysis of Multi - Component
Assemblies: CAD - based Domain Decomposition

Kirill Pichon Gostaf1, Olivier Pironneau1, and François-Xavier Roux1

Abstract: We apply domain decomposition to carry out finite element simulations
of multi-component computer aided design (CAD) assemblies. The novelty of our
research is the CAD-based domain decomposition. We consider design parts as
independent sub-domains and reuse assembly topology to define regions, where
the interface boundary conditions should be applied. The Dirichlet-Neumann [1],
Neumann-Neumann [2] and FETI [3] methods for non-matching triangulations have
been studied. We endorse the proposed framework with numerical experiments and
we focus on the essence of its parallel implementation.

1 Introduction

Computer aided design (CAD) and finite element (FE) modelingare standards in
a concept to manufacture industrial chain. Realistic FE simulations require huge
computational resources and may last unacceptably long. Inthis paper, we present a
comprehensive framework that allows to automate and parallelize numerical simu-
lations of multi-component CAD assemblies. We refer to the work of Pironneau [4]
et al., where the authors have proposed to use constructive solid geometry modeling
as a basis for spatial domain decomposition; see [6, 7, 8, 9] for related work on three
dimensional contact problems in solid mechanics.

The novelty of our research is the CAD-based domain decomposition method.
We consider design parts as independent sub-domains. Then we reuse assembly
topology to define regions where the interface boundary conditions should be ap-
plied. Our motivation is to automate FE management of an existing CAD data, i.e.
to update only the concerning meshes when CAD parts are modified. In addition, the
method aims to regularize mathematical models when using various material prop-
erties (steel, cooper, rubber etc.). The method is inherently parallel and therefore
perfectly suited for hight performance computing.

1 Laboratoire Jacques-Louis Lions, UPMC, France, e-mail:{gostaf}{pironneau}{roux}@
ljll.math.upmc.fr
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2 CAD-based Domain Decomposition

Generally, a FE model of an entire CAD prototype takes several days to be properly
defined. Once a pre-processing stage is completed (a global mesh, loadings and
constraints are generated), adaptive refinement procedurerequires communication
with CAD kernel at each computational iteration. Meanwhile, engineering design
changes are made on a daily basis at the CAD level, and the meshgenerally may not
follow the changes. Hence, the FE model cannot be updated within such timespan.

Assembly-driven decomposition

The application of assembly driven domain decomposition allows to automate the
above framework. We consider each component of a CAD assembly as an indepen-
dent sub-domain. Triangulations are generated independently and could be further
updated. Variational formulations are then explicitly written for each sub-domain.
Inter-domain continuity conditions are set according to the domain decomposition
algorithm.

Let {P1, ...,Ps} refer to a set of assembly components (design parts), withs≥ 2.
We define{Ω1, ...,Ωs} to be a set of the corresponding computational sub-domains.
An illustration is given in Fig. 1.

Fig. 1 An assembly-driven
domain decomposition. De-
sign parts are considered as
independent computational
sub-domains.

Modeling accuracy

Solid parts are generated independently of the FE process, yet they are manipulated
by FE algorithms after discretization. For a manifoldM (a boundary of a solid part),
we define

H = diam(M) = sup
x1,x2∈M

|x1−x2|

along with the ”smallest feature length”l (the smallest hole, fillet, chamfer etc.). Ac-
cording to the CAD documentation [10], parts are initially created with the relative
accuracyδ r

CAD which satisfies

10−6 6 l/H < δ r
CAD 6 10−2
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CATIA modeling platform [11] allows to design parts with

10−6 6 l , H 6 103

however an option
10−8 6 l , H 6 1

is available to design small parts, but the module has limited implementation.

Initialization of inter-component contact regions

We propose to reuse ”assembly constrains” (data on parts relative position stored
in a CAD assembly file) in order to generate an initial list of the contact regions
(called contact faces). LetS denote a set of initial contact faces between all adjacent
assembly components (solid parts)

S= {Pi ∩∗Pj} 1≤ i 6= j ≤ s

where∩∗ stands for a Boolean cut operator (intersection of manifolds). The number
of all possible contact pairs is bounded by the binomial coefficient

dim(S)≤
(

s
2

)

In practice, for CAD assemblies, the number of inter-component contact faces is
much smaller than the binomial coefficient and often satisfies

dim(S)∼ O(s)

Definition 1. Two objectsA⊂ Rd andB⊂ Rd, d≥ 1 are geometrically equal if the
setA is equivalent to the setB.

Definition 2. Topological equivalence - Two objects are topologically equivalent if
there is a homeomorphism between them.

In the following, a contact faceF is a set of patches; a patch is defined by
four NURBS or B-spline curves. LetFi, j andF j,i be the opposite contact faces
belonging to the adjacent componentsPi andPj , respectively. Then,Ti, j andT j,i be
a discretization of the above contact faces. In order to build

Ti, j = T j,i (1)

we require both geometrical and topological equivalence ofFi, j andF j,i . However,
(1) is hard to achieve, since solid models are built with onlya fixed accuracy.

Remark: Obviously, matching triangulationsTi, j = T j,i might be generated
within an additional computational cost. Unfortunately, for simulations involving
sliding, mixed finite elements (shape, order) or discontinuities in material coeffi-
cients matching triangulations are hard to maintain.
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Geometric discontinuities across contact faces

In practice, most contact regions are either non-planar or have curved boundaries.
When meshes are generated independently,Ti, j andT j,i often appear different, ow-
ing to round-off errors. As a result, geometric discontinuities are certain for non-
matching triangulations, which is clearly seen in Fig. 2.

Let u1h andu2h be discrete functions defined on the triangulationsT1,2 andT2,1,
respectively. ForT1,2 6= T2,1 the computation of a jump operator

u2h(x)−u1h(x)

on contact faces is not properly defined (not unique). Indeed, whenΩh is a polygonal
approximation ofΩ , numerical integration of boundary integrals will not be equal
on T1,2 6= T2,1. In this context, we are interested to compute the value of a finite
element functionuh(y) slightly outside its domain of definition, namely aty ∈ R3

close toΩh in the sense
min
x∈Ωh

|x−y|< ch

wherec∈ R+, andh is the discretization parameter (mesh size).

Assume thatΩh is triangulated into tetrahedral elements. Let{v0, ...,v3} be
the vertices of a tetrahedral elementT close toy. The barycentric coordinates
{λ0, ...,λ3} of y with respect toT satisfy

3

∑
i=0

λi = 1 and y=
3

∑
i=0

λi vi

When a pointy does not belong to the discrete domain, we shall define

uh(y) =
3

∑
i=0

λi uh(vi)

where the verticesvi are those of the nearest tetrahedral element. We use the same
approach for aP2 or higher Lagrangian finite element.

Fig. 2 Geometric discontinuity across the contact region in case of non-matching triangulations.
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Parallel implementation

Depending on the computer architecture, we propose two implementation schemes:
the first is suitable for small commodity clusters; the second fits massively parallel
architecture (HPC). LetNcpu be the number of available CPUs, processor cores,
that are used for a FE simulation. Lets be the number of assembly components.
Reasonably, one can expectNcpu∼ s for small or intermediate commodity clusters
andNcpu>> s for HPC machines. Fig. 3 (left) illustrate the case, where three sub-
domains are assigned to a single process, i.e.cpu2 , and solved in sequence; the
right chart in Fig. 3 shows the case, where each sub-domain istreated in parallel.
Inside one sub-domain either algebraic mesh partitioning or multi-threading is used
to parallelize a local solver.

Global continuity

solver @ cpu 1

Local solvers: cpu 2...4

@ cpu 2
@ cpu 3

@ cpu 4

Global continuity

solver @ cpu 1

Algebraic mesh splitting or

multi−threading: cpu 2...N

Assembly components

Fig. 3 Parallel implementation for small commodity clusters (left) and HPC systems (right).

Assume that one MPI process lives on each multi-core unit, and OpenMP par-
allelization occurs below, i.e. inside the multi-core NUMAunit [12, 13]. Actually,
a good practice for computational performance is to set the number of OpenMP
threads equal to the physical number of cores inside one NUMAnode. Fig. 4 de-
picts the scalability results of a multi-threaded CG solverrunning on a Cray XE6
node (left) and SGI Altix UV 100 shared memory cluster. We observe almost linear
speed-up,×6 and×8, respectively, for threads placed inside a single multi-core die.
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Fig. 4 Scalability results of a multi-threaded CG solver: Cray XE6 (left), SGI Altix UV (right).
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3 Numerical Experiments

We consider the case of a linear elasticity. The model problem allows to describe
the displacementu = (u1,u2,u3)

t of an elastic body in its equilibrium position
under the action of an external body forcef = ( f1, f2, f3)t and a surface charge
gN = (gN1,gN2,gN3)

t distributed on∂ΩN. Without getting technical about the spaces
involved, i.e. the displacement weighting and trial solution W andV, for details
see [15], the weak formulation for a problem of linear elasticity reads: findu ∈ V
such that for allw ∈W

a(u,w) = F(w)

with

a(u,w) =
∫

Ω
λ (∇ ·u)(∇ ·w)dx+

∫

Ω
2µ ε(u) : ε(w)dx

F(w) =
∫

Ω
f ·wdx+

∫

∂ΩN

gN ·wds

whereλ andµ are the Laḿe parameters, andε(u) is the infinitesimal strain tensor.

We have discretized the above problem using aP2 finite element. The FE model
consists of three sub-domains, each triangulated independently, see Fig. 5. When
working with fine meshes, the finest sub-domain contains roughly 3.6 million un-
knowns. We have used 4 computational nodes of a Cray XE6, witha total of
96 cores. The tasks were executed by 4 MPI processes each with24 OpenMP
threads, see Fig. 3 (right) (one MPI for a global continuity solver, one MPI per
sub-domain). Three domain decomposition algorithms for non-matching meshes
(Dirichlet-Neumann, Neumann-Neumann and FETI) have been implemented using
a modified version of the integrated environmentFreeFem++ [14].

Fig. 5 A three component assembly. Non-matching triangulations are clear.
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For simplicity reasons (to avoid floating sub-domains), we have set that each sub-
domain has a part of its boundary belonging to a Dirichlet datum u = gD on ∂ΩD

(bolt holes of the left and right components, a back face of the middle component).
All components are subject to the gravitational force. Portion of a front face of the
right component is subject to a surface charge. We have setE=210 GPa,ν = 0.3,
E=105 GPa,ν = 0.34 andE=117 GPa,ν = 0.33 for the left, middle and right com-
ponent, respectively; recall:λ = ν E

(1+ν)(1−2ν) andµ = E
2(1+ν) . For each sub-domain,

we have set the initial solutionu(0)
ih = (0,0,0)t .

On Fig. 6, we have visualized the computed displacements at iterations 1, 2 and
10; the computational time was 73 seconds per a single globaliteration in the FETI
method (fine meshes). The rate of convergence is shown in Fig.7 for the Dirichlet-
Neumann and Neumann-Neumann methods, respectively. The FETI method ex-
hibits performance similar to the Neumann-Neumann method.The computations
have been repeated for quasi-uniform coarse, medium and finetriangulations; for
the mixed test we have used coarse, fine, medium triangulations for the left, middle
and right component, respectively.

Fig. 6 The FETI method for non-matching triangulations. Lineal elasticity problem. Displacement
field at iterations: 1, 2, 10.

4 Conclusions

We have introduced a comprehensive framework that allows toautomate numer-
ical simulations of multi-component CAD assemblies in the sense that meshes
can be independently updated for each component. This paperhas presented the
CAD-based domain decomposition method. We have implemented the Dirichlet-
Neumann, Neumann-Neumann and FETI methods for non-matching triangulations.
Numerical results have indicated that all above methods arehighly accurate finite
element approximations for problems of linear elasticity.We have compared con-
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Fig. 7 RelativeL2 error for the Dirichlet-Neumann (left) and Neumann-Neumann (right) methods.
The curves depict different levels of component mesh resolutionH/h.

vergence properties of the three methods. The Dirichlet-Neumann method exhibits
better convergence and is the most simple to implement.
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A finite volume Ventcell-Schwarz algorithm for
advection-diffusion equations

Laurence Halpern1 and Florence Hubert2

1 Introduction

Consider a two-dimensional domainΩ , and the boundary value problem

L u :=−div(ν(x)∇u)+div(b(x)u)+η(x)u= f , (1)

with homogeneous boundary conditionu = 0 on the boundary∂Ω . The Ventcell-
Schwarz iterative method has been introduced in [9] for the resolution of (1) in
parallel. A nonoverlapping decomposition ofΩ into two subdomainsΩ j is given,
with common boundaryΓ . The algorithm defines a sequence of solutionsun

j of
equation (1) inΩ j , related by two transmission conditions, for(i, j) = (1,2) or
(2,1):

(ν∂n j −
1
2

b ·n j +Λ)un
j = (−ν∂ni +

1
2

b ·ni +Λ)un−1
i onΓ .

The boundary operatorΛ involves second order derivatives along the boundary. In
the case whereΓ is a vertical line, it can be written asΛφ = pφ −q∂y(ν∂yφ), with
two real parametersp andq to be chosen adequately. By Lax-Milgram theorem, if
ν ≥ ν0 > 0 andη + 1

2div(b)> 0, the well-posedness of the boundary value problem
is ensured as soon asp andq are positive. Ifq = 0, Λ reduces to Robin operator,
first used in [10]. Numerical evidences with a finite element scheme were given in
[9] that these transmission conditions outperform significantly the Robin-Schwarz
algorithm . Further analysis has been conducted in [5] in a model case, where the
coefficientsp andq were obtained by optimization of the convergence factor of the
algorithm, defined for two half planes, in the Fourier variables. Asymptotic values
in terms of the discretization parameters were given (see Section 4).

The discrete counterpart of the algorithm in the Robin caseq = 0 has been an-
alyzed first in [1] and extended in [3] and [2] in the finite volume framework. For
an analysis in the finite element context see [6]. The study ofthe Ventcell case
(p,q> 0) is, as far as we know, new. The scheme is fully described forthe first time
in this paper, and simulations are presented. The error analysis and the proofs of
well-posedness and convergence will appear in an extended paper [7].

The first step, in section 2, is to write a finite volume scheme for the discretization
of the subdomain problem. We use a two point flux approximation for the diffusive
flux and a family of discrete convective fluxes as in [4], specially designed to handle
the boundary condition. The discretisation of the boundaryoperator appearing in (1)

1 LAGA, UMR 7539 CNRS, Universit́e PARIS 13, 93430 VILLETANEUSE, FRANCE, e-mail:
halpern@math.univ-paris13.fr ·2 Universit́e Aix-Marseille, LATP, 39 rue F. Joliot
Curie 13 453 Marseille Cedex 13, FRANCE e-mail:florence.hubert@univ-amu.fr

783



784 Laurence Halpern and Florence Hubert

is performed. Non conforming meshes on the interface are considered as they can
be useful for local refinement, see [8] for large scale computations.

The discrete Schwarz algorithm is described in section 3. Inopposition to the
Robin case, the convective flux on the interface has to be modified to get the con-
vergence towards the approximation of (1) onΩ .

Finally, numerical examples illustrate the properties of the scheme , among which
the improvement of the algorithm over the Robin algorithm.

2 Finite volume discretization for Ventcell transmission
condition

We first introduce the necessary tools for finite volume design in the case of elliptic
equation with mixed boundary conditions, Dirichlet onΓD ⊂ ∂Ω and possibly Vent-
cell (2) onΓ ⊂ ∂Ω (see [3] for the standard part of the notations).
Admissible MeshesLet Ω be an open polygonal set,M a family of polygonal
control volumes such that̄Ω = ∪K∈MK, with K ∩ L = /0 if K 6= L. M is anadmis-
sible finite volume meshif there exists a family of points(xK)K∈M that satisfies
(xK ,xL) ⊥ σ if σ = ∂ K ∩ ∂ L. If all control volumesK are triangles, the family of
circumcenters of the triangles satisfies this orthogonality condition. The set of all
edgesσ of control volumes is denoted byE . It is divided into three sets: the edges
located inside the domainΩ , E int = {σ ∈ E /σ = ∂ K ∩ ∂ L}, the edgesE D located
on an external Dirichlet boundaryΓD, and the edgesE Γ located onΓ . Finally, for
anyK in M, E K stands for the edges of its boundary∂ K.

For any σ ∈ E K , nKσ is the outward-pointing unit vector orthogonal toσ ,
dK,σ > 0 the distance fromxK to σ , dσ = dK,σ if σ ∈ E D∪E Γ anddσ = dK,σ +dL,σ
is the distance betweenxK andxL if σ = ∂ K ∩∂ L ∈ E int .

Let |E Γ | be the cardinality ofE Γ , the edges ofE Γ are reordered as{σi}, with
σi ∩σi+1 reduced to a single point denoted byxi+ 1

2
. The control volume associated

to σi is denoted byK i .
For eachK ∈M or σ ⊂ Γ , |K| denotes the area ofK, and|σ | is the length ofσ .
The complete admissible finite volume mesh for the boundary value problem is

T =M∪E Γ . Figure 1 summarizes these notations.
Composite meshesThe subdomainsΩ j are endowed with admissible meshesT j =

M j ∪E j
Γ , with two different meshes onΓ . The meshesT1 andT2 are said to be

compatible if they coincide onΓ or equivalently ifE 1
Γ = E 2

Γ . We then defineE Γ =
E 1

Γ = E 2
Γ . Any non compatible couple of meshes (T1, T2) is made compatible by

redefining the edges onΓ : in the example of Grid # 2 in Fig. 2, #E K = 5 for any
control volumeK ∈M1 touchingΓ . An edge ofE Γ is ∂ K1∩∂ K2 with K i ∈Ti .

Finally a composite meshassociated toΩ = Ω1 ∪Ω2 is a quadrupletT =
(M,M1,M2,E Γ ) such that each meshM j is an admissible mesh forΩ j , M1 and
M2 are compatible, andM= {K ∈M1∪M2}.
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dK,σ

Γ
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K i xK i

xK i

dK i ,σi = dσi

nKi ,σi

d(xi ,xi+1)

x
i+ 1

2

dσ

σ = ∂ K ∩∂ L

Fig. 1 Notations for an admissible mesh

A two-points flux approximation for Ventcell boundary conditions On each
subdomainΩ j , we approximate the problemL u j = f with homogeneous Dirich-
let boundary condition onΓ j

D = ∂Ω j ∩ ∂Ω , and Ventcell boundary condition on
Γ = ∂Ω1∩∂Ω2:

(ν∂n j −
1
2

b ·n j +Λ)u j = g j . (2)

For sake of clarity, the dependency on the index of the subdomainΩ j will be omitted
in this paragraph.

We introduce two setsuM = (uK)K∈M and uE Γ = (uσ )σ∈E Γ of unknowns,
one for the control volumes, one for the edges of the boundaryE Γ . We define
uT = (uM,uE Γ ). The discrete volume equations will be obtained, first by integrat-
ing the volume equation on a control volumeK, second by integrating the boundary
condition on the boundary control cellσi .
Equation onK ∈M

Integrating the equation (1) on the control volumeK, we get:

∑
σ∈E K

(
−
∫

σ
ν∇u·nKσ ds+

∫

σ
b ·nKσ uds

)
+
∫

K
ηudx=

∫

K
f (x)dx.

The volume term
∫

K ηudx can be approximated byηKuK with ηK = 1
|K|
∫

K η . The
total flux in K is the sum on the edges ofK of the diffusive fluxes−∫σ ν∇u ·nKσ ds
and the convective fluxes

∫
σ b ·nKσ uds, that can be approximated respectively by

the discrete fluxesFd
K,σ , Fc

K,σ to be defined below. Defining the total discrete flux on
the edgeσ asFK,σ = Fd

K,σ +Fc
K,σ , the equation onK ∈M can be approximated by

∀K ∈M, ∑
σ∈E K

FK,σ + |K|ηKuK =
∫

K
f (x)dx. (3)
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We use the classical diffusive discrete flux

Fd
K,σ = |σ |νσ

uK − ūσ
dσ

with ūσ =





uL if σ = ∂ K ∩∂ L ∈ E int ,
0 if σ ∈ E D,
uσ if σ ∈ E Γ ,

(4)

with νσ = 1
|σ |
∫

σ ν(s)dsor νσ = ν(xσ ), (xσ center ofσ ) in the case of regularν .

We introduce a general discrete convection flux in the form

Fc
K,σ =

1
2
|σ |bKσ (uK + ūσ )+

|σ |νσ
dσ

Bσ

(
dσ bKσ

νσ

)
(uK − ūσ ), (5)

wherebKσ = 1
|σ |
∫

σ b ·nKσ , and for all edgeσ , Bσ is an even Lipschitz continuous
function such that

Bσ (0) = 0, Bσ (s)+1> c> 0 for s 6= 0. (6)

This frame, introduced in [4], includes the centered schemeBσ (s) := Bc(s) = 0,
the upwind schemeBσ (s) := Bup(s) = 1

2|s|, and the Scharfetter-Gummel scheme
Bσ (s) := BSG(s) = 1

2(
s

es−1− s
e−s−1)−1. Each of these approximations can be seen

as a stabilization of the centered scheme. We will take advantage of this flexibility
in the convergence analysis of the algorithm (see Theorem 2).

Equation forσ ∈ E Γ . Integrate the Ventcell boundary condition (2) on the edge
σi ∈ E Γ to obtain
∫

σi

ν∇u·nK iσi ds− 1
2

∫

σi

b ·nK iσi uds+ p
∫

σi

uds+q[−ν∂yu]
x
i+ 1

2
x
i− 1

2
=
∫

σi

g(s)ds.

Define the discrete 1D fluxFi+ 1
2

as an approximation of−ν ∂u
∂y(xi+ 1

2
), given by

Fi+ 1
2
=−ν(xi+ 1

2
)
uσi+1−uσi

d(xi+1,xi)
for i = 0, · · · , |E Γ |, (7)

with the conventionuσ0 = 0 anduσ|E Γ |+1
= 0. We obtain for allσ ∈ E Γ the equation

−FK,σ +
1
2

bKσ mσ uσ +(Λ E Γ uE Γ )σ =
∫

σ
g(s)ds, (8)

where the discrete boundary operatorΛ E Γ is defined by

(Λ E Γ uE Γ )σ = p|σ |uσ −q(Fi+ 1
2
−Fi− 1

2
), for σ = σi . (9)

Properties of the scheme
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By constructionΛ E Γ is a symmetric and positive definite matrix. Therefore clas-
sical a priori estimates together with assumptions (6), induce the well-posedness of
the scheme (3)-(8), see [7]. Furthermore, the scheme is of order 1.

3 A discrete Schwarz algorithm for Ventcell transmission
conditions

Discrete Schwarz algorithmGiven a composite meshT = (M,M1,M2,E Γ ), the
discrete Schwarz algorithm consists, with suitable initial data, in finding for alln≥
1, the solutionsuT j ,n = (uM j ,n,uE j

Γ ,n) of the linear system

∀K ∈M j , ∑
σ∈E K

(FK,σ )
n
j + |K|ηK(uK)

n
j =

∫

K
f (x)dx, (10-a)

∀σ ∈ E Γ ,
−(FK,σ )

n
j +

1
2
|σ |bK j ,σ (uσ )

n
j +(Λ E Γ uE j

Γ ,n)σ

= (FK,σ )
n−1
i − 1

2
|σ |bK i ,σ (uσ )

n−1
i +(Λ E Γ uE i

Γ ,n−1)σ .
(10-b)

Limit of the discrete Schwarz algorithm Assume that the algorithm (10) con-

verges asn tends to infinity. The limituT j ,∞ = (uM j ,∞,uE j
Γ ,∞) is solution of the

scheme

∀K ∈M j , ∑
σ∈E K

(FK,σ )
∞
j + |K|ηK(uK)

∞
j =

∫

K
f (x)dx, (11-a)

∀σ ∈ E Γ ,
−(FK,σ )

∞
j +

1
2
|σ |bK j ,σ (uσ )

∞
j +(Λ E

j
Γ uE Γ ,∞)σ

= (FK,σ )
∞
i −

1
2
|σ |bK i ,σ (uσ )

∞
i +(Λ E Γ uE i

Γ ,∞)σ .
(11-b)

The expected limitHowever, we expect the convergence towards the classical two
point flux finite volume scheme, associated to the meshM for the problem (1) on
Ω , which consists in findinguM = (uK)K∈M solution of the discrete problem

∀K ∈M, ∑
σ∈E K

FK,σ + |K|ηKuK =
∫

K
f (x)dx. (12)

If the composite meshM is non admissible in the neighborhood ofΓ (Figure 2
right), the solutionuM still approximates the solutionu of (1), but with an error of
order size(M)

1
2 only (See [3]).

The solutions of the schemes (12) and (11) can coincide only when the fluxes in
(11) are modified, as stated in the next theorem.
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Theorem 1.LetuM be the solution of(12), with a convective flux in(5) defined by
a function Bσ , satisfying

Bσ (0) = 0, Bσ (s)>−1+
1
2
|s|. (13)

Define forσ ∈ E the functionsB̄σ by

B̄σ (s) =

{
Bσ (s) if σ 6∈ E Γ ,
1
2 (1−Bσ (2s))± 1

2

√
(1−s+Bσ (2s))(1+s+Bσ (2s)) if σ ∈ E Γ .

(14)
Then, for this modified choice of fluxes̄Bσ , there existsuT j ,∞ = (uM j ,∞,uE Γ ,∞) for

j = 1,2, solution of(11), and uMK = u
M j
K for K ∈M j .

Proof. Let u
M j ,∞
K = uK for all K ∈M j . First for K such thatE K ∩E Γ = /0, equation

(11-a) is nothing but equation (12). However, the construction of the edge unknowns

uE j
Γ requires some care.
For σ ∈ E Γ , equation (11-b) written for( j, i) = (1,2) and(2,1) yields

Λ E Γ uE 1
Γ ,∞ = Λ E Γ uE 2

Γ ,∞.

Thus, using the invertibility ofΛ E Γ , we obtain thatuE 1
Γ ,∞ = uE 2

Γ ,∞ = uE Γ ,∞ and
(FK,σ )

∞
1 =−(FK,σ )

∞
2 . Finally equation (11-a) coincides with equation (12) if

FK,σ = (FK,σ )
∞
1 . (15)

DefinedK1σ , dK2σ andsby s=
bK1σ dK1σ

νK1σ
=−bK2σ dK2σ

νK2σ
=

bK1σ dK1K2
2νσ

. We then have

for j=1,2

(FK,σ )
∞
j =
|σ |νK j σ

dK j σ
(u∞

K j
−u∞

σ )(1+ B̄σ (s))+
1
2
|σ |bK j σ (u

∞
K j
+u∞

σ ).

Identifying (FK,σ )
∞
1 to−(FK,σ )

∞
2 definesu∞

σ , then (15) is equivalent to

Bσ (2s) = B̄σ (s)+
1
4

s2(1+ B̄σ (s))
−1. (16)

Hence, to express̄Bσ (s) in terms of Bσ (s), we solve the equationX2 + (1−
Bσ (2s))X +

(
1
4s2−Bσ (2s)

)
= 0, Under condition (13), there exists a unique so-

lution satisfyingB̄σ (0) = 0, which is given in (14).
In this case, any solution of (11) is a solution of (12), whichhas a unique solution.

⊓⊔

Remark 1.Assumption (13) is satisfied by the upwind scheme, the Scharfetter-
Gummel scheme and the centered scheme if|s| < 1. In the case of the Scharfetter-
Gummel scheme,̄Bσ = Bσ .
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Convergence of the Schwarz algorithm

Theorem 2.LetT j be two compatible meshes ofΩ j , j = 1,2 andT the associated
composite mesh. With the assumptions in Theorem 1, the solution (uM j ,n) j=1,2 of
the discrete Schwarz algorithm(10) converges touM solution of (12) as n tends to
infinity.

Hint on the proof. The proof is too long to be developed here, and will appear
in [7]. By Theorem 1 the convergence of the Schwarz algorithmis equivalent to the

convergence to 0 of the solutionuT j ,n = (uM j ,n,uE j
Γ ,n) of (10) whenf is identically

zero. That convergence is then obtained by an extension of P.L. Lions trick in [10],
using the fact thatΛ E Γ is a symmetric positive definite matrix.

4 Numerical experiments

The domainΩ =]−1,1[×]0,1[ is split intoΩ1=]−1,0[×]0,1[ andΩ2=]0,1[×]0,1[
with an interfaceΓ at x = 0. We compare the convergence behaviour of the op-
timized Schwarz algorithm for Robin and Ventcell transmission conditions. Define
the mesh size on the interface,h=min(max(|σ |, σ ∈ E j), j = 1,2). Asymptotically
optimal parameters (for smallh) are taken from [5]. They have been determined to
produce the smallest convergence factor over all frequencies supported by the grid.

Robin : p⋆ = h−
1
2

2

√
2πν(b2

x +4νη) 1
2 , q⋆ = 0.

Ventcell : p⋆ = h−
1
4

2

4

√
νπ(b2

x+4νη)
3
2

2 , q∗ =
h

3
4

2
4

√
8ν
π3 (b

2
x +4νη)− 1

2 .

The corresponding theoretical convergence factor of the algorithm (i.e. the factor of
reduction of theL2 norm of the error in one iteration) is

Robin : 1−O(h
1
2 ), Ventcell : 1−O(h

1
4 ),

showing an improvement from Robin to Ventcell, since it is less dependent of the
size of the mesh.

We chooseν = 0.1,
−→
b = (1,1)t , η = 1. The sourcef is such that the exact solu-

tion of (1) isu(x,y) = sin(3πx)sin(3πy). The Scharfetter-Gummel scheme is used
for all edges. The algorithm is initialized with random data(uM j ,0) j=1,2. We illus-
trate our results on two families of grids presented in Figure 2, one is conforming
(Grid # 1), the other non conforming (Grid # 2) at the interfaceΓ . We draw the con-
vergence history for increasing mesh refinement, given byi = 3,4,5,6. We stopped

the algorithm as soon as
(

∑ j=1,2‖uM j ,n+1−uM j ,n‖2
L2(Ω j )

) 1
2 ≤ 10−7. We can see

the drastic improvement obtained by using the second order transmission condition,
for which the convergence lines seem almost independent ofh. The numerical con-
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Fig. 2 (Left) A 6∗2i ×6∗2i square grid on bothΩ1 andΩ2. (Right) A 4∗2i ×4∗2i grid onΩ1
and a 8∗ 2i × 8∗ 2i grid on Ω2. Robin vs Ventcell.L2 norm error w.r.t. iterations for increasing
mesh refinements.

vergence factor behaves in 1−O(hα) with α = 0.43 for Robin-Grid # 1,α = 0.44
for Robin-Grid # 2,α = 0.17 for Ventcell-Grid # 1,α = 0.19 for Ventcell-Grid # 2.
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Domain Decomposition with Nesterov’s Method

Firmin Andzembe1, Jonas Koko1, and Taoufik Sassi2

1 Introduction

Nesterov’s method is a first order convex minimization method with convergence
rateO(1/k2), see e.g. [4, 3]. The method can be used with either smooth or nons-
mooth convex optimization problems. For constrained minimization, if the projec-
tion onto the constraints set is easy to compute, a projectedgradient variant of the
Nesterov method can be derived, see e.g. [1, 7].

In this paper we apply Nesterov’s method to the domain decomposition. The
model problem is the Poisson equation. As a first order optimization method, the
Nesterov method needs, per iteration, only matrix/vector multiplcations while stan-
dard domain decomposition methods need matrices inversionthrough solution to
linear systems, see e.g. [5, 6]. The Nesterov method is therefore well-suited for
Graphics Processing Unit(GPU) architecture for which the (direct of iterative) lin-
ear solvers using complete or incomplete factorizations are inefficient, see, e.g., [2].
Moreover, the Nesterov method can be (theroetically) used for domain decomposi-
tion of nonsmooth problems (i.e. problems withL1 terms)

The paper is organized as follows. In the next section we recall the Nesterov
method for convex programming problem. The model (Poisson)problem and the
domain decomposition are presented in Section 3. The Nesterov domain decompo-
sition method is presented in Section 4 followed by preliminary numerical experi-
ments in Section 5.

2 Nesterov’s Method

Let F be a convex function defined on a finite dimensional spaceX. The subgradient
of F atx is defined by

∂F(x) = {p∈ X | F(y)≥ F(x)+(p,y−x), ∀y∈ domF}.

If F is differentiable, then∂F(x) = {∇F(x)}.
Let δ > 0 and assume thatF is convex, lower-semicontinous function onX. It is

easy to show that the problem

1LIMOS, Universit́e Blaise Pascal – CNRS UMR 6158, F-63000 Clermont-Ferrand, France,e-
mail: {andzembe}{koko}@isima.fr ·2 LMNO, Universit́e de Caen – CNRS UMR, F-14032
Caen, France e-mail:sassi@univ-caen.fr
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min
y

δF(y)+
1
2
‖ y−x ‖2

always has a unique solution, verifying the equation

δ∂F(y)+y−x∋ 0

that is, formally
y= (I +δ∂F)−1(x).

The mapping(I + δ∂F)−1, called ”proximal map ofδF”, is well defined and
uniquely defined. IfK is a closed and convex set andF = 1K (i.e. F is the char-
acteristic function ofK), then(I +δ∂F)−1 is a projection ontoK.

Consider the following optimization problem

min
x

Φ(x) = F(x)+G(x), (1)

where we assume that

• F is C 1,1, i.e. the gradient∇F is Lipschitz with some constantL;
• G is ”simple” in the sens that the ”prox” operator(I +δ∂G)−1 is easy to com-

pute (e.g. projection)

The most straightforward Nesterov method is the projected gradient (Beck and
teboulle [1]), an adaptation of the gradient descent algorithm due to Nesterov [4].
The projected gradient method is outline in Algorithm 2. Therate of convergence
of Algorithm 2 is given by the following theorem due to Beck and Teboulle [1].

Theorem 1.Let{xk} be the sequence generated by Algorithm 2 withδ = 1/L. Then

Φ(xk)−Φ(x∗)≤ L
2k
‖ x0−x∗ ‖2,

for any k≥ 1 and for any x∗ solution of the minimization problem (1).

Algorithm 2 Nesterov’s projected gradient algorithm
(i) k= 0. Choosex0 andδ > 0

(ii) k≥ 0. Computexk+1 = (I +δ∂G)−1(xk−δ∇F(xk))

To overcome the slow rate of convergence of Algorithm 2, Nesterov proposes in
[3] an acceleration variant of the gradient descent. For solving minimization prob-
lems of the form (1), Beck and Teboulle propose Algorithm 3, variant of the Nes-
terov accelerated algorithm.

The rate of convergence of Algorithm 3 is given by the following theorem due to
[1].
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Algorithm 3 Accelerated Nesterov’s Algorithm
k= 0 x0, y1 = x0, t1 = 1, δ > 0

k≥ 0 Computexk andyk as follows

(i) zk = yk−δ∇F(yk)

(ii) xk = (I +δ∂G)−1(zk)

(iii) tk+1 =
1
2

(
1+
√

1+4t2
k

)

(iv) yk+1 = xk+(tk−1)(xk−xk−1)/tk+1

Theorem 2.For any minimizer x∗ of (1), the sequence{xk} generated by Algo-
rithm 3 withδ = 1/L is such that

Φ(xk)−Φ(x∗)≤ 2L
(k+1)2 ‖ x0−x∗ ‖2, (2)

for any k≥ 1.

3 Model problem and Domain Decomposition

Fig. 1 Domain decomposi-
tion of Ω into two subdo-
mains withSas the common
interface

Ω1

S

Ω2

3.1 Model problem

Let Ω be a bounded domain inRd (d = 2,3) with Lipschitz-continuous boundary
Γ . We consider inΩ the Poisson problem

−∆u = f , in Ω , (3)

u = 0 onΓ . (4)
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Setting

V = H1
0(Ω), f (v) =

∫

Ω
f vdx anda(v,v) =

∫

Ω
∇v·∇vdx,

the Poisson problem (3)-(4) can be reformulated as the follwing convex minimiza-
tion problem

min
v∈V

J(v) =
1
2

a(v,v)− f (v). (5)

3.2 Domain decomposition

Let {Ω1, Ω2} be a partition ofΩ , as shown in Figure 1, and letS= ∂Ω̄1∩ ∂Ω̄2,
vi = v|Ωi and

Γi = Γ ∩∂Ωi , Vi =
{

v∈ H1(Ωi), v|Γi = 0
}
.

It follows that

a(v,v) =
2

∑
i=1

ai(vi ,vi), f (v) =
2

∑
i=1

fi(vi), J(v) =
2

∑
i=1

Ji(vi)

and the minimization problem (5) becomes

min
(v1,v2)

J1(v1)+J2(v2) (6)

[v] := (v1−v2)|S= 0 onS. (7)

With the formulation (6)-(7), the continuity of the normal derivative accrossS is en-
sured (implicitly) by the Lagrange multiplier associated with (7). Indeed, if(u1,u2)
is the solution of the constrained optimization problem (6)-(7), then there exists
λ ∈ L2(S) such that

ai(ui ,vi) = fi(vi)+(−1)i(λ ,vi)S, ∀vi ∈Vi , i = 1,2

(µ , [u])S = 0, ∀µ ∈ L2(S),

or

−∆ui = fi in Ωi and
∂ui

∂ni
= (−1)iλ onS

so that

λ =−∂u1

∂n1
=

∂u2

∂n2
. (8)
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3.3 Finite dimensional problem

Finite element or finite difference aproximations of the above Poisson problem leads
to the quadratic forms

Ji(vi) =
1
2

vT
i Aivi− f T

i vi , i = 1,2.

wereAi are symmetric positive definite matrices. Forvi we use the following de-
composition

vi =

[
viI

viS

]

whereviS = vi|S (the subvector of interface unknowns) andviI = vi|(Ω\S) (the sub-
vector of interior unknowns). Let us introduce the setK, defining the continuity
condition

K = {(v1,v2) : [v] = v1S−v2S= 0}.
It is obvious thatK is closed and convex. The finite dimensional constrained opti-
mization problem is therefore

min
(v1,v2)∈K

J(v1,v2) =
2

∑
i=1

Ji(vi). (9)

4 Nesterov domain decomposition method

Let us introduce the functions

F(v) = J1(v1)+J2(v2)

G(v) = 1K(v).

G is the characteristic function ofK. The finite dimensional (constrained) minimiza-
tion problem (9) can be rewritten as the following convex unconstrained minimiza-
tion problem

min
v

F(v)+G(v) (10)

Note thatF is a convex function andG is a charactersitic function of a closed convex
set. Then the proximal map(I +δ∂G)−1 is easy to compute. Indeed, forp=(p1, p2)

(I +δ∂G)−1(p) = argmin
q

1
2
‖ q− p ‖2 +δG(q) = (p̃1, p̃2)

where

p̃i =

[
piI

1
2(p1|S+ p2|S)

]
, i = 1,2, (11)
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the projection of(p1, p2) onto toK. The minimization problem can then be solved
by the Nesterov Algorithm 3. The resulting domain decomposition method is de-
scribed in Algorithm 4. The parallelizability of the methodis obvious.

Algorithm 4 Nesterov domain decomposition algorithm
k= 0: u0

i , q1
i = u0

i , t1 = 1, δ = 1/L

k≥ 0: Computeuk andqk+1 as follows

(i) zk
i = qk

i −δ (Aiqk
i −bi), i = 1,2

(ii) uk
i =

[
zk
iI

(zk
1S+zk

2S)/2

]
, i = 1,2

(iii) tk+1 =
1
2

(
1+
√

1+4t2
k

)

(iv) qk+1
i = uk

i +(tk−1)(uk
i −uk−1

i )/tk+1, i = 1,2.

Since the domain decomposition is an optimization based, the jumps in a coeffi-
cient is not an issue. If in (3), the Laplacian operator is replaced by∇ · (α(x)∇u(x)),
then the continuity condition, i.e. (11), does not change while (8) becomes

λ =−α1
∂u1

∂n1
= α2

∂u2

∂n2
,

assumingαi = α|Ωi
, i = 1,2.

In the case of a decomposition with intersection of more thantwo subdomains,
a special procedure must be carried out to ensure the continuity condition (11). For
instance, in the case of an intersection of four subdomains,with {piS}i=1,...,4 the
value ofp at the corner of each subdomain, we must have

p2S− p1S= 0, p3S− p2S= 0, p4S− p3S= 0.

A straightforward calculation (using optimality conditions) yields

p̃iS =
1
4

4

∑
ℓ=1

pℓS, i = 1, . . . ,4.

5 Numerical experiments

The domain decomposition algorithm presented in the previous sections was imple-
mented in Fortran 90, on a Linux cluster, using an MPI library. We useP1 finite
element method for the discretization. The Lipschitz constant L is approximated
in the initialization step using the power method. Indeed, for the model problem
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L = ρ(A), the spectral radius of the Laplacian matrix. The stopping criterion is
(J(uk)−J(uk−1))/h< 10−6 whereh is the size of the mesh.

We consider the domainΩ = (0, 1)× (0, 1) and the right-hand side in (3) is
adjusted such that the exact solution isu(x,y) = (x− 1)ysin(x)cos(2πy). Table 1
shows the number of iterations and CPU times (in seconds) forseveral mesh sizes
and number of sub-domains. The CPU times given include the aproximation ofL by
the power method. We notice that, for the largest problem (h= 1/256), the standard
speed-up ( i.e. the number of degrees of freedom is constant while the number of
sub-domains varies) obtained with the projected gradient Algorithm 4 is significant:
about 43 for 32 sub-domains.

In Table 2 we report the results for the scaled speed-up, i.e.the number of sub-
domains varies while the number of nodes in each sub-domain is kept fixed to 100×
100 (10000 degrees of freedom). We notice that the number of iterations increases
with the number of sub-domains: the number of iterations is multiplied by about 4
while the number of subdomains is multiplied by 36.

h= 1/16 h= 1/32 h= 1/64 h= 1/128 h= 1/256
NSD IT/CPU IT/CPU IT/CPU IT/CPU IT/CPU

1 134/0.01 270/0.14 284/1.11 416/5.57 834/45.78

2 40/0.00 79/0.08 154/0.21 309/2.11 611/26.77

4 78/0.00 109/0.08 159/0.30 312/1.28 613/6.07

16 122/0.03 300/0.18 361/0.20 320/0.26 847/2.10

32 165/6.056 310/6.12 369/0.15 595/0.38 637/1.05

Table 1 Standard speed-up:NSD := number of subdomains;h := mesh size; IT:= number of iter-
ations; CPU:= CPU times in seconds.

NSD 1 4 9 16 25 36

IT 440 486 730 974 1218 1461

CPU 2.84 3.28 5.32 14.40 7.55 8.76

Table 2 Scaled speed-up with 100× 100 nodes in each sub-domain:NSD := number of subdo-
mains; IT:= number of iterations; CPU:= CPU times in seconds

6 Conclusion

A Nesterov domain decomposition algorithm for the Poisson problem has been in-
troduced. The continuity condition on the interface is enforced using projection.
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This approach is easy to implement and preliminary numerical experiments show
that a significant speed-up is obtained. Nevertheless, it leads to ah-dependent algo-
rithm. Further work is under way to improve the algorithm (preconditioning, restart-
ing strategy, etc.)
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Total-FETI method for solving contact
elasto-plastic problems

Martin Cermak1 and Stanislav Sysala2

1 Introduction

Contact problems with elasto-plastic bodies can be solved for example by primal-
dual active set strategy, see e.g. [12]. In this paper, we propose a numerical method
that combines the semi-smooth Newton method with the Total-FETI (TFETI) do-
main decomposition method and SMALSE method [1].

We consider a frictionless contact boundary condition between two bodies de-
noted asΩ 1,Ω 2 ⊂ R3, see Fig. 1. We assume that the bodies are fixed on the parts
Γ 1

U ,Γ 2
U 6= /0 of the boundaries. The load is represented by surface (prescribed on

the boundaries partsΓ 1
N ,Γ 2

N ) and volume forces. The material of the bodies is de-
scribed by the elasto-plastic constitutive model with the von Mises yield criterion
and linear isotropic hardening [10]. For the sake of simplicity, we confine ourselves
on one-step problem formulated in displacement. It leads toa minimization of the
convex and smooth functional on a convex set. However the stress-strain relation is
not smooth.

Fig. 1 Scheme of the geometry and domain decomposition

The problem is approximated by the finite element method. Thefinite element
partition will be denoted asTh = T 1

h ∪T 2
h and consists of simplicial elements.

In particular, displacement fields are approximated by continuous, piecewise linear
functions and strain (stress) fields are approximated by piecewise constant functions.
We will not investigate in detail the influence of domain and load approximation.

1 IT4Innovations, VSB-TU Ostrava, 17. listopadu 15/2172, Ostrava-Poruba, 708 33, Czech Repub-
lic e-mail: martin.cermak@vsb.cz ·2 Institute of Geonics AS CR, v.v.i., Studentska 1768,
Ostrava-Poruba, 708 00, Czech Republic, e-mail:stanislav.sysala@ugn.cas.cz
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Since we will apply the TFETI domain decomposition method [2], we tear the
bodies from the part of the boundary with the Dirichlet boundary condition, de-
compose it into subdomains, assign each subdomain by a unique number, and in-
troduce new “gluing” conditions on the artificial intersubdomain boundaries and on
the boundaries with imposed Dirichlet condition. In particular, the domainΩ i

h≡Ω i

is decomposed into a system ofsi disjoint polyhedral subdomainsΩ i,p ⊂ Ω i ,
p = 1,2, . . . ,si , i = 1,2, see Fig. 1. The partition is conforming with the finite el-
ement partitionTh.

The discretized problem can be classified as an optimizationproblem with sim-
ple equality and inequality contraints. In Section 2, we introduce and describe an
algebraic formulation of the problem. We use the semi-smooth Newton method to
approximate a non-quadratic functional by a quadratic one,see Section 3. The cor-
responding problem of quadratic programming is solved by the Total-FETI domain
decomposition method in combination with SMALSE method, see Section 4. The
elasto-plastic problem with contact was implemented into the MatSol library [8]. We
illustrate the performance of our algorithm on a 3D benchmark problem in Section
5.

2 Algebraic formulation of the contact problem for elasto-plastic
bodies

Algebraic formulation of the problem will be related to the domain decomposition.
It means that a displacement vectorv ∈ Rn has the following structure:

v =
(
vT

1,1,v
T
1,2, . . . ,v

T
1,s1

,vT
2,1, . . . ,v

T
2,s2

)T
,

wherevi,p denotes the displacement vector onΩ i,p, i = 1,2. We define the space

V := {v ∈ Rn | BEv = o} , (1)

and the set of admissible displacement

K := {v ∈ Rn | BEv = o, BI v≤ cI} . (2)

Here the equality constraint matrixBE ∈ RmE×n represents the gluing conditions
among neighbouring subdomains and the Dirichlet boundary conditions. The in-
equality constraint matrixBI ∈ RmI×n represents the non-penetration condition on
the contact zones. Notice thatK is convex and closed.

Let Ke∈Rn×n be a block diagonal matrix consisting of the elastic stiffness matri-
cesK i,p

e defined on each subdomainΩ i,p, i = 1,2, p= 1, . . . ,si . Due to the presence
of the Dirichlet boundary conditions on both subdomains andthe Korn inequality,
we can define the energy norm onV :
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‖v‖e :=
√

vTKev=

√√√√
2

∑
i=1

si

∑
p=1

vT
i,pK i,p

e vi,p, v=
(
vT

1,1, . . . ,v
T
1,s1

,vT
2,1, . . . ,v

T
2,s2

)T ∈V .

Notice that the using of this norm is suitable from mechanical and mathematical
points of view since some of the below estimates (mainly (6))are independent of
the domain decomposition and the discretization parameterh of the mesh.

The algebraic formulation of the contact elasto-plastic problem can be written as
the following optimization problem [1]:

Find u ∈K : J(u)≤ J(v) ∀v ∈K , (3)

where
J(v) :=Ψ(v)− fTv, v ∈ Rn. (4)

Here the vectorf =
(

fT
1,1, . . . , f

T
1,s1

, fT
2,1, . . . , f

T
2,s2

)T
∈ Rn represents the load consist-

ing of the volume and surface forces, and the initial stress state. The functionalΨ
represents the inner energy and has the structure

Ψ(v) =
(
Ψ1,1(v1,1)

T , . . . ,Ψ1,s1(v1,s1)
T ,Ψ2,1(v2,1)

T , . . . ,Ψ2,s2(v2,s2)
T)T

.

FurtherΨ is a potential to the non-linear elasto-plastic operatorF : Rn→ Rn, i.e.
DΨ(v) = F(v), ∀v ∈Rn. The functionF is generally nonsmooth but Lipschitz con-
tinuous. It enables us to define a generalized derivativeK : Rn→ Rn×n of F in the
sense of Clark, i.e.K(v) ∈ ∂F(v), v ∈ Rn. Notice thatK(v) is symmetric, block di-
agonal and sparse matrix. Moreover the following properties ofF andK hold [11]:

(i)

F(v+w)−F(v) =
∫ 1

0
K(v+θw)w dθ ∀v,w ∈ Rn. (5)

(ii) K(v) is uniformly positive definite and bounded with respect tov ∈ V :

∃ν ∈ (0,1) : ν‖w‖2e≤ wTK(v)w≤ ‖w‖2e ∀v,w ∈ V . (6)

(iii) F is strongly semismooth [9] onV , which yields that for anyv ∈ V and any
of sufficiently smallw ∈ V :

F(v+w)−F(v)−K(v+w)w = O(‖w‖2e). (7)

Notice that (5) and (6) yield thatΨ is coercive and strictly convex onV . Hence the
problem (4) has a unique solution and can be equivalently written as the following
variational inequality:

Find u ∈K : F(u)T(v−u)≥ fT(v−u) ∀v ∈K . (8)

The estimate (7) will be important for showing that the semi-smooth Newton method
defined in the next section has a local quadratic convergence.
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3 Semi-smooth Newton method for optimization problem

The investigated problem (3) contains two nonlinearities –the non-quadratic func-
tional J (due toΨ ) and the non-penetration conditions including in the convex set
K . By the semismooth Newton method, we will approximateΨ by a quadratic
functional similarly as in the Taylor expansion:

Ψ(u)≈Ψ(uk)+F(uk)T(u−uk)+
1
2
(u−uk)TK(uk)(u−uk),

for a given approximationuk ∈ K of the solutionu to the problem (3). Let us
denotefk = f−F(uk), Kk = K(uk) and define:

Kk := K −uk =
{

v ∈ Rn ; BEv = o, BI v≤ cI ,k, cI ,k := cI −BI uk
}
,

Jk(v) :=
1
2

vTKkv− fT
k v, v ∈Kk. (9)

Then the Newton step is following:

uk+1 = uk+δuk, uk+1 ∈K ,

whereδuk ∈Kk is a unique minimum ofJk onKk:

Jk(δuk)≤ Jk (v) ∀v ∈Kk, (10)

or equivalentlyδuk ∈Kk solves the following inequality:

(
Kkδuk

)T
(v−δuk)≥ fT

k (v−δuk) ∀v ∈Kk. (11)

Notice that if we substitutev= uk+1∈K into (8) andv= u−uk ∈Kk into (11),
then by adding we obtain the inequality

(
K(uk)δuk

)T
(u−uk+1)≥

(
F(u)−F(uk)

)T
(u−uk+1),

which can be arranged into the form

(uk+1−u)TK(uk)(uk+1−u)≤
(

F(uk)−F(u)−K(uk)(uk−u)
)T

(u−uk+1).

Hence one can simply derive local quadratic convergence of the semi-smooth New-
ton method by (6) and (7) provided thatuk is sufficiently close tou.
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4 TFETI method for the inner problem

Notice that the structures and properties of the matricesKk ∈ Rn×n, k = 0,1,2, . . .,
are very similar to the corresponding elastic matrixKe as follows from Section 2.
Therefore we can solve the inner problem (10) in the same way as a contact problem
with elastic bodies, see e.g. [4, 5].

Here we use the TFETI domain decomposition method for solving (10). For more
detail see e.g. [3] and [1]. The method is based on enforcing all the constraints by
the Lagrange multipliers. In particular, we use two types ofLagrange multipliers,
namelyλ I ∈RmI , λ I ≥ o related to the non-penetration condition,λ E ∈RmE related
to the “gluing” and Dirichlet conditions. To simplify the notation, we denote

λ =

[
λ E

λ I

]
, B =

[
BE

BI

]
, ck =

[
o

cI ,k

]
,

and
Λ = {λ = (λ T

E,λ
T
I )

T ∈ RmE+mI : λ I ≥ o}.
Then the Lagrangian associated with problem (10) reads as

Lk(v,λ ) =
1
2

vTKkv− fT
k v+λ T(Bv−ck), v ∈ Rn, λ ∈Λ . (12)

Using the convexity of the cost function and constraints, wecan use the classical
duality theory to reformulate problem (10) to get

Jk(δuk) = min
v∈Kk

Jk(v) = min
v∈Rn

sup
λ∈Λ

Lk(v,λ ) = max
λ∈Λ

inf
v∈Rn

Lk(v,λ ) = max
λ∈Λ
{−Θ k(λ )},

(13)
with

Θ k(λ ) =
{

1
2λ TBK†

kBTλ −λ T(BK†
kfk−ck), RT

k (fk−BTλ ) = o,
+∞, otherwise,

whereK†
k is a pseudoinverse matrix toKk andRk ∈ Rn×l represents the null space

of Kk. More details to implementation ofBK†
kBT can be found in [6]. Thus the

corresponding dual problem has the form:

find λ k ∈Λ : Θ k(λ k)≤Θ k(λ ) ∀λ ∈Λ . (14)

We solve the dual problem by algorithm SMALSE-M [3]. The algorithm is based
on active set strategy and it combines three steps: CG with preconditioning based
on orthogonal projectors, expansion, and proportioning.

Once the solutionλ k of (14) is known, the solution of (10) can be evaluated in
this way:

δuk = K†
k(f−BTλ k)+Rkαk, αk = (RT

k B
T
BRk)

−1RT
k B

T
(ck−BK†

k(fk−BTλ k)),
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where the matrixB and the vectorck are formed by the rows ofB andck corre-
sponding to all equality constraints and all active inequality constraints.

Notice that we use in fact the inexact Newton method with respect to computing
of δuk.

5 Numerical experiments

In this section we illustrate the strong parallel scalability and the performance of
numerical scalability of our approach on a numerical example. The geometry of the
problem is depicted in Figure 1. The sizes of the bodies are 3000× 1000× 1000.
We use regular meshes generated in MatSol [8]. The Young modulus, the Poisson
ratio, the initial yield stress for the von Mises criterion,and the hardening modulus
areEi = 210000,ν i = 0.29,σ i

y = 450, andH i
m = 10000,i = 1,2, respectively. The

indicated traction force prescribed in the vertical direction is g(x) = 150,x ∈ Γ 2
N .

The initial stress (or plastic strain) state is equal to zero.
The proposed algorithms were parallelized using Matlab Distributed Computing

Server and Matlab Parallel Toolbox. For all computations weuse 28 cores with 2GB
memory per core of the HP Blade system, model BLc7000. The stopping criterion

of the Newton method is ‖u
k+1−uk‖e

‖uk+1‖e+‖uk‖e < 10−4 (see e.g. [7] or [11]). The stopping

criterion for the SMALSE-M algorithm is described in [3]. Weuse the tolerance
10−7 for SMALSE-M.

The strong parallel scalability is depicted in Table 1. Herewe consider the mesh
with 174902 nodes and 162000 hexahedrons. The bodies are decomposed into 162
subdomains by MatSol. The number of primal variables is 646866 and the number
of dual variables is 130189.

Number of cores 3 7 14 28
Number of plastic elems. 151 300 151 300 151 300 151 300
Number of Newton iters. 6 6 6 6
Total number of SMALSE-M iters. 67 67 67 67
Total number of multi. by Hessian 3 726 3 726 3 726 3 726
Time for last Newton iter. 6 976 1 259 778 537
Total time [sec] 26 828 6 481 4 091 2 926

Table 1 Strong paralel scalability.

In Table 2 we report ”the numerical scalability” for different mesh levels. The
most important is row with total number of multiplication byHessian, where we
can see, that the number of iterations grows only moderately. The total times are not
mutually comparable since we could not keep a constant number of subdomain per
one core due to the limitation on maximal number of the core.

Distribution of the von Mises stress and the total displacement for the finest mesh
are depicted in Figures 2 and 3.
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Mesh level 1 2 3 4
Mesh nodes 7 502 53 802 174 902 406 802
Mesh elements 6 000 48 000 162 000 384 000
Number of subdomains 6 48 162 384
Number of cores 4 25 28 28
Primal variables 23 958 191 664 646 866 1 533 312
Dual variables 2 453 33 933 130 189 326 969
Number of plastic elems. 6 624 48 141 151 300 356 384
Number of Newton iters. 6 6 6 6
Total number of SMALSE-M iters. 153 88 67 67
Total number of multi. by Hessian 1 951 3 106 3 726 5 375
Time for last Newton iter. 41 141 537 1 758
Total time [sec] 287 683 2 926 9 318

Table 2 Performance of ”the numerical scalability”.

Fig. 2 von Mises stress distribution Fig. 3 total displacement

6 Conclusion

In this paper, we proposed a numerical method for solving contact elasto-plastic
problems based on TFETI method and demonstrate its paralleland numerical scala-
bility on a numerical example. The numerical realization and implementation of the
problem were newly included into the MatSol library. In fact, the proposed method
can be used or can be as a part of other contact inelastic problems than the consid-
ered frictionless contact problem of von Mises’ elasto-plastic bodies with isotropic
hardening.
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Nonlinear Transmission Conditions for time
Domain Decomposition Method

P. Linel1 and D. Tromeur-Dervout2

1 Introduction

We developed parallel time domain decomposition methods tosolve systems of
linear ordinary differential equations (ODEs) based on theAitken-Schwarz [7] or
primal Schur complement domain decomposition methods [6].The methods claim
the transformation of the initial value problem in time defined on]0,T] into a time
boundary values problem. Letf (t,y(t)) be a function belonging toC 1(R+,Rd) and
consider the Cauchy problem for the first order ODE:

{
ẏ= f (t,y(t)), t ∈]0,T], y(0) = y0 ∈ Rd. (1)

The time interval[0,T] is split into p time slicesSi = [T+
i−1,T

−
i ], with T+

0 = 0
and T−p = T−. The difficulty is to match the solutionsyi(t) defined onSi at the
boundariesT+

i−1 andT−i . Most of time domain decomposition methods are shoot-
ing methods [1] where the jumpsyi(T

−
i )− yi+1(T

+
i ) are corrected by a sequential

process which is propagated in the forward direction (i.e. the correction on the time
sliceSi−1 is needed to compute the correction on time sliceSi). Our approach con-
sists in breaking the sequentiality of the solution’s initial value updating for each
time slice. For this, we transform the initial value problem(IVP) into a boundary
values problem (BVP) leading to a second order ODE:

ÿ(t) = g(t,y(t))
de f
=

∂ f
∂ t

(t,y)+ f (t,y(t))
∂ f
∂y

(t,y(t)), t ∈]0,T[, (2a)

y(0) = y0, (2b)

y(T) = β . (2c)

Nevertheless, the difficulty in solving equation (2) is thatβ is not given by the
original IVP. To overcome the lack of knowledge ofβ , we proposed to set this value
by using an iterative Schwarz domain decomposition method with no overlapping.
For sake of simplicity, let us consider only one domainS1. Givena,b in R+ with
a< b, we denote[a,b] to indicate that the time interval must be traveled in the back-

1 University of Rochester Medical Center,Dept of Biostatistics and Computational Biology, Saun-
ders Research Building, 265 Crittenden Blvd. Rochester, NY 14642, USA, e-mail:Patrice_
Linel@URMC.Rochester.edu ·2 University of Lyon, University Lyon 1, CNRS, UMR5208
Institut Camille Jordan, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France, e-mail:
Damien.tromeur-dervout@univ-lyon1.fr
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ward direction. We first symmetrize the time intervalS1 providing S̄1 = [0+,T−].
A symmetric time integration scheme, like the second order implicit Störmer-Verlet
symmetric scheme, is then required to perform a backward time integration onto
the symmetrized interval to come back to the initial state. Then classical domain
decomposition methods can be applied such the multiplicative Schwarz method
with no overlapping time slices with Dirichlet-Neumann (associated to the Lapla-
cian in time) transmission conditions (T.C.) for linear system of ODE (or PDE [8]).
As proved in [7] the convergence/divergence of the error at the boundaries of this
Schwarz time DDM can be accelerated by the Aitken technique to the right solution
when f (t,y(t)) is linear.

This paper treats the case wheref (t,y(t)) is nonlinear. Then the multiplicative
Schwarz algorithm generates at the boundary of time slices anonlinear vectorial
sequence. We replaced in [5] the Aitken’s acceleration of the convergence by the
ε-topological algorithm [3] that has been designed to extrapolate the convergence
of such nonlinear sequences. Some enhancement of the convergence have been ob-
tained but the number of Schwarz iterations is still too large to obtain an efficient
method. This leads us to think again about the transmission conditions between time
slices. When systems of nonlinear ODEs are under consideration, we show in the
next section that the Dirichlet-Neumann T.C. (associated to the time Laplacian oper-
ator only) at boundary time slices are not the right choice. The Neumann boundary
condition has to be replaced by a nonlinear boundary condition preserving an invari-
ant of the solution. These nonlinear T.C. differ from the optimized nonlinear T.C.
present in the waveform relaxation of [4]. In section 3, we show the pure linear be-
havior of the multiplicative Schwarz with a combination of the nonlinear T.C. and
the Dirichlet condition by demonstrating that the operatorassociated to the error
does not depend of the iteration. This operator links the transmission conditions of
all the time slices, allowing to solve the problem on all timeslices in the same time
using the Aitken acceleration of the convergence. Some perspectives of this work
are given in the conclusion.

2 What are the right T.C. in the nonlinear case?

Let us first give a new formulation of the equation (2) assuming that f (t,y(t) is
scalar andf−1(t,y(t)) exists. Then one can consider the problem:

− d
dt
[− f−1(t,y(t))

d
dt

y(t)] =− d
dt
(−1) = 0, t ∈]0,T[,y(0) = 0, (3a)

y(T) = 1. (3b)

where we imposed a Dirichlet B.C. at the timet = T for the sake of simplicity. Then
the multiplicative Schwarz with Neumann (associated to theLaplacian operator)-
Dirichlet T.C. applied to[0,T] = [0,1] = [0,Γ ]∪ [Γ ,1] with Γ = 3/5 writes:
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− d
dt
[− f−1(t,y

n+ 1
2

1 (t))
d
dt

y
n+ 1

2
1 (t)] = 0, t ∈]0,Γ [,y

n+ 1
2

1 (0) = 0, (4a)

yn+1
1 (Γ ) = αn = yn

2(Γ ), (4b)

and

− d
dt
[− f−1(t,yn+1

2 (t))
d
dt

yn+1
2 (t)] = 0, t ∈]Γ ,1[,yn+1

2 (1) = 1, (5a)

d
dt

yn+1
2 (Γ ) = β n+1 =

d
dt

y
n+ 1

2
1 (Γ ). (5b)

Let us considerf (t,y(t)) =
√

y(t) then the exact solution isy(t) = t2 and
y(3/5) = ᾱ = 9/25. The exact solution of the Neumann-Dirichlet writes:

y
n+ 1

2
1 (t) =

25
9

t2αn→ d
dt

yn+1
1 (

3
5
) =

10
3

αn. (6)

yn+1
2 (t) =





25
4

r2
1t2+

5
2

r1t(−5r1−2)+
1
4
(−5r1−2)2,

25
4

r2
2t2+

5
2

r2t(−5r2+2)+
1
4
(−5r2+2)2.

(7)

wherer1 (respectivelyr2) is the root of 3r2
1+3r1+2α = 0 (respectively

3r2
2− r2+2α = 0). The sequence(αn) satisfies one of the equation that follows:

αn+1 =

{
f1(αn) = 1/2− (1/6)

√
9−24αn− (2/3)αn,

f2(αn) = 1/2+(1/6)
√

9−24αn− (2/3)αn.
(8)

If αn+1 = f1(αn) then the sequence converges toward the fixed point

ᾱ1 = f1(ᾱ1) = 0 as| f (1)1 (ᾱ1)|< 1. But ᾱ1 6= ᾱ. If αn+1 = f2(αn) then

ᾱ2 = f2(ᾱ2)= ᾱ, but| f (1)2 (ᾱ2)|> 1 and the function is not contractive. In both cases
the multiplicative Schwarz will not converge with these transmission conditions.

If we replace Equation (5b) by Equation (9b):

− d
dt
[− f−1(t,yn+1

2 (t))
d
dt

yn+1
2 (t)] = 0, t ∈]Γ ,1[,yn+1

2 (1) = 1, (9a)

f−1(Γ ,yn+1
2 (Γ ))

d
dt

yn+1
2 (Γ ) = β n+1 = f−1(Γ ,y

n+ 1
2

1 (Γ ))
d
dt

y
n+ 1

2
1 (Γ ). (9b)

The sequence(αn) of the Dirichlet condition satisfies :

αn+1 =





0, αn >
9
4
,

4
9

αn− 4
3

√
αn+1, 0≤ αn <

9
4
.

, thus αn→ α =
9
25

.
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This result shows that we can not simplify the T.C. by only taking the matching of
the time derivatives between time slices, even if the nonlinear functionf−1(t,y(t))
is continuous.

Coming back to the original formulation of the Schwarz algorithm for the
second order ODE Equation (2), the T.C. to replace the transmission condition
d
dt

y
m+ 1

2
1 (T−) =

d
dt

ȳm
1 (T

−) should be the flux or co-normal derivative

f−1(y
m+ 1

2
1 (T−))

d
dt

y
m+ 1

2
1 (T−) = − f−1(ȳm

1 (T
−))

d
dt

ȳm
1 (T

−), if f−1(yn+1
1 (T−)) 6= 0,

else
d
dt

y
m+ 1

2
1 (T−) = 0. Moreover, this invariant of the problem, allows us to simplify

the methodology too. We can impose (with assumingf−1(T−,y(T−)) 6= 0) the B.C.

f−1(T−,y(T−))
d
dt

y(T
−) = 1. Consequently, we do not need to symmetrize the time

interval and then saving by a factor 2 the computational resources needed.

Fig. 1 Convergence/Divergence of the multiplicative Schwarz withrespect to the T.C.

f−1(t,y(t))
d
dt

y(t) with f−1(t,y(t)) = {(
√

y(t))−1,exp(−y(t)),
1

1+y2(t)
}, or

d
dt

y(t) .

Figure 1 represents the numerical convergence of multiplicative Schwarz with
the discretized nonlinear T.C. for the discretizing schemeassociated to the Equa-

tion (3) with f−1(t,y(t)) = {(
√

y(t))−1,exp(−y(t)),
1

1+y2(t)
}. It exhibits that the

convergence behavior is purely linear for this problem withtwo time slices and one

artificial interface. The T.C. with imposing the matching of
dy
dt

(t) only does not

converge as expected by the theory. The combining of the Dirichlet and relaxed flux
for T.C. converges faster. We show in section 3 the pure linear behavior for the con-
vergence of the multiplicative Schwarz for the time decomposition with this kind of
nonlinear T.C. .
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3 Pure linear convergence of the Time Schwarz DDM with
nonlinear flux transmission conditions

Let us consider the problem Equation (3a) with Dirichlet B.C. at t = 0 and the
invariant flux B.C. equal to 1 att = T. Then we split the time interval[0,T[ into
p time slices of sizeH = T/p and we apply the multiplicative Schwarz algorithm
with Dirichlet B.C. att = T+

i−1 and a combination of a Dirichlet and the invariant
flux B.C. att = T−i times a parameterγ:

d
dt

f−1(t,y
n+ 1

2
i (t))

d
dt

y
n+ 1

2
i (t) = 0, t ∈ Si , (10a)

y
n+ 1

2
i (T+

i−1) = yn
i−1(T

−
i−1), (10b)

y
n+ 1

2
i (T−i )+ γ f−1(T−i ,y

n+ 1
2

i (t))
d
dt

y
n+ 1

2
i (T−i ) = yn

i+1(T
+
i )+

γ f−1(T+
i ,yn

i+1(T
+
i ))

d
dt

yn
i+1(T

+
i ). (10c)

Following the idea of [2], we use the Kirchoff transformation by introducing new
variablesui(t) such that

ui(t) :=Θ(yi(t)) =
∫ yi(t)

f−1(t,z(t))dza.e. inSi . (11)

Then f−1(t,yi(t))
d
dt

yi(t) =
d
dt

ui(t) . Here thef−1(t,z(t)) is taken sufficiently con-

tinuous such that the value ofΘ(y(t−)) =Θ(y(t+)) and an equality on “y” traduces
an equality on “u”. Schwarz Algorithm (10) can be rewritten as:

d2

dt2
u

n+ 1
2

i (t) = 0, t ∈ Si , (12a)

u
n+ 1

2
i (T+

i−1) = ηn
i

de f
= un

i−1(T
−
i−1), (12b)

u
n+ 1

2
i (T−i )+ γ

du
n+ 1

2
i

dt
(T−i ) = χn

i
de f
= un

i+1(T
+
i )+ γ

dun
i+1

dt
(T+

i ). (12c)

We can show that the B.C. of this multiplicative Schwarz converge purely linearly
to the B.C. associated to the solution. The errorei = ui−u satisfies

d2

dt2
e

n+ 1
2

i (t) = 0, t ∈ Si , (13a)

e
n+ 1

2
i (T+

i−1) = en
i−1(T

−
i−1) = αn

i
de f
= ηn

i −η∞
i , (13b)

e
n+ 1

2
i (T−i )+ γ

de
n+ 1

2
i

dt
(T−i ) = en

i+1(T
+
i )+ γ

den
i+1

dt
(T+

i ) = β n
i

de f
= χn

i − χ∞
i . (13c)
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The errorei(t) writesei(t) = ai t +bi with:

ai =
β n

i −αn
i

γ +H
, andbi =−

(β n
i −αn

i )

γ +H
T+

i−1+αn
i . (14)

For the sake of simplicity, let us takep= 6. We haveαn
1 = 0 andβ n

6 = 0. Then one

can write:Ξn+ 1
2

1 := (β n+ 1
2

1 ,αn+ 1
2

3 ,β n+ 1
2

3 ,αn+ 1
2

5 ,β n+ 1
2

5 )T = P1Ξn
2

andΞn
2 := (αn

2 ,β
n
2 ,α

n
4 ,β

n
4 ,α

n
6)

T = P2Ξn− 1
2

1 with:

P1 =
1

γ +H




−1 1 0 0 0

γ H 0 0 0

0 0 −1 1 0

0 0 γ H 0

0 0 0 0−1




andP2 =
1

γ +H




H 0 0 0 0

0 −1 1 0 0

0 γ H 0 0

0 0 0 −1 1

0 0 0 γ H




. (15)

The matricesP1 andP2 do not depend on the iterationn, and are invertible with an
appropriate choice ofγ. The matrixP = P1P2 links all the B.C. associated to the
odd time slices as follows:

P=
1

(γ +H)2




−H −1 1 0 0

γ H −H H 0 0

0 −γ −H −1 1

0 γ2 γ H −H H

0 0 0 −γ −H




. (16)

Consequently the multiplicative Schwarz algorithm converges or diverges purely
linearly and the right B.C. associated with the solution canbe extrapolated with
the Aitken’s acceleration of convergence technique using this convergence or diver-

gence behavior. By settingΛn+ 1
2

1
de f
= (χn+ 1

2
1 ,ηn+ 1

2
3 ,χn+ 1

2
3 ,ηn+ 1

2
5 ,χn+ 1

2
5 )T , the Aitken’s

extrapolation, with the identity matrixI, writes:Λ ∞
1 = (I−P)−1(Λ

3
2

1 −PΛ
1
2

1 ). For
H = 1 andγ = 0.5 the eigenvalues ofP are with 4 significant digits:
{−0.1413±0.2478i,−0.2608,−0.2221±0.1496i} which shows the convergence
of the multiplicative Schwarz.

Remark 1.We can not impose the flux T.C. only at the end of time slices because
the flux B.C. at the last time slices then will imposeai = 0,∀i. Consequently we
would have a sequential propagation of the right B.C. at eachSchwarz iterate.

Remark 2.As we haved
dt u

n
i+1(T

+
i ) = 1 then Equation (10c) can be replaced by:

u
n+ 1

2
i (T−i )+ γ

d
dt

u
n+ 1

2
i (T−i ) = χn

i
de f
= un

i+1(T
+
i )+ γ . (17)
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4 Numerical implementation and result

In order to implement the multiplicative Schwarz, we still use Equation (2a) with
using the Sẗormer-Verlet second order in time implicit scheme. Considering N+1
regular time steps∆ t on each time sliceSi , andzj ≃ yi(T

+
i−1+ j∆ t), the flux T.C.

given by Equation (17) is discretized in time with the secondorder scheme with
f−1
N = f (T−i ,zN)

−1:

yi(T
−
i )+ γ f (T−i ,yi(T

−
i ))−1 dyi

dt
(T−i )≃ zN + γ f−1

N (
3
2

zN−2zN−1+
1
2

zN−2). (18)

The local problem on each time slice consists in searching the zero of the func-
tion F(z0, . . . ,zN) = 0 including the two T.C. forj = 0 and j = N with a Newton
method with a stopping criterion set to be 10−7. The Jacobian matrix ofF is mainly
a tridiagonal matrix when we applied a Gaussian eliminationof the term in position
N,N−2. Moreover the nonlinearity is concentrated in the scheme only on the diag-
onal of the Jacobian and on the last row. An initial solution is computed on a regular
coarse time mesh with the Newton stopping criterion set to be9.10−2. Then the
Kirshoff transformationΘ is applied to the T.C.Yi (of odd time slices) in order to
obtain the acceleration matrixPΘ . Next, the Aitken acceleration is performed in the
transformed space (associated to the Kirshoff transformation) and the accelerated
T.C.Y∞ on odd time slices are retrieved with applyingΘ−1 as follows:

Y∞ :=Θ−1((I−PΘ )−1(Θ(Y2)−PΘΘ(Y1))). (19)

Remark 3.This formula generalizes to the nonlinear case the Aitken-SVD [9]. In
this last case,Θ(Y) = UY is the linear change of variable whereU comes from the
singular value decompositionUΣVT of the T.C. arizing in the Schwarz iterations.

5 Conclusion

We obtained new nonlinear transmission conditions for our time domain decompo-
sition which consists to apply classical multiplicative Schwarz algorithm on non-
overlapping time slices. These T.C. make the multiplicative Schwarz algorithm hav-
ing a pure linear convergence that allows it to be extrapolated to the T.C. satisfied
by the searched solution. The method is for the moment applied to scalar problem,
some extension to system of non linear ODEs is under investigation by using the
definition of the inverse of a vector used in theε-algorithm.
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Fig. 2 Maximum of relative error between the Schwarz Dirichlet B.C.of odd time slices with the
exact solution (dash line) and its acceleration by Aitken technique (solid line), with respect to the
Schwarz iterations forf (t,y(t)) = exp(y(t)). Number of time slices isp= 12,N = 81,γ = 20.
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