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Abstract We review the ideas behind and the construction of so-cédieal multi-
trace boundary integral equations for second-order bayngdue problems with
piecewise constant coefficients. These formulations heeeived considerable at-
tention recently as a promising domain-decomposition @ggit to boundary ele-
ment methods.
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1 Introduction

This article is devoted to a formal derivation and discussiba class of boundary
integral equation (BIE) formulations that have recentlgmetroduced for second-
order transmission problems. We chose to dub this clasal‘faalti-trace BIE for-
mulations” (MTF), which is inspired by two key features of ihembers:

(i) The methods rely on at least two pairs of trace data as amka on interfaces.
The accounts for the attribute “multi-trace”.

(i) Formally, they are constructed by taking into accouansmission conditions
pointwise or, at least, on parts of sub-domain boundaribgwis indicated by
the “local” attribute.

Initially, the development of these new methods was pursugependently by
numerical analysts and in computational electrical ergyiing, driven by different
objectives. In numerical analysis, the focus was on com@adiuctures, that is,
partial differential equations with piecewise constargftioients. There, the main
motivation was to find first-kind boundary integral formidaus that, after Galerkin
boundary element discretization, are amenable to opepadaonditioning, a pos-
sibility not offered by classical approaches, see [3, $adi]. In engineering, re-
searchers were guided by a domain decomposition paradignmgato localize

1 Seminar for Applied Mathematics, ETH Zurich, CH-8092 ztii Switzerland,
e-mail: hiptmair@sam.math.ethz.ch

-2 Escuela de Ingenieria, Pontificia Universidad Catolie€tiile, Santiago, Chile,
e-mail: cjerez@ing.puc.cl

-3 ElectroScience Laboratory, The Ohio State Universityu@dus, OH, USA,
e-mail: lee.1863@osu.edu

-4 University of New Mexico, Albuguerque, NM, USA,

e-mail: zpeng@ece.umn.edu



2 R. Hiptmair, C. Jerez-Hanckes, J.F. Lee Z. Peng,

boundary integral equations for electromagnetic wave ggafion at artificial inter-
faces for the sake of parallelization and block-precoaditig.

Both research efforts have been fairly successful: on tlehamd, a comprehen-
sive theoretical understanding of the simplest represigataf a local multi-trace
BIE formulations for Helmholtz transmission problem codid achieved in [8].
In a wider context the method is also covered in [3]. On thesiotiand, a host
of impressive applications of multi-trace methods is doentad in computational
electromagnetism. A surface integral equation domainmgosition method based
on multi-trace formulation is presented in [15, 14] for thharmonic electromag-
netic wave scatterings from homogeneous targets. Thenessibf general bounded
composite targets is discussed in [13].

This article looks at MTF from a mathematical point of viewt kinspired by the
developments in the engineering community, adopts a diffteand more general
perspective compared to [8]. This work is mainly conceparal does not aim to
pursue any comprehensive analysis. Rather it is meant toroba ideas and direc-
tions of research. We have not included any numerical resglt are we going to
discuss details of Galerkin discretization by means of bamyelements. Detailed
studies of convergence of multi-trace BIE for 2D acoustattszing discretized by
means of low-order boundary elements (BEM) are reporte8,iS¢ct. 5]. Concern-
ing the application of multi-trace methods for solving ¢éfemagnetic scattering
problems, convergence studies can be found in [13] foresdagt at both single ho-
mogeneous objects and composite penetrable objects.abewvenplex large-scale
simulations are covered in [14] and demonstrate the capabflthese methods to
model multi-scale electrically large targets.

2 Transmission Problems

LetQ cRY,d=2,3,i=0,...,N, bedis-
joint open connected Lipschitz “material
sub-domains” that form a partition in the
sense thaR® = QU --- U Qn. Among
them onlyQg is unbounded. Two adjacent
sub-domaing; and Q; are separated by
Fo2their common interfacéjj, whose union
forms the skeletox. ForN > 1 the skele-
0 ton 2 will usually not be orientable, nor
be a manifold.

Given diffusion coefficientg; > 0,i = 0,...,N, we focus on the model trans-
mission problem that seekk € ngc(Qi), i=0,...,N, solving

LiU; ;== —div(ygradUi) +Ui =0 inQ;, (1a)
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oU; oU;j
Uil = Uil =00 Higer| + Higy
ij

an =0 onfjj, (1b)

ij

plus suitable decay conditions at infinity 1dr— Uj,c, where the “incident fieldUj,c
is an entire solution dofgUjnc = 0 onQq [11, Ch. 8]. The weak formulation of (1) is
posed on the Sobolev spadé(R3).

The transmission conditions (1b) connect two kinds of caaniraces on both
sides of interfaces. These traces are the Dirichlet tfagge and Neumann trace
Tn,i, defined for smooth functions ap; through

TDyiUi = Ui|£?Qi , TN,i Ui = Hi gradUi . ni|mi . (2)
They can be extended to continuous operators [16, Sect. 2.81&
Toi tHY Q) 5 HZ(0Q) , T H(A,Q) - H 2(0Q). 3)

Then, (1b) can be recast as

Tp, _(Ild 0 Tp,j _ .
-GS w0 o

for which we embrace the compact notatift); = X T; U; with obvious meanings
of the operator&; andX.

Remark 1In fact, multi-trace boundary integral equations were filesteloped for
acoustic and electromagnetic scattering problems and vphasive that the ideas
of this article will naturally apply to them, see [3].

3 Basic Multi-Trace For mulation

For the sake of lucidity, in this section we largely restdatselves to the situation
N = 2, as sketched in Figure 1 fdr= 2. For the purpose of presenting the local
multi-trace formulation this case is generic and compjetalptures the ideas and
essence of the methods.

3.1 Preliminaries

The starting point for deriving multi-trace boundary inteigequations is the charac-
terization of traces of local solutions of (1) as the ranga ¢dompound) boundary
integral operator known aSaldedn projector see [3, Sect. 2.3], [16, Sect. 3.6],

IAsusualH(A,Q) = {U e HY(Q): AU € L2(Q)}.
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and [9, Sect. 5.6]. For the Calderdn projector associaidttive PDEL;U; = 0 on
Q; we write

Py HZ(0Q) x H 2(3Qi) — HZ(0Q) x H™2(dQ) , (5)

and recall thaP; is connected to the four key boundary integral operator&al-
order scalar PDEs according to

Pi=Ai+3ld , A= (Wil KI’) ; (6)
|

where we have adopted the notatid&s Vi, Wi, K{ from [16, Sect. 3.1] for the
double layer, single layer, hypersingular, and adjointdelayer boundary integral

operators 0@ Q;, respectively. The Calderon projectors owe their imparégio the
following fundamental theorem [3, Thm. 2.6].

Theorem 1. If and only if U solvesLjU; = 0 in Q; (and satisfies exponential decay
conditions ato for i = 0), then(ld — ;) T; U; = 0.

Here, in the interest of compact notation, we relied on thal thbace operator

T := Gz:) Thus, ifU is a solution of (1), we conclude from Theorem 1

(—Ai+3ld)TjU =0, i=12,

(*Ao+%|d) To(U —Uijpe) =0. @

Fig. 1 Geometric situation o1
“N = 2" in 2D for deriva-
tion of multi-trace boundary
integral formulations. Black
lines indicate the sub-domain
boundaries, magenta lines
stand for Cauchy traces, of
which there are two on each
interface in the multi-trace 02
setting. Red dots mark junc-
tion points.
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3.2 Derivation

The derivation of the basic MTF casts both (7) and the trassiom conditions (4)
into weak form. To do so, we need bilinear pairirfigs

i, 0] = (U V) + (VH)gg » Uii= (:)a v 1= (\\:) €7(0Q), (8)

on thelocal Cauchy trace spacés
T(0Q) =HZ(0Q) x H 2(C) . 9)

In (8), angle brackets designated the bi-linear dualitypo betweed 2 (0Q)and
H-3 (@), which reduces to ah?-pairing for sufficiently regular functions. Then
(7) is equivalent to

[(fAiJr%ld)’JI‘iU,ni]mi:r.h.s. Voi € 7(0Q),i=0,1,2, (10)

with “r.h.s.”, here and below, representing a linear formtloa trial space that pro-
vides the excitation.
A possible weak form the transmission conditions (4) capply be stated as

[TiquT,-u,mﬁj]F_ =0 Ve T(0Q) . (11)
1]
The attribute “sloppy” and the quotation marks hint at fuméatal problems haunt-
ing (11) and those lurk in the failure of the bi-linear pagrin ~]rij to be well defined
for restrictions of generic traces i) .
Temporarily sweeping these difficulties under the rug (aasdricting ourselves
to the situatiorN = 2 illustrated in Figure 1), we now combine (10) and (11) into

[(Ao—31d) ToU b0 5, — 01 {TOU —XT,U, no|r01}

o1

—002 [ToU —XTyU, U0|I—02} . =rh.s. Yvg€ T(0Qop)" ,

lo
[(A1—31d) T1U,01] 5. — 010 |T2U —XToU, v, | . "
—01 [TlquTZU,nﬂrlz] —rhs. Vv € 7(0Q)

M2

[(A2—31d) ToU,02] 50, — 021 [ToU — X T1U, valp,, |

1

— 0o [TZU—XTOU,UZM —rhs. Ve 7(0Q),

20

2 Fraktur font is used to designate functions in the Caucloetspace, whereas Roman typeface is
reserved for Dirichlet traces, and Greek symbols for Neunteaces.

3 By Cauchy trace spaces we mean combined Dirichlet and Neuirares.
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where thea;; are non-zero weights. These are equations satisfied by tat lo
Cauchy tracefjU, i = 0,1,2. Next, we treat these traces as unknowns and call
themuy, up, andug which converts (12) into a system of (variational) boundary
integral equations. It deserves the label “multi-tracefcduse the unknowns are
separate Cauchy traces for each sub-domain, which yieldpairs of unknown
traces on each interface, twice the number used in most btherdary integral for-
mulations, see Figure 1. Adopting a compact notation, Kfet 2) the problem is
posed on thenulti-trace space

MT(Z) = T(0Q0) x T(0Q1) x T(0Q2) . (13)

The special variant of (12) proposed in [8] is recovered liyirspo;; = f%. To
see, why this is a special choice, note that, for instance,

up, v ug, v = [ug,v , u,veJ(0Q).
[ 0 olrm] r01+[ 0 0|r02} ) [u0,90] 90, (0Q0)
Thus, we achieve a massive cancellation of terms and artribe hasic multi-trace
formulation seek(ug,u1,u2) € # .7 (Z) such that

1 |:X _
-5 u2|,— Uo|,— :| =r.h.s.
M1 2 02’ 02 I

V00 € T(3Q0)"

1
[Aouo,v0lyq, — 3 [Xuﬂ,—m, UO|I'01:|

1 1 —
[Alulanl]an 2 |:Xu0|r107 l]:|.|I—10:| rlO_ 2 [Xu2|l'127 Ul|l’12} [-12_ rhS (14)
Vi€ T(0Q1)"
1 1 —
[Azuz,nz]agz -5 [Xuﬂ,—ﬂ, 02|,—2J I_Zl— 5 [Xuoh—zo, 02|,—20} I_zo_ r.h.s.
Vi€ T(0Q)"

where, again, the quotation marks acknowledge difficultiesetting the use of
generic traces as trial and test functions. The variatiforahulations for general
N can be found in [3, Sect. 6] and [8, Sect. 3.2.3].

3.3 Analysis

Let us take a closer look at the coupling terms in (14). faf .7 (0Q;) andvj €
T (0Q;) we find

1 1
Xl vy, € H2(G)) x H72(F5)).
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Unfortunately,H%(I'ij) andH*:’zL(I'ij) are not in duality with pivot space?(F5;).
More precisely(u;j,vj) — [Xui |,-ij .0 |ﬁj } - is notbounded o7 (0 Qi) x .7 (0Qj),
which renders (14) meaningless without”the quotation marks

As aremedy, more regular test functions have to be used,lpémnetions whose
restrictions tdj; belong to the2(rj;)-dual OfH%(I_ij) xH~2 (lij), which is known
to coincide withH 2 (Fj) % H-2 (hj), where the latter spaces are spaces of functions,
whose extensions by zero froff) to dQj are still valid functions irH%(OQJ-) X
H=2(Q;). We remind thati 2 (j;) x H~2([};) is adensesubspace ofi 2 (I5) x
H*%(I'ij) with strictly stronger normsee [11, Ch. 3] and [8, Sect. 2]. Thus, proper
test spaces in (14) are

7(00)) = QH(f) xA-3(Fy), j=012, (15)
i#]
since the bilinear fornm associated with (14) turns out to be bounded as a mapping

m:MT(E\x MT(Z) >R,

WhereQ%(Z) is defined in analogy to (13) this time basedﬁ@ﬁf),—).
A key observation concerns tiock skew-symmetritructure of (14) due to

_ _ o _ _ u € 7(0Q),
[Xu'hj’ndﬁj}ﬁji {XUJ"—‘J’uI'nJﬁj’ Ujef?v(de). (16)

In light of the well known ellipticity of the boundary integlroperators [16, Sect. 3.5.1]
2
c>0: HAWhWbQ|ZCHWH9wq) Vo € 7(0Q)) , 17)
(16) immediately implies the# .7 (X)-ellipticity of m:

} - = =12 - _ 5
iC>0: |m(n,n)|2CHnH%9(Z) Vo e T(Z). (18)
From (18) we conclude existence and uniqueness of solutiqig) with trial space
A T (). Not straightforwardly, however, because the lack of carity of m on
MT(Z)x AT (Z) bars us from appealing to the Riesz representation theorem.
Fortunately, as elaborated in [8, Sect. 3.2.8], we can regsalt by J.L. Lions [10,

Ch. lll, Thm. 1.1] along with the density o%(Z) in.#7(%):

Theorem 2. The variational problem(14) on .#Z 7 (%) x ///Z/?(Z) possesses a
unique solution in# 7 (X) that depends continuously on the right hand side.

Remark 2The result of Theorem 2 crucially hinges on the ellipticiy8), which
can be taken for granted only for the choigg = f%. For general weightsj;
existence and unigueness of solutions of (12) is an operigarob
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Remark 3For scattering problems the sesqui-linear form of (14) béllmerely co-
ercive. In this case uniqueness of solutions has to be édtatlby other arguments,
see [8, Sect. 3.2.6], and existence follows from Fredhokoit

4 Transformed Multi-Trace For mulations

4.1 Optimal transmission conditions

An important motivation for the development of multi-traBH= was the desire to
obtain linear systems of equations that readily lend théraseo additive Schwarz
(“block Jacobi”) preconditioning. On the level of the tramssion problem (1), this
amounts to solving local boundary value problems@rusing Dirichlet or Neu-
mann boundary data from the previous iterates on the adjaabrdomains. How-
ever, the transmission conditions (1b) may not lead tofsatisry convergence.

To understand how alternative transmission conditions lmawst an additive
Schwarz iteration, let us examine the very simple situatth N=1,> =T :=
0Qy = 0Q4. There is a special transmission condition that effects¥emence in
one step! To state it, we introduce the Dirichlet-to-Neumg@ditN) operators

DtNo, DtNy : H2 (") — H=2(I") (19)
and their inverses, the Neumann-to-Dirichlet (NtD) opersit
NtDo,NtDy 1 H 2(I) = HZ(I) , NtD;=DtN. 1. (20)

The subscript indicates whether they are associated wittuadary value problem
LiU = 0 on Qp or Q, respectively. Recall that DtN operators, sometimes dalle
Steklov-Poincaré operators, return the Neumann tracesofwgion of a boundary
value problem for prescribed Dirichlet data [11, Ch. 4]. TN operators asso-
ciated with bounded subdomains are linear, btitlp is merely affine due to the
“nonzero boundary condition at infinity” imposed throudh. In any case, the
linear parts of the operatoBN; andNtD; are symmetric and positive.

Based on these operators, we introduce modified transmiseiaditions across
r:

TD’]_U — NtDl(TNle) = TD70U + NtDl(TN’QU) , (21&)
DtNo(TDJU)ﬁLTN’lU = DtNo(TD’()U) — TN,oU . (Zlb)

These transmission conditions are perfectly symmetrib véispect taQy andQ;,
since, thanks tdltD; = DtNi’l, we can rewrite (21) in the equivalent form

DtNl(TD’]_U) — TNle = DtNl(TDpU)—f—TN’OU , (22&)
TD’1U + NtDo(TNle) = TD70U — NtDo(TN’()U) . (22b)
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Invertibility of the involved operators yields another aglence

TpiU =TpoU,

TniU = —TnoU, (23)

) & (22 < {
which confirms that the original transmission conditionsai implied by our mod-
ified versions.

Following the policy of Section 3.2, we aim for an MTF based(dh) and first
cast the transmission conditions into weak form

[(Id+M)T1U — (Id+ M) X(ToU),v] =0 Yoe 7 (), (24)
(i
[(Id — M) ToU — (Id — M) X(T1U),0] =0 Yoe 7 (), (25)

with an affine linear operator

M= (DtONO N0tD1> L T(M) = T(T). (26)

Note that in the above manipulations, we have uséd = —MX. This yields the
generalized multi-trace formulation: seeku;, € 7 (I') such that

[(—Ag+31d) ug,v] - + o1 [(Id — M)ug — (Id — M) X ug, 0] =0, (27a)
o10[(Id +M)ug — (Id + M) Xug, 0] + [(— A1 +31d) uz,0] - =0, (27b)

forallv € 7(I"). Again, we may go after cancellation by settiogy = 010 = f%,
so that (27a) is simplified to: seek,u; € 7 (") such that

— [(Ao—3M)ug,v] - + 3 [(Id — M) Xug,0] =0, (28a)

3 [(1d++ M) Xug, 0] — [(A1+3M)ug, 0] =0, (28b)
for all v € 7 (I"). This linear variational problem may be solved by means ef th
following (undamped) additive Schwarz method: given auprﬂtionsu(()k),u(lk) €
7(r),k=0,1,..., computes™ u¥ ¢ 7(I") as solutions of

~[(Ao—3mufY 0] +3[01d-M)xul 0] =0, (29a)
r r
" (k1) Yoe 7 (IN)
%[(Id+M)XuO ,nL_f {(AH%M)% ,UL_ ~0. (29b)

Lemma 1. Assuming unique solvability of the linear variational plein (29), and
u(()o) = u(lo) = 0, the iteration will become stationary after one step, iig = u(()l)
andT U = u(ll), where U is the solution of the transmission problkgh

Proof. Consider the boundary value problem posedXn
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—div(pogradu® ) Uk — 0 inQy, (30a)
DtN1(TpoU ) 4 Ty oU Y = DtNy (Tp UMY —Ty2U®  onr, (30b)
DtNo(Tp,oU &) — Ty oU Y = DtNg(Tp1UM) + Ty2U® onr, (30c)

UKD _ Uy satisfies decay conditions at, (30d)

and assume that it has a solution. Then, recalling Theorendlre definition of
M, we find that withu!) := T; U the Cauchy traces"" := ToU **1 provide
a solution of (29a). However, in general (30) will fail to benganingful boundary
value problem, because too many boundary conditions aredetpon/. Yet, if
Uk =0, then the boundary conditions (30b) and (30c) become

DtN1(TpoUW) +TnoU® =0 onr, (31a)
DtNo(TpoU W) — TnoU® =DtNg(0) onr . (31b)

Notice that (31b) is redundant, satisfied dyy solution of (30a) complying with
(30d). What remains in terms of effective boundary condgion/” is (31a), which
represents a well-posed impedance boundary conditionusucgtees the existence

of a unique solutiot) *+2). The Cauchy trace” := ToU® of that solution wil

satisfy
[(DtN?)(O))’U]I_ ) (32)

which agrees with the variational problem (29a) to be solndtie first step of the
Schwarz iteration with initial gueséo) =0.

Similar considerations apply to (29b). Here we start from bloundary value
problem with redundant boundary conditions

NI

—(An—1ivDu® —
(Ao—3M)ug ’U}r

—div(urgradu® Dy yu®d —o inQy, (33a)
DtNo(Tp1U ) + Ty 1 UKD = DtNg(TpoUM) — TyoU®0  onr, (33b)
DtNy(Tp U Y) — Ty UKD = DNy (TpoU M)+ TyoU® onr . (33c)

If this has a solutioni+1), its Cauchy trace{"™ := T;U &1 will solve (29b)

provided that) := ToU . Again, ifU = 0, the boundary conditions dn are
converted into

DtNo(TpaUW) + Ty1U® = DtNp(0) onr, (34a)
DtNy(TpaUW) = Ty2UY =0 onr, (34b)

and the second is always fulfilled and can be dropped. Thidtsds a well posed
elliptic boundary value problem and the Cauchy tra&rlé:: T, U & solves
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[(Al —i—%M)u(ll),nL_ =13 [<DtN(:3(O)>’U} . (35)

which amounts to the second linear problem faced in the fiegt of the Schwarz
method (29) starting from zero.

By the definition of the Dirichlet-to-Neumann operatorg ttombined solutions
of the boundary value problems (30a), (31a), (30d) and (334%) provide a solu-
tion of the transmission problem (1). Thulg) andu(ll) from (32) and (35) are the
Cauchy traces of that solution. Here we rely on the assumpticghe Lemma that

ensures uniquenessuﬁa andu(ll). Thus they are the desired final solutions and the
Schwarz iteration will become stationary after one step. d

As a consequence of this Lemma, the additive Schwarz iber§#9) converges
after two steps, thanks to the transmission conditiond(24), which we call “op-
timal” for this reason. Unfortunately, the “optimal tranission conditions” destroy
positivity of the resulting multi-trace operator, whichried out a key property in
Section 3.3, see (18). We still find

[(Id —M)Xvq,00] = —[(Ild+M)Xvg,01] Vog,01 € T(0Q),

but the ellipticity of the diagonal operators, e.g.,

_ 1
Ao —%M _ ( Ko Vo+ 2NtD1) , (36)

Wo — 3DtNg A

is lost. Hence, rigorous results about existence and uniegseof solutions of (28)
are still missing even in the cabe= 1. This is an open problem for future research.
Moreover, the optimal transmission conditions (21) regjuhe realization of
DtN and NtD operators. Their exact implementation is not ptiom for practical
schemes. Thus, in the next section we consider local appadians for the optimal

transmission conditions.

4.2 Local impedance transmission conditions

The considerations of the previous section suggest tha ferl we use transmis-
sion conditions similar to (21lpcally on the interfacdi;, whereDtNj, DtN; etc.
are replaced by suitable approximations. The resultingadled local impedance
transmission conditions across the interfagecan be written in the form

Bij(Tp,iU)+ Tn,iU = Bij(Tp,jU) —Tn,jU, (37a)
Bji(TD,iU)fTN,iU :Bji(TDij)+TN7jU. (37b)

whereB;jj andBji are invertible (affine) linear operators obtN-type” mapping
H%(,_ij) ontoH*%(I'ij). Parallel to the switch from (21) to (22), invertibility dii¢
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involved operators yields another equivalence
TpiU+Gij(TniU) = TpjU —Cjj(Tn,jU) , (38a)
TD,iUiji(TN,iU):TD7JU+CJi(TN7jU). (38b)

whereCij = Bj;' 1 H™2(F5;) — H2(Fij) andCj = By L : H-2(Ifj) — HE (). We
can then write the weak form of the local impedance transorissonditions as:

[(Id+Sij) T;U — (ld—i—Sij)X(TiU),U],-ij =0 Yoe J(h), (39)
T
[(1d = Sij) TiU = (Id = Sij) X(T;U), 0] =0 Voe TN, (40)

with an affine linear operator
0 G
syi= (L9, )70 - 7). (@1)

Retracing the steps detailed in Section 3.2 based on (3%ndeip with thdocal
multi-trace variational problemhere stated foN = 2: seek(ug, uq,up) € 4 .7 (X)
such that
[Aouo,v0] 50, + 3 [Soxtto, bol -, + 3 [Sozuo, o], —
3 [(1d + So1) X ug, o] . — 3 [(Id + So2) X 2, vo]
[A1u1,01]50, + 3 [Stour, v1]r, + 3 [S1211,01], — 42)
31(1d +S10) X 11g, 0a] . — 3 [(1d + S12) X iz, 01 -, =0,
[A2u2,02] 50, + 3 [S20u2,02] 1, + 5 [Sa1uz, 02],, —

3 [(1d + S20) X g, 2]~ 3 [(1d +S21) X g, v2] -, = 0,

:07

lo2

for all (v1,02,03) € Q%(Z). Of course, local pairings on interfaces involve re-
strictions onto those interfaces even if not apparent fioemiotation. As explained
in Section 3.3, this entails using the more regular testesp//&\c/ﬁ(Z).

An additive Schwarz method analogous to (29) may be apptie@?2) as an
iterative solver or preconditioner. The correspondingamged iteration seeks
(W W WKy e 7 7 (5) such that
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{Ao u(()k+1),tlo} + % [§01u(0k+l),00} + % [Sozu(okJrl),Uo} —
Qo o1 o2

%[(Id+801)Xu(lk),no %{(IdJrSoz)Xu(zk),no} -0,

]/'01 lo2

s ] 3 ]+ ]

01 12

30d+810) X0 01| 3 [0d+812)Xuf 0| =0,
01 12

[Az u(2k+1),t)2:| + % |:§20u(2k+l),02} + % |:821u(2k+l)702}
0Q; o2 12

% |:(|d + SZO)Xu(()k)aUZ} roz_ % [(|d + Sgl)Xu(lk),Ug} - =0,
(43)

for all (v1,02,03) € Q%(Z), where a superscrigk) indicates the use of approx-
imations from the previous iteration. As is clear from thasiderations of Section
4.1 the choice oB;, B;j will directly affect the convergence of the Schwarz itera-
tion applied to the multi-trace variational problem. A sysatic study still has to be
conducted.

Remark 4 So far, the development and analysis of multi-trace methass focused
on acoustic and electromagneti@ve propagation problemsee [3, Sect. 1.2].
There the simplest choice for approximate local DirichtetNeumann operators
seems to be a first order complex Robin transmission condifi€), introduced in
[4], where the operators are chosen in the form

Bij:Bji:fl’]ij IK , nijeR. (44)

This choice makes the Schwarz iteration converge quicklypfopagating eigen-
modes, though the evanescent modes fail to converge. FFuvthr& has sought to
improve the Robin TCs to ensure convergence of both projapand evanescent
modes [2, 1]. Of particular interest are the so-called ojztith Schwarz methods,
where the coefficients used in the transmission conditioe®htained by solving
min-max optimization problems for half-space model praide These include the
optimized Schwarz method with two-sided Robin TCs [7] antimized second
order transmission conditions [6]. Schwarz methods witthtorder transmission
conditions have also been developed for high frequency-ktiarenonic Maxwell’s
Equations. We mention recent works [5] and [12]. The forme & based on the
optimized Schwarz methods. The latter develops a true secader TC together
with a global plane wave deflation technique to further inwerthe convergence for
electrically large problems.
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