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1 Introduction

Reaction diffusion systems have important applications in the area of modern math-
ematical modeling. They can be found in a number of real-life problems, ranging
from chemical and biological phenomena to medicine, for example [5, 10]. How-
ever the numerical solution to reaction-diffusion problems remains a challenge, as
they are often represented as a system of nonlinear PDEs, which are solved on a
complex domain. One approach to attempt to solve such problems is to use domain
decomposition methods (DD), which are more powerful and flexible. They deal
with the problem in a more elegant and efficient way, by dividing the domain into
subdomains and then obtaining the solution by solving smaller problems on these
subdomains.
In a recent paper, Caetano et al. [3] have introduced a non-overlapping domain de-
composition algorithm of Schwarz waveform relaxation type for semilinear reaction-
diffusion equations. For solving the interface problem they proposed a new type
of nonlinear transmission, using Robin or Ventcell transmission conditions, which
leads to a solution technique independent of the mesh parameter. However, this has
not been extended to reaction-diffusion systems. Our aim in this work is to present
an alternative approach to approximate the Steklov-Poincaré operators arising from
a non-overlapping DD-algorithm for reaction diffusion systems. Our approach is
related to that in [2]. The coercivity and the continuity of the Steklov-Poincaré op-
erators arising in a non-overlapping domain decomposition algorithm for scalar el-
liptic problems with respect to Sobolev norms of index 1/2 allow us to construct a
new interface preconditioner, which leads to solution techniques independent of the
mesh size h. We validate the theoretical results on various numerical experiments.

2 Problem Description

Let Ω ⊂ R2 be an open bounded set. We consider the following model problem:{
−D∆u+Mu = f in Ω ,

u = 000 on ∂Ω ,
(1)

where:

u =

(
u1
u2

)
, M =

(
α1(x,y) β1(x,y)
β2(x,y) α2(x,y)

)
, f =

(
f1
f2

)
, D =

(
d1 0
0 d2

)
.
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We assume that f1 and f2 are in L2(Ω) and M satisfies the following bounds for all
(x,y) ∈ Ω :

(2)0 < γmin <
ξ T Mξ
ξ T ξ

for all ξ ∈ R2 \{0} and ∥M∥< γmax.

The weak formulations of problem (1) reads:{
Find u ∈ H1

0 (Ω)×H1
0 (Ω) such that for all z ∈ H1

0 (Ω)×H1
0 (Ω)

B(u,z) =< f,z >,
(3)

where:

B(w,z) =
∫

Ω
D∇w : ∇z+(Mw) · z dx, and < f,z >=

∫
Ω

f · z dx.

For the weak form (3), it can be shown that the conditions of the Lax-Milgram
lemma are satisfied (see [4] for more details). In particular,

B(u,z) ≤ max{1,γmax}∥u∥1∥z∥1, ∀u,z ∈ H1
0 (Ω)×H1

0 (Ω), (4)
B(z,z) ≥ min{1,γmin}∥z∥2

1, ∀z ∈ H1
0 (Ω)×H1

0 (Ω) (5)

Let V h×V h be a finite dimensional subspace of H1
0 (Ω)×H1

0 (Ω). The finite element
discretizations of the weak formulation (3) reads:{

Find uh ∈V h ×V h such that for all zh ∈V h ×V h

B(uh,zh) = ⟨fh,zh⟩.
(6)

Since (4), (5) hold for all u, z ∈ H1
0 (Ω)×H1

0 (Ω), the existence and uniqueness of
the solution of formulation (6) is guaranteed by the Lax-Milgram lemma for all uh,
zh ∈V h ×V h.

3 Domain decomposition

Let Ω be partitioned into N subdomains without overlap such that:

Ω =
N∪

i=1

Ω i, Ωi ∩Ω j = /0 (i ̸= j), Γi = ∂Ωi\∂Ω , Γ =
N∪

i=1

Γi.

Let also ui = u |Ωi be the restriction of the solution u to subdomain Ωi, and ui |Γi=λλλ i
the trace of u on each interface.
Problem (1) is equivalent to a set of N subproblems:L ui = f in Ωi,

ui = 000 on ∂Ωi ∩∂Ω ,
ui = λiλiλi on Γi,

(7)
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where L := −D∆ +M. If we write ui = wi +vi, then equations (7) are equivalent
to the following two sets of N subproblems:L wi = f in Ωi;

wi = 000 on ∂Ωi ∩∂Ω ;
wi = 000 on Γi;

(8)

L vi = 000 in Ωi;
vi = 000 on ∂Ωi ∩∂Ω ;
vi = λiλiλi on Γi.

(9)

We can view vi as the L -extension of λλλ i to the domain Ωi and will be denoted by
Hiλλλ i. The equation for λλλ can be shown to be of the form:

N

∑
i=1

∫
Γi

(ni ·∇Hiλλλ i) · zi ds =−
N

∑
i=1

∫
Γi

(ni ·∇wi) · zi ds. (10)

From (10), the Steklov-Poincaré operator S can be defined in the following way:

⟨S λλλ ,µµµ⟩ :=
N

∑
i=1

∫
Γi

(ni ·∇Hiλλλ i) ·µµµ i ds. (11)

The systems (8) and (9) together with the Steklov-Poincaré problem (10) represent
the multi-domain formulation of the problem (1).

3.1 Mixed finite element discretisation

The weak formulation of the multi-domain formulation of the problem (1) reads:

(1)
{

Find ui ∈ H1
0 (Ωi)×H1

0 (Ωi) such that for all zi ∈ H1
0 (Ωi)×H1

0 (Ωi);
Bi(wi,zi) = (fi,zi).

(2)


Find λλλ ∈ H1/2

00 (Γ )×H1/2
00 (Γ ) such that for all ηηη ∈ H1/2

00 (Γ )×H1/2
00 (Γ );

s(λλλ ,ηηη) := ⟨S λλλ ,ηηη⟩=
N

∑
i=1

[(fi,ηηη i)−Bi(wi,ηηη i)].

(3)
{

Find ṽi ∈ H1
0 (Ωi)×H1

0 (Ωi) such that for all zi ∈ H1
0 (Ωi)×H1

0 (Ωi);
Bi(ṽi,zi) = Bi(vi,zi)−Bi(pi,zi) =−Bi(pi,zi).

Note that ṽi = vi −pi, where pi is an L -extension of λλλ i to Ωi satisfying pi = 0 on
∂Ωi ∩∂Ω .
Let Th denote a subdivision of Ω ⊂ R2 into simplices. We define V h =

∪N
i=1 V h

i a
subset of H1

0 (Ω) to be a space of piecewise polynomial functions on Th such that:

V h
i =V h,r

i :=
{

w ∈C0(Ωi) : w|t ∈ Pr ∀t ∈ Th, w |∂Ω∩∂Ωi= 0
}
.

Here Pr(t) is considered as the space of polynomials in d variables of degree r
defined on a set t⊂ Rd . Given a basis {ϕϕϕ k}n

k=1 of V h ×V h, such that:
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uh(x) =
2(nI+nΓ )

∑
k

ukϕϕϕ k(x),

we obtain the following linear system:
A(1)

II A(1)
IΓ M(1)

II M(1)
IΓ

A(1)
Γ I A(1)

Γ Γ M(1)
Γ I M(1)

Γ Γ
M(2)

II M(2)
IΓ A(2)

II A(2)
IΓ

M(2)
Γ I M(2)

Γ Γ A(2)
Γ I A(2)

Γ Γ




u1I
u1Γ
u2I
u2Γ

=


f1I
f1Γ
f2I
f2Γ

 ; (12)

with A(i) := diL+αiM and M(i) := βiM. The matrix M is known as the mass matrix,
while L represents the discrete Laplacian matrix. We also denote by
SA(i) := A(i)

Γ Γ −A(i)
Γ I(A

(i)
II )

−1A(i)
IΓ the corresponding local Schur complement associ-

ated with A(i). Equation (12) can be rewritten as:

Au =

(
AII AIΓ
AΓ I AΓ Γ

)(
uI
uΓ

)
=

(
fI
fΓ

)
, (13)

where:

Aµν =

(
d1Lµν +α1Mµν β1Mµν

β2Mµν d2Lµν +α2Mµν

)
, µ ,ν ∈ {I,Γ }.

4 A blockdiagonal interface preconditioner

Let H1/2
00 (Γ ) denote the interpolation space between H1

0 (Γ ) and L2(Γ ), which is
equipped with the norm ∥ . ∥1/2,Γ as given in [8, chapter 1]. It can be shown that the
finite element matrix representation of the norm ∥ . ∥1/2,Γ is given by [1]

H1/2 := [MΓ ,LΓ ]1/2 := MΓ (M−1
Γ LΓ )

1/2,

where MΓ and LΓ represent repectively the Mass matrix and discrete Laplacian
matrix assembled on Γ . It has been proven in [6] that the matrix H(i)

1/2(Γ )

H(i)
1/2(Γ ) := [MΓ ,A

(i)
Γ ]1/2 := MΓ (M−1

Γ A(i)
Γ )1/2

is spectrally equivalent to H1/2 for i = 1,2, where A(i)
Γ := diLΓ +αiMΓ .

Consider the following eigenvalue problem:(
AII AIΓ
AΓ I AΓ Γ

)(
uI
uΓ

)
= µ

(
AII AIΓ
0 PS

)(
uI
uΓ

)
(14)
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with S = AΓ Γ −AΓ IA−1
II AΓ I . Then µ = 1 or it satisfies:

SuΓ = µPSuΓ .

Using the definition of S in equation (11), we can derive the following theorem:

Theorem 1. There exist positive constants c1,c2 such that for all
λλλ h,µµµh ∈ H1/2

00 (Γ )×H1/2
00 (Γ ):

c1∥λλλ h∥2
1/2,Γ ≤ ⟨S λλλ h,λλλ h⟩, ⟨S λλλ h,µµµh⟩ ≤ c2∥λλλ h∥1/2,Γ ∥µµµh∥1/2,Γ .

Proof. The reader should refer to [6].

From the equivalence between the continuous and the discrete interpolation norms
of index 1/2, we have:

κ1∥ηh∥1/2,Γ ≤ ∥ηηη∥H1/2 ≤ κ2∥ηh∥1/2,Γ , ∀ηηη ∈ RnΓ .

Therefore we can derive the following inequalities:

Corollary 1. There exist positive constants c1,c2,κ1,κ2 such that for all
λλλ ,µµµ ∈ RnΓ :

c1

κ2
2
∥λλλ∥2

H(1)
1/2⊕H(2)

1/2

≤ ⟨Sλλλ ,λλλ ⟩, ⟨Sλλλ ,µµµ⟩ ≤ c2

κ2
1
∥λλλ∥

H(1)
1/2⊕H(2)

1/2
∥µµµ∥

H(1)
1/2⊕H(2)

1/2
.

This leads to the following two remarks:

Remark 1. It can be shown using a standard GMRES convergence based on the Field
of Values that any symmetric positive definite preconditioner PS which satisfies:

ξ2∥λλλ∥2
PS
≤ ⟨Sλλλ ,λλλ ⟩, ⟨Sλλλ ,µµµ⟩ ≤ ξ1∥λλλ∥PS∥µµµ∥PS , ∀λλλ ,µµµ ∈ Rn,

leads to convergence independent of the size of the problem [9].

Remark 2. It has been shown in [6], that there exist constants σi,δi such that for all
λ̃ , µ̃ ∈ H1/2

00 (Γ ):

σi∥λ̃∥2
H(i)

1/2

≤ ⟨SA(i) λ̃ , λ̃ ⟩, ⟨SA(i) λ̃ , µ̃⟩ ≤ δi∥λ̃∥
H(i)

1/2
∥µ̃∥

H(i)
1/2

; i = 1,2.

Then, a natural choice for PS is:

Ŝ1 =

(
SA(1) 0

0 SA(2)

)
.

Another more practical choice for PS is:

Ŝ2 =

(
H(1)

1/2 0

0 H(2)
1/2

)
.
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The implementation of this preconditioner can be achieved using sparse linear alge-
bra techniques. In particular the action of the inverse of H(i)

1/2 on a given vector z∈Rn

can be approximated via a generalised Lanczos algorithms (see [1, 2]), which would
only involve sparse computations with interface mass and Laplacian matrices.

5 Numerical results

In this section we present the numerical experiments obtained by solving some reac-
tion diffusion problems in two dimensions. All the problems are solved on a square
domain Ω = (−1,1)2. The domain Ω is divided into N = Nx ×Ny subdomains of
size 2/Nx × 2/Ny each, with Nx = Ny ∈ {2,4,8}. Furthermore, we used a uniform
triangulation on each subdomain so that we work with a sequence of nested grids
as well as nested subdomain partitions. The GMRES method is employed with a
tolerance of 10−6 together with the following right preconditioners:

PR j =

(
AII AIΓ
0 Ŝ j

)
( j = 1,2).

5.1 Test problem 1
We consider now the problem (1), with the following parameters:

d1 = d2 = 1,α1 = α2 = 10k1 ,β1 = β2 = 1

with f such that uT = ((x− 1
3 x3)(y− 1

3 y3),(x− 1
3 x3)(y− 1

3 y3)+ 2). We showed in
Table 1 that PR1 is an optimal preconditioner for problem (1), as the number of iter-
ations is independent of the problem size and the number of subdomains. However,
it remains computationally expensive. A more practical option is PR2 . We find in-
deed that working with PR2 still gives us virtually no dependence on the size of the
problem but a dependence on the number of subdomains. However this dependence
disappears for increasing αi. This latter property is due to the fact that the problem
becomes ‘easier’ to solve iteratively as the mass matrix becomes more and more
dominant. For the remaining test problems, we consider only PR2 .

Preconditioner= PR1 PR2

k1= 1 2 3 1 2 3

domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

size = 8,450 4 4 4 4 4 4 4 4 4 14 16 19 13 13 14 11 11 11

33,282 4 4 4 4 4 4 4 4 4 14 16 20 13 13 15 11 11 12

132,098 4 4 4 4 4 4 4 4 4 14 16 20 13 14 15 11 11 12

Table 1 GMRES iterations for Problem 1.
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5.2 Test problem 2
We solve the same problem as in the previous example but with d1 = 1,d2 = 0.1
and k2 = 0. Since d1 ̸= d2 two set of results have been obtained (see Table 2). The
first set of results is obtained by applying the preconditioner directly to the problem
(1). The second set of results is obtained by applying the preconditioner to a scaled
version of problem (1), namely:

−∆v+MD−1v = f, where v = Du. (15)

In both cases we have a logarithmic dependence on the number of subdomains and
virtually no dependence on the size of the problem. However the number of itera-
tions remains higher than those seen in test problem 1. This is due to the fact that
the preconditioned matrices are no longer symmetric.

Without Scaling With Scaling

k1= 1 2 3 1 2 3

domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

size = 8,450 20 24 26 17 19 19 16 17 16 13 14 17 12 12 13 9 11 10

33,282 20 24 27 17 20 21 15 19 19 13 14 18 12 13 13 10 12 11

132,098 20 24 28 18 21 22 15 19 19 14 14 18 12 13 13 10 12 12

Table 2 GMRES iterations for Problem 2 .

Remark 3. The similarity between the second part of the results in Table 1 and Table
2 tells us that the performance of our preconditioner will not be affected if
d1 << d2. In that case the scaled version (15) of the problem is used .

5.3 Test problem 3
Finally we consider problem (1) with d1 = 1;d2 = 0.1; f = (1,1)T and u = 0 on ∂Ω
together with the following jump coefficients:

α1 =

{
1 if x2 + y2 < 1/4
100 otherwise ; α2 =

{
100 if x2 + y2 < 1/4
1 otherwise

β1 =

{
0.1 if x2 + y2 < 1/4
1 otherwise ; β2 =

{
1 if x2 + y2 < 1/4
0.1 otherwise

An illustration of the final solution u is provided in Figure 1, while the iteration
count is presented in Table 3. We observe a similar convergence behavior: indepen-
dence of the problem size and logarithmic dependence on the number of subdo-
mains.

6 Conclusion

We presented a general non-overlapping domain decomposition method for solving
a system of coupled reaction-diffusion equations (linear case only). We derived the
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domains = 4 16 64

size = 8,450 19 24 28

33,282 18 25 28

132,098 18 26 28

Table 3 GMRES iterations for Problem 3.
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0

1

−1

0

1
0

0.02

0.04
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0.1

Solution u
1

−1

0

1

−1

0

1
0

0.1

0.2

0.3

0.4

0.5

Solution u
2

Fig. 1 Solution for Problem 3.

corresponding Steklov-Poincaré operator together with the associated linear algebra
problem. In addition, by exploiting the fact that the Steklov-Poincaré operators aris-
ing in a non-overlapping DD-algorithm are coercive and continuous with respect to
Sobolev norms of index 1/2, an interface preconditioner for the Schur complement
problem was constructed, which is strongly related to the finite element representa-
tion of the norm ∥ . ∥1/2,Γ . Its implementation can be achieved via sparse Lanczos
procedures, which do not add to the complexity of the problem . We used various nu-
merical examples to validate our theoretical results. We found that the performance
of the method is independent of the mesh size h, but remains at worst logarithmically
dependent on the number of subdomains. Similar performance is obtained when us-
ing a METIS [7] partitioning of the domain, or when our approach is extended to
non-linear reaction-diffusion systems (see [6] for more details).
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